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An Exact Pricing Error of the APT within the Arbitrage Framework

We derive an exact deviation for an individual asset from APT pricing in a
finite economy within the arbitrage framework. This deviation is the product of
a tradeoff between mean and variance of the efficient arbitrage portfolio, the
asset’'s idiosyncratic variance and the proportion of this arbitrage portfolio
represented by the asset. We show that the deviation becomes negligible in an
mfinite economy if the efficient portfolio is well diversified.



The arbitrage pricing theorv(APT), introduced by Ross [11,12] and extended
further by Chamberlain and Rothschild [1] and Ingersoll [7], has shown the
existence of an approximate pricing relationship in an infinite economy, given a
factor structure. This approximate pricing relationship is obtained by employving
an arbitrage argument. But this relationship has been criticized for its
testability as in Shanken [14,15]. Shanken [14] states: ” Ross’s theory does not
(even in the limit as the number of assets approaches infinity) imply exact
linear risk-return relation. Thus the testability of the theory could reasonably bhe
questioned on this ground alone.” Connor [2] derived an exact APT model
asymptotically in an infinite economy by using an equilibriuun argument. Also
the testabilitv of the Connor model has been questioned as Shanken [14] argues,
"the ‘equilibrium APT’ appears to be subject to substantially the same
difficulties encountered in testing the CAPM”. Dybvig [4] and Grinblatt and
Titman [5] derived an approximate pricing APT model in a finite economy by
using an equilibrium argument. They argue that the magnitude of mis pricing
is explicitly bounded with additional strong assumptions about preferences, asset
supplies and idiosyncratic variances of assets. An explicit bound might not be
small enough if these assumptions are not satisfied. Furthermore, this APT
model has the same testability problems that the Connor model has since it is
based on the equilibrium argument.

This paper derives an exact deviation for an individual asset from APT
pricing in a finite economy within the arbitrage framework which Ross [11,12]
employes. We will use “pricing error” to mean deviation from APT pricing.
Dybvig [4] and Grinblatt and Titman [5] argue that the pricing error for asset
is bounded by ROZWI', where R is the risk aversion coefficient, o is the asset's
idiosyncratic variance and w; is the proportion of total wealth represented by the

asset. In owr model, the exact pricing error for asset ¢ is given by TOZWi,
where T is a tradeoff between expected retwrn and variance of the efficient
arbitrage portfolio, o’ is the asset's idiosyncratic variance and w: is  the
proportion of this arbitrage portfolio represented by the asset. In an infinite
economy, this exact pricing error becomes negligible if the efficient arbitrage
portfolio 1s well diversified. We demonstrate that an exact pricing APT model
holds asymptotically in an infinite economy even though Ross [12] shows that
the sum of squared deviations from exact pricing is bounded. In the Ross
model, it 1s unclear how accurately each asset is priced under the APT. Thus
Shanken [14] states: "‘most’ of the deviation from linearity must be ‘small’,

rn

although any particular deviation may be 'large’. However, our APT model



shows that the APT prices every asset accurately no matter how much the
idiosyncratic variance of each asset may be as long as the efficient arbitrage
portfolio 1s well diversified. Hence we show that the APT is testable if the
efficient arbitrage portfolio is well diversified. Our APT pricing relationship is
dertved by considering any set of N assets that follows a factor structure.
There are no restrictions on the relation between the subsets of assets under
consideration and other assets in the economy. Hence, our APT model can be
testable for subsets of the universe of assets. Since our model is not an
equilibrium APT model, it may avoid the difficulties of testing CAPM. Shanken
[15] states: "As we have seen, however, nothing in D-R's analysis indicates
that a refutable empirical hvpothesis can be obtained within the arbitrage
framework itself.” QOur APT model provides a testable empirical hypothesis
obtained within the arbitrage framework. Section I provides a brief review of
the Arbitrage Pricing Theory. Section II shows an exact pricing error for an
individual asset in a finite economy within the arbitrage framework. Section III
mvestigates the APT model in an infinite economy. It demonstrates that an
exact pricing APT model holds asymptotically. Section IV provides a summary.

I. Arbitrage Pricing Theory
The APT asswmes returns are generated by a K—factor structure denoted as
R =E + Bf+ e (D
where R = an N-dimensional vector of the random asset returns

E
B

f = an K-dimensional vector of mean zero factors, which are assumed to

an N-dimensional vector of the ex ante expected returns

an N x K matrix of factor loadings

be uncorrelated with each other

e = an N-dimensicnal wvector of mean =zero idiosyncratic disturbances,
which are assumed to be uncorrelated with the factors and with each
other.

Ross’s argument is as follows. Suppose we form an arbitrage portfolio with
no systematic risk such that

wly = 0 and w'B = 0



(2)
where w = an N-dimensional vector of portfolio weights
1 y = an N-dimensional vector of ones.

Then the ex—post return of the arbitrage portfolio is given by

wR = wE + wBf+ we = wE + wle. (3

The law of large numbers suggests that in an infinite economy,

2

w'e 0 (4)

because the arbitrage portfolio is assumed to be well-diversified. Thus
w'R = w'E . Since this arbitrage portfolio requires zero net investment (ie.,

w'l y=0), w'R =0 from the absence of arbitrage. It implies that

wE = (.
(5)

In sum, any portfolios satisfying (2) must also satisfy (&), given the
assumption that the portfolio approximately eliminates the idiosyncratic risk.
But in a finite economy where the number of assets is finite, we cannot
guarantee that w'E >~ (), since it may be practically impossible to diversify
the idiosyncratic risk completely. However, we assume in this section for
pedagogic purposes that € =~ 0. Then (2) implies that w'E =~ 0. Otherwise,
there must be an arbitrage opportunity. It is well known that (2) and

w'E >~ (0 together implies the existence of the linear retwn relationship

(APT pricing):

E = A, + BA for AeéRF
(6)

where A 1s an N-dimensional constant vector.
Ross [12] has shown that an approximate APT model holds in an infinite
economy without assuming e = (. The sum of squared deviation from (6) is

bounded as the nmumber of assets approaches infinity, ie,



(E—Ay,— BAM(E —A,;— B\’ (0as N — . (7)

In Section II, we will derive an exact deviation for each asset from APT
pricing in a finite economy within the arbitrage framework under imperfect
diversifiability of the idiosyncratic risk.

II. An Exact Pricing Error for Each Asset in a Finite Economy

In a finite economy, undiversifiability of the idiosyncratic risk implies that the
absolute wvalue of the idiosyvncratic disturbance of the arbitrage portfolio is
greater than zero,

| wel > 0. (8)
It follows that w'ee’w > (. By taking an expectation operator, we obtain
w'E[ee’'lw = w'Var[elw = w'Vw > () (9)

where V is assumed to be an N x N diagonal covariance matrix of idiosyncratic
disturbances defined by Var[e] .2

The arbitrage portfolios are assumed to require zero net investment and to
eliminate factor risks as in Ross [11,12],

wly = 0 and wB = 0.
(10)

The arbitrage portfolios are risky since the idiosyncratic disturbance cannot be
eliminated completely. Ross [12] assumes risk averse investors for whom the
coefficient of relative risk aversion is uniformly bounded. IHe shows that from
utility maximization, the variance of the efficient arbitrage portfolio with zero
factor risk and zero net investment which provides a positive expected return
must be hounded away from zero(ie., positive). e demonstrates that the
minimum  varance for the portfolio solving the following problem is strictly
positive.

Problem 1: Minimize w' Vw



W
subject to w'ly = 0
wB = 0
and 0 <c¢c < wE,

In fact, he used additicnal technical assumptions such as nonnegligibility of
type B agents whose relative risk aversion is uniformly bounded, and the
existence of at least one asset with limited liahilitv. But we do not need these
assumptions.  The only assumptions we need in deriving the APT model are
the absence of arbitrage and risk averse investors. A much simpler proof is
provided in the following lemma.

Lemma 1: The minimum variance of Problem 1 1s strictly positive.

Proof: The Kuhn-Tucker conditions for Problem 1 are

2Vw — xly — vB — zE = 0, (11)
wly = 0, (12)
w'B = 0 and (13)
c — wE = 0 (14)

where x, v and z are Lagrange multipliers.

Multiplying both sides of (11) with w and using (12) and (13) gives

2w'Vw — zw'E = 0. (15)

Since z is positive, the strict positivity of w'E implies the strict positivity of

w Vw . The proof is complete.

The result of Lemma 1 is intuitively appealing since if a zero-investment,
zero—loadings arbitrage portfolio with positive expected return has zero variance,



it implies an arbitrage opportunity. Ross [12] demonstrates, by using Lemma 1,
that the sum of squared deviation from APT pricing is bounded as the number
of assets under consideration approaches mmfinity. In order to obtain the pricing
structure, we consider a problem which is in a sense dual to Problem 1. Our
approach 1s similar to the one to obtain a single beta representation of the
Capital Asset Pricing Model (CAPM). Consider the following problem:

Maximize w'E
W
subject to wily =1
and 0 < wVw = d
where V is the covariance matrix of asset returns.

The first order condition of the above problem provides a single beta
representation for expected return on each asset ¢ in tetms of the covariance of
random retuin on the efficient portfolioc w with random return on the mdividual
asset ¢. The pricing relationship for the APT can be obtained by the first
order condition for the dual problem of Problem 1. Simnilarly, the retum on
asset ¢ under APT pricing is determined by the covariation of random return

on the efficient arbitrage portfolio with random retwrn on asset ¢.  This
efficient arbitrage portfolio is the solution of the dual problem. We formulate
the following dual problem to Problem 1.

Problem 2: Maximize w'E
W

subject to w1l = O
w'B =0
and 0 <wVw =< d

We use the arbitrage portfolio to mean the portfolioc with zero—investment and
zero—loadings. Also we use the efficient arbitrage portfoliolw”) to mean the
solution to Problem 2. We will demonstrate that the expected return on the
efficient arbitrage portfolic with non-zero idiosvncratic risk must be positive.
We will show by employving the same technique used in Lemma 1 that the

maximum expected return for Problem 2, w™'E | is strictly positive.



Lemma 2! The maximum expected returm of Problem 2 is strictly positive.

Proof: The Kuhn—-Tucker conditions for Problem Z are

E—xly—vB—2zVw™ = 0, (16)

wily = 0 (17)

w'B =0 (18)
and

d— w"Vw* = 0 (19)

where x, v and z are Lagrange multipliers.

Multiplving both sides of (16) with w*'Vw* and using (17) and (18) gives

w'E —2zw"V = 0.
(20

Since z is positive, the strict positivity of w* Vw"implies the strict positivity

of w"E. The proof is complete.

Lemma 2 argues that risk aversion requires positive expected return for the
efficient arbitrage portfolio with non-zero idiosyncratic risk. Intwtively, a risk
averse mvestor would hold an arbitrage portfolio with non-zero idiosyncratic
risk only if it provides positive expected rettun. We will derive the exact
pricing error for the APT. Since risk averse mvestors would hold the efficient

arbitrage portfolio (w*) and since the pricing relationship is determined by w*,

we will focus on the efficient arbitrage portfolio. Lemma 2 implies that if
wly=0 w'B=0 and w'Vw >0 for w & R, (21)

then we must have



w E > 0 (22)

where w* is the efficient arbitrage portfolio, the solution to Problem 2. Tt

follows that there is no solution (ie, the efficient arbitrage portfolio), w* <

RY, which satisfies the following system,

wly = 0, w'B = 0 and w*Vw”® > () and w"'E < ()
(23)

If and only if there is no solution for the system (23), the model holds as
shown i the following theorem. 3

Theorem 1: Exactly one of the following svstems has a solution.

System A:w™ly =0, w'B =0 and w 'Vw® > 0 and w'E < 0,

for w* € RN where w* is the efficient arbitrage portfolio.

System B: E = Ay + BA + Vw'T for A € R
where Ay is an N-dimensional constant vector, T is a positive

scalar and w* is the efficient arbitrage portfolio.
Proof: See the Appendix.

Theorem 1 states that if one of these systems has no solution, there is a
solution for the other system. From the concavity of preference, there is no

solution of w* e RYN for System Al Thus there 1s a solution of
Ay €R N A e R¥ and T € R! for System B. System B provides the

exact pricing errors from APT pricing, ie.,
E — Ay, — Brx = Vw'T. (24)

The exact pricing error on asset ¢ is given by TOZWI‘, a positive scalar,
where o is the idiosyncratic variance of asset ¢ and w; is the proportion of the

efficient arbitrage portfolio represented by asset ¢. Svstem B specifies the sign



of the exact pricing error for asset ¢ such that it depends on the sign of wi

If any asset ¢ has been in a short position to form the efficient arbitrage
portfolio (w"), the sign of the pricing error for this asset is negative. If it is in
a long position, the sign of its pricing error is positive.!  The positive scalar T
is further explained by the following theorem.

Theorem 2. The positive scalar T 1s

T= WE = (25)

where z is Lagrange multiplier in (16).

Proof: Multiplying both sides of System B with w* gives
w'E = w¥lyA+ wUBA + wYVw'T (26)

where A7j is an element of A,.  Using (17), (18) and (20) provides (25).

The preoof is complete.

The positive scalar T is twice the Lagrange multiplier 2z in Problem 2.
That indicates the margimal effect on the expected return on the efficient
arbitrage portfolio of mcreasing the idiosyncratic risk by 1 unit. Also it is a
tradeoff between mean and wvariance of the efficient arbitrage portfolio. This
looks very similar to a linear tradeoff between mean and standard deviation, 6,
which, Chamberlain and Rothschild [1] argue, plays an important role in the
analysis of the factor structure. One interesting result in our analvsis is that
Systermn B is exactly the same as the first order condition of Problem 2 in
equation (16). System B is equivalent to the mean-variance efficiency of the
arbitrage portfolio. A similar observation has been made by Roll [10] and Ross
[13] for the CAPM. The CAPM is equivalent to the statement that the market
portfolio 1s mean variance efficient.

Similarly, we can argue that the APT is equivalent to the statement that the
mean-variance efficient arbitrage portfolio is well-diversified. This will bhe
clearly demonstrated in Thecrem 3 and Theorem 4. So far, even though we
have worked in the arbitrage framework used by Ross [11,12], we have not
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employed an arbitrage argument. In fact, we will employ an arbitrage argument
to explain the limiting behavior of the pricing error in proving Theorem 3 and
Theorem 4.

We might argue that the exact pricing error, To%w’f, for the individual asset

¢, will be negligible, if T, as a function of W}, does not increase too fast, as
the number of assets approaches infinity. (As the number of assets approaches

infinity, w; will obviously be negligible.) We will show this in the next section.

III. The APT in an Infinite Economy

In this section, we show that an exact pricing APT model holds

asymptotically in an infinite economy if the efficient arbitrage portfolio { w*) is
well diversified. In Section II, we derived the exact pricing errors mn a finite

economy, l.e.,
E - A, — BN = Vw ', (24)
The exact pricing error for asset ¢ can be written as

E.

1

— A} — B;jA = Toiw! (27)

1

where A}, is an element of A, B, is the i row of B and o? is the {"

diagonal element of V (i.e, the idiosyncratic variance of asset ).
If the arbitrage portfolio is well diversified in an infinite economy, the
proportion of the efficient arbitrage portfolio represented by asset ¢ is of order

1/N in absclute magnitude as in Ross [12] ie.,

d;

where a; is a positive constant.

The variance of the efficient arbitrage portfolio is
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The variance of the efficient arbitrage portfolio is bounded by

2 .
a_zO—N < w' Vw = A" (30

where a is the smallest a,, a is the largest a, and o is the average

th

variance of the e; terms (e; is the i ™ element of the vector e).

If the number of assets approaches infinity, the variance of the arbitrage
portfolio will be negligible. If the arbitrage portfolio is well-diversified, the

absolute exact deviation for asset ¢ from APT pricing is

aoiw " E

NW *’VW EI (31)

| TOQiW i|=

The following theorem demonstrates that if the number of assets approaches

infinity, the pricing error for asset 7 is negligible.
Theorem 3. The absolute pricing error from exact pricing for asset i,
| Tow =0 as N—-co, (32)

Proof: It follows from (30) and (31) that the absolute deviation is bounded,

ie.,
a; 05w E acw TE 2w ™
| Tobwil= — iy e (33)
0w 5l = *r = i = 22 .
Nw ™ Vv 2.0 a‘c
N a N

Since the efficient arbitrage portfolio 1s assumed to be well diversified,

w " Vw™={) as the number of assets approaches infinity as demonstrated in
(30). By the absence of arbitrage, if

w1l y=0, w 'B=0 and w Vw " =0,

(34)

we must have

w E — 0.
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(35)

(33) and (35) imply that the absolute deviation from exact pricing is negligible.
The preoof is complete.

This i1s a strong result. It shows that an exact pricing APT model holds
asyvmptotically in an infinite economy. Ross [12] demonstrates that as the
number of assets approaches infinity, the sum of squared deviations is bounded,

Le.,

T E;—A},—BAI?< o,
(36)

Shanken [15] states: "The APT remains silent, however, with respect to the
pricing of a given individual security with positive residual variance.”  The
above result shows that the APT provides the negligible deviation for each
asset no matter how much the residual variance of the asset may be. Even the
sum of squared deviations from exact pricing is negligible in an infinite
economy as shown in the following theorem.

Theorem 4. The sum of squared deviations i1s negligible as the number of assets
approaches mfinity, ie.,

=Y [ E;=A}—BAIP—>0 as N — oo, (37)
Proof: See the Appendix.

Shanken [15] states: "In fact, as emphasized in Shanken [17], the APT
restriction is an approximation, one which prices “most” assets well but permits
arbitrarily large deviations from exact pricing on a finite assets. Thus it is
difficult to conceive of any (finite) empirical procedure that could be used to
refute the actual conclusion of the APT. In this sense, the theorv is untestable
in principle.” He states: "My thesis in Shanken [17] was 1) the arbitrage
paradigm has not produced a refutable hypothesis.” The Shanken argument can
apply to only (36). Theorem 3 and Theorem 4 show that the APT prices every
asset very accurately. His argument does not apply to our APT model. Hence
the APT is testable in principle if the efficient arbitrage portfolio is well
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diversified.

IV. Summary

The exact pricing error for an individual asset is derived m a finite economy
by using an arbitrage framework. The exact pricing error is the product of a
trade-off between mean and wvariance of the efficient arbitrage portfolio, the
idiosyncratic variance of the mdividual asset, and the proportion of this arbitrage
portfolio represented by the individual asset. The trade-off between mean and
variance is twice the Lagrange multiplier for the idiosyncratic variance of the
efficient arbitrage portfolio. That indicates the marginal effect on the expected
return on the arbitrage portfolic of increasing the idiosyncratic variance by 1
unit.

In an infinite economy, the pricing error for the individual asset is negligible
if the efficient arbitrage portfolio is well diversified. Also the swun of squared
deviations from exact pricing is negligiblee. The APT is equivalent to the
staternent that the mean-variance efficient arbitrage portfolio is well-diversified.
If the portfolio 1s well diversified, we have an exact APT meodel asymptotically.

The derivation of an asymptotic exact pricing model in an infinite economy
depends critically on how well the efficient arbitrage portfolio 1s diversified. It
would be an interesting research if one demonstrates that the efficient arbitrage
portfolio 1s well diversified in an infinite economy.
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FOOTNOTES

1. Dybvig [3], and Grinblatt and Titman [5] postulate a factor structure for
assets in the economy. As Shanken [15] points out, this is a fundamental
departure from the original APT which requires a factor structure for a

given subset of assets.

ot 0 0
0 o 0
0 0 o%_, O
0 0 0%]

3. Theorern 1 is one of Theorems of the alternative. See Mangasarian [8] for
a detailed discussion of theorems of the alternative.

4. Uniqueness of the wvector w™ is obvious. The optimal solution w in
Problem 1 is unique from the strictly convex objective function and the

compact set of constraints. Uniqueness of the optimal solution w ™ in
Problem 2 follows from the fact that Problem Z is equivalent to Problem 1.
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APPENDIX

Theorem 1. Only one of the following systems has a solution.

System A: w*¥B=0, w" 1ly=0, w Vw0, and w* E<0 for w*= R"

where w ™ is the efficient arbitrage portfolio.

System Br E = Ay + BA + Vw T,
where A, is an N-dimensional constant vector, T is a positive

scalar and w * is the efficient arbitrage portfolio.

Proof:

1) Suppose System A has a solution w* € R™, Then we have to show that

Systern B has no solution.  On the contrary, suppose that systemm B has a
solution, Ay, N, and T. Multiplying w ™ on both sides of system B gives

w E= AgwTly + w7 BN + wTVW'T

where is an element of A .

From System A,

0>w"E= A"yw™ 1y + w" BN + w"Vw T >0,

a contradiction. Hence, Systern B cannot have a solution.

i) Suppose Syvstem A has no solution. Then we have to show that

Systemn B has a solution, A, A and T. Consider the following sets:

C, = {(ux,v,2) - w”'B=u, w ly=x, w ' Vw =y and w “E =z}

C, = {(u,x,v,z) : u=0, x=0, v> 0and z < 0}

Since there is no solution for System Bl, C,(1C,=@. Then there exists a
hyperplane that separates C |, and C,. That is, there exist non-zero vector and

non-zero scalars ps, pa and p, such that
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w U Bp +w  lypaetw  Vwpa+w Epy 2 up, + xps + ypy + zpy

fore, 2, ¥y and 2€ ¢l C, p;=R*, p,eR?, 1)3€Rl and p,=R ‘.
Since v can be an arbitrarily large positive number, it follows that

ps < 0. Since z can an arbitrarily large negative number, it follows that

p; > 0. let = 0, x =0,y = 0and 2 = 0. Then
w Bp, + w 'l + W Vw™,; + w Epy = 0 for each w'eR ™,
By choosing w* = —(Bp; + 1lyps + Vw ™y + Ep,), it then follows that
—Bp; + lypy + Vw'py + Ep, |7 < 0.
Thus Bp; + 1Iyp: + Vw'p, + Epy = 0. It implies that
E = Ajly- BA + Vw'T

where AL = —ps/py, A= —pi/py and T = —p./py > 0. The equation

can be rewritten as E = Ajly +» BA + Vw ™. Hence, Svstem B has a

solution. The proof 1s complete.

Theorem 4. The swmn of squared deviations is negligible as the number of assets

approaches infinity, Le.,
Zlﬁ:l[ Ej_?\B_Bj)\]g‘_’ 0 as N — oo,

Proof: If we show (Vw™TYVw™ — (1 as the nuwnber of assets

approaches infinity, the proof is complete. The swum of squared deviations,

T w ¥V'Vw *, can he rewritten as

(w*Vw ™ N?

2 4
i%
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Using (30) and (31), we can find a bound of this sum, ie.,

N(w*E)*a’s* _ w@"ExEaoc!
at(o?’ at(o?’

T w V' Vw ™ <

2 4

where o° is the average variance of the e, terms, o* is the average

fowrth moment of the e; terms and x= Nw", x’E is bounded in the

following way:
x'E < alyE| ¢ o,

As the number of assets approaches infinity, w ~E approaches zero from

the absence of arbitrage. Thus T*w ¥V'Vw ™ — (0. The proof is complete.
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