
transcost0420.tex, 2004.11.01

Only Average Transaction Costs for Large Trades
Matter: The Fundamental Theorem of Asset

Pricing

Dongchul Won∗

Department of Industrial Information

Kongju National University

dcwon@kongju.ac.kr

The current version: October, 2004

Abstract

The paper establishes the fundamental theorem of asset pricing (FTAP) in markets where
transaction costs need not be convex and are allowed to jump. Specifically, it contributes to
the literature in three ways. The first finding is that only average costs for large transactions
matter to asset pricing in markets where transaction costs are not convex possibly due to
the fixed cost component, indivisibility of assets or shifts in the cost structure. Remarkably,
no matter how complex the non-convex transaction cost functions are, the pricing rules
are characterized in a simple, concrete form as in the case with proportional transaction
costs. Second, the results of the paper are differentiated from equilibrium theory which
usually requires the continuity and convexity of transaction cost functions. Finally, the
notion of arbitrage used here is appropriate to explaining asset prices. Specifically, the no
arbitrage condition is equivalent to viability of asset prices. The consequence vindicates
the coherence of arbitrage as a conceptual framework for equilibrium analysis. Moreover,
the pricing rules can be characterized by minimal information on the nature of transaction
costs.

KEYWORDS: The fundamental theorem of asset pricing, arbitrage, fixed transaction costs,
non-convex transaction costs.

∗Kongju National University, Department of Industrial Information, 1 Daehoe-ri, Yesan, Choongnam, KOREA
340-802, Phone: +82-41-330-1422, Email: dcwon@kongju.ac.kr



I. Introduction

Borrowing and lending rates differ in the real world. The spread between them is ascribed to

financial intermediation, which is costly due to market frictions. This is an easy example where

the law of one price is violated in the face of market frictions.1 The arbitrage pricing theory

which does not take market frictions into account may be unable to characterize asset prices in

economies which are far from being ideal. The effect of market frictions on asset pricing must

be properly understood to make an asset pricing theory come closer to reality.

The paper establishes the fundamental theorem of asset pricing (FTAP) in markets where

transaction costs need not be convex and are allowed to jump. Specifically, it contributes to the

literature in three ways. The first finding is that only average costs for large transactions matter

to asset pricing in markets where transaction costs are not convex possibly due to the fixed

cost component, indivisibility of assets or shifts in the cost structure. Remarkably, no matter

how complex the non-convex transaction cost functions are, the pricing rules are characterized

in a simple, concrete form as in the case with proportional transaction costs. Therefore, asset

valuation can be free from the intractability of fixed and non-convex transaction costs. Second,

the results of the paper are differentiated from equilibrium theory which usually requires the

continuity and convexity of transaction cost functions. It is also worth noting that marginal

transaction costs are irrelevant to the determination of the pricing rules as far as they differ

from average costs for large transactions. The advantages of arbitrage pricing theory of the

paper over equilibrium theory are not shared with the literature which deals with frictionless

markets or with proportional transaction costs. Finally, the notion of arbitrage used here is

appropriate to explaining asset prices. Specifically, the no arbitrage condition is equivalent to

viability of asset prices.2 The consequence vindicates the coherence of arbitrage as a conceptual

framework for equilibrium analysis. ‘Arbitrage’ pricing theory would be almost vacuous if it

undergos serious failure in the viability test.3 Moreover, the pricing rules can be characterized

1Evidences of mispricing are abundant in the literature; stock index futures (Canina and Figlewski (1995)),
primes and scores (Jarrow and O’Hara (1989)), closed-end funds (Pontiff (1996)), stock options (Conrad (1989))
among others.

2Informally speaking, asset prices are viable if they allow agents to make an optimal choice in asset markets.
3As shown later, the well-known notions of arbitrage do not pass the viability test. Won and Hahn (2004) also

illustrate the failure of viability from a different perspective.
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by minimal information on the nature of transaction costs. What is required to capture the

pricing rules is information on the average cost for large transactions which is independent of

the local behavior of transaction cost functions.

The last point deserves remarks. The amount of information on the nature of market fric-

tions which is necessary to describe the arbitrage pricing rules is determined by the definition

of arbitrage. Broadly speaking, the notions of arbitrage with frictional markets can be classified

as ‘local arbitrage’ and ‘global arbitrage’.4 Local arbitrage is introduced to describe the condi-

tions for a price to allow no costless financial improvement in all contingencies from the given

position. Thus the no local arbitrage condition depends on the initial position. On the other

hand, global arbitrage is useful in describing the conditions which are satisfied with arbitrary

equilibrium prices by keeping minimal the information on unobservable data of the markets

such as risk preferences, the initial wealth and optimal choices of individuals. This paper takes

the latter approach.5 Local arbitrage is used in most literature with convex transaction costs and

taxation schedules.6 Both notions of arbitrage usually lead to the same consequence of asset

pricing in the case with proportional transaction costs. This is not the case, however, with non

proportional transaction costs or taxes.7 As illustrated in the main text, asset pricing by local

arbitrage tends to extremely underestimate the multiplicity of the pricing rules when transaction

costs are convex and extremely overestimate it when they are non-convex.

Moreover, both notions of arbitrage drastically diverge in informational requirement to char-

acterize the pricing rules. The marginal transaction costs or tax rates are placed in the pricing

kernel in the presence of transaction costs and taxation. Thus they are indispensable informa-

tion to capture the pricing rules. If transaction costs or capital income taxes are proportional to

the size of transactions, the marginal transaction cost or tax rate is constant over all positions.8

If transaction cost functions are nonlinear, however, the marginal frictional cost depends upon

4‘Global’ is used to contrast the latter to the former.
5Dammon and Green (1987) take the same line of research to investigate the existence of equilibrium with

progressive taxation.
6Ross (1987), and Dybvig and Ross (1986), Prisman (1986), Dermody and Prisman (1993) among others.
7Ross (1987), and Dybvig and Ross (1986), Prisman (1986), Dermody and Prisman (1993) adopt local arbitrage

to examine the effect of convex transaction costs or convex taxation schedules on arbitrage pricing. In this case,
the implications of the two approaches to asset pricing diverge as shown below.

8Garman and Ohlson (1981), Boyle and Vorst (1992), Jouini and Kallal (1995), Kabanov (1999), Kabanov and
Stricker (2001), Delbaen, Kabanov and Valkeila (200), Zhang, Xu and Deng (2002), Schachermayer (2004) among
others examine the effect of proportional transaction costs on asset pricing.
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the functional form of market frictions as well as the position to be concerned about. In theory,

local arbitrage leads to sharper results than global arbitrage in the case with nonlinear cost func-

tions. In reality, however, it is hard to pick out the pricing rules which meet the status quo of

the markets under the unobservable pricing kernel. For example, Ross (1987) and Dybvig and

Ross (1986) introduce local tax arbitrage to address arbitrage pricing theory with progressive

taxation. In this case, the marginal tax rate is calculable on the basis of the knowledge of both

the tax schedule and the current portfolio position of individuals, which do not belong to public

domain of information in general.

II. The Model

Asset markets are assumed to persist over finite time periods,t = 0, 1, . . . , T . Let Ω =

{1, 2, . . . , S} denote a finite partition of states of nature. The revelation of information is de-

scribed by a collection of partitions ofΩ, F = {F0,F1, . . . ,FT}, whereFt is finer thanFt−1

(i.e. σ ∈ Ft andσ′ ∈ Ft−1 imply that σ ⊂ σ′ or σ ∩ σ′ = ∅) for all t = 1, . . . , T .9 We

assume thatF0 = {Ω}. The information available at timet = 0, 1, . . . , T is described by the

setσ ∈ Ft of the states of nature. We setD =
⋃T

t=0Ft andD−T =
⋃T−1

t=0 Ft. An element

in D is called a node or an event andD is called an event tree. In particular,σt in D denotes

an event inFt. For eachσt ∈ Ft, let σ−t denote the event which immediately precedesσt, σ+
t

the set of events which immediately succeedσt, andDσt the set of events which consist ofσt

and all the events succeedingσt. The setDσt is a subtree atσt. For some positive integern,

let L(D−T , Rn) denote the collection of allRn-valued functions onD−T . For brevity,Ln will

be used instead ofL(D−T , Rn). Let #D and#D−T denote the number of elements inD and

#D−T , respectively. ThenLn is the Euclidean space of dimension(#D−T )× n. Let L denote

the set of all real-valued functions defined onD. We setL+ = {x ∈ L : x(σ) ≥ 0, σ ∈ D} and

L++ = {x ∈ L : x(σ) > 0, σ ∈ D}.
There areJ long-lived assets issued at time0 and traded in each state of timet = 0, . . . , T−

1. Allowing for some notational abuse, we also denote the set of assets byJ . A price process

of assetj is a functionqj : D−T → R and a trading strategy is a functionθ : D−T → RJ . Thus,

9For more details on the stochastic economy, see Magill and Shafer (1991) or Magill and Quinzii (1996).
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q = (q1, . . . , qJ) andθ are a point inLJ . More specifically,qj(σ) andθj(σ) denote a price and

a position of assetj, andq(σ) ∈ RJ andθ(σ) ∈ RJ denote prices and positions ofJ assets

at the nodeσ ∈ D. For a price-event pair(q, σ) in LJ × D, let R(·, q; σ) : LJ → R denote

the net return schedule which is derived from deducting transaction costs from the gross return.

Specifically, if a trading strategyθ ∈ LJ is chosen at the priceq, the net returnR(θ, q; σ) will

be delivered to the investor in the eventσ. For a priceq ∈ LJ , let R(·, q) denote the function

which assigns eachσ ∈ D to R(·, q; σ). Thus, for a trading strategyθ ∈ LJ , R(θ, q) is a

#D-dimensional net return vector.

Transaction costs are incurred in buying and selling assets. They can be decomposed as

two parts, one which is quite independent of variations in the size of the positions and the

other which is responsive to them. The former includes fixed transaction costs and the latter

corresponds to variable transaction costs. For a pair(v, q) ∈ LJ ×LJ of a net trade and a price,

let C(v(σ), q(σ); σ) denote a transaction cost function in the eventσ ∈ D. We assume that

there exist functionsF (·, q(σ); σ) : LJ → R andCj
σ(·, qj(σ)) : R → R for eachj ∈ J such

that for allv ∈ LJ ,10

C(v(σ), q(σ); σ) = F (v(σ), q(σ); σ) +
∑
j∈J

Cj
σ(vj(σ), qj(σ)).

The functionF (v(σ), q(σ); σ) can be interpreted as the fixed transaction cost component and

eachCj
σ(vj(σ), qj(σ)) as the variable transaction cost for the change of the positionvj(σ) for

assetj in the eventσ.11 For eachσ ∈ D, let Rσ ∈ RJ denote the gross returns of assets which

are available before transaction costs are deducted. Then for each(θ, q) ∈ LJ × LJ , the net

return processR(θ, q; σ) is represented by

R(θ, q; σ) =


−q(σ) · θ(σ)− C(θ(σ), q(σ); σ), σ = σ0

Rσ · θ(σ−)− q(σ) · (θ(σ)− θ(σ−))− C(θ(σ)− θ(σ−), q(σ); σ), σ ∈ D−T \ σ0

Rσ · θ(σ−), σ ∈ FT

10The decomposition ofC need not be unique but it can be uniquely determined by putting inF all the costs
which vanish on the average as net trades go to infinity.

11Dermody and Prisman (1993) indicate that transaction costs on trading each individual asset is a function of
the number of shares traded, and transaction costs on a trade is the sum of the transaction costs on trading each
individual stock.
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For eachv ∈ LJ , qLJ andσ ∈ D, we define the function

C̃(v(σ), q(σ); σ) =
∑
j∈J

Cj
σ(vj(σ), qj(σ)).

The functionC̃(v(σ), q(σ); σ) denotes the variable transaction cost in the eventσ. For each

θ ∈ LJ , qLJ andσ ∈ D, we define the return function net the variable costC̃(v(σ), q(σ); σ) by

R̃(θ, q; σ) =


−q(σ) · θ(σ)− C̃(θ(σ), q(σ); σ), σ = σ0

Rσ · θ(σ−)− q(σ) · (θ(σ)− θ(σ−))− C̃(θ(σ)− θ(σ−), q(σ); σ), σ ∈ D−T \ σ0

Rσ · θ(σ−), σ ∈ FT

III. Examples

Four transaction cost functions are presented in the first example which look quite distinct

but give the same average cost for large transactions. As shown later, they give the same con-

sequence in terms of asset pricing. It is illustrated in the second example that the no arbitrage

condition of of Dermody and Prisman (1993) may be far from being a necessary condition for

viability when the transaction cost function is convex, piece-wise linear and differentiable at

zero. Specifically, the no arbitrage condition of of Dermody and Prisman (1993) explains only

a ‘small’ part of viable prices.12

Example 1.Transaction cost functions are given which locally differ but behave asymptotically

in the same manner. As shown later, they are indistinguishable in terms of arbitrage pricing.

Let q denote the price of an asset. For eachi = 1, . . . , 4, we defineCi(·, q) : R → R as the

transaction cost function for the asset. They are depicted in Figure 1.

<Figure 1>

The functionC1(·, q) is piecewise linear with kinks at−1/q and1/q, and flat at zero while

C2(·, q) is strictly convex and differentiable. The functionC3(·, q) jumps regularly and repre-

sents transaction costs with indivisible assets. In contrast to the first three functions which are
12This result is true in general when transaction cost functions are convex and differentiable at zero.
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free from fixed cost component,C4(·, q) has the fixed transaction cost denoted byK. If K is

ignored inC4(·, q), it is the same asC3(·, q).
Despite their local difference, they have the same asymptotic property. We setCi(θ, q) =

limλ→∞ Ci(λθ, q)/λ. It is easy to see that for eachi = 1, . . . , 4, Ci(θ, q) is equal to the function

C(θ, q) defined by

Cp(θ, q) =

 q
20

θ, if θ ≥ 0

−q
30

θ, if θ < 0

This function represents proportional transaction costs in such a way thatq/20 is a transaction

cost for buying one unit of the asset andq/30 is a transaction cost for selling one unit of the

asset. The average transaction cost of the four cases for large transactions is all the same as that

of the proportional transaction cost functionCp(·, q).

<Figure 2>

Example 2. A two-asset one-state economy with convex transaction costs is considered to

illustrate that the set of prices which satisfy the no arbitrage condition of Dermody and Prisman

(1993) constitutes only a small part of viable prices. This means that the no arbitrage condition

of Dermody and Prisman (1993) may extremely underestimate the multiplicity of viable prices.

Both assets pay one dollar in the state of the next period. Thus the gross return structure is

represented by the1 × 2 matrix R = [1 1]. Let q2 denote the price of the second asset. We

assume that the transaction cost function for trading the second asset takes the form

Cf (θ
2, q2) =


(q2θ2 − 1)/20, if θ2 ≥ 1/q2

0, if − 1/q2 ≤ θ2 < 1/q2

−(q2θ2 + 1)/30, if θ2 < −1/q2

This function is depicted in the first diagram of Figure 1. Clearly,Cf (0, q
2) = 0 andCf (θ

2, q2)

is piece-wise linear, continuous and convex. The following is an adaptation of the notion of

arbitrage introduced in Dermody and Prisman (1993) to the current example.

Definition DP: The price(q1, q2) admitsno arbitrageif it satisfies
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max{−θ1q1 − θ2q2 − Cf (θ
2, q2) : θ1 + θ2 ≥ 0} = 0 and

θ̄1 + θ̄2 = 0 for all optimal solution(θ̄1, θ̄2).

We check the validity of the above notion of arbitrage as a conceptual framework for equilibrium

analysis. This can be done by investigating how the no arbitrage condition is appropriate to

explaining the viability of asset prices.

Let ΛDP denote the set of prices which admit no arbitrage in the sense of Definition DP. We

claim that

ΛDP = {(q1, q2) ∈ R2
++ : q1 = q2}.

Let (θ̄1, θ̄2) denote the solution tomax{−θ1q1−θ2q2−Cf (θ
2, q2) : θ1 +θ2 ≥ 0} = 0. Suppose

thatq1 = q2. Then it is easy to see thatθ̄1 + θ̄2 = 0 and

max{−θ1q1 − θ2q2 − Cf (θ
2, q2) : θ1 + θ2 ≥ 0} = 0.

Therefore,(q1, q2) satisfies the no arbitrage condition of Definition DP.

We show that any(q1, q2) with q1 6= q2 admits an arbitrage in the sense of Definition DP.

Suppose thatq1 > q2. We setη1 = −1/2q2 andη2 = 1/2q2. Then−1/q2 ≤ η2 < 1/q2 and

η1 + η2 ≥ 0. Moreover,

−η1q1 − η2q2 − Cf (η
2, q2) = −η1q1 − η2q2

= −1
2

(
1− q1

q2

)
> 0

Suppose thatq1 < q2. We setη1 = 1/2q2 andη2 = −1/2q2. Then−1/q2 ≤ η2 < 1/q2 and

η1 + η2 ≥ 0. Moreover,

−η1q1 − η2q2 − Cf (η
2, q2) = −η1q1 − η2q2

= 1
2

(
1− q1

q2

)
> 0

It follows that for any(q1, q2) with q1 6= q2, max{−θ1q1−θ2q2−Cf (θ
2, q2) : θ1+θ2 ≥ 0} > 0.

Thus, wheneverq1 6= q2, (q1, q2) does not satisfies the no arbitrage condition of Definition DP.

To do a viability test with prices inΛDP , we introduce the setΛV of viable prices. Any

prices inΛV would allow agents with monotonic preferences to have an optimal choice in asset

markets. We claim that

ΛV = {(q1, q2) ∈ R2
++ : (29/30)q2 ≤ q1 ≤ (21/20)q2}.
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(This claim is verified in the Appendix.) Prices inΛV are viable but any(q1, q2) ∈ ΛV with

q1 6= q2 does not satisfy the no arbitrage condition of Dermody and Prisman (1993). Thus,

the no arbitrage condition of Dermody and Prisman (1993) explains a very small part of viable

prices.

IV. Transaction Costs in the Large

Transaction cost functions are characterized in terms of average costs for large transactions.

Specifically, the artificial proportional transaction costs are constructed which turn out to share

the set of pricing rules with the original nonlinear transaction cost functions. The proportional

function is determined independently of the non-convexity and local behavior of the original

functions such as fixed transaction costs. The following conditions are imposed on the transac-

tion cost functions.

Assumption 1: For all q ∈ LJ , j ∈ J andσ ∈ D, the following hold.

i) F (0, q; σ) = 0 andCj
σ(0, qj(σ)) = 0.

ii) There existsf ≥ 0 such thatF (v, q; σ) ≤ f for all v ∈ LJ .

The first condition of Assumption 1 requires that no transaction costs nothing. The second

condition indicates that the cost function is bounded.13 In particular, it subsumes transaction

cost functions with the fixed cost component.

For eachq ∈ LJ , j ∈ J andσ ∈ D, we set

bj(qj(σ); σ) = lim
z→∞

Cj
σ(z, qj(σ))

z
and sj(qj(σ); σ) = lim

z→−∞

Cj
σ(z, qj(σ))

z
.

Thenbj(qj(σ); σ) andsj(qj(σ); σ) are the average transaction cost for large long positions and

short positions in assetj, respectively. We assume that for eachq ∈ LJ , j ∈ J andσ ∈ D,

−∞ < sj(qj(σ); σ) ≤ bj(qj(σ); σ) < ∞.

13Allowing for some analytical complications, this condition can be replaced by the more general condition that
limλ→∞ F (λv, q;σ)/λ = 0 for all v ∈ LJ .
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We define the function

C
j

σ(z, qj(σ)) =

 bj(qj(σ); σ)z, z ≥ 0

sj(qj(σ); σ)z, z < 0

This function can be considered a proportional transaction cost for the change of the position

z for assetj in markets wherebj(qj(σ); σ) andsj(qj(σ); σ) are charged as the unit transaction

cost for long and short positions, respectively. In fact,C
j

σ(·, qj(σ)) describes the asymptotic

behavior of transaction costs forCj
σ(·, qj(σ)); for all z ∈ R,

C
j

σ(z, qj(σ)) = lim
λ→∞

Cj
σ(λz, qj(σ))

λ
.

This is becauseCj
σ(0, qj(σ)) = C

j

σ(0, qj(σ)) = 0 and for a priceqj(σ) and a nonzero position

z for assetj ∈ J ,

limλ→∞
Cj

σ(λz,qj(σ))
λ

= limλ→∞
Cj

σ(λz,qj(σ))
λz

z

=

 bj(qj(σ); σ)z, z > 0

sj(qj(σ); σ)z, z < 0


= C

j

σ(z, qj(σ))

Thus,C
j

σ(z, qj(σ)) has the same average cost for large transactions asCj
σ(·, qj(σ)). For each

eachv ∈ LJ , we set

C(v(σ), q(σ); σ) = lim
λ→∞

C(λv(σ), q(σ); σ)

λ
.

Since by Assumption 1,limλ→∞ F (λv(σ), q(σ); σ)/λ = 0, it follows that that for eachv ∈ LJ ,

C(v(σ), q(σ); σ) =
∑
j∈J

C
j

σ(vj(σ), qj(σ)).

We define the following notion of transaction cost function.

Definition 4.1 For eachq ∈ LJ andσ ∈ D, C
j

σ(·, qj(σ)) : R → R andC(·, q(σ); σ) : RJ → R

are thetransaction cost function in the large (LTC function)for assetj ∈ J and for the asset

structureJ , respectively.

Clearly, the LTC function is convex and positively homogeneous.
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Lemma 4.1For eachq ∈ LJ , j ∈ J andσ ∈ D, C
j

σ(·, qj(σ)) is convex andC
j

σ(λz, qj(σ)) =

λC
j

σ(z, qj(σ)) for all z ∈ R andλ ≥ 0.

If transaction cost functions are proportional, they coincide with the LTC function.14 Let

b̄j(σ) ∈ [0, 1) and s̄j(σ) ∈ [0, 1) denote the transaction cost rate for buying and selling the

assetj at σ, respectively. Clearly,̄bj(σ)qj(σ) = bj(qj(σ); σ) ands̄j(σ)qj(σ) = −sj(qj(σ); σ)

for all q ∈ LJ , j ∈ J andσ ∈ D. In this case, the LTC function has the form

C
j

σ(z, qj(σ)) =

 b̄j(σ)qj(σ)z, z ≥ 0

−s̄j(σ)qj(σ)z, z < 0

We assume that the transaction cost and LTC functions satisfy the following condition..

Assumption 2: For all q ∈ LJ , v ∈ LJ , λ > 0 andσ ∈ D, there exists a number̄c ≥ 0 such

that|C(v(σ), q(σ); σ)−C(v(σ), q(σ); σ)| ≤ c̄ andC̃(λv(σ), q(σ); σ)+ c̄ ≥ λC̃(v(σ), q(σ); σ).

Assumption 2 states that the difference between the LTC function and the original transaction

cost function is uniformly bounded from above byc̄, and the variable cost functioñC shows the

decreasing return to scale of transaction when it is shifted upward by the positive numberc̄.

Remarkably, no conventional conditions like continuity and convexity are imposed on the

transaction cost functions. Thus Assumption 1-2 enable us to examine the effect of fixed trans-

action costs as well as non-convex transaction costs on the existence and the form of pricing

rules. In particular, they are satisfied with transaction cost functions with jumps due to the fixed

cost component and the indivisibility of assets. For example, they hold in the third and fourth

diagrams of Figure 1.

For eachq, θ in LJ andσ ∈ D, we define the set

G(θ, q; σ) = {v ∈ LJ : ∃ λσ > 0 such thatR̃(θ + λv, q; σ) ≥ R̃(θ, q; σ) ∀λ ≥ λσ}.

The setG(θ, q; σ) contains portfolios corresponding to a direction in which the current position

θ can be changed to a large extent without reducing the return net the variable transaction

14The effect of proportional transaction costs on asset valuation is examined in Garman and Ohlson (1981), and
Zhang, Xu and Deng (2002) among others.
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costs in the eventσ. This set will be very useful in characterizing arbitrage opportunities with

transaction costs. Clearly,G(θ, q; σ) is a cone. IfR̃(·, q; σ) is concave, then it coincides with

the recession cone of the level set{θ ∈ LJ : R̃(θ, q; σ) ≥ c} of R̃(·, q; σ).15 For notational ease,

we setG(q; σ) = G(0, q; σ) for eachq ∈ LJ . We make the following assumption.

Assumption 3.For eachq ∈ LJ andσ ∈ D, the following hold.

i) G(θ, q; σ) = G(q; σ) for eachθ ∈ LJ .

ii) If v ∈ G(q; σ) andR̃(v, q; σ) > 0, thenR̃(λv, q; σ) →∞ asλ →∞.

The first condition of Assumption 3 states that if a portfolio as a change of the position gen-

erates additional income in the large at some position, then it does at all other positions. The

two conditions of Assumption 3 are useful in examining the effect of transaction costs on the

availability of arbitrage from all the positions. In particular, they hold true whenR̃(·, q; σ) is

concave.16 We setG(q) =
⋂

σ∈D G(q; σ). A nonzerov ∈ G(q) represents a change of the

position which adds nonnegative income to any positions in each state. Clearly,G(q) is a cone.

For eachq ∈ LJ andσ ∈ D, we consider the functionV (·, q; σ) : LJ → R defined by

V (θ, q; σ) =


−q(σ) · θ(σ)− C(θ(σ), q(σ); σ), σ = σ0

Rσ · θ(σ−)− q(σ) · (θ(σ)− θ(σ−))− C(θ(σ)− θ(σ−), q(σ); σ), σ ∈ D−T \ σ0

Rσ · θ(σ−), σ ∈ FT

Recalling thatC(v(σ), q(σ); σ) = limλ→∞ C(λv(σ), q(σ); σ)/λ for eachv ∈ LJ andσ ∈ D,

we see that for allθ ∈ LJ ,

V (θ, q; σ) = lim
λ→∞

R(λθ, q; σ)

λ
= lim

λ→∞

R̃(λθ, q; σ)

λ
.

The functionV (·, q; σ) represents the net return schedule at the priceq in the eventσ if trans-

action costs were to be charged according to the LTC functionC(·, q(σ); σ).

15For a convex setC in a Euclidean spaceE, v ∈ E is a direction of recession ofC if v + x ∈ C for all x ∈ C.
The recession cone ofC is a set of directions of recession ofC. For details, see Rockafellar (1970).

16For details on this point, see Theorem 8.7 of Rockafellar (1970).
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Definition 4.2 For eachq ∈ LJ andσ ∈ D, V (·, q; σ) is thereturn function in the large (L-

return function)for the asset structureJ .

The following properties of the L-return functionV (·, q; σ) are immediate from Lemma 4.1.

Lemma 4.2For eachq ∈ LJ andσ ∈ D, V (·, q; σ) is concave andV (λθ, q; σ) = λV (θ, q; σ)

for all θ ∈ LJ andλ ≥ 0.

V. Arbitrage with Transaction Costs

As indicated in Jouini, Kallal and Napp (2001), fixed transaction costs may affect the acces-

sibility of arbitrage opportunities. Consider a two-period economy, i.e.,T = 1. Suppose that

for someq ∈ RJ , there existsθ ∈ RJ such thatq · θ = 0, Rσ · θ ≥ 0 for all σ ∈ D \ {σ0}
andRσ · θ > 0 for someσ ∈ D \ {σ0}. We assume that preferences follow the expected utility

hypothesis, the utility function is strictly increasing, and the probability that eachσ ∈ D \ {σ0}
occurs is positive. Clearly,θ is an arbitrage opportunity in markets with no transaction costs. If

fixed cost is charged for transactions in the markets, the arbitrage opportunity would be avail-

able only to an agent with sufficiently large initial wealth to cover it. Lete denote his initial

wealth andK the fixed transaction cost to be paid for participating in the asset markets. If

K > e, the agent can increase income to be delivered in the eventσ with Rσ · θ > 0 and

therefore, his utility as much as possible by exploiting the arbitrage opportunity at the cost of

K. This is impossible, however, for agents withe < K because they are not able to finance

market participation.

We will assume the presence of agents with sufficiently large initial wealth to cover the fixed

transaction costsF in eachσ ∈ D−T .17 Under this assumption, the notion arbitrage can be freed

from fixed transaction cost components. As verified later, the notion of arbitrage which ignores

the effect ofF on the net returns is appropriate to studying the effect of transaction costs on

asset pricing and equilibrium.18

17A typical example of such an agent is institutional investors.
18The notion of arbitrage used here is comparable to that of Jouini, Kallal and Napp (2001) who aim to examine

arbitrage pricing theory in the absence of agents with large initial wealth. As illustrated above, the no arbitrage
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Definition 5.1: An asset priceq ∈ LJ admitsno arbitrage opportunitiesif there is noθ ∈ G(q)

which satisfies̃R(θ, q) > 0.

The above notion of arbitrage has several desired properties. First, it allows us to characterize

as easily the pricing rules in markets with non-proportional transaction costs as in markets with

proportional transaction costs. In particular, the cost functions need not be convex and are al-

lowed to have the fixed cost component. Second, it turns out to exactly match viability of asset

prices. This is one of the virtues that no arbitrage conditions must satisfy as a conceptual frame-

work for equilibrium analysis. Third, the no arbitrage condition does not depend on the initial

position. This property is particularly useful in characterizing the pricing rules when marginal

transaction costs are an information not to be observed. If transaction costs is non-proportional,

information on the cost function and the initial position must be provided to calculate marginal

transaction costs. But such information is specific to individuals and does not belong to the

public domain of information. Finally, it subsumes as a special case the existing notions of

arbitrage with proportional transaction costs used in Garman and Ohlson (1981) and Zhang, Xu

and Deng (2002) among others.

Let Λ denote the set of no arbitrage prices for agenti. Then we see that

Λ = {q ∈ LJ : R̃(v, q) 6> 0 for all v ∈ G(q)},

where6> denotes the negation of the vector inequality>.19

We show that the no arbitrage condition can be characterized by the L-return function.

Proposition 5.1: Under Assumption 1-3,q ∈ Λ if and only if there exists no nonzerov ∈ LJ

which satisfiesV (v, q) > 0.

PROOF : Suppose that there exists a nonzerov ∈ LJ such thatV (v, q) > 0. We define the set

D+ = {σ ∈ D : V (v, q; σ) > 0}.

condition of Jouini, Kallal and Napp (2001) is not compatible with viability in general in markets where some
agent has sufficiently large initial wealth in eachσ ∈ D−T to cover fixed transaction costs.

19Let x andx′ be vectors in a Euclidean space. Thenx ≥ x′ implies x is greater than or equal tox′ in a
component-wise manner;x > x′ implies thatx ≥ x′ andx 6= x′; x � x′ implies that each component ofx is
greater than the counterpart ofx′.
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ThenD+ 6= ∅. For eachσ ∈ D \D+, V (v, q; σ) = 0. We consider the case withσ = σ0. By

Assumption 2, we see that for allλ > o,

0 = −λq(σ) · v(σ)− C(λv(σ), q(σ); σ)

≤ −λq(σ) · v(σ)− C(λv(σ), q(σ); σ) + c̄

≤ −λq(σ) · v(σ)− λC̃(v(σ), q(σ); σ)− F (λv(σ), q(σ); σ) + 2c̄

By Assumption 1, we havelimλ→∞ F (λv(σ), q(σ); σ)/λ = 0. It follows by dividing both of

the above inequality byλ and lettingλ →∞ that

R̃(v, q; σ) = q(σ) · v(σ)− C̃(v(σ), q(σ); σ) ≥ 0.

By applying the same arguments to the case withσ ∈ D \ {σ0}, we can show that

R̃(v, q; σ) = Rσ · v(σ−)− q(σ) · (v(σ)− v(σ−))− C̃(v(σ)− v(σ−), q(σ); σ) ≥ 0.

On the other hand,V (v, q; σ) > 0 for eachσ ∈ D+. SinceV (v, q; σ) = limλ→∞ R̃(λv, q; σ)/λ,

there existsλσ > 0 such thatR̃(λv, q; σ) > 0 for all λ ≥ λσ and thereforev ∈ G(q; σ). Thus,

we conclude that there existsv′ ∈ G(q) such thatR(v′, q) > 0.

Suppose that there exists a nonzerov ∈ G(q) such thatR̃(v, q) > 0. Sincev ∈ Gi(q) and

R̃i(0, q; σ) = 0 for eachσ ∈ D, there existsλσ > 0 such thatR̃(λv, q; σ) ≥ 0 for all λ ≥ λσ.

This implies that for allσ ∈ D,

V (v, q; σ) = lim
λ→∞

R̃i(λv, q; σ)/λ ≥ 0.

We show thatV (v, q) > 0. SinceV (v, q) ≥ 0, we have only to show that there existsσ ∈ D

such thatV (v, q; σ) > 0. Recalling that̃R(v, q) > 0, we can pick̄σ ∈ D such that̃Ri(v, q; σ̄) >

0. If σ̄ ∈ FT , we are done because

V (v, q; σ̄) = R̃(v, q; σ̄) = Rσ̄ · v(σ̄−).

Thus without loss of generality, we can assume thatσ̄ ∈ D \ FT . Suppose that̄σ = σ0. Since

v ∈ Gi(q) andR̃i(v, q; σ0) > 0, it follows by (ii) of Assumption 3 that̃Ri(µ
′v, q; σ0) → ∞ as

µ′ →∞. Thus by (ii) of Assumption 1, there existsµ > 0 such that

R̃(µv, q; σ0)− F (µv(σ0), q(σ0); σ0)− c̄ > 0.
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This implies that

−µq(σ0) · v(σ0)− C(µv(σ0), q(σ0); σ0)− c̄ > 0.

Since by Assumption 2,C(µv(σ0), q(σ0); σ0) + c̄ ≥ C(µv(σ0), q(σ0); σ0), we have

−µq(σ0) · v(σ0)− C(µv(σ0), q(σ0); σ0)− c̄ ≤ −µq(σ0) · v(σ0)− C(µv(σ0), q(σ0); σ0)

= µV (v, q; σ0).

Thus, we haveV (v, q; σ0) > 0. By applying the same argument to the case withσ̄ ∈ D−T\{σ0},
we can show thatV (v, q; σ̄) > 0. Therefore, we conclude thatV (v, q) > 0.

Suppose that the transaction cost functionR̃(·, q; σ) is convex for eachq ∈ LJ andσ ∈ D.

Then eachR̃(·, q; σ) is concave. Thus, the following corollary is immediate from Proposition

5.1.

Corollary 5.1: Suppose that̃C(·, q(σ); σ) is convex for allq ∈ LJ andσ ∈ D. Then under

Assumption 1-2,q ∈ Λ if and only if there exists no nonzerov ∈ LJ such thatV (v, q) > 0

By Proposition 5.1, the notion of arbitrage in Definition 5.1 is equivalent to the following in the

case with non-convex transaction costs.

Definition 5.1′: An asset priceq ∈ LJ admitsno arbitrage opportunitiesif there is noθ ∈ LJ

which satisfiesV (v, q) > 0.

The set of no arbitrage prices is expressed as

Λ =
{
q ∈ LJ : V (v, q) 6> 0 for all v ∈ LJ

}
.

It is worth noting that the effect of transaction costs onV (v, q) is determined by the LTC func-

tion which describes the behavior of average costs for large transactions. Thus, transaction

costs affect asset pricing only via the LTC function. Neither fixed transaction costs nor any

costs attributed to small transactions have no influence on the existence and the form of pricing

rules.
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VI. Arbitrage and the Existence of Pricing Rules

The no arbitrage condition of Definition 5.1 allows us to extend the fundamental theorem

of asset pricing to the case with fixed and non-proportional transaction costs.20 In this section,

we show the equivalence between the no arbitrage condition and the existence of pricing rules.

The viability test for Definition 5.1 is given in the next section.

Theorem 6.1: Under Assumption 1-3,q ∈ Λ if and only if there existsπ ∈ L++ such that

π · V (v, q) ≤ 0 for all v ∈ LJ .

PROOF : Suppose thatq 6∈ Λ. Then by Proposition 5.1 there existsv ∈ LJ such thatV (v, q) >

0. Sinceπ ∈ L++, this implies thatπ · V (v, q) > 0, which leads to a contradiction.

Suppose thatq ∈ Λ. We define the set

Z(q) = {y ∈ L : y ≤ V (v, q) for some v ∈ LJ}.

First we show thatZ(q) is a closed, convex cone. By Lemma 4.2,Z(q) is a convex cone. The

following lemma shows thatZ(q) is closed.

Lemma 6.1: For all q ∈ LJ , the setZ(q) is closed.

PROOF : See the appendix.

Let ∆ denote the set{y ∈ L+ :
∑

σ∈D y(σ) = 1}. Clearly,∆ is compact and convex. Then

q ∈ Λ is equivalent to the condition thatZ(q)∩ (L+ \ {0}) = ∅ or Z(q)∩∆ = ∅. SinceZ(q) is

a closed, convex cone, by the separating hyperplane theorem there exists a nonzeroπ ∈ L such

that

sup
v∈LJ

π · V (v, q) < inf
y∈∆

π · y.

In particular, we see that

0 = π · V (0, q) ≤ sup
v∈LJ

π · V (v, q) < inf
y∈∆

π · y.

20Magill and Quinzii (1996), and Dybvig and Ross (1989) are a great reference to the fundamental theorem of
asset pricing in a frictionless market.
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Thus we haveinfy∈∆ π · y > 0, which implies thatπ ∈ L++. Let v ∈ LJ . Then for eachλ > 0,

we haveπ · V (λv, q) = λπ · V (v, q) < infy∈∆ π · y, or

π · V (v, q) < inf
y∈∆

(π · y)/λ,

By lettingλ →∞, we haveπ · V (v, q) ≤ 0

The pricing rules which satisfy the no arbitrage condition are characterized in a concrete form

as follows.

Theorem 6.2: Under Assumption 1-3,q ∈ Λ if and only if there existsπ ∈ L++ such that for

eachσ ∈ D andj ∈ J ,

π(σ)[qj(σ) + sj(qj(σ); σ)] ≤
∑

σ̂∈Dσ\{σ}

π(σ̂)Rj
σ̂ ≤ π(σ)[qj(σ) + bj(qj(σ); σ)].

PROOF : For eachq ∈ LJ , j ∈ J andσ ∈ D, the LTC functionC
j

σ(·, qj(σ)) in V (·, q; σ)

is proportional to the parameter which is equal tobj(qj(σ); σ) if the changes of position are

nonnegative and tosj(qj(σ); σ) if the changes of position are negative. Thus the proof of the

theorem can be done by applying the same argument made in the proof of Theorem 3.1 and

3.2 of Zhang, Xu and Deng (2002) which assume that the original transaction cost function

Cj
σ(·, qj(σ)) is proportional to the unit cost of transactions.

The results of Theorem 6.1 and 6.2 deserve several remarks. Neither convexity nor continuity

are imposed on the transaction cost functions. Specifically, the theorems apply to the case

where transaction cost functions are non-convex due to the fixed cost component or indivisibility

of assets. They are differentiated from equilibrium theory which requires the convexity and

continuity of cost functions. It is worth noting that the pricing rules with non-convex transaction

costs are characterized in a simple, concrete form as in the case with proportional transaction

costs. This fact makes asset valuation free from the intractability of fixed and non-convex

transaction costs. Moreover, the pricing rules characterized in Theorem 6.2 are viable under

additional assumptions as shown below.
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The following examples show that compared to Definition 5.1, the notion of arbitrage used

in Dermody and Prisman (1993) underestimates the multiplicity of the pricing rules when trans-

action cost functions are convex and overestimates it when they are non-convex.

Example 3. We consider a two-asset one-state economy which is the same as in Example 2

except for the transaction cost functions. Both assets pay one dollar in the state. Then the return

function is a1 × 2 matrix R = [1 1]. Let q2 denote the price of the second asset. We assume

that the transaction cost function for trading the second asset is one of the four one of the four

Ci(·, q2)’s depicted in Figure 1. For eachi = 1, . . . , 4, let Λi denote the set of no arbitrage

prices withCi. Then it follows by Theorem 6.2 that for eachi = 1, . . . , 4,

Λi = {(q1, q2) ∈ R2
++ : (29/30)q2 ≤ q1 ≤ (21/20)q2}.

It is worth noting that in the case withC1 and C2, ΛDP defined in Example 2 is equal to

{(q1, q2) ∈ R2
++ : q1 = q2} and therefore, is much smaller thanΛ1. Thus the no arbitrage

condition of Dermody and Prisman (1993) extremely underestimates the multiplicity of the

pricing rules which are shown to be viable in the next section.21

Example 4. We consider a two-asset one-state economy which is the same as in Example 2

except that the transaction cost function is replaced by the following function

Cnc(θ
2, q2) =


(q2/2)|θ|, if |θ2| < 1

(q2/3)|θ|, if 1 ≤ |θ2| < 2

(q2/4)|θ|, if |θ2| ≥ 3

This function is continuous and locally non-convex. We setCnc(θ
2, q2) = limλ→∞ Cnc(λθ2, q2)/λ

andc̄ = 2q2. Clearly,Cnc(θ
2, q2) = (q2/4)|θ2|. It is easy to see that for allθ ∈ R,

Cnc(θ
2, q2)− c̄ < Cnc(θ

2, q2) < Cnc(θ
2, q2) + c̄.

Thus Assumption 1-2 hold true here.

21Such underestimation is a general phenomenon when transaction cost functions are convex and smooth at the
origin.
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Let Λ denote the set of no arbitrage prices. By Theorem 6.2, we have

Λ = {(q1, q2) ∈ R2
++ : q2/2 ≤ q1 ≤ (3/2)q2}.

It is worth noting thatΛDP = {(q1, q2) ∈ R2
++ : (3/4)q2 ≤ q1 ≤ (5/4)q2} and therefore,

ΛDP ⊂ Λ. Thus the no arbitrage condition of Dermody and Prisman (1993) overestimates the

multiplicity of the pricing rules.22

VII. Arbitrage and Viability

Most literature on asset valuation by arbitrage focuses on verifying the equivalence between

the no arbitrage conditions and the existence of pricing functionals. If the notions of arbitrage

do not pass viability test, however, they fail to exactly characterize asset pricing in equilibrium.

We shows that the no arbitrage condition of Definition 5.1 is equivalent to viability. Thus the

no arbitrage condition of Definition 5.1 provides a coherent conceptual framework for studying

asset pricing, portfolio choice problem, or equilibrium in markets with general transaction cost

structures.

To examine viability of arbitrage-free prices, we introduce an agent who has the endowment

of consumptionse ∈ L+ and preferences represented by a utility functionu : L+ → R.23 For a

priceq ∈ LJ , the agent chooses(x∗, θ∗) ∈ L+ × LJ which solves the optimization problem:

max
(x,θ)

u(x)

subject to the budget set

B(q) = {(x, θ) ∈ L+ × LJ : x− e ≤ R(θ, q)}.

The demand correspondenceξ(q) is the set of optimal choices inL+ × LJ which solve the

above optimization problem.

Definition 7.1: An asset priceq ∈ LJ is viable if ξ(q) 6= ∅.
22Such overestimation is a general phenomenon when transaction cost functions are not convex and smooth at

the origin.
23It is implicitly assumed that a single consumption good is available in each state of the economy.
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To investigate the relationship between the no arbitrage condition and viability, we make the

following assumptions.

Assumption 4: u is continuous, strictly increasing and quasiconcave.

Assumption 5: For each{xn} in L+ with limn→∞ ‖xn‖ → ∞, limn→∞ u(xn) = ∞.

Assumption 6: For a priceq ∈ Λ, the following set is closed.

X(q) = {x ∈ L+ : x− e ≤ R(θ, q) for someθ ∈ LJ}.

Assumption 4 is standard. Assumption 5 holds in the case where preferences follow the ex-

pected utility hypothesis and the expected utility goes to infinity as income increases indefi-

nitely in some states of the world. Assumption 6 requires that the set of income transfers be

closed. IfV (·, q) = R(·, q) for all q ∈ LJ , then Lemma 6.1 shows that Assumption 6 holds true.

By the same argument used in proving Lemma 6.1, we can show that Assumption 6 is satisfied

in the case whereR(·, q) is piece-wise linear with finitely many kinks. It is also satisfied with

transaction cost functions with fixed cost component as in the fourth diagram of Figure 4.24

Assumption 7: For eachq ∈ LJ , j ∈ J andσ ∈ D, there exists a differentiable function

Dj
σ(·, qj(σ)) : R → R such thatDj

σ(0, qj(σ)) = 0 and for allθ ∈ LJ ,

lim
λ→∞

Dj
σ(λθj(σ), qj(σ))

λ
= lim

λ→∞

Cj
σ(λθj(σ), qj(σ))

λ

Assumption 7 states that there exists a differentiable functionDj
σ(·, qj(σ)) which displays the

same average cost for large transactions asCj
σ(·, qj(σ)), i.e., for anyθj(σ),

lim
λ→∞

Dj
σ(λθj(σ), qj(σ))

λθj(σ)
= C

j

σ(λθj(σ), qj(σ)).

24Assumption 6 holds true with transaction cost functions which is lower-semicontinuous and piece-wise linear
with finitely many jumps. This is the case with transaction cost functions with fixed cost component. Assump-
tion 6, however, may be violated with indivisible assets. Transaction costs with indivisible assets are usually
upper-semicontinuous as shown in the third diagram of Figure 1, implying that the net return functions are lower-
semicontinuous. In this case,X(q) is not closed in general for a priceq ∈ LJ .
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As shown earlier, the effect of transaction costs on the pricing rules are determined by the

LTC function. This implies that eachCj
σ(λθj(σ), qj(σ)) can be replaced by the differentiable

function Dj
σ(λθj(σ), qj(σ)) without distorting the effect of transaction costs on asset pricing.

This observation is useful in analyzing market frictions which cause the finitely many kinks or

jumps ofCj
σ(λθj(σ), qj(σ)).

The following result shows that the no arbitrage condition is fully compatible with viability

of the pricing rules.

Theorem 7.1:Under Assumption 1-7,q ∈ Λ if and only if ξ(q) 6= ∅.

PROOF : (⇐) Let q be a price inLJ such thatξ(q) 6= ∅. Then there exists(x, θ) ∈ ξ(q).

Suppose that there exists a nonzerov ∈ G(q) such thatR̃(v, q) > 0. By Proposition 5.1, we

haveV (v, q) > 0. In particular, there existsσ ∈ D such thatV (v, q; σ) > 0. We claim that

V (v, q; σ) = lim
λ→∞

R(θ + λv, q; σ)−R(θ, q; σ)

λ
.

By Assumption 7, we see that

lim
λ→∞

Dj
σ(θj(σ) + λvj(σ), qj(σ))

λ
= lim

λ→∞

Cj
σ(θj(σ) + λvj(σ), qj(σ))

λ

On the other hand, L’Ĥopital’s rule gives

limλ→∞
Dj

σ(θj(σ)+λvj(σ),qj(σ))
λ

= limλ→∞ Dj′
σ (θj(σ) + λvj(σ), qj(σ))vj(σ)

= limλ→∞ Dj′
σ (λvj(σ), qj(σ))vj(σ)

= limλ→∞
Dj

σ(λvj(σ),qj(σ))
λ

.

It follows that

lim
λ→∞

Cj
σ(λvj(σ), qj(σ))

λ
= lim

λ→∞

Cj
σ(θj(σ) + λvj(σ), qj(σ))

λ
.

Therefore, we have

V (v, q; σ) = lim
λ→∞

R̃(θ + λv, q; σ)

λ
= lim

λ→∞

R̃(θ + λv, q; σ)− R̃(θ, q; σ)

λ
.

Since by Assumption 1F (θ(σ) + λv(σ), q(σ); σ) < f for all λ > 0 andσ ∈ D, it follows that

V (v, q; σ) = lim
λ→∞

R(θ + λv, q; σ)

λ
= lim

λ→∞

R(θ + λv, q; σ)−R(θ, q; σ)

λ
.
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Clearly,V (v, q; σ) > 0 implies thatlimλ→∞[R(θ + λv, q; σ) − R(θ, q; σ)] = ∞. Thusθ + λv

generates an indefinite amount of income in the eventσ asλ → ∞. By Assumption 5, utility

goes to infinity asλ →∞, which contradicts the optimality of(x, θ) in B(q).

(⇒) Let q be a price inΛ. We set

X(q) = {x ∈ L+ : x− e ≤ R(θ, q) for someθ ∈ LJ}.

Suppose thatX(q) is compact. Sinceu is continuous andX(q) is compact, there existsx ∈ L+

which satisfiesu(x) ≥ z′ for all z ∈ X(q), and therefore,θ ∈ LJ such that(x, θ) ∈ ξ(q). Thus

we have only to show thatX(q) is compact.

By Assumption 6,X(q) is closed. Now we show that it is bounded. Suppose otherwise.

Then there exists a sequence{xn} in X(q) such‖xn‖ → ∞. For eachn, we can choose

θn ∈ LJ such that(xn, θn) ∈ B(q). We setbn = 1/‖xn‖. Now by multiplying both sides of

the budget constraints bybn, we havebnxn − bne ≤ bnR(θn, q) for eachn. Clearly,{bnxn} is

bounded and therefore, has a subsequence convergent to a pointy. Clearlyy ≥ 0 and‖y‖ = 1

and therefore,y > 0.

We set

Z(q) = {y ∈ L : y ≤ V (θ, q) for some θ ∈ LJ}.

By Lemma 6.1,Z(q) is closed. For eachσ ∈ D−T , we claim that for allv ∈ LJ ,

V (v, q; σ) ≥ R(v, q; σ) + c̄.

First we consider the case withσ = σ0. By Assumption 2, we see thatC(v(σ0), q(σ0); σ0)+ c̄ ≥
C(v(σ0), q(σ0); σ0). It follows that

V (v, q; σ0) = −q(σ0) · v(σ0)− C(v(σ0), q(σ0); σ0)

≥ −q(σ0) · v(σ0)− C(v(σ0), q(σ0); σ0) + c̄

= R(v, q; σ0) + c̄.

By applying the same argument to the case withσ ∈ D−T \{σ0}, we can show thatV (v, q; σ) ≥
R(v, q; σ) + c̄.

By the positive homogeneity ofV (·, q), we have

bnxn − bne ≤ bnR(θn, q)

≤ bnV (θn, q)− bnc̄1−T

= V (bnθn, q)− bnc̄1−T
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where1−T denotes a vector inL with 1 in the coordinate corresponding to eachσ ∈ D−T

and with0 otherwise. This implies thatbnxn − bne + bnc̄1−T ≤ V (bnθn, q) and therefore,

bnxn − bne + bnc̄1−T ∈ Z(q) for all n. Sincebnxn − bne + bnc̄1−T → y andZ(q) is closed,y

is in Z(q). Thus there existsv ∈ LJ such thatV (v, q) ≥ y. Sincey > 0, we haveV (v, q) > 0.

By Proposition 5.1 we must haveq 6∈ Λ, which is impossible. Thus,X(q) is bounded.

Theorem 7.1 shows the equivalence between the no arbitrage condition and viability of

asset prices. Thus, Theorem 6.2 and 7.1 lead to an extension of the fundamental theorem of

asset pricing stated in Harrison and Kreps (1979) and Dybvig and Ross (1989) to the case with

transaction costs.

Theorem 7.2:Under Assumption 1-7, the following statements are equivalent.

(i) q ∈ Λ.

(ii) There existsπ ∈ L++ such that for eachσ ∈ D andj ∈ J ,

π(σ)[qj(σ) + sj(qj(σ); σ)] ≤
∑

σ̂∈Dσ\{σ}

π(σ̂)Rj
σ̂ ≤ π(σ)[qj(σ) + bj(qj(σ); σ)].

(iii) ξ(q) 6= ∅.

Appendix

Proof of the Claim in Example 2: We show that

ΛV = {(q1, q2) ∈ R2
++ : (29/30)q2 ≤ q1 ≤ (21/20)q2}.

We consider an agent who has preferences represented by a utility functionu(x0, x1) =
√

x0 +
√

x1 and the initial endowment of consumption goods(1, 1).25 Then he faces the following

25The arguments below do not depend on the form of utility functions and the size of the endowments as far as
the utility functions are monotonic.
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optimization problem

max

√x0 +
√

x1

∣∣∣∣∣∣ x0 − 1 ≤ −θ1q1 − θ2q2 − C(θ2, q2)

x1 − 1 ≤ θ1 + θ2


The above maximization problem is reduced to the following

max
√

1− θ1q1 − θ2q2 − C(θ2, q2) +
√

1 + θ1 + θ2.

Let (θ̂1, θ̂2) denote the solution to the maximization problem.

i) 21q1 = 20q2.

Clearly, we have

(θ̂1, θ̂2) ∈ {(θ1, θ2) : θ1 + θ2 =
21/20− (q1)2

(q1)2 + q1
, θ2 ≥ 1

q2
}.

ii) 30q1 = 29q2.

Similarly, we have

(θ̂1, θ̂2) ∈ {(θ1, θ2) : θ1 + θ2 =
31/30− (q1)2

(q1)2 + q1
, θ2 <

−1

q2
}.

(iii) (29/30)q2 < q1 < (21/20)q2.

The maximization problem has a solution because the following set is compact.

{(θ1, θ2) ∈ R2 : θ1q1 + θ2q2 + C(θ2, q2) ≤ 1, θ1 + θ2 ≥ −1}.

Proof of Lemma 6.1: Let q be a price inΛ. First we show that the following set is closed.

Y (q) = {y ∈ L : y = V (v, q), v ∈ LJ}.

Let v be a point inLJ . For somej ∈ J andσ ∈ D, it follows that if vj(σ)− vj(σ−) ≥ 0, then

C
j

σ(vj(σ)− vj(σ−), qj(σ)) = bj(qj(σ); σ)(vj(σ)− vj(σ−))

C
j

σ(vj(σ−)− vj(σ), qj(σ)) = sj(qj(σ); σ)(vj(σ)− vj(σ−)),

and ifvj(σ)− vj(σ−) < 0, then

C
j

σ(vj(σ)− vj(σ−), qj(σ)) = sj(qj(σ); σ)(vj(σ)− vj(σ−))

C
j

σ(vj(σ−)− vj(σ), qj(σ)) = bj(qj(σ); σ)(vj(σ)− vj(σ−)).
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(In the above, we follow the notational convention thatvj(σ−0 ) = 0 for all j ∈ J .)

Let {yn} be a sequence inY (q) which converges to a pointy. Since0 ∈ Y (q), without loss

of generality we may assume thaty 6= 0. Thenyn 6= 0 for sufficiently largen. For eachn we

choosevn in LJ such thatyn = V (vn, q). SinceD is finite, there exists a subsequence{vm}
such that{vjm(σ) − vjm(σ−)} has the same sign for a given pair(j, σ) ∈ J × D. Thus there

exists a(#D)× [J × (#D−T )] matrixΨ such thatV (vm, q) = Ψ · vm.

We define the sets

Θ+(q) =
{
v ∈ LJ |vj(σ)− vj(σ−) ≥ 0 for each(j, σ) with vjm(σ)− vjm(σ−) ≥ 0 for all m

}
Θ−(q) =

{
v ∈ LJ |vj(σ)− vj(σ−) ≤ 0 for each(j, σ) with vjm(σ)− vjm(σ−) < 0 for all m

}
SinceJ×D consists of finitely many elements,Θ+(q) andΘ−(q) are the intersection of finitely

many closed half spaces which contain the origin on the boundary, and therefore, they are a

polyhedral cone. By construction,{vm} is in Θ+(q) ∩Θ−(q). We set

Y ±(q) = {y ∈ L : y = V (v, q) for some v ∈ Θ+(q) ∩Θ−(q)}.

SinceΨ · v = V (v, q) for any v ∈ Θ+(q) ∩ Θ−(q), by Theorem 19.3 of Rockafellar (1970)

the setY ±(q) is a polyhedral cone. In particular, it is closed. Since{ym} is in Y ±(q), y is in

Y ±(q). Noting thatY ±(q) ⊂ Y (q), y is in in Y (q). Thus,Y (q) is closed.

Now show that the setZ(q) = {y ∈ L : y ≤ V (v, q), v ∈ LJ}. Let {yn} be a sequence in

Z(q) which converges to a pointy. For eachn we choosevn in LJ such thatyn ≤ V (vn, q).

For eachn, we setzn = V (vn, q). We claim that{zn} is bounded. Suppose that‖zn‖ → ∞.

By positive homogeneity ofV (·, q), we have

zn/‖zn‖ = V (vn, q)/‖zn‖ = V (vn/‖zn‖, q).

This implies thatzn/‖zn‖ ∈ Y (q) for eachn. Clearly,{zn/‖zn‖} is bounded. Thus, it has

a subsequence convergent to a pointż. SinceY (q) is closed,ż is in Y (q). Thus there exists

v ∈ LJ such thatV (v, q) = ż. On the other hand, we haveyn/‖zn‖ ≤ zn/‖zn‖. Sinceyn → y

and‖zn‖ → ∞, yn/‖zn‖ → 0. By passing to the limit we havėz ≥ 0. Recalling thatż 6= 0,

we must haveV (v, q) > 0, which contradicts the fact thatq ∈ Λ. Since{zn} is bounded, it

has a subsequence convergent to a pointz in Y (q). Recalling thatyn ≤ zn for eachn, we have

y ≤ z. Thusy ∈ Z(q).
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