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Abstract

The paper establishes the fundamental theorem of asset pricing (FTAP) in markets where
transaction costs need not be convex and are allowed to jump. Specifically, it contributes to
the literature in three ways. The first finding is that only average costs for large transactions
matter to asset pricing in markets where transaction costs are not convex possibly due to
the fixed cost component, indivisibility of assets or shifts in the cost structure. Remarkably,
no matter how complex the non-convex transaction cost functions are, the pricing rules
are characterized in a simple, concrete form as in the case with proportional transaction
costs. Second, the results of the paper are differentiated from equilibrium theory which
usually requires the continuity and convexity of transaction cost functions. Finally, the
notion of arbitrage used here is appropriate to explaining asset prices. Specifically, the no
arbitrage condition is equivalent to viability of asset prices. The consequence vindicates
the coherence of arbitrage as a conceptual framework for equilibrium analysis. Moreover,
the pricing rules can be characterized by minimal information on the nature of transaction
costs.
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|. Introduction

Borrowing and lending rates differ in the real world. The spread between them is ascribed to
financial intermediation, which is costly due to market frictions. This is an easy example where
the law of one price is violated in the face of market frictidnhe arbitrage pricing theory
which does not take market frictions into account may be unable to characterize asset prices in
economies which are far from being ideal. The effect of market frictions on asset pricing must
be properly understood to make an asset pricing theory come closer to reality.

The paper establishes the fundamental theorem of asset pricing (FTAP) in markets where
transaction costs need not be convex and are allowed to jump. Specifically, it contributes to the
literature in three ways. The first finding is that only average costs for large transactions matter
to asset pricing in markets where transaction costs are not convex possibly due to the fixed
cost component, indivisibility of assets or shifts in the cost structure. Remarkably, no matter
how complex the non-convex transaction cost functions are, the pricing rules are characterized
in a simple, concrete form as in the case with proportional transaction costs. Therefore, asset
valuation can be free from the intractability of fixed and non-convex transaction costs. Second,
the results of the paper are differentiated from equilibrium theory which usually requires the
continuity and convexity of transaction cost functions. It is also worth noting that marginal
transaction costs are irrelevant to the determination of the pricing rules as far as they differ
from average costs for large transactions. The advantages of arbitrage pricing theory of the
paper over equilibrium theory are not shared with the literature which deals with frictionless
markets or with proportional transaction costs. Finally, the notion of arbitrage used here is
appropriate to explaining asset prices. Specifically, the no arbitrage condition is equivalent to
viability of asset priced.The consequence vindicates the coherence of arbitrage as a conceptual
framework for equilibrium analysis. ‘Arbitrage’ pricing theory would be almost vacuous if it

undergos serious failure in the viability tésMoreover, the pricing rules can be characterized

1Evidences of mispricing are abundant in the literature; stock index futures (Canina and Figlewski (1995)),
primes and scores (Jarrow and O’Hara (1989)), closed-end funds (Pontiff (1996)), stock options (Conrad (1989))
among others.

2Informally speaking, asset prices are viable if they allow agents to make an optimal choice in asset markets.

3As shown later, the well-known notions of arbitrage do not pass the viability test. Won and Hahn (2004) also
illustrate the failure of viability from a different perspective.



by minimal information on the nature of transaction costs. What is required to capture the
pricing rules is information on the average cost for large transactions which is independent of
the local behavior of transaction cost functions.

The last point deserves remarks. The amount of information on the nature of market fric-
tions which is necessary to describe the arbitrage pricing rules is determined by the definition
of arbitrage. Broadly speaking, the notions of arbitrage with frictional markets can be classified
as ‘local arbitrage’ and ‘global arbitrag&’Local arbitrage is introduced to describe the condi-
tions for a price to allow no costless financial improvement in all contingencies from the given
position. Thus the no local arbitrage condition depends on the initial position. On the other
hand, global arbitrage is useful in describing the conditions which are satisfied with arbitrary
equilibrium prices by keeping minimal the information on unobservable data of the markets
such as risk preferences, the initial wealth and optimal choices of individuals. This paper takes
the latter approachlLocal arbitrage is used in most literature with convex transaction costs and
taxation schedules.Both notions of arbitrage usually lead to the same consequence of asset
pricing in the case with proportional transaction costs. This is not the case, however, with non
proportional transaction costs or taXeds illustrated in the main text, asset pricing by local
arbitrage tends to extremely underestimate the multiplicity of the pricing rules when transaction
costs are convex and extremely overestimate it when they are non-convex.

Moreover, both notions of arbitrage drastically diverge in informational requirement to char-
acterize the pricing rules. The marginal transaction costs or tax rates are placed in the pricing
kernel in the presence of transaction costs and taxation. Thus they are indispensable informa-
tion to capture the pricing rules. If transaction costs or capital income taxes are proportional to
the size of transactions, the marginal transaction cost or tax rate is constant over all pbsitions.

If transaction cost functions are nonlinear, however, the marginal frictional cost depends upon

“Global’ is used to contrast the latter to the former.

SDammon and Green (1987) take the same line of research to investigate the existence of equilibrium with
progressive taxation.

5Ross (1987), and Dybvig and Ross (1986), Prisman (1986), Dermody and Prisman (1993) among others.

’Ross (1987), and Dybvig and Ross (1986), Prisman (1986), Dermody and Prisman (1993) adopt local arbitrage
to examine the effect of convex transaction costs or convex taxation schedules on arbitrage pricing. In this case,
the implications of the two approaches to asset pricing diverge as shown below.

8Garman and Ohlson (1981), Boyle and Vorst (1992), Jouini and Kallal (1995), Kabanov (1999), Kabanov and
Stricker (2001), Delbaen, Kabanov and Valkeila (200), Zhang, Xu and Deng (2002), Schachermayer (2004) among
others examine the effect of proportional transaction costs on asset pricing.



the functional form of market frictions as well as the position to be concerned about. In theory,
local arbitrage leads to sharper results than global arbitrage in the case with nonlinear cost func-
tions. In reality, however, it is hard to pick out the pricing rules which meet the status quo of
the markets under the unobservable pricing kernel. For example, Ross (1987) and Dybvig and
Ross (1986) introduce local tax arbitrage to address arbitrage pricing theory with progressive
taxation. In this case, the marginal tax rate is calculable on the basis of the knowledge of both
the tax schedule and the current portfolio position of individuals, which do not belong to public
domain of information in general.

Il. The Model
Asset markets are assumed to persist over finite time pertods),1,...,7. LetQ =
{1,2,...,S} denote a finite partition of states of nature. The revelation of information is de-

scribed by a collection of partitions 6f, 7 = {Fy, F1, ..., Fr}, whereF; is finer thanF;_,
(,e. 0 € F,ando’ € F,_; imply thatec C o’ orono’ = P)foralt =1,...,7.° We
assume that, = {Q2}. The information available at time= 0,1, ..., 7 is described by the
seto € F; of the states of nature. We sBt = |J_, 7 andD_r = U, . An element
in D is called a node or an event aitlis called an event tree. In particulat, in D denotes
an event in¥;. For eachr; € F,, leto, denote the event which immediately precedgsr;"
the set of events which immediately succeedand D,, the set of events which consist of
and all the events succeeding The setD,, is a subtree at;. For some positive integet,
let £L(D_7,R™) denote the collection of alk"-valued functions orD_r. For brevity, £ will
be used instead af(D_7,R"™). Let#D and# D_r denote the number of elementsiihand
#D_r, respectively. TherL™ is the Euclidean space of dimensicD_r) x n. Let L denote
the set of all real-valued functions definedbnWe setL, = {x € L : x(0) > 0,0 € D} and
Ly, ={x€L:x(oc)>0,0€ D}.

There are/ long-lived assets issued at tifi@and traded in each state of time- 0, ..., 7 —
1. Allowing for some notational abuse, we also denote the set of assets Ayrice process

of assetj is a functiong; : D_r — R and a trading strategy is a functién D_r — R”. Thus,

9For more details on the stochastic economy, see Magill and Shafer (1991) or Magill and Quinzii (1996).



q=(q,--.,q7) andd are a pointinC’. More specificallyy’ (o) andé’(c) denote a price and

a position of assef, andq(c) € R’ andf(s) € R’ denote prices and positions dfassets

at the noder € D. For a price-event paifg, o) in £/ x D, let R(-,q;0) : L7 — R denote

the net return schedule which is derived from deducting transaction costs from the gross return.
Specifically, if a trading strategy € £ is chosen at the pricg the net return2(6, ¢; o) will

be delivered to the investor in the event For a priceq € £7, let R(-, ¢) denote the function
which assigns each € D to R(-,q;0). Thus, for a trading strategy € £/, R(0,q) is a

# D-dimensional net return vector.

Transaction costs are incurred in buying and selling assets. They can be decomposed as
two parts, one which is quite independent of variations in the size of the positions and the
other which is responsive to them. The former includes fixed transaction costs and the latter
corresponds to variable transaction costs. For a(pair) € £/ x £7 of a net trade and a price,
let C(v(0),q(0); o) denote a transaction cost function in the event D. We assume that
there exist functiond’(-, q(o);0) : L7 — R andC’(-,¢’(s)) : R — R for eachj € J such
that for allv € £7,1°

C(v(0),q(0);0) = F(u(a),q(0);0) + Y _ Ca(v’(0), ¢ (o).
jedJ
The functionF'(v(o), ¢(0); o) can be interpreted as the fixed transaction cost component and
eachC?(v/(0), ¢’ (o)) as the variable transaction cost for the change of the positi@n for
assetj in the eventr.!! For eachr € D, let R, € R’ denote the gross returns of assets which
are available before transaction costs are deducted. Then for@&aghc £/ x L7, the net

return process(0, ¢; o) is represented by

—q(o) - 0(0) = C(0(0), q(0); 0), 0 =0y
R(0,¢:0) = ¢ R, -0(c7) —q(o) - (0(0) = (c7)) = C(0(a) = 0(c7),q(0);0), o €D_r\og
R, - (9((7_), o€ Fr

10The decomposition of need not be unique but it can be uniquely determined by puttirfg afl the costs
which vanish on the average as net trades go to infinity.

permody and Prisman (1993) indicate that transaction costs on trading each individual asset is a function of
the number of shares traded, and transaction costs on a trade is the sum of the transaction costs on trading each
individual stock.



For eachv € £7,¢L’ ando € D, we define the function

C(v(0),q(0);0) =Y Ci(v/(0), ¢/ ().

jedJ
The functionC (v(c), q(0); o) denotes the variable transaction cost in the evenEor each
0 € L7, qL’ ando € D, we define the return function net the variable @@t(v), ¢(c); o) by

~ —q(0) - 0(c) — C(0(0), q(0); 0), i = o,
R(0,q;0) = R,-0(c7) —qlo)-(0(c) —0(c")) —C(0(c) —0(c7),q(0);0), o€ D_r\op
R, -0(c7), .
l1l. Examples

Four transaction cost functions are presented in the first example which look quite distinct
but give the same average cost for large transactions. As shown later, they give the same con-
sequence in terms of asset pricing. Itis illustrated in the second example that the no arbitrage
condition of of Dermody and Prisman (1993) may be far from being a necessary condition for
viability when the transaction cost function is convex, piece-wise linear and differentiable at
zero. Specifically, the no arbitrage condition of of Dermody and Prisman (1993) explains only

a ‘small’ part of viable price$?

Example 1. Transaction cost functions are given which locally differ but behave asymptotically
in the same manner. As shown later, they are indistinguishable in terms of arbitrage pricing.
Let ¢ denote the price of an asset. For each 1,...,4, we defineC;(-,¢q) : R — R as the
transaction cost function for the asset. They are depicted in Figure 1.

<Figure >

The functionC| (-, q) is piecewise linear with kinks at1/q and1/q, and flat at zero while
Csy(+, q) is strictly convex and differentiable. The functié(-, ¢) jumps regularly and repre-

sents transaction costs with indivisible assets. In contrast to the first three functions which are

12This result is true in general when transaction cost functions are convex and differentiable at zero.
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free from fixed cost component, (-, ¢) has the fixed transaction cost denotediy If K is
ignored inCy(-, ), it is the same a€’s(+, q).

Despite their local difference, they have the same asymptotic property. W& ($et)) =
limy . Ci(A0, q)/A. Itis easy to see that for eack= 1, . .., 4, C;(0, q) is equal to the function
C(0, q) defined by

30 7
This function represents proportional transaction costs in such a way/thais a transaction
cost for buying one unit of the asset apB0 is a transaction cost for selling one unit of the
asset. The average transaction cost of the four cases for large transactions is all the same as that

of the proportional transaction cost functioh(-, q).

<Figure 2>

Example 2. A two-asset one-state economy with convex transaction costs is considered to
illustrate that the set of prices which satisfy the no arbitrage condition of Dermody and Prisman
(1993) constitutes only a small part of viable prices. This means that the no arbitrage condition
of Dermody and Prisman (1993) may extremely underestimate the multiplicity of viable prices.
Both assets pay one dollar in the state of the next period. Thus the gross return structure is
represented by the x 2 matrix R = [1 1]. Let ¢* denote the price of the second asset. We

assume that the transaction cost function for trading the second asset takes the form

(202 —1)/20,  if 62 > 1/¢?
Cr(0%,¢°) =< 0, if —1/¢><6><1/¢?
—(¢?0* +1)/30, if 0> < —1/¢°
This function is depicted in the first diagram of Figure 1. Cleafly0, ¢*) = 0 andC}(6?, ¢?)

is piece-wise linear, continuous and convex. The following is an adaptation of the notion of

arbitrage introduced in Dermody and Prisman (1993) to the current example.

Definition DP: The price(q*, ¢*) admitsno arbitrageif it satisfies
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max{—0'¢" — 0°¢* — C;(6%,¢*) : 0' + 6% > 0} = 0 and

0! + 62 = 0 for all optimal solution(9*, 6?).

We check the validity of the above notion of arbitrage as a conceptual framework for equilibrium
analysis. This can be done by investigating how the no arbitrage condition is appropriate to
explaining the viability of asset prices.

Let App denote the set of prices which admit no arbitrage in the sense of Definition DP. We
claim that

App ={(¢".¢°) € RL, 1 ¢' = ¢*}.
Let (6, %) denote the solution tmax{—0'q' —6%¢> — C;(6%,¢*) : 0* + 62 > 0} = 0. Suppose
thatq! = ¢>. Then it is easy to see thét + §> = 0 and

max{—0'q' — 0*¢* — C;(6°,¢*) : 0' +6*> > 0} = 0.

Thereforeq', ¢*) satisfies the no arbitrage condition of Definition DP.

We show that anyq!, ¢*) with ¢! # ¢* admits an arbitrage in the sense of Definition DP.
Suppose thag' > ¢2. We setp! = —1/2¢*> andn? = 1/2¢%. Then—1/¢*> < n* < 1/¢* and
n* +n* > 0. Moreover,

-n'¢' —n*¢* — Cr(n*,¢*) = —n'¢' —n’q

Suppose thag' < ¢2. We setp! = 1/2¢* andn? = —1/2¢%. Then—1/¢*> < n* < 1/¢* and
n' +n? > 0. Moreover,
—n'q' =’ = Cr(n*.¢*) = —n'q" — ¢
: <1 — Z—i) > 0
It follows that for any(q', ¢*) with ¢' # ¢%, max{—0'¢' —0%¢* — C;(6?,¢*) : 6 +6% > 0} > 0.
Thus, wheneveq' # ¢2, (¢!, ¢*) does not satisfies the no arbitrage condition of Definition DP.
To do a viability test with prices im\pp, we introduce the sety, of viable prices. Any

prices inAy would allow agents with monotonic preferences to have an optimal choice in asset
markets. We claim that

Av ={(¢".¢}) € R, : (20/30)¢* < ¢ < (21/20)¢}.
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(This claim is verified in the Appendix.) Prices it are viable but anyq', ¢*) € Ay with
q' # ¢* does not satisfy the no arbitrage condition of Dermody and Prisman (1993). Thus,
the no arbitrage condition of Dermody and Prisman (1993) explains a very small part of viable

prices.

IV. Transaction Costs in the Large

Transaction cost functions are characterized in terms of average costs for large transactions.
Specifically, the artificial proportional transaction costs are constructed which turn out to share
the set of pricing rules with the original nonlinear transaction cost functions. The proportional
function is determined independently of the non-convexity and local behavior of the original
functions such as fixed transaction costs. The following conditions are imposed on the transac-

tion cost functions.

Assumption 1: Forallg € £/, j € J ando € D, the following hold.
i) F(0,¢;0) = 0andC3(0, ¢’ (o)) = 0.
i) There existsf > 0 such thatf'(v, q;0) < fforallv € £7.

The first condition of Assumption 1 requires that no transaction costs nothing. The second
condition indicates that the cost function is boundfedn particular, it subsumes transaction
cost functions with the fixed cost component.

Foreachy € £/,j € Jando € D, we set

V(¢ (0);0) = lim —Cg(z,qj(a)) and s(¢/(0);0) = lim —Cg(z’qj(0)>,

2—00 z Z——00 z

Thend’(¢?(0); o) ands’ (¢’ (0); o) are the average transaction cost for large long positions and

short positions in assgt respectively. We assume that for egch £/, j € J ando € D,

—o0 < s (¢ (0);0) < V(¢ (0);0) < .

3Allowing for some analytical complications, this condition can be replaced by the more general condition that
limy o, F(\v,q;0)/A=0forallv e L£7.



We define the function

V(¢ (0);0)z, z2>0

ai 2 (o)) = S
(. ¢(2)) (¢ (0);0)z, 2<0

This function can be considered a proportional transaction cost for the change of the position
~ for assetj in markets wheré’ (¢’ (c); o) ands’(¢’(o); o) are charged as the unit transaction
cost for long and short positions, respectively. In fzfcf;,(-, ¢’ (o)) describes the asymptotic

behavior of transaction costs f6¥ (-, ¢’ (c)); for all z € R,

Co(zq'(0)) = Jim =*
This is becaus€? (0, ¢/(c)) = C*(0,¢/(c)) = 0 and for a pricey/ (o) and a nonzero position
z for assetj € J,

C(A2,¢ (0))
)

CI(A\2,¢7 (0))
Az

_ V(g (o);0)z, 2>0
s (¢ (0);0)z, z2<0

= Cl(z,¢(0))

limy oo = limy_ o z

Thus,@f,(z, ¢’(0)) has the same average cost for large transactiod¥ @sq’(c)). For each

eachv € £/, we set
C(v(o),q(0);0) = lim C(AU(J)’Q(U)’G).

A—00 A

Since by Assumption 1im, ., F(\v (o), q(0); )/ = 0, it follows that that for each € £/,

Clu(0),q(0);0) = > Co(v'(0),¢'(0)).

jed

We define the following notion of transaction cost function.

Definition 4.1 For eachy € £7 ando € D, Uf,(-, @(0)): R —-RandC(-,q(c0);0) : R? - R
are thetransaction cost function in the large (LTC functidioy assetj € J and for the asset
structure/, respectively.

Clearly, the LTC function is convex and positively homogeneous.
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Lemma 4.1For eachy € £7,j € J ando € D, C°.(-, ¢(¢)) is convex and”, (Az, ¢/ (0)) =
AC” (2, ¢/ (o)) for all z € R andA > 0.

If transaction cost functions are proportional, they coincide with the LTC funéfiohet
V(o) € [0,1) ands’(c) € [0,1) denote the transaction cost rate for buying and selling the
assetj ato, respectively. Clearlyy’(0)¢’ (o) = b (¢’(c);0) and& (0)¢’ (o) = —s (¢ (0); 0)
forallqg € £7,j € Jando € D. In this case, the LTC function has the form

V(o) (o), 220

Cylz,¢(0)) = —5 (o) (o), z2<0

We assume that the transaction cost and LTC functions satisfy the following condition..

Assumption 2: Forallg € £/,v € £, A\ > 0 ando € D, there exists a number> 0 such
that|C(v(0), ¢(0);0) — C(v(0), q(0); 0)] < candC(\v(0), (0); o) +¢ > AC(v(0), q(0); 7).

Assumption 2 states that the difference between the LTC function and the original transaction
cost function is uniformly bounded from above fyand the variable cost functian shows the
decreasing return to scale of transaction when it is shifted upward by the positive number

Remarkably, no conventional conditions like continuity and convexity are imposed on the
transaction cost functions. Thus Assumption 1-2 enable us to examine the effect of fixed trans-
action costs as well as non-convex transaction costs on the existence and the form of pricing
rules. In particular, they are satisfied with transaction cost functions with jumps due to the fixed
cost component and the indivisibility of assets. For example, they hold in the third and fourth
diagrams of Figure 1.

For eachy,# in £7 ando € D, we define the set
G0, q:0) = {ve £ 3\, > 0suchthatR(d + \v,q:0) > R(6, q;0) YA > A\, }.

The set7(0, ¢; o) contains portfolios corresponding to a direction in which the current position

6 can be changed to a large extent without reducing the return net the variable transaction

1The effect of proportional transaction costs on asset valuation is examined in Garman and Ohlson (1981), and
Zhang, Xu and Deng (2002) among others.
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costs in the event. This set will be very useful in characterizing arbitrage opportunities with
transaction costs. Clearlg (0, ¢; o) is a cone. If}N%(-, q; o) is concave, then it coincides with
the recession cone of the level $6tc £ : R(6, ¢;0) > ¢} of R(-, ¢; 0).25 For notational ease,

we setG(q; o) = G(0, ¢; o) for eachg € £L7. We make the following assumption.

Assumption 3.For eachy € £7 ando € D, the following hold.
i) G(0,q;0) = G(q; o) for eachd € L.
i) If v e G(q;0)andR(v, ¢;0) > 0, thenR(Av, ¢;0) — 0o asA — .

The first condition of Assumption 3 states that if a portfolio as a change of the position gen-
erates additional income in the large at some position, then it does at all other positions. The
two conditions of Assumption 3 are useful in examining the effect of transaction costs on the
availability of arbitrage from all the positions. In particular, they hold true wﬁénq; o) is
concave’® We setG(q) = (,p G(g;0). A nonzerov € G(q) represents a change of the

position which adds nonnegative income to any positions in each state. Cleé@r)yis a cone.

For eachy € £/ ando € D, we consider the functiol (-, ¢; o) : L7 — R defined by

—q(0) - 0(a) — C(0(0),q(0); 0), 0 =0y
V(0,q:0) =S Ry,-0(c7)—qlo)-(8(c) —0(c7)) — C0(c) —0(c7),q(c);0), o€ D_p\ oo
R, -0(c7), oe Fr

Recalling thatC (v(c), q(0); 0) = limy_., C(Av(0), q(c); o)/ for eachv € £7 ando € D,
we see that for ah € £/,

A, q; RN o

The functionV (-, ¢; o) represents the net return schedule at the pricethe event if trans-

action costs were to be charged according to the LTC functiong(c); o).

15For a convex set in a Euclidean spacE, v € E is a direction of recession @f if v +z € C forall x € C.
The recession cone @f is a set of directions of recession@f For details, see Rockafellar (1970).
18For details on this point, see Theorem 8.7 of Rockafellar (1970).
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Definition 4.2 For eachy € £7 ando € D, V(-,¢; o) is thereturn function in the large (L-

return function)for the asset structuré.

The following properties of the L-return functidn(-, ¢; o) are immediate from Lemma 4.1.

Lemma 4.2For eachy € £7 ando € D, V(-,q; o) is concave and’ (N0, q;0) = AV (0, ¢; 0)
forall @ € £7 and\ > 0.

V. Arbitrage with Transaction Costs

As indicated in Jouini, Kallal and Napp (2001), fixed transaction costs may affect the acces-
sibility of arbitrage opportunities. Consider a two-period economy,T'es 1. Suppose that
for someq € R/, there exist¥ € R’ suchthaty- 0 = 0, R, -0 > Oforallo € D\ {00}
andR, - 6 > 0 for someo € D \ {oy}. We assume that preferences follow the expected utility
hypothesis, the utility function is strictly increasing, and the probability that eaehD \ {0}
occurs is positive. Clearly, is an arbitrage opportunity in markets with no transaction costs. If
fixed cost is charged for transactions in the markets, the arbitrage opportunity would be avail-
able only to an agent with sufficiently large initial wealth to cover it. ketenote his initial
wealth andK the fixed transaction cost to be paid for participating in the asset markets. If
K > e, the agent can increase income to be delivered in the evevith R, - ¢ > 0 and
therefore, his utility as much as possible by exploiting the arbitrage opportunity at the cost of
K. This is impossible, however, for agents with< K because they are not able to finance
market participation.

We will assume the presence of agents with sufficiently large initial wealth to cover the fixed
transaction cost8'in eachs € D_7.1" Under this assumption, the notion arbitrage can be freed
from fixed transaction cost components. As verified later, the notion of arbitrage which ignores
the effect of F' on the net returns is appropriate to studying the effect of transaction costs on
asset pricing and equilibriufd.

17A typical example of such an agent is institutional investors.
18The notion of arbitrage used here is comparable to that of Jouini, Kallal and Napp (2001) who aim to examine
arbitrage pricing theory in the absence of agents with large initial wealth. As illustrated above, the no arbitrage
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Definition 5.1: An asset price € £/ admitsno arbitrage opportunitiesf there is nod € G(q)
which satisfiesé(&, q) > 0.

The above notion of arbitrage has several desired properties. First, it allows us to characterize
as easily the pricing rules in markets with non-proportional transaction costs as in markets with
proportional transaction costs. In particular, the cost functions need not be convex and are al-
lowed to have the fixed cost component. Second, it turns out to exactly match viability of asset
prices. This is one of the virtues that no arbitrage conditions must satisfy as a conceptual frame-
work for equilibrium analysis. Third, the no arbitrage condition does not depend on the initial
position. This property is particularly useful in characterizing the pricing rules when marginal
transaction costs are an information not to be observed. If transaction costs is non-proportional,
information on the cost function and the initial position must be provided to calculate marginal
transaction costs. But such information is specific to individuals and does not belong to the
public domain of information. Finally, it subsumes as a special case the existing notions of
arbitrage with proportional transaction costs used in Garman and Ohlson (1981) and Zhang, Xu
and Deng (2002) among others.

Let A denote the set of no arbitrage prices for agefithen we see that

A={qeL’: é(@,q) # 0forallv e G(q)},

where# denotes the negation of the vector inequatity®
We show that the no arbitrage condition can be characterized by the L-return function.

Proposition 5.1: Under Assumption 1-3; € A if and only if there exists no nonzeroc £’

which satisfied/ (v, ¢) > 0.

PROOF: Suppose that there exists a nonzere £/ such that’ (v, ¢) > 0. We define the set

Dt ={oceD:V(v,qo) >0}

condition of Jouini, Kallal and Napp (2001) is not compatible with viability in general in markets where some
agent has sufficiently large initial wealth in eaglke D_ 1 to cover fixed transaction costs.

¥ et 2 and 2’ be vectors in a Euclidean space. Then> 2’ implies z is greater than or equal t¢' in a
component-wise manneg; > z’ implies thatr > 2’ andz # 2’; x > 2’ implies that each component ofis
greater than the counterpartcft
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ThenD™ # (). Foreachy € D\ D%, V(v,q;0) = 0. We consider the case with= oy. By

Assumption 2, we see that for all> o,

0 = —Xg(o) v(o) — Cw(o),q(0);0)
< —7g(0) (o) = CO(0), al0)i o) + ¢
< —X(o)-v(o) — )\6’(2}(0), q(0);0) — F(\v(o),q(0);0) + 2¢

By Assumption 1, we havém, .., F'(A\v(o),q(0);0)/A = 0. It follows by dividing both of
the above inequality by and letting\ — oo that

R(v,q:0) = q(o) - v(o) — C(v(o), q(0);0) > 0.

By applying the same arguments to the case with D \ {0}, we can show that

R(v,q;0) = Ry - v(07) = q(0) - (v(0) = v(0™)) = C(v(0) = v(07),q(0);0) = 0.

Onthe other hand/ (v, ¢; o) > 0foreachr € D*. SinceV (v, ¢; o) = limy_.oc R(Av, ¢;0)/A,
there exists\, > 0 such thaﬁ()\v,q; o) > 0forall A > A\, and therefore € G(q;0). Thus,
we conclude that there exist§€ G(q) such that?(v', ¢) > 0.

Suppose that there exists a nonzere G(q) such thatR(v, ¢) > 0. Sincev € G;(¢) and
R;(0,q;0) = 0 for eacho € D, there exists\, > 0 such thatR(\v, ¢;o) > 0 forall A > \,.
This implies that for alb € D,

V(v.q;0) = lim Ri(\,q;0)/A >0,

We show that/ (v, ¢) > 0. SinceV (v,q) > 0, we have only to show that there existss D
such that/ (v, ¢; o) > 0. Recalling thatz(v, ¢) > 0, we can picks € D such thatR;(v, ¢;7) >

0. If & € Fr, we are done because
V(v,q:5) = R(v,¢;5) = Ry - v(57).

Thus without loss of generality, we can assume that D \ F;. Suppose that = 0. Since
v € Gy(q) andR;(v, q; 09) > 0, it follows by (ii) of Assumption 3 thaf; (1/'v, ¢; 09) — oo as
1 — oo. Thus by (ii) of Assumption 1, there exists> 0 such that

R(pw,q;00) — F(pv(og), q(oo); 00) — ¢ > 0.

14



This implies that
—uq(og) - v(og) — C(uv(on), q(oo); 09) — ¢ > 0.

Since by Assumption 27 (uwv(oo), q(00); 09) + & > C(uv(0), ¢(00); 00), Wwe have

—pq(00) - v(oo) — C(v(o0), q(00);00) =€ < —pg(ao) - v(o0) — C(pw(00), ¢(00); 00)
= MV(Ua q; 00)'
Thus, we havé&’ (v, ¢; 09) > 0. By applying the same argument to the case with D_1\ {0},

we can show that’ (v, ¢; &) > 0. Therefore, we conclude that(v, ¢) > 0. H

Suppose that the transaction cost funct?é@w, q; o) is convex for eacly € £7 ando € D.
Then each§(~, q; o) is concave. Thus, the following corollary is immediate from Proposition
5.1.

Corollary 5.1: Suppose tha@(~,q(a);a) is convex for ally € L7 ando € D. Then under
Assumption 1-2¢ € A if and only if there exists no nonzeroc £7 such that/ (v, q) > 0

By Proposition 5.1, the notion of arbitrage in Definition 5.1 is equivalent to the following in the

case with non-convex transaction costs.

Definition 5.1: An asset pricgg € £’ admitsno arbitrage opportunitiesf there is nod ¢ £’
which satisfied/ (v, ¢) > 0.

The set of no arbitrage prices is expressed as
A={qe LV (v,q) #0forallv e E‘]}.

It is worth noting that the effect of transaction costslofv, ¢) is determined by the LTC func-

tion which describes the behavior of average costs for large transactions. Thus, transaction
costs affect asset pricing only via the LTC function. Neither fixed transaction costs nor any
costs attributed to small transactions have no influence on the existence and the form of pricing

rules.

15



VI. Arbitrage and the Existence of Pricing Rules

The no arbitrage condition of Definition 5.1 allows us to extend the fundamental theorem
of asset pricing to the case with fixed and non-proportional transaction®€dstshis section,
we show the equivalence between the no arbitrage condition and the existence of pricing rules.

The viability test for Definition 5.1 is given in the next section.

Theorem 6.1: Under Assumption 1-33 € A if and only if there existsr € L, such that
7 V(v,q) <0Oforallve L’

PROOF: Suppose thag ¢ A. Then by Proposition 5.1 there exists £7 such that/ (v, ¢) >
0. Sincer € L, ., thisimplies thatr - V' (v, ¢) > 0, which leads to a contradiction.
Suppose thag € A. We define the set

Z(q)={yeL:y<V(v,q) forsomev c L}

First we show that (¢) is a closed, convex cone. By Lemma 4Z) is a convex cone. The

following lemma shows thaf (q) is closed.

Lemma 6.1: For allq € £/, the setZ(q) is closed.

PROOF: See the appendix.

Let A denotethesety € L, : Y  _,vy(o) = 1}. Clearly,A is compact and convex. Then
q € Ais equivalent to the condition that(q) N (L, \ {0}) = D or Z(¢) N A = (. SinceZ(q) is
a closed, convex cone, by the separating hyperplane theorem there exists a nonzesuch
that

sup 7 - V(v,q) < inf 7 - y.
veLd yeA

In particular, we see that

0=m-V(0,q9) < sup7m-V(v,q) < inf 7 - y.
veld yeA

2OMagill and Quinzii (1996), and Dybvig and Ross (1989) are a great reference to the fundamental theorem of
asset pricing in a frictionless market.
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Thus we havénf,ca -y > 0, which implies thatr € L, . Letv € £’. Then for each\ > 0,

we haver - V(Av,q) = Ar - V(v,q) < infyea m -y, OF

m-V(v,q) < inf(m-y)/A,

By letting A — oo, we haver - V(v,q) <0
[

The pricing rules which satisfy the no arbitrage condition are characterized in a concrete form

as follows.

Theorem 6.2: Under Assumption 1-3; € A if and only if there existsr € L., such that for
eacho € D andj € J,

m(0)l¢ (o) + 5 (@ (0);0)] < Y w(6)RL < w(0)[¢(0) + V(¢ (0);0)].
5eDs\{o}

PROOF: For eachy € £/, j € Jando € D, the LTC function@ﬂ(-,qj(a)) in V(- qo0)

is proportional to the parameter which is equabt@;’(c); o) if the changes of position are
nonnegative and te’ (¢’ (o); o) if the changes of position are negative. Thus the proof of the
theorem can be done by applying the same argument made in the proof of Theorem 3.1 and
3.2 of Zhang, Xu and Deng (2002) which assume that the original transaction cost function

Ci(-,¢’(0)) is proportional to the unit cost of transactions. O

The results of Theorem 6.1 and 6.2 deserve several remarks. Neither convexity nor continuity
are imposed on the transaction cost functions. Specifically, the theorems apply to the case
where transaction cost functions are non-convex due to the fixed cost component or indivisibility
of assets. They are differentiated from equilibrium theory which requires the convexity and
continuity of cost functions. It is worth noting that the pricing rules with non-convex transaction
costs are characterized in a simple, concrete form as in the case with proportional transaction
costs. This fact makes asset valuation free from the intractability of fixed and non-convex
transaction costs. Moreover, the pricing rules characterized in Theorem 6.2 are viable under

additional assumptions as shown below.
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The following examples show that compared to Definition 5.1, the notion of arbitrage used
in Dermody and Prisman (1993) underestimates the multiplicity of the pricing rules when trans-

action cost functions are convex and overestimates it when they are non-convex.

Example 3. We consider a two-asset one-state economy which is the same as in Example 2
except for the transaction cost functions. Both assets pay one dollar in the state. Then the return
function is al x 2 matrix R = [1 1]. Letq* denote the price of the second asset. We assume
that the transaction cost function for trading the second asset is one of the four one of the four
Ci(+,¢*)'s depicted in Figure 1. For each= 1,...,4, let A; denote the set of no arbitrage

prices withC;. Then it follows by Theorem 6.2 that for eack- 1, ... 4,
Ai={(d".¢") € R, : (29/30)¢” < ¢' < (21/20)¢°}.

It is worth noting that in the case witt; and C5, App defined in Example 2 is equal to
{(¢*.¢*) € R%, : ¢' = ¢*} and therefore, is much smaller than. Thus the no arbitrage
condition of Dermody and Prisman (1993) extremely underestimates the multiplicity of the

pricing rules which are shown to be viable in the next sectton.

Example 4. We consider a two-asset one-state economy which is the same as in Example 2

except that the transaction cost function is replaced by the following function

(¢®/2)l0], if |6 <1
Cre(0,6%) = (¢%/3)]6], if 1< 6% <2
(¢?/4)10], if 6*] >3

This function is continuous and locally non-convex. WeGgt(62, ¢%) = limy_.., Cpe(A0?, ¢%)/
ande = 2¢2. Clearly,C,..(62, ¢*) = (¢*/4)|6?|. Itis easy to see that for all € R,

Thus Assumption 1-2 hold true here.

21such underestimation is a general phenomenon when transaction cost functions are convex and smooth at the
origin.
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Let A denote the set of no arbitrage prices. By Theorem 6.2, we have
A={(¢".¢") e R%, : /2 < ¢' < (3/2)¢°}.

It is worth noting thatApp = {(¢'.¢*) € R3. : (3/4)¢*> < ¢' < (5/4)¢*} and therefore,
App C A. Thus the no arbitrage condition of Dermody and Prisman (1993) overestimates the

multiplicity of the pricing rules??

VII. Arbitrage and Viability

Most literature on asset valuation by arbitrage focuses on verifying the equivalence between
the no arbitrage conditions and the existence of pricing functionals. If the notions of arbitrage
do not pass viability test, however, they fail to exactly characterize asset pricing in equilibrium.
We shows that the no arbitrage condition of Definition 5.1 is equivalent to viability. Thus the
no arbitrage condition of Definition 5.1 provides a coherent conceptual framework for studying
asset pricing, portfolio choice problem, or equilibrium in markets with general transaction cost
structures.

To examine viability of arbitrage-free prices, we introduce an agent who has the endowment
of consumptions € L, and preferences represented by a utility functian.., — R.?® For a
priceq € L/, the agent choosés*, 0*) € L, x £’ which solves the optimization problem:

gy )

subject to the budget set
B(q) = {(z,0) € Ly x L : 2 —e < R(0,q)}.

The demand correspondengg) is the set of optimal choices ih, x £ which solve the

above optimization problem.

Definition 7.1: An asset pricgs € L’ is viableif £(q) # 0.

22Such overestimation is a general phenomenon when transaction cost functions are not convex and smooth at
the origin.
23t is implicitly assumed that a single consumption good is available in each state of the economy.
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To investigate the relationship between the no arbitrage condition and viability, we make the

following assumptions.
Assumption 4: « is continuous, strictly increasing and quasiconcave.
Assumption 5: For each{z"} in L with lim,, . ||2"|| — oo, lim,, o u(z™) = oco.

Assumption 6: For a priceg € A, the following set is closed.

X(q)={zxe€L,:x—e<R(q) forsomedc L’}

Assumption 4 is standard. Assumption 5 holds in the case where preferences follow the ex-
pected utility hypothesis and the expected utility goes to infinity as income increases indefi-
nitely in some states of the world. Assumption 6 requires that the set of income transfers be
closed. IfV (-, q) = R(-,q) forall ¢ € L7, then Lemma 6.1 shows that Assumption 6 holds true.
By the same argument used in proving Lemma 6.1, we can show that Assumption 6 is satisfied
in the case wher&(-, q) is piece-wise linear with finitely many kinks. It is also satisfied with

transaction cost functions with fixed cost component as in the fourth diagram of Fidtire 4.

Assumption 7: For eachy € £/, j € Jando € D, there exists a differentiable function
Di(-,¢°(0)) : R — R such thatD? (0, ¢’(c)) = 0 and for alld € L7,

J J J J J J
DI (). () | Ci(0).g'(0))
A—o00 A A—00 A

Assumption 7 states that there exists a differentiable fundfi$f, ¢’(c)) which displays the
same average cost for large transaction§s, ¢’ (o)), i.e., for anyd’ (o),

1 DA (0), ¢'(0))
A—00 )\9](0')

= CL(\(0), ¢ (0)).

24Assumption 6 holds true with transaction cost functions which is lower-semicontinuous and piece-wise linear
with finitely many jumps. This is the case with transaction cost functions with fixed cost component. Assump-
tion 6, however, may be violated with indivisible assets. Transaction costs with indivisible assets are usually
upper-semicontinuous as shown in the third diagram of Figure 1, implying that the net return functions are lower-
semicontinuous. In this cas&,(q) is not closed in general for a prigec £7.
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As shown earlier, the effect of transaction costs on the pricing rules are determined by the
LTC function. This implies that each? (\¢’(c), ¢’ (c)) can be replaced by the differentiable
function D7 (M’ (o), ¢’ (o)) without distorting the effect of transaction costs on asset pricing.
This observation is useful in analyzing market frictions which cause the finitely many kinks or
jumps of C7 (X607 (), ¢ (o).

The following result shows that the no arbitrage condition is fully compatible with viability

of the pricing rules.

Theorem 7.1:Under Assumption 1-7% € A if and only if £(q) # 0.

PROOF : (<) Let q be a price inC’ such thatt(q) # (). Then there existér,0) € £(q).
Suppose that there exists a nonzera G(q) such thatﬁ(v, q) > 0. By Proposition 5.1, we
haveV (v, q) > 0. In particular, there exists € D such thaf/ (v, ¢; ) > 0. We claim that

RO+ \v,q;0) — R0, ¢;
V(v,g:0) = Jim <+%%? (6.q:0)

By Assumption 7, we see that

i Do (0) £ A0(0),¢'(0)) _ . C3(07(0) + A (0), ¢'(a))
A—00 A A—00 A

On the other hand, L'Bpital’s rule gives

limy o 2@ — i, DI (09(0) + Wi (0), ¢ (0))0 (o)

)
= limy_o DI (A (0), ¢’ (0))v? (0)
D} (MW (0),4% (0))

It follows that
3 ( \grJ j (0 j j
i BOOLE) _ y,, GEC) o). le)

Therefore, we have

R(0+ \v,q;0) lim R(6 + \v,¢;0) — R(6,¢; 0)

A A—00 A

V(v,g;0) = lim

Since by Assumption F(6(c) + Av(o),q(0);0) < f forall A > 0 ando € D, it follows that

V(v,¢;0) = lim RO+ v,gi0) _ . RO+ v, g;0) — R0, 4;0)
A—00 A ., \
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Clearly,V (v, q; o) > 0 implies thatlim,_..[R(6 + \v,q;0) — R(0,q;0)] = co. Thusé + \v
generates an indefinite amount of income in the eveas A\ — oco. By Assumption 5, utility
goes to infinity as\ — oo, which contradicts the optimality dfc, 6) in B(q).

(=) Let g be a price in\. We set

X(q)={zxe€L,:x—-e<R(,q) forsomedc L’}

Suppose thak (¢) is compact. Since is continuous and (¢) is compact, there existse L,
which satisfiesi(x) > 2’ for all z € X(q), and therefored € £7 such thatz,0) € £(q). Thus
we have only to show that (¢) is compact.

By Assumption 6,X(q) is closed. Now we show that it is bounded. Suppose otherwise.
Then there exists a sequenge’} in X(gq) such|jz"|| — oo. For eachn, we can choose
6" € L7 such that(z",0") € B(q). We seth™ = 1/|z"||. Now by multiplying both sides of
the budget constraints B, we haveb™z" — b"e < b"R(6", q) for eachn. Clearly,{0"z"} is
bounded and therefore, has a subsequence convergent to g.pGletarlyy > 0 and||y|| =1
and thereforey > 0.

We set

Z(@)={yeL:y<V(hq) forsome 0¢c L’}

By Lemma 6.1,7(q) is closed. For each € D_r, we claim that for alb € £/,
V(v,q;0) 2 R(v,q;0) +¢C.

First we consider the case with= o,. By Assumption 2, we see th@{(v (o), q(0); 00) +¢ >
C(v(09),q(00); 00). It follows that

V(v,q;00) = —q(09) - v(0o0) —G(U(Uo)aQ(UO);Uo)
> —q(00) - v(oo) — C(v(00), q(00); 00) + €
= R(v,q;00) + ¢

By applying the same argument to the case with D_+\ {0y}, we can show that (v, ¢; o) >
R(v,q;0) +c.
By the positive homogeneity dof (-, ¢), we have
bra™ —be < b"R(0",q)
< b"V(0", q) — b el g
= V(0" q) —b"cl_r
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wherel_r denotes a vector i, with 1 in the coordinate corresponding to eache D_r
and with0 otherwise. This implies that"z™ — b"e + b"cl_5 < V(b"6",q) and therefore,
bha™ —b"e + b"cl_r € Z(q) for all n. Sinceb™z"™ — b"e + b"cl_r — y andZ(q) is closedy
isin Z(q). Thus there exists € £/ such that/’ (v, q) > y. Sincey > 0, we haveV (v, q) > 0.
By Proposition 5.1 we must haveZ A, which is impossible. ThusY (¢) is bounded. O

Theorem 7.1 shows the equivalence between the no arbitrage condition and viability of
asset prices. Thus, Theorem 6.2 and 7.1 lead to an extension of the fundamental theorem of
asset pricing stated in Harrison and Kreps (1979) and Dybvig and Ross (1989) to the case with
transaction costs.

Theorem 7.2:Under Assumption 1-7, the following statements are equivalent.
() g € A.
(ii) There existsr € L, . such that for each € D andj € J,

(o) (0) + (¢ (0);0)] < D 7(6)RL, < 7(0)[¢(0) + V(¢ (0);0)]-
5eDs\{o}

(iii) &(q) # 0.

Appendix

Proof of the Claim in Example 2: We show that
Av ={(q",¢*) € R%, : (29/30)¢* < ¢" < (21/20)¢"}.

We consider an agent who has preferences represented by a utility function') = Va0 +

vz! and the initial endowment of consumption godds1).2> Then he faces the following

25The arguments below do not depend on the form of utility functions and the size of the endowments as far as
the utility functions are monotonic.
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optimization problem

max{\/@#—\/ﬁ

CBO—I S —01(_]1—92 2_0(027(12)
rt—1<0 462

The above maximization problem is reduced to the following

max /1 — Olgt — 02¢2 — C(62,¢?) + V1 + 01 + 62.

Let (9!, 2) denote the solution to the maximization problem.
i) 21¢* = 204>
Clearly, we have

Al A 21/20 — (¢')? 1
0y e (10010402 = S g 2y
i) 30¢' = 29¢>.
Similarly, we have
i g 31/30 — (¢')? 1
(61,0%) € {(6*,6%) : 0" + 6% = ﬁﬁz <

(i) (29/30)¢? < ¢' < (21/20)¢%.
The maximization problem has a solution because the following set is compact.

{(0',0*) e R?: 0'¢" + 0°¢° + C(6°,¢°) < 1,0" + 6> > —1}.

]

Proof of Lemma 6.1: Let ¢ be a price inA. First we show that the following set is closed.
Y()={yeL:y=V(v,q)veL'}
Letv be a pointinl’/. For somej € J ando € D, it follows that if v/(0) — v7(¢7) > 0, then
Ch(w(0) = v (07),¢'(0)) = b (g(0);0)(v"(0) — v (07))
Co(W(07) =0 (0),¢(0) = & (0);0)(v7(0) —vi(07)),
and ifv/ (o) — v/(07) < 0, then
(v(0) =i (07),¢'(0)) = s(¢(0);0)(v’(0) =2/ (07))
(v (o

c
C(vi(07) —v(0),¢(0)) = W (¢(0);0)(vi(a) — vi(7)).



(In the above, we follow the notational convention th&ir, ) = 0 forall j € J.)

Let {y"} be a sequence i¥i(q) which converges to a point Since0 € Y (¢), without loss
of generality we may assume that# 0. Theny™ # 0 for sufficiently largen. For eachn we
choosev™ in L7 such thayy” = V (v, q). SinceD is finite, there exists a subsequere#'}
such that{v/™ (o) — v'™(0~)} has the same sign for a given péjro) € J x D. Thus there
exists a#D) x [J x (#D_7)] matrix ¥ such tha/ (v™, q) = ¥ - v™.

We define the sets

07 (¢q) = {v e L |vi(c) —vi(0c™) > 0 for each(j, o) with v/ () — vI™(¢~) > 0 for all m }
0~ (¢q) = {v e L |vi(c) —vi(0c™) < 0for each(j, o) with v/ (o) — vI™(o7) < 0 for all m }

SinceJ x D consists of finitely many elements;" (¢) and©~ (¢) are the intersection of finitely
many closed half spaces which contain the origin on the boundary, and therefore, they are a
polyhedral cone. By constructiofiy™} is in ©1(¢) N ©~(¢). We set

Y*(q)={ye L:y=V(v,q) forsomev c 0" (¢)NnO (q)}.

SinceV - v = V(v,q) foranyv € ©*(q) N ©~(q), by Theorem 19.3 of Rockafellar (1970)
the setY’*(q) is a polyhedral cone. In particular, it is closed. Sig&} is in Y*(q), y is in
Y*(q). Noting thatY*(q) C Y(q), y isininY(q). Thus,Y (q) is closed.

Now show thatthe sef(q) = {y € L : y < V(v,q),v € L’}. Let{y"} be a sequence in
Z(q) which converges to a point For eachn we choose™ in £ such thaty™ < V(v", q).
For eachm, we setz" = V(v", ¢). We claim that{z"} is bounded. Suppose thgt"| — oc.
By positive homogeneity of (-, ¢), we have

2/ =V Een o/l =Vt /2 o)

This implies that:"/||z"|| € Y (q) for eachn. Clearly, {z"/|2"||} is bounded. Thus, it has
a subsequence convergent to a paintSinceY (q) is closed,z is in Y (q). Thus there exists
v € L7 such that/ (v, ¢) = 2. On the other hand, we hay&/||z"|| < 2"/||z"||. Sincey™ — y
and||z"|| — oo, y¥"/||z"|| — 0. By passing to the limit we have > 0. Recalling that: +# 0,
we must havé/ (v, q) > 0, which contradicts the fact thate A. Since{z"} is bounded, it
has a subsequence convergent to a pointY (¢). Recalling thay” < 2" for eachn, we have
y < z. Thusy € Z(q). H
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