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Abstract

We study an optimal retirement and consumption/investment choice

of an economic agent. The agent is infinitely-lived and has general von

Neumann-Morgenstern utility. A particular aspect of our problem is that

the agent has an option to retire from his work and avoid a utility loss:

before retirement the agent receives labor income but suffers a utility loss

due to work, however, by deciding to retire from work, he saves the utility

loss but gives up labor income. We show that the agent retires optimally

if his wealth exceeds a certain critical level. We also show that the agent

consumes less and invests more in risky assets when he has an option to

retire than he would in the absence of such an option.

An explicit solution can be provided by solving a free boundary value

problem. In particular, the critical wealth level and the optimal consump-

tion and portfolio policy are provided in explicit forms.
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1 Introduction

We study an optimal retirement and consumption/investment choice of an eco-

nomic agent. A particular aspect of our problem is that, when the agent works

as a wage earner he suffers a utility loss, but after retirement, he no longer expe-

riences the utility loss. A retired person, however, does not have labor income

and therefore must live on invested wealth.

The problem is modelled as a mixture of an optimal consumption/investment

choice with two control variables (c, π) and an optimal choice of a stopping time

τ . Thus, our problem is more realistic in the economic point of view and rather

general in the mathematical point of view than the classical consumption and

portfolio selection problems. By solving a free boundary value problem we

find an explicit solution and characterize optimal polices in a continuous-time

framework with an infinite horizon.

We obtain closed forms for the optimal retirement policy as well as for the

optimal consumption and portfolio policy under a fairly general assumption that

the agent has time-separable von Neumann-Morgenstern utility. We show that

it is optimal to retire if and only if the agent’s wealth exceeds a certain critical

level. A wage earner retires from his work as soon as he becomes sufficiently

wealthy, an intuitively appealing result. We also compare optimal consumption

and investment policy with that for the case the agent does not have a retirement

option(i.e., he is forced to work forever) and show that the agent consumes less

and invests more in risky assets when he has an option to retire than he would

in the absence of such an option. Intuitively, the agent tries to reach the critical

wealth level and avoids a utility loss from labor as soon as possible by reducing

consumption and investing more in high-return assets and thereby increasing
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the growth rate of wealth. In the case where the agent has CRRA utility, a

particular aspect of the optimal portfolio policy is that a proportion of wealth

invested in risky assets is fairly higher near by critical wealth level than that of

at the low level wealth. (See Figure 5.2 and 5.4.)

There has been extensive research in consumption and portfolio selection af-

ter Merton’s pioneering study (Merton 1969, 1971). Bodie, Merton, and Samuel-

son (1992) have studied an optimal consumption and investment problem of an

economic agent who has flexibility in his labor supply and shown that flexibility

in labor supply tends to increase the agent’s risk taking in market securities.

Bodie, Detemple, Otruba, and Walter (2004) have studied a similar problem

in the context of optimal retirement planning, i.e., there is a fixed retirement

time and the agent chooses consumption and investment in preparation for a

scheduled retirement. However, these authors have not solved for an agent’s

optimal choice of retirement time as we have done here.

Karatzas and Wang (2000) first studied a discretionary stopping problem

by using a martingale method. Choi, Koo, and Kwak (2003) have extended

Karatzas and Wang’s results to the case where an economic agent has stochastic

differential utility. Choi and Koo (2003) have studied the effect of a preference

change around a discretionary stopping time. These papers on the mixture

of optimal stopping and optimal consumption and portfolio selection problem

has relied on the martingale method, but in this paper we extend a dynamic

programming method as in Karatzas, Lehoczky, Sethi, and Shreve (1986) to

obtain an explicit solution. Also, the particular feature of our problem is that the

model allows the agent still has the investment horizon after the discretionary

retirement time, which is related to an interesting open problem suggested in

Appendix B of Karatzas and Wang (2000).

Jeanblanc and Lakner (2004) have solved a problem of an agent under obliga-

tion to pay a debt at a fixed rate who can declare bankruptcy by using dynamic

programming method. In their work, the optimal bankruptcy time is nontriv-
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ially determined by the assumption that the agent can keep only a fraction of

his or her wealth minus a fixed cost at the bankruptcy time. However, in our

problem the optimal retirement time is determined by the trade-off between

distuility and income. In the similar framework to this paper, the companion

paper Choi, Koo, and Shim (2004) have studied an optimal choice problem of

a wage earner who wants to enlarge his or her investment opportunity in the

financial market by retiring from the current job.

In this paper there is no risk in wage income and we do not consider ef-

fects of uninsurable income risk. Uninsurable income risk has been investigated

by Duffie, Fleming, Soner, and Zariphopoulou (1997), Koo (1998) and Cuoco

(1999), etc. Here we focus on studying the optimal consumption/investment

problem of an agent who has the option to retire and avoid a utility loss.

The rest of the paper proceeds as follows. Section 2 sets up the mixture

of optimal retirement and optimal consumption/investment problem. Section 3

presents a general solution to the problem and section 4 investigates properties of

optimal policies. Section 5 studies the special case where the agent has constant

relative risk aversion (CRRA) utility. Section 6 concludes. All the proofs in this

paper are contained in Appendix.

2 An investment problem

We consider a market in which there are a riskless asset and m risky assets.

We assume that the risk-free rate is a constant r > 0 and the price p0(t) of the

riskless asset follows a deterministic process

dp0(t) = p0(t)rdt, p0(0) = p0.

The price pj(t) of the j-th risky asset, as in Karatzas, Lehoczky, Sethi, and

Shreve (1986) and Merton (1969, 1971), follows geometric Brownian motion

dpj(t) = pj(t)
{
αjdt +

m∑

k=1

σjkdwk(t)
}
, pj(0) = pj , j = 1, . . . , m,
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where w(t) = (w1(t), . . . , wm(t)) is a m dimensional standard Brownian motion

defined on the underlying probability space (Ω,F , P ), (Ft)∞t=0, the augmen-

tation under P of the natural filtration generated by the standard Brownian

motion (w(t))∞t=0. The market parameters, αj ’s and σjk’s for j, k = 1, . . . , m,

are assumed to be constants. We assume that the matrix D = (σij)m
i,j=1 is

nonsingular, i.e., there is no redundant asset among the m risky assets. Hence

Σ ≡ DDT is positive definite.

Let πt = (π1,t, . . . , πm,t) be the row vector of amount of money invested in

the risky assets at time t, ct be the consumption rate at time t and τ be the

time of retirement from labor. τ is a Ft-stopping time, the consumption rate

process c ≡ (ct)∞t=0 is a nonnegative process adapted to Ft and satisfies
∫ t

0

cs ds < ∞,

for all t ≥ 0, a.s., and the portfolio process π ≡ (πt)∞t=0 is a Ft measurable

adapted process such that
∫ t

0

‖πs‖2 ds < ∞,

for all t ≥ 0, a.s.

The agent receives labor income at a constant rate ε > 0 until retirement.

Therefore the investor’s wealth process xt with initial wealth x0 = x evolves

according to

(2.1) dxt = (α−r1m)πT
t dt+(rxt−ct+ε1{t≤τ}) dt+πtD dwT (t), 0 ≤ t < ∞,

where α = (α1, . . . , αm) is the row vector of returns of risky assets and 1m =

(1, . . . , 1) the row vector of m ones. The superscript T denotes the transpose of

a matrix or a vector. Since the present value of the future income stream is ε
r

we let

x0 = x > − ε

r

and we assume that if the investor’s wealth level touches − ε
r at some time before

retirement, then from then on he can neither consume nor invest and is under
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obligation to use all his wage income to repay the debt of amount ε
r without

retirement. After retirement the agent faces a nonnegative wealth constraint

(2.2) xt ≥ 0, for all t ≥ τ a.s.

In particular, the agent’s wealth must be nonnegative at the time of retirement

if it occurs.

We call a triple of control (τ, c, π) satisfying above conditions with x0 = x >

− ε
r admissible at x. Let A(x) denote the set of admissible controls at x.

Our optimization problem is to maximize the following time-separable von

Neumann-Morgenstern utility:

(2.3) V(τ,c,π)(x) ≡ Ex

∫ ∞

0

exp (−βt)[U(ct)− l1{t<τ}] dt

over all admissible policies (τ, c,π) ∈ A(x) such that

(2.4) Ex

∫ ∞

0

exp (−βt)U−(ct) dt < ∞,

where Ex denotes the expectation operator conditioned on x0 = x. U , called

a utility function, is real-valued on (0,∞), l > 0 is a constant representing

disutility (or a utility loss) due to labor, and β > 0 is a subjective discount rate.

We make the following assumption:

Assumption 2.1. U is strictly increasing, strictly concave and three times

continuously differentiable, and limc→∞ U ′(c) = 0.

For later use, we let I(·) be the inverse function of U ′(·). Put

κ ≡ 1
2
(α− r1m)Σ−1(α− r1m)T .

If we assume that κ > 0, then the quadratic equation of λ

(2.5) κλ2 − (r − β − κ)λ− r = 0
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has two distinct solutions λ− < −1 and λ+ > 0. For x ≥ 0, let V̄ (x) be the

optimal value function when the investor is forced to choose τ = 0, i.e., he

must retire at time 0. As is shown in Karatzas, Lehoczky, Sethi, and Shreve

(KLSS, 1986), V̄ (x) is finite and attainable by a strategy for all x > 0 under

the following assumption

(2.6)
∫ ∞

c

dθ

(U ′(θ))λ−
< ∞

for all c > 0. In this case, we denote by C̄(xt) and Π̄(xt) the feedback form

for the optimal consumption and investment in the risky assets, respectively.

Similarly, it can be shown that when the retirement τ is forced to be infinite,

that is, when the investor has no option to retire, the optimal value at x, say

V0(x), is finite and attainable by a strategy for all x > − ε
r if condition (2.6) is

valid. If the utility function is given by U(c) = c1−γ

1−γ , 0 < γ 6= 1 for c > 0,

condition (2.6) is equivalent to −γλ− > 1, which is again equivalent to

(2.7) K > 0,

where

(2.8) K ≡ r +
β − r

γ
+

γ − 1
γ2

κ,

since λ− is the negative solution of the equation (2.5). Condition (2.7) is equiv-

alent to condition (40) in Merton (1969). If the utility function is given by

U(c) = log c or U(c) = − exp(−ac), a > 0 for c > 0, condition (2.6) is auto-

matically satisfied. Thus, we assume

Assumption 2.2.

κ > 0 and
∫ ∞

c

dθ

(U ′(θ))λ−
< ∞, ∀c > 0.

An intuitively obvious fact is that after retirement an optimizing investor

will follow the optimal consumption and investment policies C̄(xt) and Π̄(xt),
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thus we are only interested in the optimal retirement time τ∗ and the opti-

mal consumption and investment policies (c∗,π∗) (for our original optimization

problem) up to τ∗.

Definition 2.1. We denote by A1(x) ⊂ A(x) the class of admissible controls

satisfying (2.4) and

(ct, πt) = (C̄(xt), Π̄(xt)) for all τ ≤ t < ∞.

By the above argument, it is sufficient to maximize (2.3) over the class A1(x).

We let

(2.9) V ∗(x) ≡ sup {V(τ,c,π)(x) : (τ, c,π) ∈ A1(x)}

be the optimal value of expected utility at wealth x > − ε
r .

To solve the problem we assume

Assumption 2.3.

1− βλ−
r(1 + λ−)

≤ 0.

Remark 2.1. A sufficient condition for assumption 2.3 is β ≥ r.

3 A solution under a general utility class

In this section we find a solution to the optimal retirement and consump-

tion/investment problem under a general utility class. The HJB (Hamilton-

Jaccobi-Bellman) equation for t < τ is given by

(3.1)

βV (x) = max
c≥0,π

{
(α−r1m)πT V ′(x)+(rx−c+ε)V ′(x)+

1
2
πΣπT V ′′(x)+U(c)−l

}
,

for x > − ε
r .

We proceed to obtain a solution as follows: first, we conjecture that there is

a critical wealth level z∗ such that if the agent’s wealth reaches this level then
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he retires, second, we also conjecture that the agent’s value function satisfies

the HJB equation (3.1) for x < z∗ and is equal to V̄ (x) for x ≥ z and smoothly

pasted (namely, continuously differentialbe) at x = z∗, and finally we give a

formal proof that the above conjecture is correct.

3.1 The Case where U ′(0) = ∞

We first consider the case where U ′(0) = ∞. For this case, we need the following

Lemma.

Lemma 3.1. If U ′(0) = ∞, then

(3.2) lim
c↓0

U(c)
U ′(c)

= 0,

(3.3) lim
c↓0

(U ′(c))λ+

∫ c

0

dθ

(U ′(θ))λ+
= 0

and

(3.4) lim
c↓0

(U ′(c))λ−
∫ ∞

c

dθ

(U ′(θ))λ−
= 0.

We would like to provide intuition behind our solution, before proceeding

to give its formal derivation and proof. Borrowing an idea from KLSS (1986),

the HJB equation (3.1) can be linearized by introducing a function X(c) which

is equal to the agent’s financial wealth expressed as a function of consumption.

That is, the HJB equation can be transformed into the the following equation

(3.5)

κX ′′(c) =
{
(r−β−2κ)

U ′′(c)
U ′(c)

+κ
U ′′′(c)
U ′′(c)

}
X ′(c)+

{U ′′(c)
U ′(c)

}2(rX(c)−c+ε), c > 0.

A general solution to the above equation can be expressed as a particular solu-

tion and a general solution to a corresponding homogenous solution. A partic-

ular solution will be provided as follows:

X0(c) =
c

r
− 1

κ(λ+ − λ−)

{ (U ′(c))λ+

λ+

∫ c

0

dθ

(U ′(θ))λ+
+

(U ′(c))λ−

λ−

∫ ∞

c

dθ

(U ′(θ))λ−

}
− ε

r
,
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and our conjectured solution is given by

(3.6) X(c; B̂) = B̂(U ′(c))λ− + X0(c)

for c > 0 with a certain constant B̂ which will be determined later. It will be

shown that X(c; B̂) is one-to-one and maps maps [0,∞) onto [− ε
r ,∞) so that

its inverse function C(·; B̂) exists and maps [− ε
r ,∞) onto [0,∞). The candidate

value function V : (− ε
r ,∞) → R that satisfies the HJB equation can now be

obtained as V : (− ε
r ,∞) → R of the form

(3.7) V (x) ≡ J(C(x; B̂); Â), − ε

r
< x < z∗,

and

(3.8) V (x) ≡ V̄ (x), x ≥ z∗,

where

(3.9) J(c; Â) = Â(U ′(c))ρ− + J0(c),

Â = λ−
ρ−

B̂, and

J0(c) =
U(c)− l

β
− 1

κ(ρ+ − ρ−)
{ (U ′(c))ρ+

ρ+

∫ c

0

dθ

(U ′(θ))λ+
+

(U ′(c))ρ−

ρ−

∫ ∞

c

dθ

(U ′(θ))λ−
}.

The smooth-pasting condition at x = z∗ implies that

(3.10) X(C̄(z∗); B̂) = z∗

where C̄(x) is the agent’s optimal consumption expressed as a function of finan-

cial wealth for x ≥ z∗ whose formal definition will be given later. From (3.10)

and definitions of X(·) and J(·) in (3.6) and (3.9) we have

(3.11) X(C̄(z∗); B̂) = B̂(U ′(C̄(z∗)))λ− + X0(C̄(z∗)) = z∗,

and

(3.12) J(C̄(z∗); Â) = Â(U ′(C̄(z∗)))ρ− + J0(C̄(z∗)) = V̄ (z∗).

10



Multiplying λ−U ′(C̄(z)) and ρ− in both sides of equations (3.11) and (3.12)

respectively, and subtracting (3.12) from (3.11) and using the fact that Â =
λ−
ρ−

B̂, we get

(3.13) λ−U ′(C̄(z∗)){X0(C̄(z∗))− z∗} − ρ−{J0(C̄(z∗))− V̄ (z∗)} = 0.

Define a function G : (0,∞) → R by

(3.14) G(z) ≡ λ−U ′(C̄(z)){X0(C̄(z))− z} − ρ−{J0(C̄(z))− V̄ (z)}.

Then, by equation (3.13) we have

(3.15) G(z∗) = 0.

Namely, the threshold z∗ is equal to a solution to the equation G(z) = 0.

We now proceed to formal derivation and proof of the conjectured solution.

For c > 0 let us define the following functions:

X̄(c) =
c

r
− 1

κ(λ+ − λ−)

{ (U ′(c))λ+

λ+

∫ c

0

dθ

(U ′(θ))λ+
+

(U ′(c))λ−

λ−

∫ ∞

c

dθ

(U ′(θ))λ−

}
,

J̄(c) =
U(c)

β
− 1

κ(ρ+ − ρ−)
{ (U ′(c))ρ+

ρ+

∫ c

0

dθ

(U ′(θ))λ+
+

(U ′(c))ρ−

ρ−

∫ ∞

c

dθ

(U ′(θ))λ−
},

where ρ+ = 1 + λ+ and ρ− = 1 + λ−.

By (3.3) and (3.4), we have

X0(0) ≡ lim
c↓0

X0(c) = − ε

r
and X̄(0) ≡ lim

c↓0
X̄(c) = 0

if U ′(0) = ∞. As in (6.11) of KLSS (1986), limc↑∞X0(c) = limc↑∞ X̄(c) = ∞.

Using the relation λ+λ− = − r
κ1

, we have

X ′
0(c) = X̄ ′(c)

= − U ′′(c)
κ1(λ+ − λ−)

{
(U ′(c))λ+−1

∫ c

0

dθ

(U ′(θ))λ+
+ (U ′(c))λ−−1

∫ ∞

c

dθ

(U ′(θ))λ−

}
.
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Since U(·) is strictly concave, X ′
0(c) = X̄ ′(c) > 0 for all c > 0. Hence X0(·)

is strictly increasing and maps [0,∞) onto [− ε
r ,∞) so that its inverse function

C0(·) exists and is also strictly increasing and maps [− ε
r ,∞) onto [0,∞). Like-

wise, X̄(·) is strictly increasing and maps [0,∞) onto [0,∞) so that its inverse

function C̄(·) exists and is also strictly increasing and maps [0,∞) onto [0,∞).

C̄(·) is the same function as the one introduced in Section 2 (with the same no-

tation) as an optimal feedback consumption policy in the case where τ is forced

to be zero. As is shown in KLSS (1986), it holds that

V̄ (x) = J̄(C̄(x))

for all x ≥ 0. Similarly it can be shown that

V0(x) = J0(C0(x))

for all x ≥ − ε
r . A simple calculation shows that

(3.16) G(z) = −λ−ε

r
U ′(C̄(z)) +

ρ−l

β
.

Thus, the function G(·) is strictly decreasing, since C̄(·) is strictly increasing

and U ′(·) is strictly decreasing. Since U ′(0) = ∞ and limc→∞ U ′(c) = 0 by

assumption (2.1), it holds that limz↓0 G(z) = ∞ and that limz↑∞G(z) = ρ−l
β <

0. Letting

(3.17) z∗ ≡ X̄(I(
ρ−rl

λ−βε
)),

then z∗ is positive and satisfies

(3.18) G(z∗) = 0.

We determine the constant B̂ by

B̂ ≡ (U ′(C̄(z∗)))−λ−{z∗ −X0(C̄(z∗))}(3.19)

= (U ′(C̄(z∗)))−λ−{z∗ − (X̄(C̄(z∗))− ε

r
)}

= (U ′(C̄(z∗)))−λ− ε

r
(3.20)

= (
ρ−rl

λ−βε
)−λ− ε

r
> 0.(3.21)
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With this B̂ > 0, we have

(3.22) X(C̄(z∗); B̂) = z∗.

By (3.3) and (3.4), we have

X(0; B̂) ≡ lim
c↓0

X(c; B̂) = − ε

r

if U ′(0) = ∞. As in (6.11) of KLSS (1986), limc↑∞X(c; B̂) = ∞. Using the

relation λ+λ− = − r
κ1

, we have

X ′(c; B̂) = λ−B̂(U ′(c))λ−−1U ′′(c)−
U ′′(c)

κ1(λ+ − λ−)

{
(U ′(c))λ+−1

∫ c

0

dθ

(U ′(θ))λ+
+ (U ′(c))λ−−1

∫ ∞

c

dθ

(U ′(θ))λ−

}
.

Since U(·) is strictly concave, X ′(c; B̂) > 0 for all c > 0. Hence X(·; B̂) is

strictly increasing and maps [0,∞) onto [− ε
r ,∞) so that its inverse function

C(·; B̂) exists and is also strictly increasing and maps [− ε
r ,∞) onto [0,∞).

Now, with z∗ and B̂ determined in (3.17) and (3.19), define a function

V : (− ε
r ,∞) → R by

(3.23) V (x) ≡ J(C(x; B̂);
λ−
ρ−

B̂), − ε

r
< x < z∗,

and

(3.24) V (x) ≡ V̄ (x), x ≥ z∗.

As in Lemma 8.7 of KLSS (1986), we have limx↓− ε
r

V (x) = U(0)−l
β . By (3.22)

we have

(3.25) lim
x↑z∗

C(x; B̂) = C(z∗; B̂) = C̄(z∗),

so that

(3.26) lim
x↑z∗

V (x) = J(C̄(z∗);
λ−
ρ−

B̂).
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By (3.14), (3.18) and (3.19) we have

V̄ (z∗) = −λ−
ρ−

U ′(C̄(z∗)){X0(C̄(z∗))− z∗}+ J0(C̄(z∗))

=
λ−
ρ−

B̂(U ′(C̄(z∗)))ρ− + J0(C̄(z∗))

= J(C̄(z∗);
λ−
ρ−

B̂).

Hence by (3.26), we get

(3.27) lim
x↑z∗

V (x) = V̄ (z∗).

We have the following lemma.

Lemma 3.2. The function V (x) defined by (3.23) and (3.24)is strictly in-

creasing for x > − ε
r , strictly concave and satisfies the HJB equation (3.1) for

− ε
r < x < z∗. Furthermore, V (·) ∈ C1(− ε

r ,∞) ∩ C2((− ε
r , z∗) ∪ (z∗,∞)),

limx→z∗+ V ′′(x) and limx→z∗− V ′′(x) exist and finite.

Let’s consider the strategy

τ = ∞, ct = C(xt; B̂), πt = − V ′(xt)
V ′′(xt)

(α− r1m)Σ−1, t ≥ 0.

As in equation (7.4) in KLSS(1986), the stochastic differential equation for

{ct ≡ C(xt; B̂), t ≥ 0} becomes

(3.28) dyt = −(r − β)ytdt− yt(α− r1m)Σ−1DdwT (t),

where yt ≡ U ′(ct). Hence

U ′(ct) = yt = U ′(c0) exp[−(r − β + κ)t− (α− r1m)Σ−1DwT (t)], t ≥ 0,

so that we get

(3.29) ct = I(U ′(c0) exp[−(r − β + κ)t− (α− r1m)Σ−1DwT (t)]), t ≥ 0.
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Therefore, if U ′(0) = ∞, then

(3.30)

inf{t ≥ 0 : xt = − ε

r
} = inf{t ≥ 0 : ct = 0} = inf{t ≥ 0 : yt = ∞} = ∞, a.s.

Let’s define the following notation

T ξ ≡ inf {t ≥ 0 : xt ≥ ξ}.

Now we give a solution to the problem when U ′(0) = ∞ in the following theorem

.

Theorem 3.1. When U ′(0) = ∞ the optimal value function is V (x) defined by

(3.23) and (3.24), and an optimal strategy is given by (τ∗, c∗, π∗):

(3.31) τ∗ = T z∗ ,

(3.32) c∗t = C(xt; B̂), π∗t = − V ′(xt)
V ′′(xt)

(α− r1m)Σ−1, 0 ≤ t < τ∗,

and

(3.33) c∗t = C̄(xt), π∗t = Π̄(xt), t ≥ τ∗.

3.2 The Case where U ′(0) < ∞

We now consider the case where U ′(0) is finite so that U(0) is also finite.

In the preceding subsection we have used consumption as an intermediate

variable to define X(c; B̂) and J(c; λ−
ρ−

B̂). However, in this subsection we can

not use consumption as an intermediate variable since it turns out not to be a

one-to-one function of wealth. Instead, y = V ′(x) plays a role of intermediate

variable. Then, the process of finding a solution is similar to that of the pre-

ceding subsection.
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Recall I : (0, U ′(0)] → [0,∞) is the inverse of U ′. We extended I by setting

I ≡ 0 on [U ′(0),∞). If V is C2, strictly increasing, and strictly concave, then

the HJB equation (3.1) for t < τ becomes

(3.34) βV (x) = −κ
(V ′(x))2

V ′′(x)
+ [rx− I(V ′(x)) + ε]V ′(x) + U(I(V ′(x)))− l,

for x > − ε
r . Let’s define the following functions:

X0(y) =
I(y)

r
− 1

κ(λ+ − λ−)
[
yλ+

λ+

∫ I(y)

0

dθ

(U ′(θ))λ+
+

yλ−

λ−

∫ ∞

I(y)

dθ

(U ′(θ))λ−
]− ε

r
, y > 0,

J0(y) =
U(I(y))− l

β
− 1

κ(ρ+ − ρ−)
[
yρ+

ρ+

∫ I(y)

0

dθ

(U ′(θ))λ+
+

yρ−

ρ−

∫ ∞

I(y)

dθ

(U ′(θ))λ−
], y > 0,

X̄ (y) =
I(y)

r
− 1

κ(λ+ − λ−)
[
yλ+

λ+

∫ I(y)

0

dθ

(U ′(θ))λ+
+

yλ−

λ−

∫ ∞

I(y)

dθ

(U ′(θ))λ−
], y > 0,

J̄ (y) =
U(I(y))

β
− 1

κ(ρ+ − ρ−)
[
yρ+

ρ+

∫ I(y)

0

dθ

(U ′(θ))λ+
+

yρ−

ρ−

∫ ∞

I(y)

dθ

(U ′(θ))λ−
], y > 0.

Then, as is shown in KLSS (1986), X̄ (·) is strictly decreasing, maps (0,∞)

onto itself and has an inverse function Ȳ(·). Similarly, X0(·) is strictly decreas-

ing, maps (0,∞) onto (− ε
r ,∞) and has an inverse function Y0(·). As is shown

in KLSS (1986), it holds that

V̄ (x) = J̄ (Ȳ(x))

for all x ≥ 0. Similarly, it can be shown that

V0(x) = J0(Y0(x))

for all x ≥ − ε
r .

Define a function F : (0,∞) → R by

F (z) ≡ λ−Ȳ(z){X0(Ȳ(z))− z} − ρ−{J0(Ȳ(z))− V̄ (z)}(3.35)

= λ−Ȳ(z){X̄ (Ȳ(z))− ε

r
− z} − ρ−{J̄ (Ȳ(z))− l

β
− V̄ (z)}(3.36)

= −λ−ε

r
Ȳ(z) +

ρ−l

β
.(3.37)
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Then the function F (·) is strictly decreasing since Ȳ(·) is strictly decreasing,

and it holds that limz↓0 F (z) = ∞ and that limz↑∞ F (z) = ρ−l
β < 0. Letting

(3.38) z∗ ≡ X̄ (
ρ−rl

λ−βε
),

then z∗ is positive and satisfies

(3.39) F (z∗) = 0.

We define a constant B̂ by

B̂ ≡ (Ȳ(z∗))−λ−{z∗ −X0(Ȳ(z∗))}(3.40)

= (
ρ−rl

λ−βε
)−λ−{z∗ − (X̄ (Ȳ(z∗))− ε

r
)}(3.41)

= (
ρ−rl

λ−βε
)−λ− ε

r
> 0,(3.42)

which is the same constant as the one defined for the case U ′(0) = ∞. With

this B̂ > 0, we define a function

(3.43) X (y; B̂) = B̂yλ− + X0(y),

for y > 0, then we have

(3.44) X (Ȳ(z∗); B̂) = z∗

For c ≥ 0, we have c = I(U ′(c)), hence

X (U ′(c); B̂) = X(c; B̂).

For y > 0 and y 6= U ′(0), using the relation λ+λ− = − r
κ1

, we get

X ′(y) = B̂λ−yλ−−1 − 1
κ1(λ+ − λ−)

[yλ+

∫ I(y)

0

dθ

(U ′(θ))λ+
+ yλ−

∫ ∞

I(y)

dθ

(U ′(θ))λ−
]

< 0.

Hence X (·; B̂) is strictly decreasing. Furthermore,

lim
y↓0

X (y; B̂) = lim
c↑∞

X (U ′(c); B̂)

= lim
c↑∞

X(c; B̂)

= ∞
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and

lim
y↑∞

X (y; B̂) = lim
y↑∞

[B̂yλ− − 1
κ1(λ+ − λ−)

yλ−

λ−

∫ ∞

0

dθ

(U ′(θ))λ−
− ε

r
]

= − ε

r
.

Therefore X (·; B̂) maps (0,∞) onto (− ε
r ,∞) and has an inverse function Y(·; B̂) :

(− ε
r ,∞) → (0,∞). For Â ≥ 0, we define

(3.45) J (y; Â) = Âyρ− + J0(y),

for y > 0. Now, define a function V : (− ε
r ,∞) → R by

(3.46) V(x) ≡ J (Y(x; B̂);
λ−
ρ−

B̂), − ε

r
< x < z∗,

and

(3.47) V(x) ≡ V̄ (x), x ≥ z∗.

Then, we have

lim
x↓− ε

r

V(x) = lim
y↑∞

J (y;
λ−
ρ−

B̂)

= lim
y↑∞

[
λ−
ρ−

B̂yρ− +
U(0)− l

β
− 1

κ1(ρ+ − ρ−)
yρ−

ρ−

∫ ∞

0

dθ

(U ′(θ))λ−
]

=
U(0)− l

β
.

By (3.44) we have

lim
x↑z∗

Y(x; B̂) = Y(z∗; B̂) = Ȳ(z∗),

so that

lim
x↑z∗

V(x) = J (Ȳ(z∗);
λ−
ρ−

B̂).

Using (3.35), (3.39) and (3.40) we get

lim
x↑z∗

V(x) = V̄ (z∗).

We have the following lemma which can be proved similarly to Lemma 3.2

18



Lemma 3.3. The function V(x) defined by (3.46) and (3.47) is strictly in-

creasing for x > − ε
r , strictly concave and satisfies the HJB equation (3.1) for

− ε
r < x < z∗.

We get the following theorem which can be proved using an argument similar

to that for the case U ′(0) = ∞.

Theorem 3.2. If U ′(0) is finite, then the optimal value function is V(x) defined

by (3.46) and (3.47), and an optimal strategy is given by the following strategy

(τ∗, c∗, π∗):

τ∗ = Tz∗ ,

c∗t = I(V ′(xt), π∗t = − V
′(xt)

V ′′(xt)
(α− r1m)Σ−1, 0 ≤ t < τ∗,

and

c∗t = C̄(xt), π∗t = Π̄(xt), t ≥ τ∗.

4 Properties of Optimal Policies

In this section we study properties of optimal policies found in Section 3.

The following intuitively clear observation is easily checked.

Observation 4.1. The wealth level z∗ at the optimal retirement time in (3.17)

and (3.38) is decreasing in l and increasing in ε. Furthermore, it satisfies

lim
l↑∞

z∗ = 0, lim
l↓0

z∗ = ∞, lim
ε↑∞

z∗ = ∞, lim
ε↓0

z∗ = 0.

If the agent does not have an option to retire from labor, that is, if we restrict

τ to be infinite, then as in KLSS (1986) an optimal strategy takes the following

form: When U ′(0) = ∞,

(4.1) ct = C0(xt), πt = − V ′
0(xt)

V ′′
0 (xt)

(α− r1m)Σ−1,

for t ≥ 0. When U ′(0) < ∞,

(4.2) ct = I(V ′
0(xt)), πt = − V ′

0(xt)
V ′′

0 (xt)
(α− r1m)Σ−1,
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for t ≥ 0.

The following two propositions illustrate effects of retirement option. Propo-

sition 4.1 states that the agent consumes less if the investor has a retirement

option than he does if he does not have such an option. Intuitively, he tries to

accumulate his wealth fast enough to reach the wealth level at which he retires

and stops incurring a utility loss due to labor.

Proposion 4.1.

(4.3) C(x; B̂) < C0(x)

for − ε
r < x < z∗, where C(x; B̂) is given in Theorem 3.1 and C0(x) in (4.1). If

X0(U ′(0)) < z∗, then

(4.4) I(V ′(x)) = I(V ′
0(x)) = 0

for x ≤ X0(U ′(0)) and

(4.5) I(V ′(x)) < I(V ′
0(x))

for X0(U ′(0)) < x < z∗, where I(V ′(x)) is given in Theorem 3.2 and I(V ′
0(x))

in (4.2).

The agent takes more risk in risky assets if he has a retirement option than

he does if he does not have such a retirement option. Intuitively, the agent tries

to increase the expected growth rate of his wealth to reach the wealth level fast

enough at which the he retires and stops incurring a utility loss due to labor.

This is summarized in Proposition 4.2.

Proposion 4.2. In Theorem 3.1

(4.6)
V ′(x)
−V ′′(x)

>
V ′

0(x)
−V ′′

0 (x)

for − ε
r < x < z∗, and in Theorem 3.2

(4.7)
V ′(x)
−V ′′(x)

>
V ′

0(x)
−V ′′

0 (x)
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for − ε
r < x < z∗.

5 A Solution under the CRRA utility class

In this section we find the value function and optimal policy in the special case

where the utility function is in the CRRA class.

We first consider the case where

(5.1) U(c) =
c1−γ

1− γ
, 0 < γ 6= 1

for c > 0, which means that the agent’s coefficient of relative risk aversion is

constant and equal to γ. In this case U ′(c) = c−γ so that U ′(0) = ∞. By

calculation we have

X0(c) =
c

K
− ε

r
, c > 0,

J0(c) =
1

(1− γ)K
c1−γ − l

β
, c > 0,

X̄(c) =
c

K
, c > 0,

J̄(c) =
1

(1− γ)K
c1−γ , c > 0,

where K is given in (2.8). Therefore

C0(x) = K(x +
ε

r
), x > − ε

r
,

C̄(x) = Kx, x > 0,

V0(x) =
K−γ

(1− γ)
(x +

ε

r
)1−γ − l

β
, x > − ε

r
,

and

V̄ (x) =
K−γ

(1− γ)
x1−γ , x > 0.

As is shown in Karatzas, Lehoczky, Sethi and Shreve (1986)

Π̄(x) =
V̄ ′(x)
−V̄ ′′(x)

(α− r1m)Σ−1

=
x

γ
(α− r1m)Σ−1, x > 0.
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Figure 5.1: comparison of consumption rates when U(c) = c1−γ

1−γ .

The wealth level at the optimal retirement time in (3.17) becomes

z∗ =
1
K

(
ρ−rl

λ−βε
)−

1
γ

and the function (3.6) becomes

X(c; B̂) = B̂c−γλ− +
c

K
− ε

r

where B̂ is given by (3.21).

The value function V : (− ε
r ,∞) → R defined in (3.23) and (3.24) becomes

V (x) =
λ−
ρ−

B̂(C(x; B̂))−γρ− +
1

(1− γ)K
(C(x; B̂))1−γ − l

β
, − ε

r
< x < z∗,

and

V (x) =
K−γ

1− γ
x1−γ , x ≥ z∗.

The optimal policy (τ∗, c∗, π∗) in Theorem 3.1 becomes

τ∗ = Tz∗ ,

c∗t = C(xt; B̂), π∗t = (−λ−B̂c∗t
−γλ− +

1
γK

c∗t )(α− r1m)Σ−1, 0 ≤ t < τ∗,

and

c∗t = Kxt, π∗t =
xt

γ
(α− r1m)Σ−1, t ≥ τ∗.
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Figure 5.2: comparison of amount of wealth invested in the risky asset when

U(c) = c1−γ

1−γ .

Figure 5.1 compares the rates of consumption for the two cases: (1) τ is

enforced to be infinite and (2) the agent has an option to retire. As explained

in Proposition 4.1, the figure shows that the wage earner consumes less before

touching the critical wealth level in the latter case than in the former case.

Figure 5.2 compares amount of wealth invested in the risky asset in the two

cases. As is shown in the figure, before retirement the agent invests more in the

risky asset in the latter case than in the former case.
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Figure 5.3: comparison of consumption rates when U(c) = log c.
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Now consider the case where

(5.2) U(c) = log c

for c > 0, which means that the agent’s coefficient of relative risk aversion is

constant and equal to γ = 1. In this case U ′(c) = c−1 so that U ′(0) = ∞. By

calculation we have:

X0(c) =
c

β
− ε

r
, c > 0,

J0(c) =
β(log c− l) + κ + r − β

β2
, c > 0,

X̄(c) =
c

β
, c > 0,

J̄(c) =
β log c + κ + r − β

β2
, c > 0.

Therefore

C0(x) = β(x +
ε

r
), x > − ε

r
,

C̄(x) = βx, x > 0,

V0(x) =
β(log (β(x + ε

r ))− l) + κ + r − β

β2
, x > − ε

r
,

and

V̄ (x) =
β log βx + κ + r − β

β2
, x > 0.

As is shown in Karatzas, Lehoczky, Sethi and Shreve (1986)

Π̄(x) =
V̄ ′(x)
−V̄ ′′(x)

(α− r1m)Σ−1

= x(α− r1m)Σ−1, x > 0.

The wealth level at the optimal retirement time in (3.17) becomes

z∗ =
1
β

(
ρ−rl

λ−βε
)−1

and the function (3.6) becomes

X(c; B̂) = B̂c−λ− +
c

β
− ε

r
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Figure 5.4: comparison of amount of wealth invested in the risky asset when

U(c) = log c.

where B̂ is given by (3.21).

The value function V : (− ε
r ,∞) → R defined in (3.23) and (3.24) becomes

V (x) =
λ−
ρ−

B̂(C(x; B̂))−ρ− +
β(log (C(x; B̂))− l) + κ + r − β

β2
, − ε

r
< x < z∗,

and

V (x) =
β log (βx) + κ + r − β

β2
, x ≥ z∗.

The optimal policy (τ∗, c∗, π∗) in Theorem 3.1 becomes

τ∗ = Tz∗ ,

c∗t = C(xt; B̂), π∗t = (−λ−B̂c∗t
−λ− +

1
β

c∗t )(α− r1m)Σ−1, 0 ≤ t < τ∗,

and

c∗t = βxt, π∗t = xt(α− r1m)Σ−1, t ≥ τ∗.

Figure 5.3 compares the rates of consumption for the two cases when the utility

function is given by (5.2): (1) τ is enforced to be infinite and (2) the agent has

an option to retire. As is shown in the Figure, the wage earner consume less

before retirement in the latter case than in the former case.
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Figure 5.4 compares amounts of wealth invested in the risky asset in the two

cases. As is shown in the figure, the agent invests more in the risky asset before

retirement in the latter case than in the former case.

6 Conclusion

In this paper we have studied an optimal retirement and consumption/portfolio

decision problem of a wage earner. We have obtained a solution for the case

where the wage earner has general von Neuman-Morgenstern time-separable

utility. We have shown that the wage earner retires from his work as soon as

his wealth exceeds a critical wealth level that is obtained from a free boundary

value problem.

We have not considered uninsurable income risk in this paper, which in

reality has an effect on optimal retirement and consumption portfolio selection.

We leave the study of this effect of uninsurable income risk as future research.
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Appendix

A Proof of Lemma 3.1

When U(0) is finite, (3.2) trivially holds. When U(0) = −∞, lim supc↓0
U(c)
U ′(c) ≤

0. For every δ > 0 and 0 < c < δ, U(c) ≥ U(δ)− U ′(c)(δ − c). Therefore,

lim inf
c↓0

U(c)
U ′(c)

≥ lim inf
c↓0

(
U(δ)
U ′(c)

− δ + c) = −δ.

Since δ > 0 is arbitrary,

lim inf
c↓0

U(c)
U ′(c)

≥ 0.

Hence (3.2) holds.

Since

0 ≤ lim inf
c↓0

(U ′(c))λ+

∫ c

0

dθ

(U ′(θ))λ+

≤ lim sup
c↓0

(U ′(c))λ+

∫ c

0

dθ

(U ′(θ))λ+

≤ lim sup
c↓0

(U ′(c))λ+

∫ c

0

dθ

(U ′(c))λ+

= lim sup
c↓0

c = 0,

(3.3) holds. Finally, since, for every δ > 0,

0 ≤ lim inf
c↓0

(U ′(c))λ−
∫ ∞

c

dθ

(U ′(θ))λ−

≤ lim sup
c↓0

(U ′(c))λ−
∫ ∞

c

dθ

(U ′(θ))λ−

≤ lim sup
c↓0

∫ δ

c

(
U ′(c)
U ′(θ)

)λ−dθ + lim sup
c↓0

(U ′(c))λ−
∫ ∞

δ

dθ

(U ′(θ))λ−

≤ lim sup
c↓0

(δ − c) = δ,

(3.4) holds.
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B Proof of Lemma 3.2

By calculation, we have

∂

∂x
J(C(x; B̂);

λ−
ρ−

B̂) =
J ′(C(x; B̂); λ−

ρ−
B̂)

X ′(C(x; B̂); B̂)

= U ′(C(x; B̂)) > 0, x > − ε

r
,(B.1)

and

(B.2) V̄ ′(x) = U ′(C̄(x)) > 0, x > 0.

Therefore, by (3.27), V (x) is strictly increasing for x > − ε
r . For − ε

r < x < z∗,

V ′′(x) = U ′′(C(x; B̂))C ′(x; B̂) < 0, − ε

r
< x < z∗.(B.3)

Thus, V (·) is strictly concave for − ε
r < x < z∗. Hence for − ε

r < x < z∗ applying

this V (·) in equation (3.1) and maximizing over investments in risky assets gives

π = − V ′(x)
V ′′(x) (α− r1m)Σ−1. Hence the HJB equation (3.1) becomes

βV (x) = −κ
(V ′(x))2

V ′′(x)
+ max

c≥0
{(rx− c + ε)V ′(x) + U(c)− l}.

By (B.1) and (B.3), this takes the form

βV (x) = −κ
(U ′(C(x; B̂)))2X ′(C(x; B̂); B̂)

U ′′(C(x; B̂))
+(rx−C(x; B̂)+ε)V ′(x)+U(C(x; B̂))−l

for − ε
r < x < z∗, which is equivalent to

βJ(c;
λ−
ρ−

B̂) = −κ
(U ′(c))2X ′(c; B̂)

U ′′(c)
+ (rX(c; B̂)− c + ε)U ′(c) + U(c)− l

for 0 < c < C̄(z∗) by (3.25). By calculation and using the relation ρ+ρ− = − β
κ1

,

the above equation can be shown to hold for 0 < c < C̄(z∗). Hence V (·) satisfies

equation (3.1) for − ε
r < x < z∗.

By (B.3), we have that V ∈ C2(− ε
r , z∗), limx→z∗+ V ′′(x) exists and fi-

nite. As is shown in KLSS (1986), V̄ ∈ C2(0,∞). Hence by (B.1), (B.2)

and (3.25), V (·) ∈ C1(− ε
r ,∞) ∩ C2((− ε

r , z∗) ∪ (z∗,∞)), limx→z∗+ V ′′(x) and

limx→z∗− V ′′(x) exist and finite.

28



C Proof of Theorem 3.1

With the strategy the wealth process does not touch − ε
r before retirement by

(3.30). For c∗0 > 0 (or equivalently x > − ε
r ), let

(C.1) H(c∗0) ≡ V(τ∗,c∗,π∗)(x) = Ex

∫ ∞

0

exp (−βt)[U(c∗t )− l1{t<τ∗}] dt.

If c∗0 ≥ C̄(z∗) (or equivalently x ≥ z∗), then τ∗ = 0. Thus

(C.2) H(c∗0) = V̄ (x), c∗0 ≥ C̄(z∗)(or equivalentlyx ≥ z∗).

For 0 < c∗0 < C̄(z∗) (or equivalently − ε
r < x < z∗), (C.1) be rewritten as

H(c∗0) ≡ V(τ∗,c∗,π∗)(x) = Ex[
∫ τ∗

0

exp(−βt)(U(c∗t )− l)dt + exp(−βτ∗)V̄ (z∗)],

where the equality comes from the strong Markov property. Note that since

C0(·) is strictly increasing and maps (− ε
r ,∞) onto (0,∞), there exists x̂ > − ε

r

such that

(C.3) c∗0 = C0(x̂).

When retirement time τ is forced to be infinite, that is, when the investor has

no option to retire, it can be shown similarly to KLSS (1986) that the optimal

consumption strategy (ĉt){t≥0}with initial wealth x̂ > − ε
r satisfies

ĉt = I(U ′(C0(x̂)) exp[−(r − β + κ)t− (α− r1m)Σ−1DwT (t)])

for t ≥ 0. Thus V0(x̂) = Ex[
∫∞
0

exp(−βt)U(ĉt)dt], which is well-defined and

finite. By (C.3) and (3.29), ĉt = c∗t for all 0 ≤ t ≤ τ∗. Hence it follows that H(c∗0)

is well defined and finite for 0 < c∗0 < C̄(z∗) (or equivalently − ε
r < x < z∗). In

particular condition (2.4) holds with the strategy defined by (3.31), (3.32) and

(3.33). Define

Ψ(y0) ≡ H(I(y0)) = Ex[
∫ τ∗

0

exp(−βt)(U(I(yt))− l)dt + exp(−βτ∗)V̄ (z∗)]
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for U ′(C̄(z∗)) < y0 < U ′(0) = ∞ where yt = U ′(c∗t ) so that yt satisfies the

stochastic differentiable equation (3.28) for 0 ≤ t ≤ τ∗ with y0 = U ′(c∗0). By

Theorem 13.16 of Dynkin (1965)(Feynman-Kac formula), Ψ is C2 on (U ′(C̄(z∗)),∞)

and satisfies

βΨ(y) = −(r − β)yΨ′(y) + κy2Ψ′′(y) + U(I(y))− l

for U ′(C̄(z∗)) < y0 < ∞ with limy↓U ′(C̄(z∗)) Ψ(y) = V̄ (z∗). Hence H is C2 on

(0, C̄(z∗)) and satisfies

(C.4) βH(c) = − U ′(c)
U ′′(c)

[r−β+κ
U ′(c)U ′′′(c)
(U ′′(c))2

]H ′(c)+κ(
U ′(c)
U ′′(c)

)2H ′′(c)+U(c)−l

for 0 < c < C̄(z∗) with limc↑C̄(z∗) H(c) = V̄ (z∗). A general solution to equation

(C.4) takes the following form A(U ′(c))ρ+ + J(c; Â) for 0 < c < C̄(z∗). Hence

for 0 < c < C̄(z∗), H(c) = A(U ′(c))ρ+ + J(c; Â) for some A and Â such that

limc↑C̄(z∗) H(c) = A(U ′(C̄(z∗)))ρ+ +J(C̄(z∗); Â) = V̄ (z∗). As in Theorem 8.8 of

KLSS (1986), it is shown that A = 0 when U ′(0) = ∞ so that for 0 < c < C̄(z∗),

H(c) = J(c; Â)

for some Â such that

(C.5) lim
c↑C̄(z∗)

H(c) = J(C̄(z∗); Â) = V̄ (z∗).

Using (3.18), (3.22) and (C.5), we get Â = λ−
ρ−

B̂ so that H(c∗0) = J(c∗0;
λ−
ρ−

B̂) =

J(C(x; B̂); λ−
ρ−

B̂) for 0 < c∗0 < C̄(z∗) (or equivalently − ε
r < x < z∗). This

equality and (C.2) imply

(C.6) H(c∗0) = V(τ∗,c∗,π∗)(x) = V (x), x > − ε

r
.

If 0 ≤ x ≤ z∗, then we have

X(C̄(x); B̂) = B̂(U ′(C̄(x)))λ− + X0(C̄(x))

= B̂(U ′(C̄(x)))λ− + x− ε

r

= (
U ′(C̄(x))
U ′(C̄(z∗))

)λ− ε

r
− ε

r
+ x

≤ x,
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where the the third equality follows from (3.20) and the fourth inequality fol-

lows from the fact that ( U ′(C̄(x))
U ′(C̄(z∗)) )

λ− ≤ 1 for 0 ≤ x ≤ z∗. Hence C̄(x) ≤
C(x; B̂), 0 ≤ x ≤ z∗, so that U ′(C̄(x)) ≥ U ′(C(x; B̂)), 0 ≤ x ≤ z∗. By

(B.1) and (B.2), this inequality implies that V̄ ′(x) ≥ V ′(x), 0 ≤ x ≤ z∗.

Using this and the fact that V̄ (z∗) = V (z∗), we get

(C.7) V̄ (x) ≤ V (x), 0 ≤ x ≤ z∗.

As is shown in KLSS (1986), V̄ (·) satisfies

(C.8)

βV̄ (x) = max
c≥0,π

{
(α− r1m)πT V̄ ′(x) + (rx− c)V̄ ′(x) +

1
2
πΣπT V̄ ′′(x) + U(c)

}

for x > 0. If x ≥ z∗ then G(x) ≤ 0. Therefore by (3.16) it holds that

−l ≤ −εβλ−
rρ−

U ′(C̄(x)) = −εβλ−
rρ−

V̄ ′(x), x ≥ z∗,

where the second equality comes from (B.2). Using this and Assumption 2.3 we

get

(C.9) εV̄ ′(x)− l ≤ εV̄ ′(x)(1− βλ−
rρ−

) ≤ 0, x ≥ z∗.

Using (C.9) and (C.8) we get

(C.10)

βV̄ (x) ≥ max
c≥0,π

{
(α−r1m)πT V̄ ′(x)+(rx−c+ε)V̄ ′(x)+

1
2
πΣπT V̄ ′′(x)+U(c)−l

}

for x ≥ z∗.

Fix x > − ε
r . Let (τ, c, π) ∈ A1(x) arbitrary. Choose x < ξ < ∞ and define

Sn = inf {t ≥ 0 :
∫ t

0
‖πs‖2 ds = n}. Put

τn ≡ T ξ ∧ Sn ∧ τ ∧ n

so that τn → τ as ξ ↑ ∞ and n ↑ ∞. By the strong Markovian property,

V(τ,c,π)(x) = Ex

∫ ∞

0

exp (−βt)(U(ct)− l1{t<τ})dt

= Ex[
∫ τ

0

exp (−βt)(U(ct)− l)]dt

+ Ex[exp (−βτ)V̄ (xτ )1{τ<∞}].
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With a δ > 0 let zt ≡ xt + δ for t ≥ 0. From equation (C.10) and the fact

that V (x), defined by (3.23) and (3.24), satisfies the HJB equation (3.1) for

− ε
r < x < z∗, we get by using generalized Itô’s rule

Ex

∫ τn

0

exp (−βt)(U(ct)− l)dt ≤ Ex[
∫ τn

0

exp (−βt)[βV (zt)− (α− r1m)πT
t V ′(zt)

−(rzt − ct + ε)V ′(zt)− 1
2
πtΣπT

t V ′′(zt)]dt]

= Ex[
∫ τn

0

[−d(exp (−βt)V (zt)) + exp (−βt)V ′(zt)πtDdwT (t)]]

+Ex[
∫ τn

0

−rδ exp (−βt)V ′(zt)dt]

= −Ex[exp (−βτn)V (x(τn) + δ)] + V (x + δ)

+Ex[
∫ τn

0

−rδ exp (−βt)V ′(xt + δ)dt]

≤ −Ex[exp (−βτn)V (x(τn) + δ)] + V (x + δ).

Hence

V (x + δ) ≥ Ex[
∫ τn

0

exp (−βt)(U(ct)− l)dt] + Ex[exp (−βτn)V (x(τn) + δ)]

= Ex[
∫ τn

0

exp (−βt)(U(ct)− l)dt] + Ex[exp (−βτn)V (x(τn) + δ)1{τ<∞}]

+ Ex[exp (−βτn)V (x(τn) + δ)1{τ=∞}]

By (2.4) and applying the monotone convergence theorem to Ex

∫ τn

0
exp (−βt)U±(ct)dt

and Ex

∫ τn

0
exp (−βt)ldt, we get

Ex

∫ τn

0

exp (−βt)(U(ct)− l)dt → Ex

∫ τ

0

exp (−βt)(U(ct)− l)dt

as ξ ↑ ∞ and n ↑ ∞. Since V (x(τn)+δ) ≥ V (− ε
r +δ) > −∞, by Fatou’s lemma,

lim inf
ξ↑∞,n↑∞

Ex[exp (−βτn)V (x(τn) + δ)1{τ<∞}]

≥ Ex[exp (−βτ)V (xτ + δ)1{τ<∞}]

and

lim inf
ξ2↑∞,n↑∞

Ex[exp (−βτn)V (x(τn) + δ)1{τ=∞}]

≥ V (− ε

r
+ δ)Ex[ lim

ξ↑∞,n↑∞
exp (−βτn)1{τ=∞}] = 0.
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Therefore, we get

V (x + δ) ≥ Ex

∫ τ

0

exp (−βt)(U(ct)− l)dt + Ex[exp (−βτ)V (xτ + δ)1{τ<∞}]

≥ Ex

∫ τ

0

exp (−βt)(U(ct)− l)dt + Ex[exp (−βτ)V (xτ )1{τ<∞}]

≥ Ex

∫ τ

0

exp (−βt)(U(ct)− l)dt + Ex[exp (−βτ)V̄ (xτ )1{τ<∞}],

where the third inequality comes from (C.7) and the fact that V̄ (x) = V (x) for

x ≥ z∗. Letting δ ↓ 0 we get

V (x) ≥ V(τ,c,π)(x).

Since (τ, c,π) ∈ A1(x) is arbitrary, we get

V (x) ≥ V ∗(x).

Since (τ∗, c∗,π∗) ∈ A1(x) and (C.6) holds, we have

V (x) = V ∗(x).

D Proofs of Proposition 4.1 and Proposition 4.2

Proof of Proposition 4.1 We first prove (4.3) corresponding to the case where

U ′(0) = ∞. Since B̂ > 0, X(c; B̂) > X0(c) for all c > 0. Hence their inverse

functions satisfy C(x; B̂) < C0(x) for all x > − ε
r since X(·; B̂) and X0(·) are

increasing functions.

Now let us prove (4.4) and (4.5) corresponding to the case where U ′(0) is

finite. Since B̂ > 0, X (y; B̂) > X0(y) for all y > 0. Hence their inverse functions

satisfy Y(x; B̂) > Y0(x) for all x > − ε
r since X (·; B̂) and X0(·) are decreasing

functions. It is easily checked that V ′(x) = Y(x; B̂) and V ′
0(x) = Y0(x). If x ≤

X0(U ′(0)), then Y(x; B̂) > Y0(x) ≥ U ′(0). Therefore I(V ′(x)) = I(V ′
0(x)) = 0

for x ≤ X0(U ′(0)) since I ≡ 0 on [U ′(0),∞). If X0(U ′(0)) < x ≤ X (U ′(0); B̂),

then Y0(x) < U ′(0) and Y(x; B̂) ≥ U ′(0). Hence I(V ′
0(x)) > 0 and I(V ′(x)) = 0
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for X0(U ′(0)) < x ≤ X (U ′(0); B̂) since I(y) > 0 for 0 < y < U ′(0) and I ≡ 0

on [U ′(0),∞). If x > X (U ′(0); B̂), then 0 < Y0(x) < Y(x; B̂) < U ′(0). Hence

I(V ′(x)) < I(V ′
0(x)) for x > X (U ′(0); B̂) since I(·) is strictly decreasing for

0 < y < U ′(0).

Proof of Proposition 4.2. We first prove (4.6), that is, we consider the case

where U ′(0) = ∞ :

Using the fact that V ′(x) = U ′(C(x; B̂) and V ′
0(x) = U ′(C0(x)) for − ε

r <

x < z∗, some calculation gives

V ′(x)
−V ′′(x)

= −λ−{x− C(x; B̂)
r

+
1
r
(U ′(C(x; B̂)))λ+

∫ C(x;B̂)

0

dθ

(U ′(θ))λ+
} − λ−ε

r

and

V ′
0(x)

−V ′′
0 (x)

= −λ−{x− C0(x)
r

+
1
r
(U ′(C0(x)))λ+

∫ C0(x)

0

dθ

(U ′(θ))λ+
} − λ−ε

r
.

By differentiation it is easily checked that −λ−{x− c
r + 1

r (U ′(c))λ+
∫ c

0
dθ

(U ′(θ))λ+
}

is a decreasing function of c. Since C(x; B̂) < C0(x), we have

V ′(x)
−V ′′(x)

>
V ′

0(x)
−V ′′

0 (x)

for − ε
r < x < z∗. Inequality (4.7) is proved similarly.
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