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Abstract. Monte Carlo Method as a stochastic simulation method is
used to evaluate many financial derivatives by financial engineers. Monte
Carlo simulation is harder and more difficult to implement and analyse in
many fields than other numerical methods. In this paper, we derive term
structure models with jump and perform Monte Carlo simulations for
them. We also make a comparison between the term structure models of
interest rates with jump and HJM models based on jump. Bond pricing
with Monte Carlo simulation is investigated for the term structure models
with jump.

1 Introduction

Before mentioning the procedure in derivation of bond pricing models with
jumps, we discuss general models of the term structure of interest rates. Ap-
proaches to modeling the term structure of interest rates in continuous time
may be broadly described in terms of either the equilibrium approach or the no-
arbitrage approach even though some early models include concepts from both
approaches.

We introduce one-state variable model of Vasicek (1977)[16], Cox, Ingersoll,
and Ross (CIR)[5], the extended model of the Hull and White[10], and the devel-
opment of the model is the jump-diffusion model of the Ahn and Thompson[1]
and the Baz and Das[2]. Conventionally, financial variables such as stock prices,
foreign exchange rates, and interest rates are assumed to follow a diffusion pro-
cesses with continuous paths when pricing financial assets. Also, Heath, Jarrow
and Morton(HJM)[6] is widely accepted as the most general methodology for
term structure of interest rate models.

In pricing and hedging with financial derivatives, jump-diffusion models are
particularly important, since ignoring jumps in financial prices will cause pric-
ing and hedging rates. Term structure model solutions under jump-diffusions
? corresponding author.



are justified because movements in interest rates display both continuous and
discontinuous behavior. These jumps are caused by several market phenomena
money market interventions by the Fed, news surprise, and shocks in the foreign
exchange markets, and so on.

We study a solution of the bond pricing for the term structure models with
jump. The term structure models with jump which allows the short term interest
rate, the forward rate, the follow a random walk. We compare between the term
structure model of interest rate with jump and the HJM model based on jump.
We introduce the Monte Carlo simulation. One of the many uses of Monte Carlo
simulation by financial engineers is to place a value on financial derivatives.
Interest in use of Monte Carlo simulation for bond pricing is increasing because
of the flexibility of the methods in handling complex financial instruments. One
measure of the sharpness of the point estimate of the mean is Mean Standard
Error(MSE). For the term structure models with jump, we study bond prices
by the Monte Carlo simulation. Numerical methods that are known as Monte
Carlo methods can be loosely described as statistical simulation methods, where
statistical simulation is defined in quite general terms to be any method that
utilizes sequences of random numbers to perform the simulation.

The structure of the remainder of this paper is as follows. In Section 2, the
basic of bond prices with jump are introduced. In Section 3, the term structure
models in jump are presented. In Section 4, we calculate numerical solutions us-
ing Monte Carlo simulation for the term structure models with jump. In Section
5, we investigate bond prices given for the eight models using the Vasicek and
CIR models. Conclusions are in Section 6.

2 Preliminaries for the Bond Prices

2.1 Stochastic Differential Equation with Jump

We will first recall some notations. All our models will be set up in a given
complete probability space (Ω,Ft, P ) and an argumented filtration (Ft)t≥0 gen-
erated by a Winear process W (t) in <. We will ignore taxes and transaction
costs. We denote by V (r, r, T ) the price at time t of a discount bond. It follows
immediately that V (r, T, T ) = 1. Now consider a quite different type of random
environment. Suppose π(t) represents the total number of extreme shocks that
occur in a financial market until time t. The time dependence can arise from
the cyclical nature of the economy, expectations concerning the future impact
of monetary policies, and expected trends in other macroeconomic variables.

In the same way that a model for the asset price is proposed as a lognormal
random walk, let us suppose that the interest rate r and the forward rate is
governed by a Stochastic differential equation(SDE) of the form

dr = u(r, t)dt + ω(r, t)dWQ + Jdπ (1)

and

df(t, T ) = µf (t, T )dt + σf (t, T )dWQ(t) + Jdπ. (2)



, where ω(r, t) is the instantaneous volatility, u(r, t) is the instantaneous drift,
µf (t, T ) represents drift function, σ2

fi(t, T ) is volatility coefficients, and jump
size J is normal variable with mean µ and standard deviation γ.

2.2 The Zero-Coupon Bond Pricing Equation

When interest rates follow the SDE(1), a bond has a price of the form V (r, t);
the dependence on T will only be made explicit when necessary. Pricing a bond
is technically harder than pricing an option, since there is no underlying assert
with which be hedge. We set up a portfolio containing two bonds with different
maturities T1, T2. The bond with maturity T1 has price V1, and the bond with
maturity T2 has price V2. Thus, the riskless portfolio is

Π = V1 −∆V2. (3)

And then we applied he jump-diffusion version of Ito’s lemma. Hence we derive
the the partial differential bond pricing equation.

Theorem 1. If r satisfy Stochastic differential equation dr = u(r, t)dt+ω(r, t)dWQ+
Jdπ then the zero-coupon bond pricing equation in jumps is

∂V

∂t
+

1
2
ω2 ∂2V

∂r2
+ (u− λω)

∂V

∂r
− rV + hE[V (r + J, t)− V (r, t)] = 0 (4)

, where λ(r, t) is the market price of risk. The final condition corresponds to the
payoff on maturity and so V (r, T, T ) = 1. Boundary conditions depend on the
form of u(r, t) and ω(r, t).

3 Bond Pricing Models with Jump

The dependence of the yield curve on the time to maturity, T − t, is called the
term structure of interest rates. It is common experience from market data
that yield curve typically come in three distinct shapes, each associated with
different economic conditions. A wide variety of yield curves can be predicted by
the model, including Increasing, decreasing, and humped. Now we consider
the term structure models with jump.

3.1 Jump-Diffusion Version of Extended Vasicek’s Model

The time dependence can arise from the cyclical nature of the economy, expec-
tations concerning the future impact of monetary policies, and expected trends
in other macroeconomic variables. In this study, we extend the jump-diffusion
version of equilibrium single factor model to reflect this time dependence. We
proposed the mean reverting process for interest rate r is given by

dr(t) = [θ(t)− a(t)r(t)]dt + σ(t)dWQ(t) + Jdπ(t) (5)



We will assume that the market price of interest rate diffusion risk is a function
of time, λ(t). Let us assume that jump risk is diversifiable. From equation (4)
with the drift coefficient u(r, t) = θ(t) − a(t)r(t) and the volatility coefficient
ω(r, t) = σ(t), we get the partial differential difference bond pricing equation:

[θ(t)− a(t)r(t) − λ(t)σ(t)]Vr + Vt +
1
2
σ(t)2Vrr − rV

+ hV [−µA(t, T ) +
1
2
(γ2 + µ2)A(t, T )2] = 0. (6)

Then the yield on zero-coupon bond price expiring T − t periods hence is given
by:

Y (r, t, T ) = − ln V (r, t, T )
T − t

(7)

is defined the entries term structure of interest rates. The price of a discount
bond that pays off $ 1 at time T is the solution to (6) that satisfies the boundary
condition V (r, T, T ) = 1. A solution of the form:

V (r, t, T ) = exp[−A(t, T )r + B(t, T )] (8)

can be guessed. Bond price derivatives can be calculated from (7). We omit the
details, but the substitution of this derivatives into (6) and equating powers of
r yields the following equations for A and B.

Theorem 2.

−∂A

∂t
+ a(t)A− 1 = 0 (9)

and

∂B

∂t
− φ(t)A +

1
2
σ(t)2A2 + h[−µA +

1
2
(γ2 + µ2)A2] = 0, (10)

where, φ(t) = θ(t)−λ(t)σ(t) and all coefficients is constants. In order to satisfy
the final data that V (r, T, T ) = 1 we must have A(T, T ) = 0 and B(T, T ) = 0.

3.2 Jump-Diffusion Version of Extended CIR Model

We proposed the mean reverting process for interest rate r is given by

dr(t) = [θ(t)− a(t)r(t)]dt + σ(t)
√

r(t)dWQ(t) + Jdπ(t) (11)

We will assume that the market price of interest rate diffusion risk is a function
of time, λ(t)

√
r(t). Let us assume that jump risk is diversifiable.

In jump-diffusion version of extended Vasicek’s model the short-term inter-
est rate, r, to be negative. If Jump-diffusion version of extended CIR model is
proposed, then rates are always non-negative. This has the same mean-reverting



drift as jump-diffusion version of extended Vasicek’s model, but the standard de-
viation is proportional to

√
r(t). This means that its standard deviation increases

when the short-term interest rate increases. From equation (4) with the drift co-
efficient u(r, t) = θ(t)−a(t)r(t) and the volatility coefficient ω(r, t) = σ(t)

√
r(t),

we get the partial differential bond pricing equation:

[θ(t)− a(t)r(t) − λ(t)σ(t)r(t)]Vr + Vt +
1
2
σ(t)2r(t)Vrr − rV

+ hV [−µA(t, T ) +
1
2
(γ2 + µ2)A(t, T )2] = 0. (12)

Bond price partial derivatives can be calculated from (12). We omit the details,
but the substitution of this derivatives into (6) and equating powers of r yields
the following equations for A and B.

Theorem 3.

−∂A

∂t
+ ψ(t)A +

1
2
σ(t)2A2 − 1 = 0 (13)

and

∂B

∂t
− (θ(t) + hµ)A +

1
2
h[(γ2 + µ2)A2] = 0, (14)

where, ψ(t) = a(t)+λ(t)σ(t) and all coefficients is constants. In order to satisfy
the final data that V (r, T, T ) = 1 we must have A(T, T ) = 0 and B(T, T ) = 0.

Proof) In equations (12) and (13), by using the solution of this Ricatti’s equa-
tion formula we have

A(t, T ) =
2(eω(t)(T−t) − 1)

(ω(t) + ψ(t))(eω(t)(T−t) − 1) + 2ω(t)
(15)

with ω(t) =
√

ψ(t)2 + 2σ(t). Similarly way, we have

B(t, T ) =
∫ T

t

{
−(θ(t) + hµ)A +

1
2
h(γ2 + µ2)A2

}
dt
′
. (16)

These equation yields the exact bond prices in the problem at hand. Equation
(16) can be solved numerically for B. Since (15) gives the value for A, bond prices
immediately follow from equation (6).

3.3 Heath-Jarrow-Merton(HJM) Model with Jump

The HJM consider forward rates rather than bond prices as their basic building
blocks. Although their model is not explicitly derived in an equilibrium model,
the HJM model is a model that explains the whole term structure dynamics
in a no-arbitrage model in the spirit of Harrison and Kreps[?], and it is fully



compatible with an equilibrium model. If there is one jump during the period
[t, t + dt] then dπ(t) = 1, and dπ(t) = 0 represents no jump during that period.

We know that the zero coupon bond prices are contained in the forward
rate informations, as bond prices can be written down by integrating over the
forward rate between t and T in terms of the risk-neutral process

V (t, T ) = exp

(
−

∫ T

t

f(t, s)ds

)
. (17)

As we mentioned already, a given model in the HJM model with jump will
result in a particular behavior for the short term interest rate. We introduce
relation between the short rate process and the forward rate process as follows.
In this study, we jump-diffusion version of Hull and White model to reflect this
restriction condition. We know the following model for the interest rate r;

dr(t) = a(t)[θ(t)/a(t)− r(t)]dt + σr(t)r(t)
β
dWQ(t) + Jdπ(t), (18)

where, θ(t) is a time-dependent drift; σr(t) is the volatility factor;a(t) is the
reversion rate; dW (t) is standard Wiener process; dπ(t) represents the Poisson
process.

Theorem 4. Let be the jump-diffusion process in short rate r(t) is the equation
(18). Let be the volatility form is

σf (t, T ) = σr(t)(
√

r(t))βη(t, T ) (19)

with η(t, T ) = exp
(
− ∫ T

t
a(s)ds

)
is deterministic functions. We know the jump-

diffusion process in short rate model and the ”corresponding” compatible HJM
model with jump

df(t, T ) = µf (t, T )dt + σf (t, T )dWQ(t) + Jdπ(t) (20)

, where µf (t, T ) = σf (t, T )
∫ T

t
σf (t, s)ds. Then we obtain the equivalent model is

f(0, T ) = r(0)η(0, T ) +
∫ T

0

θ(t)η(s, T )ds

−
∫ T

0

σ2
r(s)(r(s)2)βη(s, T )

∫ T

s

(η(s, u)du)ds (21)

that is, all forward rates are normally distributed. Note that we know that β = 0
case is an extension of Vasicek’s jump diffusion model; the β = 0.5 case is an
extension of CIR jump diffusion model.

Note that the forward rates are normally distributed, which means that the
bond prices are log-normally distributed. Both the short term rate and the for-
ward rates can become negative. As above, we obtain the bond price from the
theorem 1. By the theorem 2, we drive the relation between the short rate and
forward rate.



Corollary 1. Let be the HJM model with jump of the term structure of interest
rate is the stochastic differential equation for forward rate f(t, T ) is given by

df(t, T ) = σf (t, T )
∫ T

t

σf (t, s)dsdt + σf (t, T )dWQ(t) + Jdπ(t) (22)

where, dWQ
i is the Wiener process generated by an equivalent martingale measure

Q and σf (t, T ) = σr(t)(
√

r(t))β exp
(
− ∫ T

t
a(s)ds

)
.

Then the discount bond price V (t, T ) for the forward rate is given by the formula

V (t, T ) =
V (0, T )
V (0, t)

exp{−1
2

(∫ T

t
σf (t, s)ds

σf (t, T )

)2 ∫ t

0

σ2
f (s, t)ds

−
∫ T

t
σf (t, s)ds

σf (t, T )
[f(0, t)− r(t)]}

with the equation (21).

Note that we know that β = 0 case is an extension of Vasicek’s jump diffusion
model; the β = 0.5 case is an extension of CIR jump diffusion model.

4 Monte Carlo Simulation of The Term Structure Models
with Jump

By and application of Girsanov’s theorem the dependence on the market price of
risk can be absorbed into an equivalent martingale measure. Let W (t), 0 ≤ t ≤ T ,
be a Wienear process on a probability space (Ω, F, P ). Let λ(t), 0 ≤ t ≤ T , be
a process adapted to this filtration. The Wiener processes dWQ(t) under the
equivalent martingale measure Q are given by WQ(t) = W (t) +

∫ t

0
λ(s)ds so

that
dWQ

i (t) = dW i(t) + λi(t)ds.

A risk-neutral measureQ is any probability measure, equivalent to the market
measure P , which makes all discounted bond prices martingales.

We now move on to discuss Monte Carlo simulation. A Monte Carlo simu-
lation of a stochastic process is a procedure for sampling random outcomes for
the process. This uses the risk-neutral valuation result. The bond price can be
expressed as:

V (rt, t, T ) = EQ
t

[
e−
R T

t
rsds|r(t)

]
or V (ft, t, T ) = EQ

t

[
e−
R T

t
f(t,s)ds

]
(23)

, where EQ
t is the expectations operator with respect to the equivalent risk-

neutral measure. Under the equivalent risk-neutral measure, the local expecta-
tion hypothesis holds(that is, EQ

t

[
dV
V

]
).To execute the Monte Carlo simulation,

we discretize the equations (5) and (12). we divide the time interval [t, T ] into



m equal time steps of length ∆t each. For small time steps, we are entitled to
use the discretized version of the risk-adjusted stochastic differential equations
(5), (11), and (22):

rj = rj−1 + [(θ · t)− (a · t)rj−1 · t− (λ · t)(σ · t)]∆t

+ (σ · t)εj

√
∆t + JjN∆t, (24)

rj = rj−1 + [(θ · t)− (a · t)rj−1 − (λ · t)(σ · t)√rj−1 · t]∆t

+ (σ · t)√rj−1 · t εj

√
∆t + JjN∆t (25)

and

fj = fj−1 +

[
σf (t, T )

∫ T

t

σf (t, s)dsdt

]
∆t + σf (t, T )εj

√
∆t + JjN∆t (26)

, where σf (t, T ) = σr(t)(
√

r(t))β exp
(
− ∫ T

t
a(s)ds

)
, j = 1, 2, · · ·,m, εj is stan-

dard normal variable with εj ∼ N(0, 1), and N∆t is a Poisson random variable
with parameter h∆t. We know that β = 0 case is an extension of Vasicek’s
jump diffusion model; the β = 0.5 case is an extension of CIR jump diffusion
model. We can investigate the value of the bond by sampling n spot rate paths
under the discrete process approximation of the risk-adjusted processes of the
equations (24), (25), and (26). The bond price estimate is given by:

V (rt, t, T ) =
1
n

n∑

i=1

exp


−

m−1∑

j=0

rij∆t


 or V (ft, t, T ) =

1
n

n∑

i=1

exp


−

m−1∑

j=0

fij∆t




, where rij is the value of the short rate and fij is the value of the forward rate
under the discrete risk-adjusted process within sample path i at time t + ∆t.
Numerical methods that are known as Monte Carlo methods can be loosely
described as statistical simulation methods, where statistical simulation is de-
fined in quite general terms to be any method that utilizes sequences of random
numbers to perform the simulation. The Monte Carlo simulation is clearly less
efficient computationally than the numerical method. One measure of the sharp-
ness of the point estimate of the mean is MSE, defined as

MSE = ν/
√

n (27)

where, ν2 is the estimate of the variance of bond prices as obtained from n
sample paths of the short rate:

ν2 =

∑n
i=1

[
exp

(
−∑m−1

j=0 fij∆t
)
− ν

]

n− 1
. (28)

This reduces the MSE by increasing the value of n. However, highly precise
estimates with the brute force method can take a long time to achieve. For the
purpose of simulation, we conduct three runs of 1,000 trials each and divide the
year into 365 time steps.



5 Experiments

In this section, we investigate the jump-diffusion version of extended Vasicek
and CIR model and HJM model with jump. Experiments are consist of the
numerical method and Monte Carlo simulation. Experiment 1, 2 plot estimated
term structure using the various models. In experiment 1, 2, the parameter values
are assumed to be r = 0.05, a = 0.5, b = 0.05, θ = 0.025, σ = 0.08, σr = 0.08,
λ = −0.5, γ = 0.01, µ = 0, h = 10, t = 0.05, and T = 20. Experiment 3,
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(a) Bond prices based on extended
Vasicek model
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Fig. 1: The various bond prices for the term structure models with jump

4 examine bond prices by the Monte Carlo simulation. In experiment 3, 4, the
parameter values are assumed to be r = 0.05, f [0, t] = 0.049875878, σr = 0.08,
a = 0.5, b = 0.05, θ = 0.025, σ = 0.08, λ = −0.5, ∆t = (T − t)/m, m = 365,
n = 1000, γ = 0.01, µ = 0, h = 10, t = 0.05, and T = 20.

J-Vasicek J-E Vasicek HJM-E Vasicek J-HJM-E Vasicek
CFS 0.93596 0.953704 0.954902 0.954902
MCS 0.933911 0.95031 0.951451 0.951722

Diff(CFS-MCS) 0.00150833 0.0002868 5.03495E-06 0.000319
Variance 0.00122814 0.00053554 7.09574E-05 0.00178619

MSE 0.000933 0.00286 0.00205 0.003394

Experiment 3. Bond prices estimated by the Monte Carlo simulation for the
jump-diffusion and HJM model with jump based on Vasicek model.

J-CIR J-E CIR HJM-E CIR J-HJM-E CIR
CFS 0.942005 0.953478 0.95491 0.95491
MCS 0.947482 0.951688 0.951456 0.950456

Diff(CFS-MCS) 0.0002863 0.00030634 1.2766E-06 0.0002897
Variance 0.000535 0.0005535 0.000113 0.001702

MSE -0.005478 0.00179042 0.00345374 0.00444414

Experiment 4. Bond prices estimated by the Monte Carlo simulation for the
jump-diffusion and HJM model with jump based on CIR model.



6 Conclusion

Even though Monte Carlo simulation is both harder and conceptually more
difficult to implement than the other numerical methods, interest in use of Monte
Carlo simulation for bond pricing is getting stronger because of its flexibility in
evaluating and handling complicated financial instruments. However, it takes a
long time to achieve highly precise estimates with the brute force method. In
this paper we investigate bond pricing models and their Monte Carlo simulations
with several scenarios. The bond price is humped in the jump versions of the
extended Vasicek and CIR models while the bond prices are decreasing functions
of the maturity in HJM models with jump.

References

1. C. Ahn and H. Thompson, “Jump-Diffusion Processes and the Term Structure of
Interest Rates,” Journal of Finance, vol. 43, pp. 155-174, 1998.

2. J. Baz and S.R.Das, “Analytical Approximations of the Term Structure for Jump-
Diffusion Processes : A Numerical Analysis,” Journal of Fixed Income, vol. 6(1),
pp.78-86, 1996

3. D. Beaglehole and M. Tenney, “Corrections and Additions to ’A Nonlinear Equi-
librium Model of the Term Structure of Interest Rates’,” Journal of Financial
Economics, vol. 32, pp.345-353, 1992

4. E. Briys, “Options, Futures and Exotic Derivatives,” John Wiley, 1985.
5. J.C. Cox, J. Ingersoll, and S. Ross, “A Theory of the Term Structure of Interest

Rate,” Econometrica, vol. 53, pp.385-407, 1985
6. David Health., Robert Jarrow, and Andrew Morton, “Bond Pricing and the Term

Structure of Interest Rates,” Econometrica, vol. 60. NO.1, pp.77-105, 1992
7. T. S. Ho and S. LEE, “ Term Structure Movements and Pricing Interest Rate

Contingent Claims,” Journal of Finance, vol. 41, pp. 1011-1028, 1986.
8. F. Jamshidian, “An Exact Bond Option Formula,” Journal of Finance, vol 44,

1989.
9. J. Frank, and CFA. Fabozzi, “Bond markets Analysis and strategies,” Fourth Edi-

tion, 2000.
10. J. Hull and A. White, “Pricing Interest Rate Derivative Securities,” Review of

Financial Studies, vol. 3, pp.573-92, 1990
11. J. Hull and A. White, “Options, Futures, and Derivatives,” Fourth Edition, 2000
12. F. A. Longstaff and S. Schwartz, “Interest Rate Volatility and the Term structure:

A Two-Factor General Equilibrium Model,” Journal of Finance, vol. 47, pp.1259-
1282, 1992

13. Michael J. Brennan and Eduardo S. Schwartz, “A Continuous Time Approach to
the Pricing of Bonds,” Journal of Banking and Finance, vol 3, pp.133-155, 1979

14. J. Strikwerda, “Finite Difference Schmes and Partial Differential Equations,”
Wadsworth and Brooks/Cole Advanced Books and Software, 1989

15. J.W. Drosen, “Pure jump shock models in reliability,” Adv. Appl. Probal. vol. 18,
pp.423-440, 1986

16. O. A. Vasicek, “An Equilibrium Characterization of the Term Structure,” Journal
of Financial Economics, vol. 5, pp.177-88, 1977


