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Abstract

This paper analyzes an optimal risk management problem using put options when there
are different underlying exposures. For simplicity, we assume that there are two different
underlying assets and that each underlying asset is associated with several put options
of different exercise prices. The objective of this study is to find an optimal solution to
minimize the Value-at-Risk (VaR). Because it is difficult to solve the optimization problem
that minimizes the exact VaR, we first solve an suboptimal problem that provides an upper
bound of the VaR. It is proved that a suboptimal solution can be attained by choosing two
put options, except for some extreme cases. Usually, one exercise price option for each
underlying asset is chosen to solve the suboptimal problem. Sometimes, two options have
to be chosen for one underlying asset (and none for the other underlying asset) to solve the
suboptimal problem. In this case the exercise prices for the options have to be adjacent. In
a numerical example, we compare the suboptimal solution with an (approximate) optimal
solution that is obtained by taking minimum of the exact VaR varying hedge ratios of the
put options about ten thousand times. The result shows that the suboptimal solution is a
good approximation for the optimal solution. The suboptimal solution is also used for the
sensitivity analysis of the hedging problem.
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1 Introduction

The importance to risk management by financial institution and corporations has grown ex-

ponentially in recent years. There are several reasons why they have incentives to manage

their risk exposures. Smith and Stulz (1985) argued that risk management can lower earning

volatility and then reduce tax. Froot, Sharfstein, and Stein (1993) linked risk management and

the information asymmetry theory of Myers and Majluf (1984). If the information asymmetry

between insiders and investors is large, then raising external capital is very costly. Because risk

management can block the fall in value, risk management may reduce the possibility that cor-

porations would have to raise external capital. Also, according to Morellec and Smith (2004),

risk management can control the free cash flow problem.

Out of risks that the institution must manage market risks can be hedged with financial

derivatives associated with market risks of special exposures such as exchange rates, interest

rate, oil prices and so on. Using financial derivatives to manage the institutions’ risk has

grown exponentially in recent years. This is because various financial derivatives available to

the institutions for hedging have been developed. In addition, the financial environment that

institutions face changes continually, for example, New Basel Accord will make banks use more

financial derivatives such as credit derivatives for them to obtain the credit risk migration.

In line with interest in risk management, Ahn, Boudoukh, Richardson, and Whitelaw (1999)

examined optimal risk management using options. They provided optimal option strategy un-

der the assumption that the financial institution uses put options to minimize their exposure’s

VaR.

This paper is related to Ahn et al.’s optimal risk management problem as follows: First,
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in contrast to single asset exposure of Ahn et al., we consider that the financial institution

has two asset exposures to the price risks of two underlying assets. Of course, if a financial

institution can access basket options on multiple asset exposures, then a hedging problem of

multiple asset exposures is essentially the same as a hedging problem using the single option.

However, in practice it is not easy for institution to search for basket options corresponding to

their exposures.

Second, our framework allows the institutions to access options with only finite exercise

prices. In the framework of Ahn et al., the institution chooses the optimal exercise price to

minimize its VaR given a fixed cost. Therein, the institutions can always choose an put option

with optimal strike price in their setting. Unlike Ahn et al., in this paper we assume that

the number of available exercise prices on put options is finite. In order to minimize their

exposures’ VaR, the institutions must select the optimal exercise prices among several exercise

prices. Put differently, given a cost, the institution’s aim is to select the combination of exercise

prices on several put options to minimize the VaR.

When financial institutions manage the market risks of two asset exposures by minimizing

its VaR, they have to answer the following questions:

• How many exercise prices on put options make a financial institution’s risk management

optimal?

• How much put options should be purchased ?

In the rest of this paper we first solve an suboptimal problem that provides an upper

bound of the VaR because it is difficult to solve the optimization problem that minimizes

the exact VaR. It is proved that a suboptimal solution can be attained by choosing two put
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options, except for some extreme cases. Usually, one exercise price option for each underlying

asset is chosen to solve the suboptimal problem. Sometimes, two options have to be chosen

for one underlying asset (and none for the other underlying asset) to solve the suboptimal

problem. In this case the exercise prices for the options have to be adjacent. In a numerical

example, we compare the suboptimal solution with an (approximate) optimal solution that is

obtained by taking minimum of the exact VaR varying hedge ratios of the put options about

ten thousand times. The result shows that the suboptimal solution is a good approximation

for the optimal solution. The suboptimal solution is also used for the sensitivity analysis of

the hedging problem.

2 The Model and a suboptimal solution

Suppose that a institution has exposures to the price risks of two assets whose prices at time

t are denoted by S1(t) and S2(t), respectively. For i = 1, 2, the dynamics of the asset price

Si(t) are governed by

dSi(t) = µiS
i(t)dt + σiS

i(t)dzi(t) (1)

where µi is the expected rate of return and σi is the volatility of each asset price, and zi(t)

is a standard Brownian motion. We assume that z1(t) and z2(t) are dependent and let their

correlation coefficient be ρ. The institution considers a risk management strategy using put

options. However, in the market that there in no basket options with which the institution can

manage the price risks of an asset pool consisting of two assets. Instead, the institution can

access a put option associated with each asset to hedge the risk exposures. For i = 1, 2, we

define xi
1, · · · , xi

ni
as exercise prices on put options whose have Si as the underlying asset. That
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is, the number of put options associated with each underlying asset is ni, i = 1, 2. Without

loss of generality, we assume that x1
1 < x1

2 < · · · < x1
n1

and x2
1 < x2

2 < · · · < x2
n2

.

Let P i
xi

k
(t) = P (Si, xi

k, r, τ, σi) be at time t the market price of a put option where the

exercise price is xi
k, τ(= T − t) is the time to maturity, and i = {1, 2}. Then, at maturity date

the payoff of a put option, P i
xi

k
(T ) = max(xi

k−Si(T ), 0). As in Ahn et al., we assume Our risk

management framework works under the Black-Scholes economy and then

P i
xi

k
(t) = xi

ke
−rτN(d1)− Si(t)N(d2) (2)

where

d1 =
ln(xi

k/Si(t))− (r − σi
2/2)τ

σi
2
√

τ
, (3)

d2 =
ln(xi

k/Si(t))− (r + σi
2/2)τ

σi
2
√

τ
, (4)

and N(·) is the cumulative standard normal distribution.

While the institution can take the long positions, hi
k in ni put options with exercise prices

xi
k for each underlying asset, the risk management strategy is restricted to the maximum total

costs C. Put differently, the total cost of the put option strategy cannot exceed a given amount:

∑2
i=1

∑ni
k=1 hi

kP
i
xi

k
(t) ≤ C. As in Ahn et al., throughout this paper the institution’s risk

measure is the Value-at-Risk (VaR) defined as the loss at the α percent level of the distribution

on the hedged position consisting of two underlying assets and the long positions hi
k in each

of the put options P i
xi

k
(t). Then, the institution’s goal is to minimize its VaR of the hedged

position. Let the VaR of the institution’s hedged position denote VaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

).
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The institution’s minimization problem is given by

Minimize VaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

) (5)

subject to

hi
k ≥ 0 (6)
2∑

i=1

ni∑

k=1

hi
kP

i
xi

k
(t) ≤ C (7)

To obtain mathematically tractable expression for VaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

), we introduce

a mapping Ψα as follows: Let C be the collection of all random variables. Define a mapping

Ψα : C → R as

Ψα(X) = − sup{x ∈ R : P(X ≤ x) ≤ α}, X ∈ C.

Then, we obtain an expression for VaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

) as

VaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

)

= Ψα

(
2∑

i=1

Si(T ) +
2∑

i=1

ni∑

k=1

hi
kP

i
xi

k
(T )− erτ

2∑

i=1

Si(t)− erτ
2∑

i=1

ni∑

k=1

hi
kP

i
xi

k
(t)

)
. (8)

The following lemma states some properties of Ψα.

Lemma 1 For X, Y ∈ C,

(i) Ψα(X + y) = Ψα(X)− y for y ∈ R

(ii) Ψα(cX) = cΨα(X) for c ≥ 0

(iii) Ψα(X) ≥ Ψα(Y ) if X ≤ Y in distribution.
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Proof. (i) and (ii) are immediate from the definition of Ψα. Now we prove (iii). Suppose that

X ≤ Y in distribution. Then P(X ≤ x) ≥ P(Y ≤ x) for all x ∈ R, which leads to

sup{x ∈ R : P(X ≤ x) ≤ α} ≤ sup{x ∈ R : P(Y ≤ x) ≤ α}.

Therefore,

Ψα(X) = − sup{x ∈ R : P(X ≤ x) ≤ α}

≥ − sup{x ∈ R : P(Y ≤ x) ≤ α}

= Ψα(Y ),

which completes the proof. ¤

By (i) of Lemma 1, (8) becomes

VaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

)

= Ψα

(
2∑

i=1

Si(T ) +
2∑

i=1

ni∑

k=1

hi
kP

i
xi

k
(T )

)
+ erτ

2∑

i=1

Si(t) + erτ
2∑

i=1

ni∑

k=1

hi
kP

i
xi

k
(t). (9)

The analysis of the minimization problem for (9) subject to (6) and (7) is very complicated.

The main difficulty comes from that P i
xi

k
(T ) is a nonlinear function of Si(T ):

P i
xi

k
(T ) = max{xi

k − Si(T ), 0}.

For the sake of mathematical convenience, we deal with a variant of VaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

)

ṼaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

)

≡ Ψα

(
2∑

i=1

Si(T ) +
2∑

i=1

ni∑

k=1

hi
k(x

i
k − Si(T ))

)
+ erτ

2∑

i=1

Si(t) + erτ
2∑

i=1

ni∑

k=1

hi
kP

i
xi

k
(t),(10)

which is obtained by replacing P i
xi

k
(T ) in (9) with xi

k−Si(T ). By (i) of Lemma 1, (10) becomes

ṼaR(h1
1, · · · , h1

n1
;h2

1, · · · , h2
n2

)

= Ψα

(
2∑

i=1

(
1−

ni∑

k=1

hi
k

)
Si(T )

)
+ erτ

2∑

i=1

Si(t) +
2∑

i=1

ni∑

k=1

hi
k

(
xi

k − erτP i
xi

k
(t)

)
. (11)
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We consider the minimization problem

Minimize ṼaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

) (12)

subject to

hi
k ≥ 0 (13)
2∑

i=1

ni∑

k=1

hi
kP

i
xi

k
(t) ≤ C (14)

instead of the original minimization problem (5).

Remark.

1. If we consider a minimization problem concerning only one underlying asset, for an

example, such as

Minimize VaR of S1(T ) +
n1∑

k=1

h1
kP

1
x1

k
(T ) (15)

subject to

h1
k ≥ 0

n1∑

k=1

h1
kP

1
x1

k
(t) ≤ C,

then the problem is exactly the same as a variant

Minimize VaR of S1(T ) +
n1∑

k=1

h1
k(x

1
k − S1(T ))

subject to

h1
k ≥ 0

n1∑

k=1

h1
kP

1
x1

k
(t) ≤ C,

This optimization problem can be obtained by replacing P 1
x1

k
(T ) in (15) with x1

k−S1(T ).

8



-

6

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

A
A
A
A

HHHHH

O A B

C

D

E
F

G
H

x1
k1 S1(T )

x2
k2

S2(T )

Figure 1: The regions R and R̃ defined as (16) and (17), when h1
k1

> 0, h1
k = 0 for k 6= k1,

h2
k2

> 0 and h2
k = 0 for k 6= k2. The region R is the pentagon OADEG, and the region R̃ is

the triangle OBH.

However, it can be shown that the problem (5) and its variant (12) have different solu-

tions. Hence the problems (5) and (12) are not the same.

2. Because P i
xi

k
(T ) ≥ xi

k − Si(T ), (iii) of Lemma 1 shows that

VaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

) ≤ ṼaR(h1
1, · · · , h1

n1
;h2

1, · · · , h2
n2

).

Therefore, a solution of the problem (12) provides a conservative solution for the original

problem (5).
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3. Define the regions R and R̃ by

{
(S1(T ), S2(T )) ∈ R

}

=
{
Payoff(h1

1, · · · , h1
n1

;h2
1, · · · , h2

n2
) ≤ −VaR(h1

1, · · · , h1
n1

; h2
1, · · · , h2

n2
)
}

, (16)

{
(S1(T ), S2(T )) ∈ R̃

}

=
{

P̃ayoff(h1
1, · · · , h1

n1
;h2

1, · · · , h2
n2

) ≤ − ṼaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

)
}

, (17)

where

Payoff(h1
1, · · · , h1

n1
;h2

1, · · · , h2
n2

)

=
2∑

i=1

Si(T ) +
2∑

i=1

ni∑

k=1

hi
kP

i
xi

k
(T )− erτ

2∑

i=1

Si(t)− erτ
2∑

i=1

ni∑

k=1

hi
kP

i
xi

k
(t),

P̃ayoff(h1
1, · · · , h1

n1
;h2

1, · · · , h2
n2

)

=
2∑

i=1

Si(T ) +
2∑

i=1

ni∑

k=1

hi
k(x

i
k − Si(T ))− erτ

2∑

i=1

Si(t)− erτ
2∑

i=1

ni∑

k=1

hi
kP

i
xi

k
(t).

Note that P{(S1(T ), S2(T )) ∈ R} = P{(S1(T ), S2(T )) ∈ R̃} = α.

Figure 1 illustrates the regions R and R̃. For simplicity, we assumed that only one kind

of put option is used for each underlying asset, i.e., for some k1 and k2,

h1
k1

> 0, h1
k = 0 for k 6= k1, h2

k2
> 0 and h2

k = 0 for k 6= k2.

Because the probability that (S1(T ), S2(T )) is in the triangles ABC or FGH, which

equals the probability that (S1(T ), S2(T )) is in the trapezoid CDEF, is expected to be

very small, one can expect that a solution of the problem (12) is a good approximation

for a solution of the original problem (5).

Now, we analyze the minimization problem (12) subject to (13) and (14). Since

Ψα

(∑2
i=1

(
1−∑ni

k=1 hi
k

)
Si(T )

)
is a continuous function of hi

k, i = 1, 2, k = 1, · · · , ni, the
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function ṼaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

) which is given by (11) is also continuous in hi
k, i = 1, 2,

k = 1, · · · , ni. Let

H =

{
(h1

1, · · · , h1
n1

; h2
1, · · · , h2

n2
) ∈ Rn1+n2 : hi

k ≥ 0,
2∑

i=1

ni∑

k=1

hi
kP

i
xi

k
(t) ≤ C

}
.

Since H is a compact set and ṼaR is continuous, ṼaR(h1
1, · · · , h1

n1
;h2

1, · · · , h2
n2

) has a minimum

on H and we have the following proposition:

Proposition 1 The minimization problem (12) subject to (13) and (14) has a solution.

Let ei
k, i = 1, 2, k = 1, · · · , ni, denote the n1 + n2-dimensional row vector with all zeros

except the (i− 1)n1 + kth element that is one. Let H∗1 be a subset of H defined as

H∗1 =
n1⋃

k1=1

n2⋃

k2=1

Hk1,k2 , (18)

where

Hk1,k2 =



he1

k1
+

C − hP 1
x1

k1

(t)

P 2
x2

k2

(t)
e2

k2
: 0 ≤ h ≤ C

P 1
x1

k1

(t)



 .

Define a subset H∗2 of H as

H∗2 =
2⋃

i=1

ni⋃

k=1

Hi
k, (19)

where

Hi
k =





{
hei

k +
C−hP i

xi
k

(t)

P i
xi

k+1

(t)
ei

k+1 : 0 ≤ h ≤ C
P i

xi
k

(t)

}
, if k < ni,

{
hei

ni
: 0 ≤ h ≤ C

P i
xi

ni

(t)

}
, if k = ni.

For i = 1, 2, let

Ki = {k ∈ {1, · · · , ni} : P ī
xī
1
(t) < C − P i

xi
k
(t) < P ī

xī
nī

(t)},
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where ī = 3− i. For k ∈ Ki, define k∗̄
i
(k) ∈ {1, · · · , nī − 1} by

P ī
xī

k∗̄
i
(k)

(t) ≤ C − P i
xi

k
(t) < P ī

xī
k∗̄
i
(k)+1

(t).

Define a subset H∗3 of H as

H∗3 =





⋃2
i=1{ei

k + ukeī
k∗̄

i
(k) + (1−uk)eī

k∗̄
i
(k)+1 : k ∈ Ki}, if C < P 1

x1
n1

(t) + P 2
x2

n2

(t),

{e1
n1

+ e2
n2
}, otherwise,

(20)

where

uk =

P i
xi

k
(t) + P ī

xī
k∗̄
i
(k)+1

(t)− C

P ī
xī

k∗̄
i
(k)+1

(t)− P ī
xī

k∗̄
i
(k)

(t)
.

Theorem 1 The minimization problem (12) subject to (13) and (14) has a solution in H∗,

i.e.,

min
{
ṼaR(h1

1, · · · , h1
n1

; h2
1, · · · , h2

n2
) : (h1

1, · · · , h1
n1

; h2
1, · · · , h2

n2
) ∈ H

}

= min
{
ṼaR(h1

1, · · · , h1
n1

;h2
1, · · · , h2

n2
) : (h1

1, · · · , h1
n1

;h2
1, · · · , h2

n2
) ∈ H∗

}
,

where H∗ = H∗1 ∪H∗2 ∪H∗3 with (18), (19) and (20).

Note that H∗1 is the union of n1 × n2 one parameter sets; H∗2 is the union of n1 + n2 one

parameter sets; H∗3 is a set consisting of at most n1 + n2 points. Therefore, H∗ is the finite

union of one parameter sets adding a set of finite points. If it is guaranteed that ṼaR is convex

in each one parameter set, our minimization problem can be solved easily by a numerical

method.

For k1 = 1, · · · , n1 and k2 = 1, · · · , n2, define

fk1,k2 : [0,
C

P 1
x1

k1

(t)
] → R

12



as

fk1,k2(h) = ṼaR


he1

k1
+

C − hP 1
x1

k1

(t)

P 2
x2

k2

(t)
e2

k2


 .

For i = 1, 2 and k = 1, · · · , ni, define

gi
k : [0,

C

P i
xi

k

(t)
] → R

as

gi
k(h) =





ṼaR

(
hei

k +
C−hP i

xi
k

(t)

P i
xi

k+1

(t)
ei

k+1

)
if k < ni,

ṼaR
(
hei

k

)
if k = ni.

Theorem 2 below states the functions fk1,k2 , k1 = 1, · · · , n1, k2 = 1, · · · , n2, and gi
k, i = 1, 2,

k = 1, · · · , ni, are convex under a condition. To describe the condition for the convexity, we

introduce some notation: Let p : R2 → [0,∞) be the joint probability density function of

(S1(T ), S2(T )), i.e.,

p(x, y)

=





1

2πσ1σ2

√
1−ρ2xy

exp
{
− 1

2(1−ρ2)

[
( ln x−µ1

σ1
)2 − 2ρ(ln x−µ1)(ln y−µ2)

σ1σ2
( ln y−µ2

σ2
)2

]}
if x > 0, y > 0,

0 otherwise.

Partial derivatives of p(x, y) are denoted by

p1(x, y) ≡ ∂

∂x
p(x, y)

= −p(x, y)
x

[
1 +

1
2(1− ρ2)

{2(lnx− µ1)
σ2

1

− 2ρ(ln y − µ2)
σ1σ2

}]
,

p2(x, y) ≡ ∂

∂y
p(x, y)

= −p(x, y)
y

[
1 +

1
2(1− ρ2)

{2(ln y − µ2)
σ2

2

− 2ρ(lnx− µ1)
σ1σ2

}]
.
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Theorem 2 The functions fk1,k2, k1 = 1, · · · , n1, k2 = 1, · · · , n2, and gi
k, i = 1, 2, k =

1, · · · , ni, are all convex if

∫ ∞

−∞
u2[cos θ p1(c1(θ)−u sin θ, c2(θ)+u cos θ)

+ sin θ p2(c1(θ)−u sin θ, c2(θ)+u cos θ)] du > 0 (21)

for all θ ∈ [0, 2π), where c1(θ) and c2(θ) are defined in Appendix B.

Because it seems to be very difficult to check analytically whether the condition (21) holds

or not, we investigate the condition (21) numerically.

3 Numerical Analysis

In this section we compare the exact VaR with our suboptimal VaR and illustrate the subop-

timal VaR and optimal hedging ratios.

3.1 Exact VaR and Suboptimal VaR

To explore the difference between the exact VaR (that is, optimal solution) and our suboptimal

VaR, we first calculate the optimal VaR. We calculate an (approximate) optimal solution that

is obtained by taking minimum of the exact VaR varying hedge ratios of the put options about

ten thousand times.

Because the calculation of the optimal VaR time consuming, we consider only two exercise

prices for each underlying asset. In this subsection, baseline parameter values are as follows:

the asset values at time t S1(t) = 100 and S2(t) = 80, the drifts of the asset values µ1 = 0.1

and µ2 = 0.07, the volatilities of the asset values σ1 = 0.4 and σ2 = 0.2, the correlation
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coefficient ρ = 0.7, the interest rate r = 0.05, the horizon τ = 0.5, exercise prices for two assets

(x1
1, x

1
2) = (95, 105) and (x2

1, x
2
2) = (75, 85), a hedging cost C = 5$, and the VaR tail α = 5%.

Table 1 shows that shows that the suboptimal solution is a good approximation for the

optimal solution. The greater a hedging cost is, the more accurate our suboptimal VaR is.

3.2 Optimal Hedging Ratios

This subsection shows the suboptimal VaR and optimal hedging ratios. Hereafter, the baseline

parameter values are as follows: the asset values at time t S1(t) = 100 and S2(t) = 80, the

drifts of the asset values µ1 = 0.1 and µ2 = 0.07, the volatilities of the asset values σ1 = 0.4 and

σ2 = 0.2, the correlation coefficient ρ = 0.7, the interest rate r = 0.05, the horizon τ = 0.5,

exercise prices for two assets (x1
1, x

1
2, x

1
3) = (90, 100, 110) and (x2

1, x
2
2, x

2
3) = (70, 80, 90), a

hedging cost C = 5$, and the VaR tail α = 5%.

First, we analyze the effect of the various hedging costs on the suboptimal VaR and optimal

hedging ratios. Table 2 shows that if an institution has enough money to hedge its exposure,

then it prefers in-the-money options most. This is because using in-the-money options provides

the greatest hedging benefit. For a cost of $20, we observe that the ṼaR is minimized when

h1
3 = 1, h2

3 = 0.1337, h2
2 = 0.8663 and the remaining hedge ratios are zero. If an institution’s

hedging cost is greater than $20, then h2
3 is larger than 0.1337. That is, if a hedging cost

restriction were relaxed, then a institution would use more in-the-money options.

In contrast to the case that the hedging cost is $20, for other hedging costs less than $20

the institution cannot use the in-the-money options because the prices of the in-the-money

options are much higher than those of the at-the-money or out-out-the-money options. For

15



the lowest hedging cost, $2, the ṼaR is minimized when only one asset S1 is hedged using a

out-of-the-money option. This result may come from the fact that because S1 is more volatile

than S2, S1 has more influence on ṼaR than S1. Thus, when an institution is restricted to

very small hedging costs, it is best policy to hold a put option on S1.

A Proof of Theorem 1

For simplicity of notation, we introduce a function ϕα : R2 → R defined as

ϕα(a, b) = Ψα(aS1(T ) + bS2(T )).

By (11), for (h1
1, · · · , h1

n1
; h1

2, · · · , h2
n2

) ∈ H, we have

ṼaR(h1
1, · · · , h1

n1
; h1

2, · · · , h2
n2

)

= ϕ

(
1−

n1∑

k=1

h1
k, 1−

n2∑

k=1

h2
k

)
−

2∑

i=1

ni∑

k=1

hi
k(x

i
k − erτP i

xi
k
(t)) + erτ

2∑

i=1

Si(t). (22)

The following lemma is given here for later use.

Lemma 2 If i ∈ {1, 2} and 0 < x < y < z, then

P i
y(t)− P i

x(t)
y − x

<
P i

z(t)− P i
y(t)

z − y
.

Proof. It is well known that P i
x(t) is a strict convex function of x. From this, the result is

immediate. ¤

Lemma 3 If

(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

)

/∈
n1−1⋃

k=1

n2−1⋃

l=1

{
ae1

k + be1
k+1 + ce2

l + de2
l+1 ∈ H : a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0

}
, (23)
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then (h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

) is not a solution of the minimization problem (12) subject to

(13) and (14).

Proof. Suppose that (31) holds. There are i ∈ {1, 2} and k1, k2, k3 such that

1 ≤ k1 < k2 < k3 ≤ ni, hi
k1

> 0 and hi
k3

> 0.

We will deal with two cases separately.

Case 1:

hi
k1

P i
xi

k3

(t)− P i
xi

k2

(t)
≥ hi

k3

P i
xi

k2

(t)− P i
xi

k1

(t)
.

Let

h̃j
k =





hi
k1
− hi

k3

P i
xi

k3

(t)−P i
xi

k2

(t)

P i
xi

k2

(t)−P i
xi

k1

(t)
if i = j, k = k1

hi
k2

+ hi
k3

P i
xi

k3

(t)−P i
xi

k1

(t)

P i
xi

k2

(t)−P i
xi

k1

(t)
if i = j, k = k2

0 if i = j, k = k3

hj
k otherwise.

Then h̃j
k ≥ 0, j = 1, 2, k = 1, · · · , nj , and

2∑

j=1

nj∑

k=1

h̃j
kP

j

xj
k

(t) =
2∑

j=1

nj∑

k=1

hj
kP

j

xj
k

(t) ≤ C.

Further,

nj∑

k=1

h̃j
k =

nj∑

k=1

hj
k, j = 1, 2.

17



Therefore (22) leads to

ṼaR(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

)− ṼaR(h̃1
1, · · · , h̃1

n1
; h̃2

1, · · · , h̃2
n2

)

= (hi
k1
− h̃i

k1
)(xi

k1
− erτP i

xi
k1

(t)) + (hi
k2
− h̃i

k2
)(xi

k2
− erτP i

xi
k2

(t)) + hi
k3

(xi
k3
− erτP i

xi
k3

(t))

=
hi

k3

P i
xi

k2

(t)− P i
xi

k1

(t)

[
(P i

xi
k3

(t)− P i
xi

k2

(t))(xi
k1
− erτP i

xi
k1

(t))

−(P i
xi

k3

(t)− P i
xi

k1

(t))(xi
k2
− erτP i

xi
k2

(t)) + (P i
xi

k2

(t)− P i
xi

k1

(t))(xi
k3
− erτP i

xi
k3

(t))
]

=
hi

k3

P i
xi

k2

(t)− P i
xi

k1

(t)

[
(P i

xi
k3

(t)− P i
xi

k2

(t))(xi
k1
− xi

k3
)− (P i

xi
k3

(t)− P i
xi

k1

(t))(xi
k2
− xi

k3
)
]
,

which is positive by Lemma 2. Therefore (h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

) cannot be a solution of the

minimization problem (12) subject to (13) and (14).

Case 2:

hi
k1

P i
xi

k3

(t)− P i
xi

k2

(t)
<

hi
k3

P i
xi

k2

(t)− P i
xi

k1

(t)
.

Let

h̃j
k =





0 if i = j, k = k1

hi
k2

+ hi
k1

P i
xi

k2

(t)−P i
xi

k1

(t)

P i
xi

k3

(t)−P i
xi

k2

(t)
if i = j, k = k2

hi
k3
− hi

k1

P i
xi

k2

(t)−P i
xi

k1

(t)

P i
xi

k3

(t)−P i
xi

k2

(t)
if i = j, k = k3

hj
k otherwise.

By a similar way as in case 1, it can be shown that h̃j
k ≥ 0, j = 1, 2, k = 1, · · · , nj , and

∑2
j=1

∑nj

k=1 h̃j
kP

j

xj
k

(t) ≤ C, and that

ṼaR(h̃1
1, · · · , h̃1

n1
; h̃1

2, · · · , h̃2
n2

) < ṼaR(h1
1, · · · , h1

n1
; h1

2, · · · , h2
n2

).

Therefore (h1
1, · · · , h1

n1
;h2

1, · · · , h2
n2

) cannot be a solution of the minimization problem (12)

subject to (13) and (14). ¤
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Recall that

H = {(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

) ∈ Rn1+n2 : hi
k ≥ 0,

2∑

i=1

ni∑

k=1

hi
kP

i
xi

k
(t) ≤ C}.

For any vector h, let p(h) denote the number of positive components in h.

Lemma 4 Let i ∈ {1, 2} and ī = 3− i. Suppose that aei
k1

+ bei
k2

+ ceī
k3

+ deī
k4

minimizes (12)

subject to (13) and (14), where a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, k1 6= k2, k3 6= k4. If acd > 0

and (a + b − 1)2 + (c + d − 1)2 > 0, then there are a∗, c∗ and d∗ such that a∗c∗d∗ = 0 and

a∗ei
k1

+ bei
k2

+ c∗eī
k3

+ d∗eī
k4

minimizes (12) subject to (13) and (14).

Proof. Without loss of generality, we may assume that i = 1. We deal with two cases

separately: ‘a + b 6= 1’ and ‘a + b = 1′.

Case 1. a + b 6= 1.

Define a function V : DV → R as

V (s) = ṼaR(se1
k1

+ be1
k2

+ ue2
k3

+ ve2
k4

), s ∈ DV

where u and v are determined by

sP 1
x1

k1

(t) + uP 2
x2

k3

(t) + vP 2
x2

k4

(t) = aP 1
x1

k1

(t) + cP 2
x2

k2

(t) + dP 2
x2

k4

(t) (24)

(1− a− b)(1− u− v) = (1− s− b)(1− c− d) (25)

and

DV = {s ∈ R : s ≥ 0, u ≥ 0, v ≥ 0}.
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By (22),

V (s) = ϕ(1− s− b, 1− u− v)− s(x1
k1
− erτP 1

x1
k1

(t))

− b(x1
k2
− erτP 1

x1
k2

(t))− u(x2
k3
− erτP 2

x2
k3

(t))

− v(x2
k4
− erτP 2

x2
k4

(t)) + erτ
2∑

j=1

Sj(t) (26)

Since (25) implies

(1− s− b, 1− u− v) =
1− s− b

1− a− b
(1− a− b, 1− c− d),

we have

ϕ(1− s− b, 1− u− v) =
1− s− b

1− a− b
ϕ(1− a− b, 1− c− d) if

1− s− b

1− a− b
≥ 0. (27)

Substituting (27) into (26) leads to

V (s) =
1− s− b

1− a− b
ϕ(1− a− b, 1− c− d)− s(x1

k1
− erτP 1

x1
k1

(t))

− b(x1
k2
− erτP 1

x1
k2

(t))− u(x2
k3
− erτP 2

x2
k3

(t))

− v(x2
k4
− erτP 2

x2
k4

(t)) + erτ
2∑

j=1

Sj(t) if
1− s− b

1− a− b
≥ 0. (28)

Note that u and v, determined by (24) and (25), are linear functions of s on DV ∩ {s :

1−s−b
1−a−b ≥ 0}. Thus, V (s) is also a linear function of s on DV ∩ {s : 1−s−b

1−a−b ≥ 0}. Since a is an

interior point of DV ∩ {s : 1−s−b
1−a−b ≥ 0} and V (s) has a minimum at s = a, V is constant on

DV ∩ {s : 1−s−b
1−a−b ≥ 0}.

Let

a∗ =





inf DV if a + b < 1

supDV if a + b > 1.
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Let c∗ and d∗ be the solution of (24) and (25) with s = a∗. Then a∗c∗d∗ = 0 and a∗e1
k1

+be1
k2

+

c∗e2
k3

+ d∗e2
k4

, which equals ae1
k1

+ be1
k2

+ ce2
k3

+ de2
k4

, minimizes (12) subject to (13) and (14).

Case 2. a + b = 1.

Define a function V1 : DV1 → R as

V1(u) = ṼaR(ae1
k1

+ be1
k2

+ ue2
k3

+ ve2
k4

), u ∈ DV1

where u is determined by

uP 2
xk3

(t) + vP 2
xk4

(t) = cP 2
xk3

(t) + dP 2
xk4

(t) (29)

and

DV1 = {u ∈ R : u ≥ 0, v ≥ 0}. (30)

Since a + b = 1, we have c + d 6= 1. By (22),

V1(u) = ϕ(0, 1− u− v)− a(x1
k1
− erτP 1

x1
k1

(t))− b(x1
x2
− erτP 2

xk2
(t))

−u(x2
k3
− erτP 2

x2
k3

(t))− v(x2
k4
− erτP 2

x2
k4

(t)) + erτ
2∑

j=1

Sj(t)

=
1−u−v

1−c−d
ϕ(0, 1−c−d)− a(x1

k1
− erτP 1

x1
k1

(t))− b(x1
x2
− erτP 2

xk2
(t))

−u(x2
k2
− erτP 2

x2
k2

(t))− v(x2
k2+1 − erτP 2

x2
k2+1

(t)) + erτ
2∑

j=1

Sj(t) if
1− u− v

1− c− d
≥ 0.

Note that v, which is determined by (29), is a linear function of u. Thus, V1(u) is also a

linear function of u on DV1∩{u : 1−u−v
1−c−d ≥ 0}. Since c is an interior point of DV1∩{u : 1−u−v

1−c−d ≥

0} and V1(u) has a minimum at u = c, V1 is constant on DV1 ∩ {u : 1−u−v
1−c−d ≥ 0}.

Let a∗ = a and

c∗ =





inf DV1 if c + d < 1

supDV1 if c + d > 1.

21



Let d∗ be the solution of (29) with u = c∗. Then a∗c∗d∗ = 0 and a∗e1
k1

+ be1
k2

+ c∗e2
k3

+ d∗e2
k4

,

which equals ae1
k1

+ be1
k2

+ ce2
k3

+ de2
k4

, minimizes (12) subject to (13) and (14). ¤

Lemma 5 If hi
k > 0 for some i ∈ {1, 2} and k ∈ {1, · · · , ni − 1} and if

2∑

j=1

nj∑

l=1

hj
kl

P j

xj
kl

(t) < C,

then (h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

) is not a solution of the minimization problem (12) subject to

(13) and (14).

Proof. Suppose that hi
k > 0 for some i ∈ {1, 2} and k ∈ {1, · · · , ni − 1}. Choose ε ∈ (0, hi

k]

such that

2∑

j=1

nj∑

l=1

hj
kl

P j

xj
kl

(t) + ε
(
P i

xi
ni

(t)− P i
xi

k
(t)

)
≤ C.

Then

(h1
1, · · · , h1

n1
; h2

1, · · · , h2
n2

) + ε(ei
n2
− ei

k) ∈ H.

By (22),

ṼaR((h1
1, · · · , h1

n1
; h1

2, · · · , h2
n2

) + ε(ei
n2
− ei

k))

= ϕ

(
1−

n1∑

k=1

h1
k, 1−

n2∑

k=1

h2
k

)
−

2∑

i=1

ni∑

k=1

hi
k(x

i
k − erτP i

xi
k
(t)) + erτ

2∑

i=1

Si(t)

−ε
((

xi
k − erτP i

xi
k
(t)

)
−

(
xi

ni
− erτP i

xi
ni

(t)
))

= ṼaR(h1
1, · · · , h1

n1
; h1

2, · · · , h2
n2

)− ε
((

xi
k − erτP i

xi
k
(t)

)
−

(
xi

ni
− erτP i

xi
ni

(t)
))

< ṼaR(h1
1, · · · , h1

n1
; h1

2, · · · , h2
n2

)).

Therefore (h1
1, · · · , h1

n1
; h1

2, · · · , h2
n2

) is not a solution of the minimization problem (12) subject

to (13) and (14). ¤
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Now we are ready to prove Theorem 1.

Proof of Theorem 1. By Lemmas 3 and 4,

min
{

ṼaR(h1
1, · · · , h1

n1
; h1

2, · · · , h2
n2

) : (h1
1, · · · , h1

n1
; h1

2, · · · , h2
n2

) ∈ H
}

= min
{

ṼaR(h1
1, · · · , h1

n1
; h1

2, · · · , h2
n2

) : (h1
1, · · · , h1

n1
; h1

2, · · · , h2
n2

) ∈ H1 ∪H2 ∪H3

}
,

where

H1 =
n1⋃

k1=1

n2⋃

k2=1

{
ae1

k1
+ be2

k2
: a ≥ 0, b ≥ 0, aP 1

x1
k1

(t) + bP 2
x2

k2

(t) ≤ C

}
,

H2 =
2⋃

i=1

ni−1⋃

k=1

{
aei

k + bei
k+1 : a ≥ 0, b ≥ 0, aP i

xi
k
(t) + bP i

xi
k+1

(t) ≤ C
}

,

H3 =
n1−1⋃

k1=1

n2−1⋃

k2=1

{
ae1

k1
+ be1

k1+1 + ce2
k2

+ de2
k2+1 : a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, a + b = 1,

c + d = 1, aP 1
x1

k1

(t) + bP 1
x1

k1+1
(t) + cP 2

x2
k2

(t) + dP 2
x2

k2+1
(t) ≤ C

}
.

By Lemma 5, we have

min
{

ṼaR(h1
1,· · ·, h1

n1
;h1

2,· · ·, h2
n2

) : (h1
1,· · ·, h1

n1
; h1

2,· · ·, h2
n2

) ∈ H
}

= min
{

ṼaR(h1
1,· · ·, h1

n1
; h1

2,· · ·, h2
n2

) : (h1
1,· · ·, h1

n1
; h1

2,· · ·, h2
n2

) ∈ H∗ ∪Hn1,n2 ∪H′3
}

,(31)

where

Hn1,n2 =
{

ae1
n1

+ be2
n2

: a ≥ 0, b ≥ 0, aP 1
x1

n1
(t) + bP 2

x2
n2

(t) ≤ C
}

,

H′3 =
n1−1⋃

k1=1

n2−1⋃

k2=1

{
ae1

k1
+be1

k1+1+ce2
k2

+de2
k2+1 : a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, a+b = 1,

c + d = 1, aP 1
x1

k1

(t)+bP 1
x1

k1+1
(t)+cP 2

x2
k2

(t)+dP 2
x2

k2+1
(t) = C

}
.
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By (22), if a + b = c + d = 1 and ae1
k1

+ be1
k1+1 + ce2

k2
+ de2

k2+1 ∈ H, then

ṼaR(ae1
k1

+ be1
k1+1 + ce2

k2
+ de2

k2+1)

= −a(x1
k1
− erτP 1

x1
k1

(t)))− b(x1
k1+1 − erτP 1

x1
k1+1

(t)))

−c(x2
k2
− erτP 2

x2
k2

(t)))− d(x2
k2
− erτP 2

x2
k2+1

(t)))− erτ
2∑

i=1

Si(t),

which is a linear function of (a, b, c, d). Hence, by the theory of the linear programming, we

have

min
{

ṼaR(h1
1,· · ·, h1

n1
;h1

2,· · ·, h2
n2

) : (h1
1,· · ·, h1

n1
; h1

2,· · ·, h2
n2

) ∈ H′3
}

= min
{

ṼaR(h1
1,· · ·, h1

n1
; h1

2,· · ·, h2
n2

) : (h1
1,· · ·, h1

n1
; h1

2,· · ·, h2
n2

) ∈ H∗3
}

if H′3 6= φ. (32)

Now suppose that ae1
n1

+be2
n2

with a > 0, b > 0, (a, b) 6= (1, 1) and aP 1
x1

n1

(t)+bP 2
x2

n2

(t) < C

minimizes (12) subject to (13) and (14). Without loss of generality, we may assume that a 6= 1.

Define a function V2 : DV2 → R as

V2(s) = ṼaR
(

se1
n1

+
(

1− (1− b)(1− s)
1− a

)
e2

n2

)
, s ∈ DV2 ,

where

DV2 =
{

s : s ≥ 0, 1− (1− b)(1− s)
1− a

≥ 0, sP 1
x1n1

(t) +
(

1− (1− b)(1− s)
1− a

)
P 2

x2n2
(t) ≤ C

}
.

By (22), we have

V2(s) =
1− s

1− a
ϕ(1− a, a− b)− a

(
x1

n1
− erτP 1

x1
n1

(t)
)

−b
(
x2

n2
− erτP 2

x2
n2

(t)
)

+ erτ
2∑

i=1

Si(t) if
1− s

1− a
≥ 0,

which is a linear function of s on DV2 ∩ {s : 1−s
1−a ≥ 0}. Since a is an interior point of

DV2 ∩ {s : 1−s
1−a ≥ 0} and V2(s) has a minimum at s = a, V2 is constant on DV2 ∩ {s : 1−s

1−a ≥ 0}.
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Figure 2: The region Rθ = {(cos θ)S1(T )+(sin θ)S2(T ) ≤ k(θ)}, and the point (c1(θ), c2(θ)) =

E[(S1(T ), S2(T ))|(cos θ)S1(T ) + (sin θ)S2(T ) = k(θ)]

Let

a∗ =





inf DV2 if a < 1,

supDV2 if a > 1.

and b∗ = 1 − (1−b)(1−a∗)
1−a . Then a∗ = 0 or b∗ = 0 or a∗P 1

x1
n1

(t) + b∗P 2
x2

n2

(t) = C. Thus

a∗e1
n1

+ b∗e2
n2
∈ H∗ and a∗e1

n1
+ b∗e2

n2
minimizes (12) subject to (13) and (14). This together

with (31) and (32) completes the proof. ¤

B Definition of c1(·) and c2(·)

For θ ∈ [0, 2π), define k(θ) by

P{(cos θ)S1(T ) + (sin θ)S2(T ) ≤ k(θ)} = α.

(See Figure 2.) Let (c1(θ), c2(θ)), θ ∈ [0, 2π), be the conditional expectation of (S1(T ), S2(T ))

given (cos θ)S1(T ) + (sin θ)S2(T ) = k(θ), i.e.,

(c1(θ), c2(θ)) = E[(S1(T ), S2(T ))|(cos θ)S1(T ) + (sin θ)S2(T ) = k(θ)].
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For θ ∈ [0, 2π), (c1(θ), c2(θ)) can be calculated by

c1(θ) =

∫∞
−∞(k(θ) cos θ − u sin θ) p(k(θ) cos θ − u sin θ, k(θ) sin θ + u cos θ) du∫∞

−∞ p(k(θ) cos θ − u sin θ, k(θ) sin θ + u cos θ) du
,

c2(θ) =

∫∞
−∞(k(θ) sin θ + u cos θ) p(k(θ) cos θ − u sin θ, k(θ) sin θ + u cos θ) du∫∞

−∞ p(k(θ) cos θ − u sin θ, k(θ) sin θ + u cos θ) du
.

Notice that

(cos θ)c1(θ) + (sin θ)c2(θ) = k(θ).
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Table 1: Exact VaR and Suboptimal VaR

C Method VaR h1
1
∗

h1
2
∗

h2
1
∗

h2
2
∗

2 Exact 46.2305 0.1572 0 0.4712 0
Suboptimal 46.5050 0.1172 0 0.6462 0

5 Exact 37.0898 0.5258 0 0.5969 0
Suboptimal 37.2507 0.5388 0 0.5402 0

7 Exact 30.9375 0.7352 0 0.8400 0
Suboptimal 31.3006 0.7891 0 0.6040 0

10 Exact 23.1855 1.0000 0 0.8376 0.1624
Suboptimal 23.1855 1.0000 0 0.8376 0.1624

20 Exact 13.8452 0 1.0000 0 1.0000
Suboptimal 13.8452 0 1.0000 0 1.0000

The exact VaR is obtained by taking minimum of the exact VaR varying hedge ratios of the put
options about ten thousand times. Exact and Suboptimal denote the exact VaR and the suboptimal
VaR, respectively. The parameter values are as follows: the asset values at time t, S1(t) = 100 and
S2(t) = 80; the drifts of the asset values, µ1 = 0.1 and µ2 = 0.07; the volatilities of the asset values,
σ1 = 0.4 and σ2 = 0.2; the correlation coefficient, ρ = 0.7; the interest rate, r = 0.05; the horizon,
τ = 0.5; exercise prices, (x1

1, x
1
2) = (95, 105) and (x2

1, x
2
2) = (75, 85); and the VaR tail, α = 5%.
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Table 2: Suboptimal VaR and optimal hedge ratios

C ṼaR h1
1
∗

h1
2
∗

h1
3
∗

h2
1
∗

h2
2
∗

h2
3
∗

2.0 45.6638 0.3610 0 0 0 0 0
5.0 35.2339 0.8050 0 0 0.7860 0 0
7.0 29.0226 1.0000 0 0 0.7289 0.2711 0
10.0 22.6992 0.7889 0.2111 0 0 1.0000 0
20.0 13.7260 0 0 1.0000 0 0.8663 0.1337

The parameter values are as follows: the asset values at time t, S1(t) = 100 and S2(t) = 80; the drifts
of the asset values, µ1 = 0.1 and µ2 = 0.07; the volatilities of the asset values, σ1 = 0.4 and σ2 = 0.2;
the correlation coefficient, ρ = 0.7; the interest rate, r = 0.05; the horizon, τ = 0.5; exercise prices,
(x1

1, x
1
2, x

1
3) = (90, 100, 110) and (x2

1, x
2
2, x

2
3) = (70, 80, 90); and the VaR tail, α = 5%.
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