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Abstract
Variable annuities have grown tremendously in recent years, offering life insurers
significant growth opportunities. These equity and interest rate structured products offer a
broad range of guarantees to the policyholders, and insurers must manage their risks.

The insurer’s risk management program must consider modeling and implementation
challenges beyond that of the standard capital market approach. This paper proposes
solutions to six significant issues: (1) computational efficiency, (2) impact of equity
returns and interest rate correlations on the cost of guarantee, (3) uncertain surrendering
of policies and withdrawal of account value, (4) internal transfer of funds, (5) suboptimal
exercise of options, and (6) a cost/benefit analysis of a hedging program.

These solutions are extended from the traditional capital market approach. Specifically, in
this paper, I describe the fair valuation of the guarantees using a three factor model
incorporating interest rate and equity risks. Then I use the Linear Path Space
methodology to simulate and value the risks. Finally, I simulate the effectiveness of using
a combined static-dynamic hedging program in dealing with the practical considerations
mentioned above.

Keywords: variable annuities, static-dynamic hedging, key rate duration, linear path
space, insurer’s risk management, guaranteed minimum benefits
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A. Introduction 

 
Variable annuities are retirement products sold by insurance companies to individuals, 
qualified and non-qualified accounts. The insurance companies manage the retirement 
contributions over a period of time, the accumulation period, for a fee in their separate 
accounts. Each policyholder at the end of the accumulation period can choose to receive 
the account value or a specified annuity.  But, insurers also offer “riders” to this basic 
product. 
 
Insurers offer their policyholders guarantees in these products such as the Guaranteed 
Minimum Death Benefits (GMDB), the Guaranteed Minimum Account Value (GMAV), 
the Guaranteed Minimum Withdrawal Benefits (GMWB), and the Guaranteed Minimum 
Income Benefits (GMIB). In practice, the variable annuities often have combinations of 
these guarantees with many variations to the basic design. 
 
Consider GMIB as an example. The variable annuities offer the policyholder the option 
of receiving the account value or an annuity at the end of the accumulation period. This 
option leads to a complex mix of equity and interest rate risks embedded in the guarantee. 
 
Insurers bear the risks of these guarantees and must manage such risks on their balance 
sheet. Therefore a methodology to measure and manage the risks of these guarantees is 
an important issue. To date, research has focused on treating the guarantees of the 
variable annuities as financial products, using the standard value sensitivities (the greeks) 
to measure and manage their risks (Milevsky and Promislow (2001), Boyle and Hardy 
(2003) and Wilkie et al. (2003)). An alternative approach is static hedging. One method 
constructs a portfolio of tradable derivatives that matches the payoffs of the guarantee of 
a fixed annuity (Pelsser (2003)). Another method, pathwise immunization, uses a 
portfolio of equity and interest rate options that matches the pathwise values of the 
guarantees (Ho and Mudavanhu (2005a)).  However, these approaches do not address 
some of the key practical considerations for an insurer to implement a hedging program. 
 
The purpose of this paper is to fill this void. This paper proposes solutions to six 
significant issues: (1) computational efficiency, (2) impact of equity returns and interest 
rate correlations on the cost of the guarantee, (3) uncertain surrendering of policies and 
withdrawal of account value, (4) a cost/benefit analysis of a hedging program, (5) 
suboptimal exercise of options, and, (6) alternative to equity funds and internal transfer of 
funds. 
 
Our method uses the capital market approach. Specifically, in this paper, we describe the 
fair valuation of the guarantees using a three factor model incorporating interest rate and 
equity risks. We extend the generalized two factor Ho-Lee model, an arbitrage-free 
interest rate model, to incorporate an equity return factor. The valuation model is then 
used to value a Guaranteed Minimum Income Benefit (GMIB), under a range of 
correlations between the equity returns and the yield curve level and slope movements. 
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To enhance the computational efficiency, we propose the extended Linear Path Space 
methodology that combines interest rate and equity risks to simulate and value the GMIB 
risks. We then describe a combined static-dynamic hedging program that deals with the 
efficiency of the hedging program. The dynamic hedging program is based on using the 
key rate durations and delta. Finally, we extend the basic model in the paper to describe 
some solutions to the remaining practical considerations. 
 
The main results of the paper are summarized as follows. (1) The GMIB value is 
estimated to be 13.42% of the account value. The hedging portfolio of equity and bond 
options can hedge the GMIB effectively, even though the GMIB has an embedded option 
with a stochastic strike price. (2) The residual risk from the pathwise immunization is 
relatively small, only $1.28 total absolute amount used in hedging $14.69 of GMIB on a 
$100 account value. The mismatch of the key rate durations of the GMIB and the option 
hedging portfolio can be managed by dynamic hedging using swaps and actively traded 
bonds. (3) The correlations between the yield curve movements and the equity return risk 
can significantly affect the guaranteed value. The correlations of the equity returns with 
the yield curve movements may account for 9.5% of the GMIB value.  In particular, a 
hedging program must recognize the significant impact of the steepening movement of 
the yield curve on the GMIB value. (4) The suboptimal exercise of options can be 
modeled by incorporating transaction cost, using the methodology used in modeling 
prepayments in mortgage-backed securities valuation. (5) The value-at-risk by scenarios 
of a GMIB can be measured by the pathwise values of the LPS valuation. 
 
The paper proceeds as follows. Section B describes the valuation model of a GMIB. 
While we use a GMIB in this paper for the analysis, the method can be extended to other 
guarantees of variable annuity. Section C describes the GMIB modeling using LPS and 
discusses the computational efficiency and the issues with equity correlations to the yield 
curve movements. Section D presents a static-dynamic hedging strategy and describes its 
application to managing the product risks and to structuring a cost/benefit analysis of a 
hedging program. Section E describes other extensions of the basic model that would 
incorporate the suboptimal exercise of options and non-equity investment funds. Section 
F contains the conclusions, suggesting the broad implications of the results. 
 
B. A Model of a Guaranteed Minimum Income Benefit (GMIB) 
 
The valuation model is based on a combined interest rate and equity return model. The 
model is related to Kishimoto (1989) which provides a two dimensional recombining 
lattice model that relates the Ho-Lee one factor model (1986) with an equity return 
process. Our interest rate model is the generalized Ho-Lee two factor interest rate model 
and the equity returns are not recombining, as the equity returns are modeled as a 
lognormal distribution and not a binomial distribution. 
 
There are many types of guaranteed minimum income benefits (GMIB) of a variable 
annuity. In this paper, we describe only the salient features of the guarantee that is 
relevant to the paper.  The GMIB model is based on Ho and Mudavanhu (2005a). For the 
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completeness of the presentation, we briefly describe the model here that highlights the 
economic assumptions.  
 

1. Market Assumptions 
 
Our model assumes that the GMIB and the variable annuity can be viewed as standard 
contingent claims on the market interest rate and equity risks. Specifically, the 
assumption enables us to show that the variable annuity and GMIB fair values are 
directly and instantaneously related to the market risks, and therefore, they can be 
replicated by market instruments. 
 
For the interest rate model, we assume a two-factor arbitrage-free model (Ho-Lee (2005)), 
represented in the continuous time formulation here: 
 

1 1 2 2d ( , )d ( , )d ( , )dr rr r t t r t W r t Wθ σ σ= + +                                                                         (1) 

 
θ(r, t) depends on the initial spot yield curve and the term structure of volatilities. σr1(r, t) 
and σr2(r, t) are the term structure volatilities of the interest rate model. Each of the 
volatilities has the behavior that 
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σi(t) is a continuous function of t for i = 1,2. R is called the threshold rate, a real number. 
When the short-term rate exceeds threshold rate, the model is normal for that risk factor. 
Conversely, when the short rate falls below the threshold rate, the model is lognormal. 
 
We use this two-factor Ho-Lee model (2005) to model the interest rate risk for analyzing 
the variable annuities because this model fulfills the following requirements. First, the 
Ho-Lee model is arbitrage-free enabling us to relative value the contingent claims. 
Second, this model behaves lognormally when interest rates are low. Third, the two-
factor model enables us to decouple the equity one period expected returns, which must 
equal the short-term rate, from the long rate, which determines the annuity value. Any 
one-factor model assuming the short rate to be perfectly correlated with the long rate 
would be problematic for modeling GMIB. Fourth, the Ho-Lee model is not a lognormal 
model, in that the interest rates do not grow exponentially. Unacceptably high interest 
rates would lead to unrealistic expected instantaneous equity returns.  Fifth, recently Ho 
and Mudavanhu (2005b) have shown that the model is robust empirically, providing 
significant explanatory power to the observed prices of a broad range of traded swaptions. 
The specification of the generalized Ho-Lee model is provided in Appendix A for the 
completeness of the exposition. 
 
We assume that the variable annuity invests in an equity index and the equity return 
process follows a lognormal process under the risk neutral martingale process given by 
the standard equation. 
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S is the value of the index. r and σ are the instantaneous risk free returns and standard 
deviation of the index respectively. dZ, dW1 and dW2 are the independent standard 

Wiener processes. ρ1 (ρ2) is the correlation coefficient between equity returns and the 
first (second) factor of interest rate movements of the generalized Ho-Lee model. The 
first factor can be described as the “steepening movement” where the short term rate 
moves more than the long term rate. The second factor is the parallel movement where 
the entire yield curve shifts in a parallel fashion. Also note that the two factors of 
generalized Ho-Lee model are independent of each other. 
 

2. The Variable Annuity with the GMIB 
 
We assume that the variable annuity is a single premium product. The policyholder pays 
a premium P initially.  The premium is invested in an equity index S.  The fee of the 
variable annuity is paid continuously, and it is a constant proportion f of the account 
value.  Let V be the account value. Then 
 
dV = dS – fVdt                                                                                                                   (4) 
 
At the end of the accumulation period, T, the policyholder can elect to receive the 
account value or a zero coupon bond, with maturity T*. We use a zero coupon bond 
instead of an annuity, equal payments over a period of time, for the clarity of exposition. 
A zero coupon bond can capture the impact of interest rate risks of the variable annuity. 
We further assume that the policyholders have no mortality risk, do not lapse or seek 
partial withdrawal. We will consider lapsation later in the paper. These simplifying 
assumptions do not affect the results of the analysis because the mortality risk is not 
related to market risks. Finally, we assume that the policyholders maximize their wealth. 
Specifically, the payoff to the policyholder at the end of the accumulation period is given 
by the maximum of the account value and the bond (the fixed annuity) value: 
 
Max[V(T), B(T, T*)]                                                                                                          (5) 
 
where V(T) and B(T, T*) are the values of the account and the zero coupon bond with 
maturity T* at time T respectively. 
 
Our model seeks to capture the key features of the option embedded in the GMIB, which 
is the equity put option feature with a stochastic strike price. The stochastic behavior is 
driven by the interest rate uncertainty, affecting the fixed annuity value. 
 

3. Valuation Model 
 
The valuation model is based on the discrete time framework. Specifically, we use a 
monthly step size to value the variable annuity and the GMIB. 
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The return of the index is given by a lognormal process with an expected return r, the risk 

free rate under the “risk neutral assumption” and an instantaneous volatility of σ over a 
one month period. Let S(n) be the index value at time n, where each time period is one 
month, then by discretizing Equation (3) we get 
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Given the yield curve and the interest rate volatility surface, the two-factor interest rate 
lattice can be specified according to Appendix A. Given a random interest rate path taken 

from the interest rate lattice model, the values ε1 and ε2 from the interest rate lattice are 
known. The value of ε1 or ε2 is +1 or -1, depending on the outcome of the risk factors 
from time n to time n+1. The value of εz is drawn from N ~ (0, 1). Equation (6) provides 
a path of the equity index value. The set of interest rates and the equity value for each 
path is called a scenario. Note that the returns of the account value are locally correlated 
to the interest rate factors as specified by Equation (6). 
 
The valuation of the variable annuity begins with the specification of the account value 
along a scenario path. Let V(n; i, j) be the account value at time n, the value at the end of 
the nth period and at the state (i, j).  Then, the account value at the end of the period is 
based on the equity returns on V(n; i, j) net of the fees. Combining Equation (3) and 
Equation (4), the account value process is given by1: 
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and can be discretized as: 
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A scenario path of the account value is generated by the procedure described in Equation 
(6). Equation (8) is then used to simulate the terminal account value at time T2. 
 
By the specification of the variable annuity product, the initial account value is the 
premium P: 
 
V(0) = P                                                                                                                             (9) 

                                                 
1 See Appendix D for more explanation of Equation (7). 
2 See Appendix E for the local conditional distribution of the account value process given two-factor 
interest rate model. 

 



 7 

 
And at the termination of the accumulation period, since the policyholder seeks to 
maximize the value of his/her holdings, the insurer must pay to the policyholder,  
 
Y(i, j) = Max[B(T, T*; i, j) - V(T; i, j), 0]                                                                       (10) 
 
where B is the fair value of the “annuity” and V is the account value at time T. 
 
Note that the policyholders, on the other hand, receives in all states,  
 
Z(i, j) = Max[V(T; i, j), B(T, T*; i, j)]                                                                              (11) 
 
And 
 
V(T; i, j) = Z(i, j) – Y(i, j),                                                                                                (12) 
 
That is, the sum received by the policyholder Z(i, j) together with the payout of the 
insurer Y(i , j) has to equal the account value at the termination date. 
 
The valuation of the variable annuity and the GMIB proceeds as follows. First, we 
generate the interest rate and equity return scenarios. Then, for each scenario, we use 
Equation (8) to generate the path of the account value.  As a result, we can determine the 
fee for each month generated from the account value along each scenario. The present 
value of the fees net of the guarantee cost for each path is called the pathwise value. This 
cashflow is discounted along the corresponding interest rate path, using the short term 
rate of each one month period (the step size of the lattice). The average of the pathwise 
values over the scenarios is the value of the variable annuity. The average of the pathwise 
values of the guaranteed amount according to Equation (10) is the value of the GMIB. 
 
C. Valuing a GMIB using the LPS methodology: Computational Efficiency and 

Correlation Risk 

 
This section provides the procedure in valuing the GMIB using the LPS methodology. 
Our approach is similar to Lesseig and Stock (1998) and (2000) where the LPS scenarios 
are used to value and analyze corporate bonds with default risks. However, their model is 
based on Kishimoto (1989) recombining lattice, while we construct the LPS scenarios 
from the model described in the previous section. The LPS model is described elsewhere 
(Ho (1992), Lee and Choi (2005) and Lesseig and Stock (1998)). For the completeness of 
the exposition, the detailed construction of the LPS scenarios is described in Appendix B 
and the key steps are described below to specify the notations and terminologies.  
 

1. LPS Valuation Method 

 
Step 1: Determine the equivalent class and the representative paths from the two-factor 
interest rate LPS model. 
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We use five term-segments of 12th, 36th, 60th, 84th, and 120th month. The states of the 
world at each segment are partitioned into “gates”. The total number of the representative 

paths of the two-factor interest rate is 59,049 (= 5 23 × ), since we use the five term segments 
and the two-factor interest rate model. 
 
The set of paths that pass through the same set of gates defines an equivalent class. For 
each equivalent class of paths, we define that “representative” path that has the average 
behavior of the paths in that equivalent class. 
 
A representative path can be denoted by a vector. The vector elements are (n, i, j) where n 
is the period and i (j) is the upward movements of the first (second) factor at period n. 
The number of the upward movements determines the states at each period. 
 
Step 2: Calculate the one-period discount factor on a representative path of the two-factor 
interest rate LPS model. 
 
From the interest rate model, we have the one-period discount factor specified as follows. 
 

1 1 11
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1 1 0 00,1 0,2
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Explanation of Equation (13) is given in Appendix A. Since a representative path can be 
denoted by (n, i, j) and the one-period discount factor is a function of n, i, and j, we can 
calculate the one-period discount function corresponding to each step of a representative 
path. There are 120 steps for each representative path since we use a monthly step size 
for the 10-year GMIB. 
 
Step 3: Calculate the probability for each representative path. 
 
Since a representative path represents a set of paths in an equivalent class, we assign the 
weight of the equivalent class as the probability of the representative path. We calculate 
the number of paths in each equivalent class and divide it by the total number of paths 
considered. The sum of probabilities of the representative paths must therefore equal to 
one.  
 
Once we have the probabilities of the one-factor interest rate LPS, we cross-multiply the 
probabilities of the one-factor interest rate LPS to determine the probabilities of the two-
factor interest rate LPS, because the two factors in the interest rate movements are 
independent each other. 
 
Step 4: Simulate the GMIB payoffs conditional on the selected representative interest 
paths. 
 
We simulate the account value, V, 100 times per each selected interest rate representative 
path using Equation (8). Since we simulate the price paths of the account value 
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conditional upon each interest rate representative path, we use the movements of the 

interest rate representative paths. Therefore, we only simulate εz from N ~ (0, 1). The 
total random array of εz per each selected interest rate representative path is 100 by 120 
since there are 120 time periods per each interest rate representative path and we simulate 
100 times per each interest rate path. 
 
The arithmetic average of the 100 terminal GMIB payoffs in Equation (10), which is 
SY(i,j)/100, is the GMIB payoff corresponding to each selected interest rate 
representative path. 
 
Step 5: Determine the pathwise values. 
 
In this paper, we choose the first 500 most probable representative paths out of 59,049 

(=35×2) paths to value the GMIB valuation. Since the sum of all the selected 
representative path probabilities is not equal to one, we again divide the 500 
representative path probabilities by the sum of 500 representative path probabilities, to 
normalize the probabilities. Step 4 has determined the cashflow for each representative 
path. Therefore, we can determine the present value of the cashflow along that particular 
scenario path. That present value is called the pathwise value. In this step, we have 
determined 500 pathwise values.  
 
Step 6: Calculate the GMIB value. 
 
The value of the GMIB is the weighted sum of the pathwise values, weighted by the 
probabilities of the interest rate paths.  
 

2. Numerical Simulation Results 

 
The simulation results assume the market parameters on July, 2005. The yield curve is 
based on the ISDA mid-market par swap rates3, which is {3.94, 4.08, 4.22, 4.3, 4.36, 4.41, 
4.49, 4.6, 4.87} in % in year {0, 1, 2, 3, 4, 5, 7, 10, 30} respectively where the rate at 
time 0 is an extrapolated value. We use the implied volatility functions specified by Ho-
Mudavanhu (2005b) based on the volatility surface described in Table 1. In their 
empirical test, they have shown that this specification provides significant explanatory 
power to the market observed swaption prices. The implied volatility functions are: 

1( ) (0.417 0.061 ) exp( 0.132 )t t tσ = + −  and 2 ( )tσ = 0.154 for all t. The threshold rate is 

assumed to be 3%. 
 
Table 1. Swaptions volatility surface given by the Black volatilities quoted (in %). 
 

 Swap Tenor (years) 

Option Term 

(years) 
1yr 2yr 3yr 4yr 5yr 6yr 7yr 8yr 9yr 10yr 

1yr 44.40 36.50 32.90 29.70 27.60 25.70 25.40 24.00 23.40 23.30 

                                                 
3 Data: http://www.federalreserve.gov/releases/h15/data.htm 
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2yr 31.20 28.80 27.10 25.30 24.20 22.90 23.00 21.80 21.30 21.10 

3yr 27.00 25.30 24.30 23.10 22.20 21.30 21.10 20.40 20.00 19.90 

4yr 24.00 22.80 21.90 21.20 20.70 19.90 19.70 19.10 18.70 18.60 

5yr 22.30 21.30 20.80 19.90 19.40 18.70 18.50 18.00 17.70 17.40 

7yr 19.80 19.10 18.50 18.10 17.60 16.90 16.70 16.30 16.00 15.80 

10yr 17.40 16.40 15.90 15.60 15.10 14.50 14.50 14.10 13.90 13.70 

 

The equity volatility σ is assumed to be 20%. 
 
Table 2 reports the 10-year at-the-money simulated GMIB values with a 3% fee over a 
range of correlations, and Figure 1 shows the GMIB performance profiles over different 
correlations and account values. 
 
Table 2. At-the-money GMIB values for different correlations with the account value 100 
 

r1 0.0  0.5  0.0  0.5  -0.5  0.0  -0.5  0.5  -0.5  

r2 0.0  0.0  0.5  0.5  0.0  -0.5  -0.5  -0.5  0.5  

GMIB 14.69  17.46  16.79  19.59  10.87  11.98  7.49  14.90  13.13  

 
The simulation of the GMIB values provides five interesting observations.  
 

a. The GMIB value is significant. The simulation result shows that the guarantee 
ranges 7.5% to 20% of the account value, and that is the present value cost to the 
general account. The profitability of selling the variable annuity product is the 
present value of the fees, net of this guarantee and the present value of the 
operating costs. 

b. A positive correlation of equity returns to the yield curve movement leads to a 
higher GMIB value. Consider columns 1, 4, and 7. Note that the GMIB is a mix 
of an equity put option and a bond call option. When the yield curve falls, the 
underlying asset value increases. And when the correlation is positive, the lower 
rates would likely leads to a lower equity value, and in turn the equity put option 
would be deeper in-the-money, leading to a higher option value. Conversely, if 
the correlation of the equity returns to the yield curve movement is negative, then 
the higher bond option payoff at a lower interest rate level is offset by the rise in 
the equity value, resulting to the lower equity option payoff. In this case, equity 
and interest rate risk are offsetting each other in valuing the GMIB.  

c. The impact of positive correlation is lower than that of the negative correlation. 
Consider columns 4 and 7. The results show that the increase of the GMIB value 
with the positive correlation is lower than that of the decrease in value with a 
negative correlation of the same magnitude. This asymmetric behavior can be 
explained by the option behavior, which shows that the natural hedge between the 
equity and the annuity obligation has significant impact on the GMIB value with a 
negative correlation. 

d. The correlation to the steepening yield curve movement has a greater impact than 
that to the level movement. Consider columns 2, 3, 5, 6. The worst scenario for 
the insurer’s GMIB position is when the yield curve falls and steepens as the 
equity market falls. In this case, not only the annuity obligation has the higher 
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value as the equity put option becomes deeper in the money, the instantaneous 
return of the equity is also smaller, as the short rate falls. 

e. Using the historical data, the correlations of the equity returns to the parallel shift 
and the steepening shift are estimated to be -0.287 and 0.0324. The GMIB value 
for these correlations is $13.42. Therefore, when we ignore the impact of 
correlations, we tend to overstate the GMIB value by $1.27, or 9.5%.  

 
The combined effect of the above five observations implies that if the equity return is 
positively related to both yield curve movements, as in the case with the equity broad 
based index in a recession scenario, then the GMIB value is significant. When the 
account value is at-the-money, the correlations may raise the GMIB value by 33% (= 
(19.59-14.69)/14.69). Conversely, if the correlations are negative, then the GMIB value 
may lower by 49% (=(14.69-7.49)/14.69). 
 
Figure 1. GMIB performance profiles for different correlations and account values 
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The left panel of Figure 1 depicts the performance profiles of the at-the-money GMIB for 

different correlations of ρ1 and ρ2 while the right panel shows the performance profiles of 
GMIB over a range of account values given seven combinations of correlations. 
 
This section provides insights into two practical considerations. First, a hedging program 
of a block of variable annuity business involves intensive computation. The LPS 
methodology can provide the scenario simulations with computational efficiency. 
 

                                                 
4
 We use ISDA mid-market par swap rates with maturity of {1, 2, 3, 4, 5, 7, 10, 30} in order to implement 

PCA of yield curve dynamics. The sample period is from 2000/08 to 2005/07. The first three eigenvalues 
are {7.17, 0.74, 0.07} and their cumulative weight are {0.897, 0.989, 0.998} respectively. The 
corresponding eigenvectors shows level, slope and curvature factors as in other literature. Each principal 
component being the time series of transformed data variables weighted by the corresponding eigenvector, 
we can estimate the correlation of S&P index returns to both the first principal component, related with the 
parallel shift and the second principal component, related with the steep shift. See Lardic, Priaulet, and 
Priaulet (2001) for a discussion on the comparison of the methodologies of PCA. Also see Appendix C for 
estimates of correlation coefficients between stock index and the first two principal components of yield 
curve dynamics. 
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Second, the simulation results show that the correlation of the equity returns and the yield 
curve movements have significant implications to the GMIB value. The result suggests 
that the chosen equity portfolio of a variable annuity with GMIB has a significant impact 
on the guarantee value. If the equity portfolio is more recession protected, then, the 
equity return may in fact provide a natural hedge to the annuity value. Many GMIB 
hedging program focuses on using capital market instruments to hedge the market risk. 
This simulation result shows that the design of the variable annuities may even have a 
greater effect in minimizing the guarantee risks. 
 
D. Static-Dynamic Hedging: Managing Product Risks and Identifying Potential Loss 

 
Suppose the scenarios cover all the possible paths in the one factor lattice. Ho and Chen 
(1997) show that if two securities have the same pathwise values and have the same cash 
flow along the forward curve, then they must also have the same cashflow along each 
path of the lattice. That is, the two securities are identical according to the lattice model. 
 
Intuitively, suppose that two securities have the same pathwise values for a large set of 
scenarios in the lattice, and further suppose that the lattice approximates the scenarios in 
the real world. Then, if we reinvest any cash at the prevailing one period interest rate at 
each node, the two securities must have the same future value at some distant future. And 
in this sense, the two securities are equivalent. The decomposition methodology seeks to 
determine a portfolio of securities that is equivalent to the structured product.  This 
portfolio is constructed from a predetermined set of benchmark securities. 
 
This section begins by using the pathwise immunization methodology of Ho and 
Mudavanhu (2005a) but applying the LPS methodology. To determine the initial set of 
benchmark securities to construct the replicating portfolio of the GMIB, we begin with 
investigating the embedded options in the GMIB. 
 
To replicate the embedded options, we use equity put options on an equity index and 
bond call options with different strike prices but the same expiration date, the end of the 
accumulation period. Specifically, let the index k = 1, …, 500 denote the scenarios. 

Equity_Put(X, k) and Bond_Call(X′, k) denote the pathwise value of the put option on 
equity and the call option on bond with strike price X and X′ for scenario k, respectively. 
Then we seek to determine the optimal portfolio of the hedging instruments such that the 
portfolio of which can replicate the GMIB, on the pathwise basis.  That is, 
 

1 2

1 2

( )

(1) _ ( , ) (2) _ ( , ) ( ) _ ( , )

(1) _ ( , ) (2) _ ( , ) ( ) _ ( , ) ( )

m

n

GMIB k

a b Bond Call X k b Bond Call X k b m Bond Call X k

c Equity Put X k c Equity Put X k c n Equity Put X k kε

= + × + × + + ×

′ ′ ′+ × + × + + × +

⋯

⋯

 

(14) 
 
The pathwise values of the GMIB and the hedging instruments are calculated. We can 
use a regression to determine the coefficients. The value of the intercept a is the cash 
value in $, since cash has a constant value under all scenarios. The coefficients b(i) and 
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c(j) (i =1,…,m; and j = 1,…,n) are the position sizes of the hedging instruments used in 
the hedging portfolio. 
 
To search for the optimal hedging portfolio, a stepwise regression is used. The stepwise 
regression is a technique for choosing the variables, i.e., terms, to include in a multiple 
regression model. In particular, we use the backward stepwise regression, which starts 
with all model terms available5. At each step it deletes the most statistically insignificant 
term (the one with the lowest t-statistic or highest p-value) until only the statistically 
significant terms left. This iterative process allows us to identify the hedging instruments 
that can have the most explanatory power to the GMIB’s pathwise values. 
 
1. Results of the Decomposition of GMIB 

 
In this section, we represent the GMIB as a portfolio of equity and bond options. Using 
the decomposition method described above, the decomposition of the GMIB as a 
portfolio of the hedging instruments is presented in Table 3 below. 

 

Table 3. Decomposition of the GMIB with a 3% annual fee 
 

A B C D E F G H I 

Hedging 
Instrument 

Strike 
Fair 
Value 

Regression 
Coeffs. 

t-
statistics 

Dollar 
value 

Delta Duration 
Dollar 
Duration 

Cash - 1.00  3.32  4.97  3.32  0.00  0.00  0.00  

Bond Call 10  57.20  -0.19  -10.20  -10.81  0.00  21.41  -231.43  

Bond Call 20  50.90  -0.16  -10.25  -8.11  0.00  22.78  -184.87  

Bond Call 30  44.61  -0.11  -10.33  -4.82  0.00  24.54  -118.25  

Bond Call 40  38.31  -0.02  -6.51  -0.73  0.00  26.87  -19.57  

Bond Call 50  32.01  0.14  9.20  4.41  0.00  30.13  132.72  

Bond Call 60  25.71  0.42  9.71  10.84  0.00  34.98  379.22  

Bond Call 80  13.94  0.33  12.35  4.62  0.00  50.85  234.92  

Bond Call 100  5.42  0.28  12.95  1.54  0.00  69.42  107.12  

Bond Call 120  1.53  0.17  8.69  0.26  0.00  87.96  22.57  

Equity Put 40  0.14  1.56  4.04  0.22  -0.01  53.54  11.71  

Equity Put 100  6.98  0.37  5.22  2.55  -0.16  32.86  83.86  

Equity Put 150  22.55  0.51  14.88  11.40  -0.35  26.07  297.28  

Replicating 
Portfolio 

        14.69  -0.24  48.68  715.26  

GMIB         14.69  -0.22  48.34  710.09  

 
Column A identifies the hedging instruments used in the decomposition. All the equity 
put options expire in 10 years. The bond call options, expiring in 10 year also, are options 
on the 20 year zero-coupon bond therefore the time to maturity of the underlying bond is 
10 years at option expiration. The underlying bond face value is set such that the bond 
forward value with delivery in year 10 (the expiry term) is 100. Column B provides all 

                                                 
5 In the numerical example below, we assume that all the available hedging instruments are composed of 
thirteen bond call options with strikes {10, 20, …, 120, 130} and nineteen equity put options with strikes 
{20, 30, …, 190, 200}. 
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the strike prices of the options. Column C is the fair value of the hedge instrument, 
Column D regression coefficients are interpreted as the numbers of hedging instruments 
required for the replication. Column E presents the t-statistics showing the importance of 
the hedging instrument in the replication. Column F shows the dollar value of each 
hedging instrument, the replicating portfolio and GMIB. The dollar value of each hedging 
instrument is the product of the fair value and regression coefficient. The sum of all the 
dollar values of hedging instruments is the value of replicating portfolio. Column G 
shows the delta of each hedging instrument, the replicating portfolio and GMIB. The 
delta of replicating portfolio is the sum of product of each delta and corresponding 
regression coefficient in Column D. Column H shows the duration of each hedge 
instrument, replicating portfolio and GMIB. The duration of replicating portfolio 
(DurationP) is calculated as follows: 
 

13

1

i
P i

i

H
Duration Duration

P=

 =  
 

∑                                                                                      (15) 

 
where P is the value of replicating portfolio, Hi is the dollar value of hedge instrument i 
and Durationi is the duration of hedge instrument i. We assume that yield curve shifts 10 
basis points in computing the durations. Column I shows the dollar duration of each 
hedging instrument, replicating portfolio and GMIB. Dollar duration is the product of 
duration and dollar value of each hedging instrument. The sum of dollar duration of all 
the hedging instruments is the dollar duration of replicating portfolio.  
 
The total value of the GMIB is $14.69 on a $100 account value. The risk profile at the 
time of evaluation of the GMIB can be summarized as follows. The equity risk is 
equivalent to holding a short position of $22 in equity. The interest rate risk is equivalent 
to holding a long position of $14.69 in a bond with a duration of 48.34 years. Of course, 
this risk profile changes in time. 
 
The R2 of 99% suggests that the hedging fits the pathwise values of the GMIB quite well. 
Indeed, considering the replicating portfolio has a duration of 48.68 year versus the 
GMIB duration of 48.34 year, the results shows that the pathwise immunization can 
result in matching the duration. The decomposition results are quite intuitive. Given the 
interest rate risks, the “strike price” of the equity put option is a bond value which must 
necessarily be stochastic given the interest rate uncertainty. This is reflected by the use of 
equity put options with strike prices 40, 100 and 150.  Also, we have discussed that 
GMIB is exposed to the interest rate risk, particularly when the interest rates are low. 
This is captured by the in-the-money bond call option with strikes 10, 20, 30, 40, 50, 60 
and 80, at-the-money bond call option with a strike price of 100 and out-of-the-money 
bond call option with a strike price of 120.  
 
To provide better insights into the effectiveness of the decomposition, Figure 2 depicts 
the scattered plots of the GMIB pathwise values against those of the replicating portfolio. 
The results show that the residuals are not proportional to the size of the pathwise values 
and therefore the replication is effective even for the “worse scenarios” (high GMIB 
pathwise values) where the insurers have to pay more benefits. 
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Figure 2. Scattered plot of fitted GMIB pathwise values against GMIB pathwise values 
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2. Static-Dynamic Hedging 

 
In this section, we calculate the key rate durations of the hedged positions. And then we 
use swaps and equity to conduct the dynamic hedging. The key rate durations (KRD) of 
the GMIB shows that the value of the guarantee is sensitive to the yield curve shape 
movements.  
 
Table 4 presents key rate durations and the dollar key rate durations of GMIB and the 
replicating portfolio. These sensitivity measures enable us to determine the dynamic 
hedging, which is required to ensure that the combined dynamic and static hedging 
strategies can replicate the GMIB with minimal hedging cost.   
 
Table 4. Key Rate Duration and Dollar Key Rate Duration Matching  
 

  Cash 
Bond 
Call 

Bond 
Call 

Bond 
Call 

Bond 
Call 

Bond 
Call 

Bond 
Call 

Bond 
Call 

Bond 
Call 

Bond 
Call 

Equity 
Put 

Equity 
Put 

Equity 
Put 

GMIB 

Strike - 10 20 30 40 50 60 80 100 120 40 100 150 100 

Dollar 
Value 

3.32  -10.81  -8.11  -4.82  -0.73  4.41  10.84  4.62  1.54  0.26  0.22  2.55  11.40  14.69  

1 0.00  -0.04  -0.04  -0.04  -0.04  -0.04  -0.04  -0.05  -0.06  -0.07  -0.17  -0.11  -0.09  -0.09  

2 0.00  0.02  0.02  0.02  0.02  0.02  0.03  0.03  0.05  0.06  0.51  0.16  0.09  0.13  

3 0.00  -0.01  -0.01  -0.01  -0.01  -0.01  -0.01  -0.01  0.04  0.06  0.31  0.04  0.00  0.05  

4 0.00  0.03  0.03  0.03  0.03  0.03  0.03  0.04  0.08  0.09  0.45  0.17  0.11  0.17  

5 0.00  0.04  0.04  0.04  0.04  0.05  0.05  0.07  0.16  0.21  0.62  0.21  0.13  0.22  

7 0.00  0.12  0.12  0.12  0.13  0.13  0.14  0.20  0.53  1.28  0.34  0.29  0.24  0.40  

10 0.00  10.22  10.22  10.22  10.22  10.22  10.22  10.09  8.73  5.70  51.50  32.14  25.61  23.81  

30 0.00  11.04  12.41  14.16  16.49  19.74  24.57  40.48  59.81  80.91  0.00  0.00  0.00  23.68  

Sum 
KRD* 

0.00  21.43  22.80  24.55  26.89  30.14  34.99  50.85  69.35  88.23  53.56  32.90  26.10  48.37  

Dur** 0.00  21.41  22.78  24.54  26.87  30.13  34.98  50.85  69.42  87.96  53.54  32.86  26.07  48.34  

 
*   KRD = key rate duration 
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** Dur = duration 

 

  
$KRD 
(Hedge) 

$KRD 
(GMIB) 

Net 
$KRD 

P(t) r(t) 
Duration 
of ZCB* 

$Amount 
Needed 

1 -1.328  -1.324  0.003  0.980  0.020  0.980  0.003  

2 1.641  1.970  0.329  0.947  0.027  1.947  0.169  

3 0.336  0.734  0.398  0.904  0.034  2.902  0.137  

4 1.868  2.441  0.573  0.858  0.038  3.852  0.149  

5 2.480  3.267  0.787  0.812  0.042  4.800  0.164  

7 4.795  5.930  1.135  0.721  0.047  6.687  0.170  

10 352.651  349.756  -2.895  0.598  0.051  9.511  -0.304  

30 353.120  347.879  -5.241  0.172  0.059  28.339  -0.185  

Sum 715.563  710.652          0.302  

 
* ZCB = zero coupon bond 

 
The upper panel of Table 4 shows the key rate durations of hedge portfolio and GMIB. 
Consider the key rate durations of the GMIB. It shows that the cost of the guarantee is 
most sensitive to the 30-year rate with the value rises when the 30-year rate falls for bond 
calls and most sensitive to the 10-year (option expiration) rate for equity puts. The sum of 
key rate durations approximately equals the duration, showing that the structured 
sampling of the interest rate scenarios is quite adequate. The lower panel shows the dollar 
key rate durations ($KRD) of hedge portfolio and GMIB, net dollar key rate durations 
(Net$KRD), initial discount function (P(t)), initial yield curve (r(t)), duration of zero 
coupon bond and the amount needed of zero coupon bond for dynamic hedge. 
 
The dollar key rate duration of hedge portfolio for maturity t ($KRDP(t)) is calculated as 
follows: 
 

13

1

$ ( ) $ ( )P i i

i

KRD t Value KRD t
=

= ×∑                                                                                    (16) 

 
where $Valuei is the dollar value of hedge instrument i and KRDi(t) is the key rate 
duration of hedge instrument i respectively. 
 
GMIB value is $14.69 and the dollar key rate durations ($KRD) of GMIB are the 
multiplication of these values by the key rate durations respectively. The net dollar key 
rate durations (Net$KRD) are the differences between the dollar key rate durations of 
GMIB and replicating portfolio. Note that, because of the effectiveness of the pathwise 
immunization, the net $key rate duration is relatively small. 
 
To remove the key rate duration mismatch, we construct the hedge portfolio of zero-
coupon bonds, which have the same net dollar key rate durations. The amounts required 
to replicate the net dollar key rate duration is the net dollar key rate duration over the 
duration of T-year zero-coupon bond. The total $ amount needed for the zero-coupon 
bonds is $0.3. The total absolute $ amount involved in the dynamic hedging is only $1.28 
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on the $14.69 GMIB value. In addition, a long position of $2 equity will minimize the 
difference of deltas between GMIB and replicating portfolio in Column F of Table 3. 
 
The results show that the dollar value of the dynamic hedging position is much lower. 
Further this dynamic hedging position can avoid using options or swaptions, which 
typically have higher transaction costs. Further, since the equity and bond options used 
match the pathwise values of the GMIB, we have also minimized the vega risks of the 
equity option as well as the vega risk of bond option embedded in the GMIB. 
 
3. Use of the Static-Dynamic Hedging Strategy to Manage the Product Risk and the 

Cost/Benefit Analysis 

 
Ho-Mudavanhu (2005a) shows that the static hedge can reduce transaction costs. Further, 
the method can hedge the vega risks in the equity and the interest rate options, since the 
volatilities of the equity returns and the interest rate risk are themselves stochastic (Ho- 
Mudavanhu (2005b)). For this reason, dynamic hedging fails to manage these long dated 
option risks because dynamic hedging assumes constant volatility (Derman and Taleb 
(2005)). 
 
However, static hedging requires the embedded GMIB be invariant, and such is not the 
case with the presence of product risks. Given the uncertainty of lapsation, either with the 
surrendering of the policy or the withdrawal of the account value, the book value of the 
GMIB may decrease. 
 
The proposed static-dynamic hedging approach can be used to manage such product risks. 
Assumptions can be made on the stochastic behavior of the lapsation and the withdrawal 
behavior. The stochastic model can then be introduced to Step 4 in the valuation 
procedure. Additional pathwise values are generated taking these additional stochastic 
factors into account. Then the static hedging is formulated taking these additional risks 
into account. The remaining risk is then managed by the dynamic hedging as part of the 
asset and liability management program, continually adjusting to the expected level of 
future lapsation and withdrawals. 
 
The results of this section also suggest a cost/benefit tradeoff analysis. The cost of a 
hedging program is the transaction cost, which can be estimated by the turnover of the 
trading. The benefit would be the reduction of the risk exposure. Therefore, the 
cost/benefit of a hedging program begins with the measure of the reduction of risk and 
the turnover of trade of alternative hedging strategies. Note that the weighted average of 
the pathwise values is the fair value of a contingent claim. The pathwise value can be 
interpreted as the present value of the cashflow along that scenario on a risk-adjusted 
basis (Ho-Lee (2004, pp.592)). This suggests that the distribution of the pathwise value of 
a GMIB is a measure of the risk exposure to the insurer. 
 
Specifically, Step 5 enables us to determine the distribution of the pathwise values of a 
GMIB. The hedging program will then determine the portion of the distribution to be 
managed by static hedging and the portion to be managed by dynamic hedging. The 
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insurer may accept the risk of the extreme tail of the distribution because the events are 
too improbable and the cost of which may be too costly. Or, the insurer may also take 
part of the risk of more probable events because the risk and return tradeoff warrants such 
a position when the insurer is taking a market view. Our approach can measure the 
reduction of the risks under a particular hedging program by identifying the distribution 
of the pathwise values before and after putting on the hedging. 
 
E. Extending the Basic Model: Suboptimal Exercise of Options and Alternative Funds 

 
Thus far we have presented the basic GMIB model. However, the model can be extended 
to incorporate other features of variable annuities. We will consider two such examples 
here. 
 

1. Suboptimal Exercise of Options 
 
Many variable annuities’ design depends on the policyholders, which may be targeted as 
hot or cold money. The value of the GMIB is significantly affected by the target 
policyholders. Hot money would exercise their options efficiently while the cold would 
not. 
 
This policyholder behavior is analogous to that of the mortgagors in prepaying or 
refinancing their mortgages as interest rates fall. Some mortgagors would refinance their 
mortgages as soon as that is economically optimal, while others may not. Research in 
mortgage-backed securities valuation uses transaction costs in the option model to 
capture this effect. 
 
Specifically, let C > 0 be the transaction cost which is positively related to the coldness of 
the money. The perfectly hot money would have zero transaction cost. Then Equation 
(10) is replaced by: 
 

( , *; , ) ( ; , )   if   ( , *; , ) ( ; , )
( , )

0                                       otherwise

B T T i j V T i j B T T i j V T i j C
Y i j

− − >
= 


                              (17) 

 
In this case, the policyholder would not annuitize in some states of the world even if it is 
profitable to do so. Insurer can incorporate a range of transaction cost levels to reflect the 
coldness of the money and its impact on the GMIB value. Or the model can be adjusted 
for the cases where policyholders annuitize when it is not optimal to do so. 
 

2. Alternative Investments of the Variable Annuities 
 
We have described the variable annuities based on investing in equity. In Section C, we 
have discussed the importance of using alternative equity funds in the variable annuities 
because of the fund returns correlation to the yield curve risks. However, we have 
modeled only the equity funds. 
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The model can be adjusted to deal with bond funds. In this case, the equity return in 
Equation (6) is replaced by the bond return equation. The bond returns can be determined 
by the generalized Ho-Lee model for a particular duration structure of the bond fund. 
There is no equity risk in this case, and the bond return is completely determined by the 
yield curve risk, and therefore, the generalized Ho-Lee model that specifies the entire 
yield curve at each node point can determine the bond fund returns at each node point. 
 
To be realistic, of course, a bond fund would have other risks, basis risks, prepayment 
risks or credit risks, for example. But such additional risk can also be added to the model. 
To the extent that some funds are balance funds. Then Equation (6) would be replaced by 
a linear combination of the equity return model and a bond return model. Furthermore, 
policyholders can make internal transfer of funds in an unexpected way, then such risks 
can be measured and managed as we have discussed in the product risk section. 
 
Note that, in Section C, we have argued the importance of the negative correlation of the 
fund returns to the yield curve risk. This analysis shows that if the fund is a long term 
bond fund, then the bond fund returns would be highly negatively correlated with the 
yield curve risks. Then the natural hedge within the variable annuity would be greatest, 
resulting in minimal GMIB value, or minimal risk exposure to the insurer. 
 
F. Conclusions 

 
This paper describes an effective and practical method to manage the GMIB. In particular, 
we use a combined static-dynamic hedging strategy to manage the risks. We show that 
the GMIB is sensitive to the yield curve shape movements and that the interest rate risk 
has to be managed by both the delta and the key rate durations. Further, we have used the 
extended LPS method to provide a computationally efficient method to determine the 
optimal hedging strategy. We then show that this approach can be applied to deal with six 
practical considerations in implementing a hedging program of the variable annuities. 
 
While this paper has applied the method to manage the GMIB risks, the methodology 
presented should have broad applications. It can be applied to other variable annuity risks. 
Further, the method can be used for managing pension liabilities. Pension liabilities are 
often represented by a cash flow stream of fixed payments. The assets supporting the 
liabilities are often equities. For this reason, the downside scenario for the pension plan is 
the precipitous fall in the equity returns along with a fall in interest rates. And therefore, 
the pension sponsor would seek to manage an option similar to the GMIB. The method 
presented can be used to manage the downside risk of such a pension plan. Furthermore, 
the pension liabilities are also often uncertain and have long duration, with characteristics 
similar to the problem discussed in this paper. And therefore, the solutions discussed in 
this paper for the practical considerations can also be applied to the pension plan 
management. 
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Appendix A: Generalized Ho-Lee Model 
 
The one-factor generalized Ho-Lee model 

 

The building blocks of the binomial model are the binormal volatilities n

iδ , for  0 i n≤ ≤ . 
n

iδ  is the proportional decrease in the one period bond value from state i to i+1 at time 

n+1. Without loss of generality, we assume that the bond price decreases, and the bond 

yield increases, with state i, and hence n

iδ < 1. When n

iδ =1, by definition, there is no risk 

at the binomial node with respect to the upstate and downstate outcomes.   
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=  for all n, 0 1n N≤ ≤ −  and 0 i n≤ ≤                                                            (A.1) 

 
But there are several requirements imposed on these binomial volatilities.  
 
Condition 1: State dependent volatility requirement asserts that the proportional change 
of one period bond price is proportional to the interest rate level when the rates are low, 
constant when it is high.  
 
To specify Condition 1, we begin with the definition of the one period yield: 
 

log / ,n n

i iR P t= − ∆                                                                                                          (A.2) 

 

where t∆  is the time interval of one period. For example, if one binomial period (the step 

size of the lattice) is one month, then t∆  is 1/12.  
 
According to Equation (A.1), we have 
 

1 1

1log log logn n n

i i iP Pδ + +
+= − +                                                                                          (A.3) 

 
Substituting Equation (A.2) into (A.3), we have  
 

1 1

1log ( )n n n

i i iR R tδ + +
+= − ∆                                                                                                 (A.4) 

 
By the market convention, interest rate volatilities are the standard deviations of 

proportional change in the annualized yields of the bonds. Let n

iσ  be the annualized 

volatility at time n and state i, noting that the difference of the two binomial outcomes is 
two standard deviations, then we have:  
 

1 1

1 2n n n n

i i i iR R R tσ+ +
+ − = ∆                                                                                                (A.5) 
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Substitution 1 1

1

n n

i iR R
+ +

+ −  of Equation (A.5) into (A.4), and simplify, we derive the 

relationship of the binomial volatilities and the market convention of interest rate 
volatilities. 
 

( )3/ 2exp 2n n n

i i iR tδ σ= − ∆                                                                                                 (A.6) 

 

Equation (A.6) presents the one-to-one relationship between n

iδ  and n n

i iRσ  . Let R be 

some fixed interest rate level, which we call the threshold rate, independent of both n and 
i. We now assume that on the one hand, the interest rate movement is lognormal when 

n

iR < R, and therefore n

iσ  is a function of n, denoted by σ(n) and not the states i. On the 

other hand, we assume that the interest rate movement becomes normal when n

iR > R, 

evolving from the lognormal process to the normal process continuously. And therefore, 
n n

i iRσ  is independent of the state i, and equals ( )n Rσ . This motivates the following 

specification of n

iσ , 

 

( )( )min ,n n n

i i iR n R Rσ σ=                                                                                               (A.7) 

 

( )nσ is some continuous function of time n, which can be interpreted as the term 

structure of volatilities. By substitution of Equation (A.7) into Equation (A.6), we have 
the following specification of the forward volatilities: 
 

( )( )3/ 2exp 2 ( )min ,n n

i in R R tδ σ= − ∆                                                                              (A.8) 

 

We further assume that the function σ(n) is specified by some parameters a, b, c, and d, 
which can be obtained from the calibration to the market price of swaption. 
 

( )( ) ( ) expn a bn cn dσ = + − +                                                                                         (A.9) 

 
The specification of the term structure of volatilities is motivated by the observed market 
volatility curve. The volatility curve tends to decay exponentially with a term linearly 
related to time, with a hump in the short to intermediate term at times. Equation (A.8) and 
(A.9) are important in specifying the arbitrage-free interest rate model. Equation (A.8) 
ensures interest rates are non-negative and non-explosive, and Equation (A.9) ensures the 
mean-reversion behavior. 
 
Condition 2. Arbitrage-free condition 
 
The arbitrage-free yield curve movements condition applies to all the bonds with 
different maturities T, we therefore need to consider the binomial volatilities with another 

dimension T, ( )n

i Tδ . Specifically,  
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That is, the binomial volatility is the proportion of the T-year bond at (i+1)th state to the 

ith state at time n+1. Note that, (0) 1n

iδ = , because the one-period bond has no 

uncertainties over one period. The volatility for one period bond is (1)n n

i iδ δ= , which are 

given numbers for the time being. 
 
Figure A.1. Recombining Binomial Tree 
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Proposition 1: The arbitrage-free condition requires the volatility to be as follows: 
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                                                                   (A.11) 

 
Proof 1: 

 
By Harrison and Kreps, 
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where we used Equation (A.10) and using the similar way, 
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Dividing Equation (A.13) by (A.12) gives us the desired result as follows: 
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Q. E. D. 

 
Equation (A.11) defines the relationships of the binomial volatilities of T-year bonds, and 
is important to the construction of the arbitrage-free rate model. 
 
Note that if the binomial volatilities are independent of states, but dependent on time, 
then the above condition implies that: 
 

1 1( ) ...n n n n TTδ δ δ δ+ + −=                                                                                                 (A.14) 

 
When the binomial volatilities are both state and time independent, then  
 

1( )n TTδ δ+ = ,                                                                                                               (A.15) 

 
where T is the power and not a superscript.                       
 
Equation (A.14) and (A.15) are used in Ho-Lee (2004) and Ho-Lee (1986) respectively. 
Therefore Equation (A.11) shows that this model is a generalization of the previous 
models. 
 
Given the above conditions, Proposition 2 shows the bond pricing model for the T-period 
bond price at node (n, i). 
 
Proposition 2: Given the Proposition1, the bond pricing formula for the T-period bond 

price in state i and time n is: 

 
1 1

10

1
1 00

1 ( )( )
( ) ( )

( ) 1 ( )

kn i
n n

i jk
k j

n kP n T
P T T

P n n k T

δ
δ

δ

− −
−

−
= =

 + −+
=  + − + 

∏ ∏                                                  (A.16) 

 
Proof 2: 

 
From Equation (A.10), we already know that 
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So it suffices to check that 
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We use the mathematical induction in order to prove Proposition 2. It is simple to show 
that Equation (A.18) holds for n = 1. 
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Therefore, Equation (A.18) holds for n = 1 since (0) 1n

iδ =  by definition. 

 
Now we hypothesize that Equation (A.18) holds for arbitrary time n. Then, 
 

( )

( )

1 1

1

1
1

0

0 0

1
1

0

0

1
( 1) (1) ( ) ( )

2

( 1) 1
( ) ( ) ( )

(1) 2

1
( ) ( ) 1 ( )

2

n n n n

i i i i

n i i
n n ni

j jn
j ji

i
n n n

j i

j

P T P P T P T

P T
P T T T

P

P T T T

δ δ

δ δ

+ +
+

−
+

= =

−
+

=

+ = +

 +
= + 

 

= +

∏ ∏

∏

                                                                  (A.20) 

 
By the way, 
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And in a similar way, 
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Dividing Equation (A.21) by (A.22) is 
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Finally, equating the RHS of Equation (A.20) and the RHS of Equation (A.23) gives us 
the desired result that, by induction hypothesis, Equation (A.18) holds automatically at 
time n+1 as follows: 
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(A.24) 
Rearrange Equation (A.24) as follows: 
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(A.25) 
 
Now that we have checked Equation (A.18) holds for arbitrary n, the proof of Equation 
(A.16) is complete. 

Q. E. D. 

 
The two-factor generalized Ho-Lee model 

 

Let , ( )n

i jP T  be the price of a T year bond at time n, at state (i, j). Then the bond price is 

specified by combining two one-factor models. Specifically, we have 
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and the one period forward volatilities are given by definition, 
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where the functions ( )( ) ( ) expj n a bn cn dσ = + − +  is specified by the parameters a, b, c, 

and d, which can be obtained from the calibration to the market price of swaption. 
 
Using the direct extension, we can specify the one period rates for the two-factor model 

for any future period n and state i, and ,1
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Appendix B:  Linear Path Space Method 
 
In this appendix, we describe a structured sampling method of the interest rate and equity 
scenarios. Specifically, we specify a sample of interest rate scenarios with assigned 
probability weight to each scenario.  This sample can represent the path space defined by 
the binomial lattice. For each interest rate scenario, we then determine a random sample 
of the equity returns, which are specified by the interest rate scenario. 
 
Figure B.1 shows the partitioning of the path space. We first divide the term from 0 to 10 
years into segments consistent with the key rates at year {1, 3, 5, 7, 10} when the time 
horizon considered is 10 years. The ith term segment, T(i) is the ith key rate year 
multiplied by 12 in monthly step size. The set of all term segments is therefore a vector of 

{12, 36, 60, 84, 120}. The length of the ith segment is defined as L(i)=T(i)−T(i−1), T(0)=1. 
There are five segments. The first segment is (0, 11), the second (12, 35), …, and the fifth 
is (84, 119). 
 
Figure B.1. Linear Path Space 
 

 
The state space at the end of each segment is called the key state space. The first key state 

space has twelve states (0 ~ T(1)−1), the second has thirty-six (0 ~ T(2)−1), etc. We then 
generate the key state space partition recursively to be consistent with level scenarios and 
symmetric up and down scenarios. We divide the first key state space into three equal 
partitions (up, level, down): (0, 3), (4, 7), (8, 11). In partitioning the second state space, 
we need to keep the first partition the same as the second to ensure that there are level 
rate movements. Then the remaining states on both ends of the second state space 
become the remaining partitions. Hence the thirty-six states of the second key state space 
are partitioned into five parts. For the Kth key state space, there are 2K+1 partitions. 
 
Next we define the recursive generation of linear partitioning. Given the Kth key space 
partition, the (K+1)th key space partition, beyond the first partition (0, [T(K+1)-T(K)]/2 
-1), creates the second and following partitions up to the 2(K+1)th partitions simply by 
adding [T(K+1)-T(K)]/2 to all the entries to the Kth partition. The 2(K+1)+1th partition is 
([T(K+1)+T(K)]/2, T(K+1)-1). 
 

There are 1 3 5 ... 11× × × ×  equivalent classes, but many of them have no rate path 
belonging to the equivalent class. The linear path space considers only the equivalent 

term
segment

T(i)
T(i)-1

1 0 (0,0)

12 11 (0,3) (4,7) (8,11)

36 35 (0,11) (12,15) (16,19) (20,23) (24,35)

60 59 (0,11) (12,23) (24,27) (28,31) (32,35) (36,47) (48,59)

84 83 (0,11) (12,23) (24,35) (36,39) (40,43) (44,47) (48,59) (60,71) (72,83)

120 119 (0,17) (18,29) (30,41) (42,53) (54,57) (58,61) (62,65) (66,77) (78,89) (90,101) (102,119)

↑ center segment of the ith Key State Space

Partitioning of the Path Space
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classes where rate paths go up, stay level, or go down to another scenario node, and 
therefore they stay relatively stable within each term segment. As a result, there are 35 
equivalent classes in the linear path space. Next we define |i, l, u| to be a midpoint 
operation6 since we need to calculate the midpoint of each key state space partition, 
which is to be the state index of each scenario node: 
 

[ ]
[ ]

( ) 2              if an integer

,  ,  min ( ) 2     if ( ) 2 ( ) 2

max ( ) 2    otherwise

u l

i l u u l u l T i

u l

 +


= + + >
 +

                                                          (B.1) 

 
where i denotes the index of the term segment, u and l denote the upper and lower bound 
of each key state space partition respectively, min[x] gives the greatest integer less than 
or equal to x and max[x] the smallest integer greater than or equal to x. 
 
The scenario nodes are defined as the node n(i, J) = (T(i)–1, |i, l, u| = |i, J|) on the 
binomial path space in Figure B.2. 
 
Figure B.2. Scenario Node 
 

  
Three scenario nodes of (11, 2), (11, 6), (11, 9) in the first term segment, are calculated 
by applying the midpoint operation to the first three key state space partition (0, 3), (4, 7), 

(8, 11) respectively. The scenario node (11, 2) is calculated by (T(1)−1, max[(0+3)/2]), 
the scenario node (11, 6) by (T(1)−1, max[(4+7)/2]) and the scenario node (11, 9) by 
(T(1)−1, min[(8+11)/2]). 
 
A branch, b(i, J, K) is the shortest interest rate path that links the node (i-1, J) to the node 
(i, K). The branch is defined as for each j, T(i-1)-1 < j < T(i)-1, y = |i-1, J| + (|i, K| - 
|i-1, J|) × {j - (T(i-1) -1)} / [T(i) -T(i-1)]. Then the state corresponding to the jth 
month is the integer of y. The branches that connect the segments represent the 
representative path of the equivalent class. Figure B.3 shows the branch geometrically, 
which is the hypotenuse of a right triangle. 
 

                                                 
6 Note that the midpoint operation is slightly different from Ho (1992). We move all the scenario nodes, 
outside the center segment, one step toward the center segment. The midpoint operation can be defined in a 
different manner according to each model considered under condition that it should be systematic. 

term
segment

T(i)
T(i)-1

1 0 0

12 11 2 6 9

36 35 6 14 18 21 29

60 59 6 18 26 30 33 41 53

84 83 6 18 30 38 42 45 53 65 77

120 119 9 24 36 48 56 60 63 71 83 95 110

Scenario Node
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Figure B.3. Branch b(i, J, K) 
 

 
 

T(i) – T(i–1) : |i, K| – |i, J| = j – (T(i–1) – 1) : y – |i, J| 

 
We now present how to calculate each representative path probability of LPS model. 
Consider a representative path, which passes through the scenario node (0, 0), (11, 9) and 
(35, 21) in Figure B.4. There are 32 equivalent classes and the area, through which this 
representative path passes, represents one of nine equivalent classes. The probability of 
each representative path is the ratio of the number of paths in the equivalent class, where 
each representative path belongs, to the total number of paths. The total number of paths 
is 235 and the number of paths in the equivalent class considered can be calculated by the 
sum of all the elements in the one-by-four matrix resulting from the following matrix 
multiplication in Equation (B.2): 
 
Figure B.4. Representative Paths and Their Probabilities 
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[ ]
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 
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              (B.2) 

 
The first matrix, which is a row vector, in Equation (B.2) represents the number of paths 
going from the initial node to the four nodes in the key state space partition (8, 11) at 
time 11. The second matrix in Equation (B.2) represents the number of paths going from 
the four nodes in the key state space partition (8, 11) at time 11 to the four nodes in the 
key state space partition (20, 23) at time 35. 
 
The first column of the one-by-four matrix resulting from Equation (B.2) represents the 
sum of the number of path going from the initial node via all the nodes in the key state 
space partition (8, 11) at time 11 to the node (35, 20). The second column of the one-by-
four matrix resulting from Equation (B.2) represents the sum of the number of path going 
from the initial node via all the nodes in the key state space partition (8, 11) at time 11 to 
the node (35, 21). The third and the fourth column can be interpreted in a similar way 
with the last node being (35, 22) and (35, 23) respectively. The sum of all the elements in 
the one-by-four matrix resulting from Equation (B.2) is the total number of paths going 
from the initial node via all the nodes in the key state space partition (8, 11) at the first 
segment to all the nodes in the key state space partition (20, 23) at the second segment. 
Dividing this sum by 235 gives the probability of this representative path passing through 
the scenario node (0, 0), (11, 9) and (35, 21). 
 
The remaining eight path probabilities can be calculated in similar ways. Consider the 
representative path going through the scenario node (0, 0), (11, 2), and (35, 6) in Figure 
B.4. The total number of paths going from the initial node via four nodes in the key state 
space partition (0, 3) at time 11 to the 12 nodes in the key state space partition (0, 11) at 
time 35 is calculated by the sum of all the elements in the one-by-twelve matrix resulting 
from the following matrix multiplication: 
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⋯

⋯

⋯

            (B.3) 

 
Dividing Equation (B.3) by the total number of paths of 235 gives the probability of 
representative path considered. More generally, the probability of the representative path, 
starting at initial node through the scenario node within a key sate space partition (i, j) at 
time n arriving at the scenario node within a key state partition (ii, jj) at time nn, is 
calculated by the sum of all the elements in the 1-by-(jj-ii+1) matrix resulting from the 
following matrix multiplication: 
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         (B.4) 
 

where 0n iC =  when 0n <  or 0i <  or i n>  by definition. Equation (B.4) can be 

generalized for any number of term segments with the number of matrices being equal to 
that of the term segments. 
 
But the sum of nine path probabilities is not equal to unity since such a path going 
through node (11, 1) and node (35, 25) in Figure B.4 is not included in the equivalent 
classes of LPS model. So we have to normalize each representative path probability with 
the sum of nine representative path probabilities in order to make the sum of nine 
normalized representative path probabilities equal unity according to the law of total 
probabilities. 
 
Figure B.5 shows the 243 (=35) representative path probabilities when we use five 
segments of (0, 11), (12, 35), …, (84, 119). They are symmetric and the sum of them 
equals unity. The maximum value is 0.065 and the minimum is 1.39µ10-16. 
 
Figure B.5. Representative Path Probability of LPS Model 
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Appendix C: Historical estimates of correlation coefficients between stock index and the 
first two principal components of yield curve dynamics 
 

Define , , 1,t j t j t jR R R −∆ = −  to be the increment of ISDA mid-market par swap rates7 for all 

maturity j = {1, 2, 3, 4, 5, 7, 10, 30} at each time t. The dimension of the data matrix is 

59×8. 
 

Let X  be the normalized data matrix such that each column in 59×8 data matrix has 
mean 0 and variance 1 by subtracting the sample mean and divided by the sample 
standard deviation such that the first principal component will not be dominated by the 
input variables with the greatest volatility. 
 

,

, ,

j

t j j

R

R R

σ∆

∆ − ∆
=X

i

i
 

 

Let 
(8 8) T×

′
=
XX

V  be the correlation matrix between the variables in X where T = 59-1. 

 

V = 
 
i

k

jjjjjjjjjjjjjjjjjjjjjjjjj

1. 0.917518 0.82458 0.759817 0.71393 0.654843 0.595615 0.490347

0.917518 1. 0.976803 0.943265 0.913835 0.873442 0.830175 0.735833

0.82458 0.976803 1. 0.991824 0.97761 0.953004 0.921989 0.841727

0.759817 0.943265 0.991824 1. 0.996071 0.982378 0.959842 0.891065

0.71393 0.913835 0.97761 0.996071 1. 0.994209 0.978011 0.918426

0.654843 0.873442 0.953004 0.982378 0.994209 1. 0.993953 0.951512

0.595615 0.830175 0.921989 0.959842 0.978011 0.993953 1. 0.976985

0.490347 0.735833 0.841727 0.891065 0.918426 0.951512 0.976985 1.

y

{

zzzzzzzzzzzzzzzzzzzzzzzzz
 

 

Let W be the 8×8 matrix of eigenvectors of V, ordered according to the size of 
corresponding eigenvalues such that 1 2 ... mλ λ λ> > > . Thus VW=WΛΛΛΛ where ΛΛΛΛ is the 8×8 

matrix of eigenvalues of V. Then the mth column of W, denoted 1 8( ,..., )m m mw w ′=w , is 

the 8×1 eigenvector corresponding to the eigenvalue mλ . 

 

W = 
 
i

k

jjjjjjjjjjjjjjjjjjjjjjjjj

−0.290893 0.711042 0.518715 −0.354952 −0.081126 −0.0842736 −0.0263692 0.0191104

−0.353773 0.357982 −0.138602 0.60152 0.420917 0.352951 0.182013 −0.17545

−0.369521 0.126045 −0.313572 0.298796 −0.223419 −0.384954 −0.398744 0.550326

−0.371919 −0.0110639 −0.313634 −0.0583506 −0.414941 −0.274344 0.0566458 −0.713536

−0.370679 −0.100227 −0.258929 −0.327525 −0.224637 0.333661 0.606278 0.385836

−0.366669 −0.20864 −0.0938812 −0.373201 0.207977 0.476165 −0.629464 −0.087854

−0.359726 −0.30601 0.112458 −0.18362 0.630633 −0.540936 0.200143 0.0149709

−0.337793 −0.4506 0.65309 0.373136 −0.320531 0.119141 0.0107442 0.00692073

y

{

zzzzzzzzzzzzzzzzzzzzzzzzz
 

 

 

                                                 
7 Sample period is 2000/08 - 2005/07 from http://www.federalreserve.gov/releases/h15/data.htm. 
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ΛΛΛΛ = 
 
i

k

jjjjjjjjjjjjjjjjjjjjjjjjj

7.17589 0 0 0 0 0 0 0

0 0.736424 0 0 0 0 0 0

0 0 0.0685601 0 0 0 0 0

0 0 0 0.015835 0 0 0 0

0 0 0 0 0.00213678 0 0 0

0 0 0 0 0 0.000666959 0 0

0 0 0 0 0 0 0.000297403 0

0 0 0 0 0 0 0 0.000186879

y

{

zzzzzzzzzzzzzzzzzzzzzzzzz
 

 
Figure C.1. The plot of the first three eigenvectors 
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The first three eigenvalues corresponding to those eigenvectors are {λ1, λ2, λ3} = 
{7.17589, 0.736424, 0.0685601} and their cumulative weight are {0.896987, 0.98904, 
0.99761} respectively. 
 
Define the mth principal component of the system by 
 

1, 1,1 1,2 1,8

2, 2,1 2,2 2,8

1, 2, 8, 1 1 2 2 8 8

59, 59,1 59,2 59,8

... ...
    

m

m

m m m m m m m

m

m

p x x x

p x x x
w w w w w w

p x x x

       
       
       = = + + + = + + +       
       
              

=

p x x x

Xw

⋮ ⋮ ⋮ ⋮  

 

where 
ix  denotes the ith column of X , i.e., the standardized historical input data on the 

ith variable in the system. 
 
Each principal component is a time series of the transformed X  variables, and the full 

59×8 matrix of principal components, which has mp  as its mth column, may be written 

 

P = XW .                                                                                                                       (C.1) 
 
To see that this procedure leads to uncorrelated components, note that 
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T′ ′ ′ ′=P P = W XXW WWΛ . 
 

However, W is an orthogonal matrix, that is ′ -1
W =W  and so T′P P = Λ . Since this is a 

diagonal matrix the columns of P are uncorrelated, and the variance of the mth principal 

component is mλ . 

 
Since the variance of each principal component is determined by its corresponding 
eigenvalues, the proportion of the total variation in X that is explained by the mth 

principal component is 
8

1

m i

i

λ λ
=
∑ . However, the sum of the eigenvalues is 8, the number 

of variables in the system.8 Therefore the proportion of variation explained by the first n 
principal component together is 
 

1

8
n

i

i

λ
=
∑ . 

 
Because of the choice of column labeling in W the principal components have been 

ordered so that 1p  belongs to the first and largest eigenvalue 1λ , 2p  belongs to the second 

largest eigenvalue 2λ , and so on. In a highly correlated system the first eigenvalue will 

be much larger than the others, so the first principal component alone will explain a large 
part of the variation. 
 

Since ′ -1W =W , Equation (C.1) is equivalent to ′X = PW , that is, 
 

1, 1,1 1,2 1,8

2, 2,1 2,2 2,8

,1 ,2 ,8 ,1 1 ,2 2 ,8 8

59, 59,1 59,2 59,8

... ...
    

i

i

i i i i i i i

i

x p p p

x p p p
w w w w w w

x p p p

       
       
       = = + + + = + + +       
       
              

x p p p
⋮ ⋮ ⋮ ⋮

       (C.2) 

 
Thus each vector of input data may be written as a linear combination of the principal 
components. This is the principal components representation of the original variables that 
lies at the core of PCA models. Often only the first few principal components are used to 
represent each of the input variables, because they are sufficient to explain most of the 
variation in the system. 
 

,1 1 ,2 2 ,3 3i i i iw w w= + +x p p p  

 
That is, we can approximate the original stationary data matrix 
 

                                                 
8 To see why, note that the sum of the eigenvalues is the trace of ΛΛΛΛ, the diagonal matrix of eigenvalues of V. 
However, the trace of ΛΛΛΛ equals the trace of V (because trace is invariant under similarity transformation), 
and because V has 1s all along its diagonal, the trace of V is the number of variables in the system. 
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1,1 1,2 1,8 1,1 2,1 8,1

2,1 2,2 2,8 1,2 2,2 8,2

(59 8)

59,1 59,2 59,8 1,8 2,8 8,8

(59 8) (8 8)

p p p w w w

p p p w w w

p p p w w w

×

× ×

   
   
   ′= =
   
   
   

X PW

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

 

with 

1,1 1,2 1,3

1,1 2,1 8,1

2,1 2,2 2,3

1,2 2,2 8,2
(59 8)

1,3 2,3 8,3

59,1 59,2 59,3 (3 8)

(59 3)

p p p
w w w

p p p
w w w

w w w
p p p

×

×
×

 
  
  ≅   
    

 

X

⋯

⋯
⋮ ⋮ ⋮

⋯

. 

 
Finally, the historical estimates of correlation coefficients between stock index and the 
first two principal components of yield curve dynamics can be calculated by 

( )1 1, 0.287435corrρ = = −dS S P  and ( )2 2, 0.0322811corrρ = =dS S P . 

 
Figure C.2. The scattered plot of index return and principal component 
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Appendix D: Cholesky decomposition 
 
Consider the situation where we require n correlated samples from normal distributions 

with the correlation between sample i and sample j being ijρ . We first sample n 

independent variables  (1 )ix i n≤ ≤ , from univariate standardized normal distributions. 

The required samples,  (1 )i i nε ≤ ≤ , are then defined as follows: 

 

1 11 1

2 21 1 22 2

3 31 1 32 2 33 3

x

x x

x x x

ε α

ε α α

ε α α α

=

= +

= + +

 

 

and so on. We choose the coefficients ijα  so that the correlations and variances are 

correct. This can be done step by step as follows. Set 11 1α = ; choose 21α  so that 

21 11 21α α ρ= , choose 22α  so that 2 2

21 22 1α α+ = ; choose 31α  so that 31 11 31α α ρ= ; choose 

32α  so that 31 21 32 22 32α α α α ρ+ = ; choose 33α  so that 2 2 2

31 32 33 1α α α+ + = ; and so on. In 

summary, 2

1 1 1

,   1,   ( )
ji i

i ik k ik ik jk ij

k k k

x j iε α α α α ρ
= = =

= = = <∑ ∑ ∑ . This procedure is known as 

the Cholesky decomposition. 
 
Then  
 

11 1α = ,  

21 21α ρ= , 2

22 211α ρ= − ,  

31 31α ρ= , 

2 2 2

21 31 32 31 32 212 232 31 21
32 33 31 32

2 2

21 21

1 2
,    1

1 1

ρ ρ ρ ρ ρ ρρ ρ ρ
α α α α

ρ ρ

− − − +−
= = − − =

− −
 

 
Example 1: The two-factor Gaussian interest rate model (G2++) and the equity fund 

value tS  (Chu and Kwok) 

 

For the G2++ model, the interest rate tr  is given by 

 

1, 2,( )t t tr b t x x= + +  

 
where the dynamics of the risk factors are governed by 
 

1 1 1 1 1dx k x dt dZσ= − +                                                                                                      (D.1) 

( )2

2 2 2 2 1 21dx k x dt dZ dZσ ρ ρ= − + + −                                                                        (D.2) 
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Here, b(t) is a function which is determined by fitting the current interest rate term 
structure and ρ is the correlation coefficient between the risk factors. And the dynamics 
of the equity fund value is given by 
 

( )2 2

1 1 2 2 1 2 3( ) 1t
S S S S S

t

dS
r q dt dZ dZ dZ

S
σ ρ ρ ρ ρ= − + + + − −                                           (D.3) 

 

where the correlations of equity fund value and the risk factors of interest rate are 1Sρ  

and 2Sρ  respectively. We can see that Equation (D.1), (D.2), and (D.3) are the direct 

application of the Cholesky decomposition except that the standard deviations of the 

correlated random variables are 1 1,  ,  and Sσ σ σ  respectively not unity. 

 
Proof 

 

We have only to check that the value of ijα . 

It can be easily checked that  
 

11 1α = , 

2 2

21 21 22 21,   1 1α ρ ρ α ρ ρ= = = − = − , 

31 31 1,Sα ρ ρ= =  

( )2

1 2 1
32 31 21

32 2
2 2

21

2
22 1 2 2

32 2 1 2

2

1

1 1

1
, 1

S S S

S

S S S S

S S

S

dt dtdS
corr dx

S dt dt

ρ ρ ρ ρ ρ ρρ ρ ρ
α ρ

ρ ρ

σ ρσ ρ σ ρ σ ρ
ρ ρ ρ ρ ρ

σ σ

+ − −−
= = =

− −

+ − = = = + − 
⋅ 

∵

 

( ) ( )

( )( )

2 2 2

21 31 32 31 32 21

33
2

21

2
2 2 2 2

1 1 2 1 1 2

2

2 2 2

1 2 2 2

1 2
2

1 2

1

1 1 2 1

1

1 1
1

1

S S S S S S

S S

S S

ρ ρ ρ ρ ρ ρ
α

ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ

ρ ρ ρ
ρ ρ

ρ

− − − +
=

−

− − − + − + + −
=

−

− − −
= = − −

−

 

 
Therefore, we have proved that Equation (D.3) is the direct application of Cholesky 

decomposition where 1 2 3, ,  and dZ dZ dZ  are the independent standard Wiener process 

respectively and 2 2

31 1 32 2 33 1 2,  ,  and 1S S S Sα ρ α ρ α ρ ρ= = = − −  

Q.E.D. 
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Example 2: The two-factor generalized Ho-Lee model and the account value V (Ho, Lee, 
and Choi) 
 
The short rate process under two-factor generalized Ho-Lee model is given by 
 
dr = θ(r, t)dt + σr1(r, t)dW1 + σr2(r, t)dW2                                                                                 (D.4) 
 

GHL assumes that the two factors are independent, that is ρ in Equation (D.2) is zero. 
θ(r, t) depends on the initial spot yield curve and the term structure of volatilities. σr1(r, t) 
and σr2(r, t) are the term structure volatilities of the interest rate model. Each of the 
volatilities has the behavior that  
 

( )     
( , )

( )      

i

ri

i

t R when r R
r t

t r when r R

σ
σ

σ

>
= 

<
 

 
The account value process is given by as follows: 
 

( ) ( )2 2

1 1 2 2 1 2

d
d d d 1 d

V
r f t W W Z

V
σ ρ ρ ρ ρ= − + + + − −                                                (D.5) 

 

where the correlations of account value and the risk factors of interest rate are 1ρ  and 2ρ  

respectively. We can also see that Equation (D.5) is the direct application of the Cholesky 
decomposition. 
 
Proof 

 

We have only to check that the value of 
ijα . 

It can be easily checked that  
 

11 1α = , 

2

21 21 22 210,   1 1α ρ α ρ= = = − = , 

31 31 1,α ρ ρ= =  

32 31 21 2 1
32 2

2 2

21

2 2
32 2 2 2

2

0

1 1 0

( , )
, ( , )

( , )

r
r

r

r t dtdV
corr r t dW

V dt r t dt

ρ ρ ρ ρ ρ
α ρ

ρ

σρ σ
ρ σ ρ

σ σ

− − ⋅
= = =

− −

 = = = 
⋅ 

∵

 

 
2 2 2 2 2 2

21 31 32 31 32 21 1 2 1 2

33
2 2

21

2 2

1 2

1 2 1 0 2 0

1 1 0

1

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
α

ρ

ρ ρ

− − − + − − − + ⋅
= =

− −

= − −
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Therefore, we have proved that Equation (D.5) is the direct application of Cholesky 

decomposition where 1 2, ,  and dW dW dZ  are the independent standard Wiener process 

respectively. 
 
 
 
Appendix E. The local conditional distribution of the account value process given two-
factor LPS model 
 
Now we calculate the local conditional distribution, e.g., expected value and variance, of 
the account value process. 
 
The expected value is given by as follows: 
 

[ ]

( ) ( )( )
( ) ( ) ( )

1 2

2 2 2

1 1 2 2 1 2

2 2 2

1 1 2 2 1 2

( ) | ( ; , ), ,

( ; , )   

 ~ ( ; , ) 2 ,   1

1
( ; , ) exp ( ; , )

2

X

E V n t r n i j

V n i j E e

where X N r n i j f t t t

V n i j r n i j f t t t

ε ε

σ σ ρ ε ρ ε σ ρ ρ

σ ρ ε ρ ε σ ρ ρ

+ ∆

 =  

− − ∆ + + ∆ − − ∆

 = − ∆ + + ∆ − + ∆ 
 

 

 
where we have used the fact that 
 

( )

2 21
exp

2

when  ~ ,  

XE e

X N

θ µθ σ θ

µ σ

   = +      

 

The combination of the values that ε1 and ε2 can have is {{1,1}, {1,-1}, {-1,1},{-1,-1}} 
and we already know the information of the values from the LPS lattice. 
 
The variance is given by as follows: 
 

[ ]

( )
( ) ( ) ( ){ } ( )2 2 2

1 2

1 2

2
2 2

12 2 2 2

1 1 2 2 1 2

var ( ) | ( ; , ), ,

( ) ( )

( ) exp 2 ( ; , ) 2 1

X X

t

V n t r n i j

E V n e E V n e

V n r n i j f t t t e
σ ρ ρ

ε ε

σ ρ ε ρ ε σ ρ ρ
− − ∆

+ ∆

   = −   

 = − ∆ + + ∆ − + ∆ − 
 
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Appendix F. Calibration of LPS model 
 
There are two methods of calibrating the LPS model to the initial yield curve. The first 
method is to calibrate the sum of all the weighted pathwise values of LPS model to the 
initial yield curve. This method preserves the volatility and recombining structure of the 
representative paths after calibration. 
 
Example 1. Calibration to initial term structure such that the sum of all the weighted 

pathwise values of LPS model equals the initial yield curve 

 
Consider pricing one-year zero-coupon bond using the LPS model with one term segment 
at time 11. The following sets of indices represent the nodes that three representative 
paths follow in the linear path space. 
 
{{{0,0},{1,0},{2,0},{3,0},{4,0},{5,0},{6,1},{7,1},{8,1},{9,1},{10,1},{11,2}}, 
{{0,0},{1,0},{2,1},{3,1},{4,2},{5,2},{6,3},{7,3},{8,4},{9,4},{10,5},{11,6}}, 
{{0,0},{1,0},{2,1},{3,2},{4,3},{5,4},{6,4},{7,5},{8,6},{9,7},{10,8},{11,9}}} 
 
The node {n, i} represents time n and state i in monthly step size. The first and the last 
nodes in each path are the scenario nodes and the interim nodes are the branches 
connecting these scenario nodes. 
The representative path probabilities are {Q1, Q2, Q3}, calculated using the algorithm in 
Appendix B. The first calibration scheme is to find the unknown x0, which satisfies the 
following equation: 
 

( ){ } ( ){ } ( ){ }0 0 0

1 0 0 2 0 0 3 0 0(1) exp (1) exp (1) exp (1)p Q r x Q r x Q r x= − + + − + + − +  

 

where p(1) is the initial one-period discount function in monthly step size and 0

0 (1)r  is the 

one period interest rate at time 0 and state 0. Of course, the optimal solution for x0 at 
initial time is zero for the obvious reason. The next step is to find the unknown x1, which 
satisfies the following equation: 
 

[ ] ( ){ } ( ){ }
( ){ }

0 1 0 1

0 0 0 1 0 0 0 1

0 1

0 0 0 1

2 1exp (1) (1) 2exp (1) (1)

3exp (1) (1)

p Q r x r x Q r x r x

Q r x r x

∗ ∗

∗

= − + + + + − + + +

+ − + + +
. 

 
We repeat this procedure 10 times more up to p[12] in order to find the remaining 
unknowns x2, …, x11. 
 

[ ] ( ){ }
( ){ }

0 1 2 10 11

0 0 0 1 0 2 1 10 2 11

0 1 2 10 11

0 0 0 1 1 2 5 10 6 11

0 1 2 10 11

0 0 0 1 1 2 8 10 9 1

12 1exp (1) (1) (1) (1) (1)

2exp (1) (1) (1) (1) (1)

3exp (1) (1) (1) (1) (1)

p Q r x r x r x r x r x

Q r x r x r x r x r x

Q r x r x r x r x r x

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

= − + + + + + + + + + +

+ − + + + + + + + + + +

+ − + + + + + + + + + +

⋯

⋯

⋯( ){ }1
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The second method is to calibrate in a state price consistent manner such that the sum of 
the weighted pathwise values in a certain key state space partition of the LPS model is 
equal to the sum of the state prices in the same key state space partition of binomial tree, 
which is useful for the option pricing. For example, consider the key state space partition 
(20, 23) at time 35 in Figure F.1.  
 
Figure F.1. Three-Year Zero-Coupon Bond and Caplet Price of LPS Model with Two 
Term Segments 

 

We calibrate the sum of two weighted pathwise values to the sum of four Arrow-Debreu 
securities’ prices in the same segment, that is, PWV7µQ7 + PWV8µQ8 = AD(20) + AD(21) 
+ AD(22) + AD(23). The correct option value in that segment of the binomial tree is 

calculated as AD(20)·C(20) + … + AD(23)·C(23) and if the calibration error is negligible 
the correct option value can be rewritten as (PWV7µQ7 + PWV8µQ8)µC , where C , the 
average option payoffs, is calculated by 
 

(20) (23)
(20) (23)

(20) (23) (20) (23)

AD AD
C C C

AD AD AD AD
= ⋅ + + ⋅

+ + + +
⋯

⋯ ⋯
                      (F.1) 

 
Each option payoff, C(i), in state i is weighted by ratio of the state price, AD(i), in state i 
to the sum of all the state price in the key state space partition considered. Next we 
approximate those weights in Equation (F.1) with the binomial coefficients 
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corresponding to each time and state in order to decrease the computational burden and 
make the LPS model more independent of the binomial tree since these approximate 
weights are the same as the correct ones in Equation (F.1) when there is no interest rate 
risk. 
 

35 20 35 23

35 20 35 23 35 20 35 23

(20) (23)
C C

C C C
C C C C

≅ ⋅ + + ⋅
+ + + +

⋯
⋯ ⋯

                                      (F.2) 

 
Example 2. Calibration to the initial term structure in a state price consistent manner 

 
Consider pricing the same bond as in Example 1. The second calibration scheme is to 
find the unknowns “x, y, and z” which minimize the difference between the sum of the 
weighted pathwise values of LPS model and the sum of state prices in the same key state 
space partition on the binomial tree as follows: 
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(F.3) 
 

n

iAD  in Equation (F.3) is the Arrow-Debreu security price, which pays $1 in state i at 

time n. ( )n

iP T  is a T-period discount function in state i at time n. Under the interest rate 

uncertainty, the prices of Arrow-Debreu securities, which pay $1 in each state i = {0, 1} 

at time 1, denoted as 1

iAD , is the (i+1)th element of the following (1µ2) row vector, 

AD[1]: 
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1 1
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2 2
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                                                                                                  (F.4) 

 
The Arrow-Debreu securities’ prices, which pay $1 in each state i = {0, 1, 2} at time 2, 

denoted as 2

iAD , is the (i+1)th element of the following (1µ3) row vector, AD[2]: 
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        (F.5) 

 
Using the recursive relationship as in Equation (F.4) and (F.5) we can easily generate the 
Arrow-Debreu securities’ prices for the arbitrary time horizon. Note that we use 
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11
11 11

0

(1)i i

i

AD P
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⋅∑  instead of 
12
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0

i

i

AD
=
∑  in order to calculate the one-year zero-coupon bond 

price since the term segment is located at time 11. It can be easily verified that9  
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Also remember that the option payoff, related with the terminal node, say {35, 6} in 

Figure F.1, is ( )36 36

7 6max (1) ,  0 max (1) ,  0 2r X r X   − + −    . Thus the option price can be 

calculated by 
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where ( )36 36max (1) 0.04,  0i iC r= − . And the option price obtained using Equation (F.7) is 

equal to the value by the backward substitution approach on the binomial tree. Also note 

                                                 
9 Arrow-Debreu security price in state i at time n (¥1) is defined as follows: 
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Therefore, 
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Q.E.D. 
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that we use Equation (F.7) instead of 
36

36 36

0

i i

i

AD C
=

⋅∑  since the term segment is located at 

time 35. It can be easily verified that10 
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Since we use the same number of unknowns as the number of representative paths by 
parallel-shifting the different amount for each representative path in order to minimize 
the objective function, the volatility structure of the LPS model collapses and the 
calibrated interest rate paths do not recombine any more. But it does not matter since the 
pathwise valuation does not need the recombining tree. 
 
If we consider pricing three-year zero bond using two term segments at time 11 and 35 in 
Figure F.1 then there are “32” pathwise values and “2ä2+1” key state space partitions. In 
this case, we have to sort the nine pathwise values according to the state index of the 
terminal node of each representative path in an ascending order and then group the 
representative paths, having the same terminal node, in order to calibrate a state price 
consistent manner. The grouping order follows the trinomial coefficients. For example, 

                                                 
10 From equation (F.6.1) in footnote 7, 
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Therefore, 
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the terminal nodes of nine representative paths in Figure F.1 can be partitioned, after 
sorted in an ascending order, as {{{35,6}}, {{35,14},{35,14}}, {{35,18},{35,18},{35,18}}, 
{{35,21},{35,21}}, {{35,29}}} and the number of paths in each partition is the same as the 
trinomial coefficients of {1, 2, 3, 2, 1}11. This relationship always holds at each key state 
space for the arbitrary number of term segments. 
 
Figure F.2 shows the plot of one-month spot rates in 243 (35) representative paths after 
applying different calibration scheme respectively. The time horizon is 10 years and we 
use five segments of (0, 11), (12, 35), (36, 59), (60, 83) and (84, 119) in monthly step size. 
The left panel shows the monthly spot rates after calibration using the first scheme. The 
calibrated interest rates are very similar to the interest rates before calibration since the 
LPS bond pricing error is small. The tree is still recombining under the first calibration 
scheme since the same amount is added to or subtracted from all the interest rate paths at 
the same time while the tree is no longer recombine under the second calibration scheme 
as in the right panel. 
 
Figure F.2. One-Month Spot Rates after Different Calibration Schemes 
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Table F.1 below shows the option pricing error when we use the second calibration 
method and average out the option payoffs by the weight of binomial coefficient. The 
option pricing errors, especially for the out-of-the-money options, remarkably decrease 
compared with those of LPS model without calibration. 
 
Table F.1. Option Pricing Errors of LPS Model when we use the Second Calibration and 
Average Option Payoffs 
 
Call on a Twenty-Year Zero-Coupon Bond Expiring in Ten Years 
 

                                                 

11 The trinomial coefficient can be calculated by 
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2 2
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n
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n n n j
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= −    − −    
∑ , 

where n = 2 and k = {-2, -1, 0, 1, 2} if we use two term segments. 
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Strike #Paths Roll Back LPS Error

50 243 0.458153 0.446948 −0.0244561

40 243 2.2722 2.25074 −0.00944515

30 243 5.8127 5.78419 −0.00490619

20 243 10.1269 10.0921 −0.00343984

10 243 14.5134 14.4786 −0.00240213  
 
Call on a Ten-Year Zero-Coupon Bond Expiring in Five Years 
 
Strike #Paths Roll Back LPS Error

70 27 0.490581 0.486527 −0.00826246

60 27 3.94581 3.93179 −0.00355284

50 27 10.1909 10.1719 −0.00187215

40 27 16.9201 16.9006 −0.00115586

30 27 23.6569 23.6374 −0.000826726

20 27 30.3937 30.3742 −0.000643499

10 27 37.1305 37.111 −0.00052676  
 
Whether we use the first or the second calibration scheme depends on the payoff structure 
of the financial derivatives as one might expect. If we are to price either pure discount 
bond or straight coupon bond which has the state-independent payoff structure at 
maturity, assuming there is no default risk, then the first calibration method will do even 
though the state price inconsistency still prevails after calibration. And it could be 
reasonable to discard the unimportant representative paths by linearly ordering them 
according to the path probability to the extent of not losing the convergence property of 
the model price since the first calibration method preserves the original LPS structure 
very well. But when it comes to option pricing, the state prices matter since the option 
payoff is state-dependent. Therefore, when we are to price option embedded securities 
such as interest rate option, bond option, etc., we have to use the second calibration 
method and match the weighted average option payoffs with each representative path in 
the corresponding key state space partition. And we should be more careful not to throw 
out the baby with the bathwater by linear-ordering and discarding the paths having a 
meaningful weight in their role under the second calibration method. Not that the effect 
of which calibration methods we choose is relatively larger when we use the small 
number of term segments of LPS model.12 

                                                 
12 Another method of reducing the pricing error of LPS model is to increase the number of term segments 
instead of calibration. 
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