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Abstract. This paper presents a new methodology to approximate the value of

American options by least-squares Monte Carlo simulation. Whereas Longstaff and

Schwartz’s approach do not utilize the underlying asset price movement, we develop

several methods that incorporates it into option pricing. One category improves the

R-squares from the regressions by using, [1] the weighted regression with the same re-

gressors and, [2] new regressors which are related to the discount factor from the cur-

rent decision to exercise time. The other category improves the computational speed

without sacrificing the convergence level by, [1] terminating early during the backwar-

dation procedure and, [2] decreasing the number of observations for the regressors.

Finally, combining both methods, we can get improved R-squares and computational

speed in comparison to Longstaff and Schwartz’s approach.
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1. Introduction

The valuation and properties of American options has drawn a lot of attention from

both academics and industry because of its far-ranging applicability in financial markets,

where a variety of financial instruments are traded including stocks, foreign currencies,

interest rates, commodities, and future contracts. However, American options are typi-

cally very difficult to analyze due to the intrinsic uncertainty associated with the exercise

rule which offers the holder the right to exercise the option early to liquidate the payoff

before the expiration date. Therefore, one of many challenges in analyzing American

options lies in finding the optimal exercise rule from the underlying asset’s stochastic

properties. Hence, quite often, the properties of American options are deduced from

their European equivalent.

For the last decade or so, numerical procedures for valuing American options have

been widely utilized to compute option prices using Monte Carlo simulation. In their

seminal work, Cox, Ross and Rubinstein (1979) apply a binomial pricing model to solve

the optimal exercise rule and the option price. The binomial model is still one of the

most popular pricing formulae in practice. Despite its convenience in implementation

and conceptual ease, the computational burden of the binomial model grows exponen-

tially as the number of state variables increases. Many researchers have developed

more advanced and complicated numerical algorithms than can be employed to price

options since the pioneering work of Cox et. al. (1979), but a major drawback of those

algorithms is their inaccuracy and slowness of computation.

A number of papers using simulation follows. Bossaerts (1989) solves the exercise

rules which maximizes the simulated value of the option. Averbukh (1997), Broadie

and Glasserman (1997), Carr (1998), and Garcia (1999) use various parameterization

techniques to approximate exercise boundaries or transitional densities, to name a few.

Recently, Longstaff and Schwartz (2001) proposed a simple but powerful numerical

procedure to compute option prices using a regression framework, which they call LSM

(Least Squares Monte Carlo). They estimated the expected cash flows conditional on
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in-the-money stock prices and compare the expected payoff with the immediate exercise

value of the option and obtained the optimal exercise rule only when the option value of

the immediate exercise is higher than the expected payoff. This process continues back-

ward until the starting date for each simulation and evaluates the option price by taking

the average of the option prices of all simulation runs. One of the merits of Longstaff

and Schwartz’s approach is that it does not require a parametric exercise boundary.

Their simple but powerful approach has ignited a renewed interest in regression-based

American option pricing. Pizzi and Pellizzari (2002) use a non-parametric technique to

tackle the problem, which gives the advantages of not needing to choose transformed

regressors unlike the LSM. However, the non-parametric pricing method can be applied

only when the number of underlying assets are few. The typical curse of dimensionality

problem of non-parametric estimation directly constrains its applicability in a more

general setting.

This paper aims to provide a few extensions to approximate the value of Ameri-

can options by least-squares Monte Carlo simulation. While Longstaff and Schwartz’s

method do not utilize the underlying asset price movement, we develop several methods

that incorporates it into option pricing. One category improves the R-squares by using

the weighted regression with the same regressors suggested by them and the other is

related to the discount factor from the current decision to exercise time. The second

method improves the computational speed without sacrificing the convergence level by

terminating early during the backwardation process and decreasing the number of ob-

servations for the regressors. We combine both methods and achieve a more progress

in R-squares and computational speed compare to Longstaff and Schwartz’s approach.

The rest of the paper is organized as follows. Section 2 briefly reviews the working

mechanism of LSM. Section 3 introduces two extensions to solve option pricing prob-

lems. Also, we present two methods that improve the computational speeds in pricing

simulation. Section 4 discusses the sensitivity of the option to the change in under-

lying parameters, known as the Greeks and shows how the calculation of the Greeks
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can be achieved within our simulation schemes. A variety of simulation results will be

presented and discussed in Section 5. Concluding remarks will follow.

2. Longstaff and Schwartz Model for Option Pricing

We consider the American put option on a no-dividend stock with strike price, K,

and time-to-maturity, T. At the exercise time, te(< T ), the immediate exercise value,

V e
te = max(K − Ste , 0), is well-fitted through regression as follows:

V e
te = α + β1Ste + β2S

2
te + ε. (1)

According to the LSM approach based on Longstaff and Schwartz (2001), at the decision

time, t(< te < T ), the optimal strategy is to compare the immediate exercise value,

V e
t , with the discounted cash flows from continuing, and then exercise if immediate

exercise is more valuable. As a benchmark, we will recap the LSM approach and show

the estimation methods applied in their approach.

The LSM approach provides the stopping rule that maximizes the value of the op-

tion at each decision time along each path and uses only in-the-money paths in the

estimation, since the exercise decision is only relevant when the option is in the money.

For the computation of the discounted expected value of continuation at the decision

time t the LSM selects in-the-money paths, then moves forward along the selected

path until the first stopping time te occurs, and finally use the discounted cash flow

from the exercise back to time t, for example, in case of the typical put option, Y =

e−r(te−t)max(K − Ste , 0), as the dependent variable. Also the stock price at time t, St,

is used as the independent variable, X, for the following regression model1:

Y = α + β1X + β2X
2 + ε. (2)

1Longstaff and Schwartz argue that simple power functions of asset prices yield similar results as
polynomial transformations of asset prices are used as basis functions.



4 CHOI AND SONG

Since the LSM does not take into account the relationship between the behavior

of the stock price process and the selected regressor in the regression, the R2s from

the regressions are often somewhat low and thus makes the measurement error in the

estimated continuation value a little too large. As alternatives, regressors taking into

account the property of the stock price process will be introduced.

3. Improved Algorithms for Option Pricing

3.1. Improvement of R2s from regressions.

A. Weighted regression model

For a simulated path ωi, i = 1, · · · , N , from the decision time, t, until the first

stopping time or exercise time, t
(i)
e , the stock price under the risk-neutral measure can

be generated from the formula:

S
(i)
te = S

(i)
t exp

(

(r − σ2/2)(t(i)e − t) + σ

√

t
(i)
e − t φ(i)

e

)

, (3)

where S
(i)
t is the stock price at time t, r is the riskfree interest rate, σ is the stock’s

volatility, and φ
(i)
e is an independent sample from the standard normal distribution.

Thus, the log value of the ratio of realized stock price at t
(i)
e to stock price at t follows

a normal distribution:

log
(

S
(i)
te /S

(i)
t

)

= (r − σ2/2)(t(i)e − t) + σ

√

t
(i)
e − t φ(i)

e .

The realized normal shock follows a standard normal distribution:

φ(i)
e =

1

σ
√
t
(i)
e −t

[

log
(

S
(i)
te /S

(i)
t

)

− (r − σ2/2)(t(i)e − t)
]

∼ N(0, 1).

Hence, the probability that the stock price St at time t moves to S
(i)
te at time te

(i) can

be obtained from the probability density function as follows:

w(i)
e = 1√

2π
e−φ

(i)
e

2
/2.
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The ordinary least squares estimates of parameters {α, β1, β2} in regression (2) is
obtained by minimizing the object function:

∑

{i |Yi>0}
w(i)
e (Yi − α− β1Xi − β2X

2
i )

2, (4)

where Yi = e−r(t
(i)
e −t)max(K − S

(i)
te , 0) and Xi = S

(i)
t .

B. Regression with new regressors

It is well known that the R2s for regression (1) with regressors 1, Ste , and S
2
te are very

high and the discounted expected cash flow of continuation should be regressed by the

stock price at the decision time, St. Thus, substituting the regressor related to Ste in

equation (1) with the current time stock price St through equation (3), we have a new

regression model for the dependent variable Yi = e−r(t
(i)
e −t)max(K − S

(i)
te , 0) as follows:

Yi = αe−r(t
(i)
e −t) + β1S

(i)
t e−σ

2(t
(i)
e −t)/2 + β2(S

(i)
t )

2e(r−σ2)(t
(i)
e −t) + εi, (5)

where the error term εi can be written:

εi = ε+ φ(i)
e σ

√

t
(i)
e − t e−σ

2(t
(i)
e −t)/2 S

(i)
t

(

β1 + 2β2S
(i)
t e(r−σ2/2)(t

(i)
e −t)).

That is, the new independent variables, e−r(t
(i)
e −t), S

(i)
t e−σ

2(t
(i)
e −t)/2, and (S

(i)
t )

2e(r−σ2)(t
(i)
e −t),

related to the discount factor from the decision to first stopping time, are introduced

to improve the R2 values from the regressions.

Although the unspecific risk of equation (5) is increased in comparison to regression

(1), the R2s are substantially improved in comparison to the Longstaff and Schwartz

model which will be shown in our simulation section.

3.2. Improvement of computational speed.

Due to the backward induction nature of pricing American options, most numerical
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algorithms require a large storage space. Thus, the computational speed heavily relies

on the particular algorithm that is chosen.

In this subsection we introduce new methodologies to improve the computational

speed without sacrificing the convergence level by, [1] terminating early during the

backwardation procedure and [2] decreasing the number of observations for the regres-

sors.

C. Early termination Model

Recall that the optimal exercise boundary at the decision time t for the American

put option with maturity T decreases as the time-to-maturity T − t increases. This

phenomena is shown in Figure 1, where the benchmark optimal exercise boundary is

obtained from the implicit finite difference method (IFDM). Also, it can be observable

that the minimum value of simulated paths at each decision time, t, is almost increasing

as the time-to-maturity increases, since the volatility of stock price at time t, σ
√
t, is

decreasing as the time-to-maturity T − t increases.

Combining these two observations, we suggest an early termination algorithm for

three models described in the former subsection; For simplicity, we focus the discussion

on the case where the American option can only be exercised at the n discrete times

0 < t1 < t2 < · · · < tn = T , and consider the optimal termination policy at each

exercise time. During the backwardation procedure starting the final maturity time, T ,

Step 1. Compute the optimal exercise boundary at the decision time, tk, for the LSM

approach by taking the maximum stock price among the pathes at which im-

mediate exercise, V e
tk
(S

(i)
tk
), is more valuable than the discounted expectation of

continuation, V c
tk
(S

(i)
tk
), as follows:

S
(b)
tk
= max

{S(i)
tk

|V e
tk

(S
(i)
tk

)>V c
tk

(S
(i)
tk

)}
S

(i)
tk
.
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Step 2. If the minimum value of simulated paths at the decision time tk defined by

S
(m)
tk
= min

i=1,··· ,N
S

(i)
tk
,

equals to S
(b)
tk
, stop backwardation procedure and identify the cash flows at each

path based on the information set at time tk+1 instead of tk. That is, it is more

reasonable to use the information about exercise time t
(i)
e for each path at time

tk+1, since the optimal exercise boundary at time tk hits the minimum value of

simulated paths.

D. Flexible upper bound for regressor’s observations

Note that the conditional expectation of stock price at maturity based on the infor-

mation Ft at time t is given by

E∗[ST | Ft ] = Ste
r(T−t).

where the asterisk indicates the expectation is taken in the risk-neutral measure. Since

the optimal exercise boundary at the decision time, t, for the American put option with

strike price, K, and maturity, T , is decreasing as the time-to-maturity, T − t, increases

and its optimal exercise boundary at maturity is K, it is not necessary to include the full

in-the-money paths as the independent variables in the linear regression model. Thus,

we propose a new rule to improve the computational speed and get more accurate exer-

cise boundary for the American put option by changing the selection methodology for

the independent regressor as follows:

Step 1. Compute the cumulative probability that simulated paths at each decision time,

t, are less than the time-adjusted strike price, Ke−r(T−t):

pt,T = P∗[S
(i)
t |S(i)

t < Ke−r(T−t) ].
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Step 2. Determine the upper bound for the independent regressor’s observations in the

linear regression model at each decision time t, which is Ur(t) = K = 40 for the

fixed case like Longstaff and Schwartz’s approach and

Ur(t) = S0e
(r−σ2/2)t+σ

√
tqt,T

for the flexible case, where qt,T satisfies P∗[φ ≤ qt,T ] = ξpt,T
2 with φ ∼ N(0, 1).

Step 3. For the parameter estimation of the regression model (2), (4), and (5) at the de-

cision time, t, we use the simulated paths for the independent variable satisfying

the inequality S
(i)
t < Ur(t).

4. Hedge Parameters

In many cases, it is important to know the sensitivity of the option to the changes in

the underlying assets of option parameters. These parameters are collectively referred

to as the Greeks. Mathmatically speaking, the Greeks indicate the derivatives of a

derivative security’s price with respect to various model parameters. For each simu-

lated path ωi, i = 1, · · · , N , the LSM algorithm produces an exercise time t
(i)
e and its

discounted payoff function P̂i(S0) = e−rt
(i)
e max(K − S

t
(i)
e
, 0) so that the American put

option price, P (S0;K,T ), is approximated by the sample average:

ÎN =
1

N

N
∑

i=1

P̂i(S0).

The convergence result from Longstaff and Schwartz addresses the bias of the LSM

algorithm as follows:

lim
N→∞

ÎN ≤ P (S0;K,T ).

Since these Greeks are important measures of risk, their efficient computation is

needed for a better risk management system. Boyle, Broadie, and Glasserman (1997)

2This comes from pt,T = P∗[S
(i)
t |S(i)

t < Ke−r(T−t) ] = P∗[φ <
ln(K/S0)−rT+σ2t/2

σ
√
t

] and its adjusting

factor ξ is set 1.1 in our simulation study.



LEAST-SQUARES SIMULATION 9

suggest three approaches to estimating price sensitivities, including finite-difference ap-

proximations, pathwise derivatives as direct estimates, and another direct estimates

using the likelihood ratio. They report that when both direct estimates apply, the path-

wise method generally has lower variance. Furthermore, since American options are

path-dependent options, our discussion focuses on the application of pathwise deriva-

tives in the case of the American put option.

The pathwise estimate of the true delta dP/dS0 for the American put option is the

derivative of the sample price P̂i with respect to S0. More precisely,

dP̂i
dS0

= lim
ε→0
[P̂i(S0 + ε)− P̂i(S0)]/ε,

provided that the limit exists with probability 1. If P̂i(S0) is computed from the stock

price S
t
(i)
e
at the exercise time t

(i)
e as follows

S
t
(i)
e
= S0e

(r−σ2/2)t
(i)
e +σ

√
t
(i)
e Zi , Zi

i.i.d∼ N(0, 1), (6)

we assume that the stock price S
t
(i)
e
(ε) is also generated with the same normal shock Zi

as follows

S
t
(i)
e
(ε) = (S0 + ε)e(r−σ2/2)t

(i)
e +σ

√
t
(i)
e Zi . (6’)

As far as the generated stock price S
t
(i)
e
(ε) is below the optimal exercise boundary stock

price and P̂i(S0 + ε) is computed from the stock price S
t
(i)
e
(ε), we have

dP̂i
dS0

=
dP̂i
dS

t
(i)
e

dS
t
(i)
e

dS0

= −e−rt
(i)
e 1{S

t
(i)
e

<K}
S
t
(i)
e

S0

. (7)

The next question is whether this estimator is unbiased; that is, whether

E
[ dP̂i
dS0

]

=
dP

dS0

≡ d

dS0

E[ P̂i ]

The unbiasedness of the pathwise estimate thus reduces to the interchangeability of

derivative and expectation, and the unbiasedness of sample average. Thus the bias of

the LSM algorithm implies that of pathwise derivatives.
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Applying the same reasoning used above, we obtain the pathwise estimator of vega

for the American put option

dP̂i
dσ

=
dP̂i
dS

t
(i)
e

dS
t
(i)
e

dσ
= −e−rt

(i)
e 1{S

t
(i)
e

<K}
(

ln(S
t
(i)
e
/S0)− (r − σ2/2)t(i)e

)

. (8)

5. Simulation Results

In this section, we present the simulation results applying the methods we proposed

throughout this paper. Table 1 presents three results for three different initial val-

ues of the stock prices, S0 = 36, 40, 44. All of the results are obtained with strike

price(K)=40, volatility(σ)= 0.4, risk-free interest rate(r)= 0.06, and maturity(T )= 1

year. The option prices under different regression regimes are presented in columns 4-5,

and the simulation results for the Greeks are reported in columns 6-9. The rows termed

IFDM indicate benchmark option prices and corresponding Greeks. In each panel, we

report three different methods to enhance the speed of simulations and three pricing

algorithms with the LSM results included for comparison. We mainly examine the case

where the option price is in-the-money. The other two cases will be briefly mentioned

as they carry similar implications.

Overall, new regressor method overestimates price of options in all situations, while

the other two methods underestimate the price. The first panel of Table 1 exhibits the

results of different option pricing estimations when the option is in-the-money. Looking

at the original method, which conforms to the regressor-selection steps proposed by

Longstaff and Schwartz, the pricing errors of the LSM and weighted regression contains

less than 1 cent to little above 3 cents. However, the pricing error under the new

regressor method looks quite unfavorable. The results of the LSM dominates the other

two regressions in this case in terms of relative errors.

However, shifting our interest from the pricing errors to the fitness of the models, we

observe a different picture. Figure 9(b) depicts the R2s of three different regressions.

The weighted regression and the new regressor method exhibit a huge improvement

in R2 compared to the LSM approach. Especially, the magnitude of difference of R2
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between the LSM and the new regressor method is on the order of several multiples.

The difference of R2 between the LSM and the weighted regression is also nontrivial.

A high R2 indicates that there is a considerable correlation between regressand and

regressors, i.e. discounted cash flows and included state variables.

Optimal exercise boundaries for the in-the-money case are presented in Figure 1(c).

Two points are worth mentioning. Firstly, near the initial periods, the volatility of

optimal exercise boundary increases uncontrollably. Secondly, the gap between the

theoretical boundary and the regression-based boundary becomes wider near maturity.

These two observations are pathological features of both the LSM approach and our

methods. To circumvent these problems, we introduce two corrective procedures, early

termination and flexible boundary, as described in Section 3. The simulation results of

these procedures are reported in rows 4-9 of Table 1.

Figure 2 illustrates the results when we apply these corrections. Each boundary

is computed by the average of 50 estimations. Figure 2(a) is the boundary with no

adjustment in either the size of regressors or early termination. As is clear from the

figure, both the weighted regression and the new regressor method create steep drops

near the early stage of executable steps, while the LSM displays separation from the

true boundaries in the middle steps. Figure 2(b) displays the boundary after employing

early termination. The flat segment indicates the region where early termination kicks

in. From our exercise, we found the excessive volatile segment of the boundary contains

not much information on option prices, and skipping estimations on these segments

relieves computational burden nontrivially3 without sacrificing the convergence level,

as can be seen from Table 1.

Figures 2(c)-(d) are the results when the flexible boundary is introduced. The flexi-

ble boundary affects the number of regressors in different stage of estimation. Figure 8

describes how the number of regressors are varying in different time steps. The cumula-

tive probability under the fixed boundary is always above that of the flexible boundary,

3Subfigures (c)-(d) in figures 2-4 show that it reduces the computational burden approximately 30
percentage.
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as shown in Figure 8(a). The movement of upper boundaries are depicted in Figure

8(b). In most of the cases, the upper is increasing in time t. Compared to the fixed

boundary, we have a lower upper bound in early time, but a higher upper bound as

time lapses. A higher upper bound tends to enlarge the exercise region and, as a con-

sequence, more observations for estimation will be garnered. Figure 8(c) presents the

number of observations in both fixed and flexible boundaries. Clearly, the fixed bound-

ary case stores more observations in early stage than the flexible counterpart, but this

situation reverses in later stages4. We expect this manipulation can cure the second

problem related to the regression-based pricing. Figures 2(c)-(d) do not seem to be a

huge success, but progress is undeniable. In particular, the improvement is conspicuous

when both the early termination and the flexible boundary are used in the estimation.

Returning to Table 1, the pricing errors under the corrective procedures are at least

as good as the original methods and sometimes even better than the original counter-

parts. Especially, when we apply early termination and flexible boundary restrictions

together, the overall pricing errors improve significantly as we expected. The corrective

procedures are devised to discard confounding observations, which convey little infor-

mation on option prices or to smooth the excessive volatile optimal exercise boundary,

while the original method does not differentiate them from relevant observations. By

implementing these selection procedures, we expect the overall fitness of the models will

be improved and pricing errors will become lower. Unlike the improvement shown in

pricing errors, the improvement of R2 seems quite limited as shown in Figure 9(a)-(b),

but still a significant difference is detected between our proposed regression methods

and the LSM counterparts.

The second and third panel of Table 1 and related figures report the results when the

option is at-the-money and out-of-the-money respectively. Similar interpretation can

be applied as the option is in-the-money.

4This phenomena comes from the extension of cumulative probability under the flexible upper bound
for regressor’s observations through an adjusting factor ξ in step 3 of subsection 3.D.
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Figure 5 exhibits the results where all the corrective procedures are applied in three

regression frameworks. We would like to emphasize that the weighted regression and

new regressor models are tracking the true boundary pretty well, even though there

seems to be a noticeable discrepancies from the true boundary in early stage of time.

6. Conclusion

In this paper, new algorithms to improve the accuracy of option pricing and com-

putational speed are proposed. Throughout our simulation examples, our results show

that the newly proposed algorithm produces a better option pricing than suggested by

a simple regression method.

The improvement of our proposed algorithm is two-dimensional: overall fitness of

regression and computational speeds. Under the weighted regression and new regressor

methods, the R2s increases significantly, and simulation time decreases as less compu-

tation should be carried out due to the early termination nature of the algorithm. We

believe these features will render a significant difference as state variables used in option

pricing regression increase.

Lastly, we do not develop much argument on how to choose adjusting factor, ξ. The

optimal choice of ξ should be chosen carefully to minimize the gap between the exercise

boundary from the theoretical model and that from the flexible boundary model. This

is left for future research.
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Table 1. Prices and Greeks for the American put option: The
American put option has K = 40, σ = 40%, r = .06, and T = 1 and
is exercisable 100 times per year. IFDM is estimated with 104 time steps
and the same number of underlying state steps. The simulation is based
on 2 · 104 (104 plus 104 antithetic) paths for the underlying price process
following the geometric Brownian motion.

Category Category Price Delta Vega

S0 2 1 Mean (s.e) Mean (s.e) Mean (s.e)

36 IFDM 7.108 -0.509

Original LS 7.089 (.018) -.514 (.014) 9.368 (1.319)

Weight 7.077 (.018) -.488 (.014) 9.214 (1.232)

NewReg 7.351 (.020) -.486 (.015) 9.630 (1.225)

Early LS 7.088 (.018) -.513 (.014) 9.364 (1.319)

Stop Weight 7.072 (.019) -.487 (.014) 9.195 (1.234)

NewReg 7.325 (.022) -.484 (.015) 9.585 (1.227)

Stop + LS 7.092 (.017) -.515 (.014) 9.375 (1.317)

Flexible Weight 7.084 (.019) -.492 (.014) 9.253 (1.229)

NewReg 7.325 (.019) -.492 (.015) 9.633 (1.230)

40 IFDM 5.317 -0.391

Original LS 5.307 (.019) -.394 (.003) 10.551 (0.032)

Weight 5.298 (.017) -.379 (.003) 10.319 (0.042)

NewReg 5.463 (.020) -.383 (.004) 10.655 (0.055)

Early LS 5.306 (.020) -.393 (.003) 10.539 (0.037)

Stop Weight 5.295 (.017) -.379 (.003) 10.304 (0.046)

NewReg 5.453 (.019) -.383 (.004) 10.635 (0.061)

Stop + LS 5.307 (.020) -.395 (.003) 10.558 (0.037)

Flexible Weight 5.300 (.019) -.381 (.003) 10.354 (0.042)

NewReg 5.448 (.020) -.386 (.004) 10.678 (0.055)

44 IFDM 3.950 -0.296

Original LS 3.944 (.023) -.298 (.003) 10.979 (0.050)

Weight 3.942 (.023) -.289 (.002) 10.743 (0.049)

NewReg 4.032 (.027) -.295 (.004) 11.054 (0.068)

Early LS 3.943 (.024) -.298 (.003) 10.963 (0.055)

Stop Weight 3.937 (.024) -.288 (.002) 10.715 (0.054)

NewReg 4.025 (.026) -.295 (.004) 11.037 (0.075)

Stop + LS 3.945 (.024) -.298 (.003) 10.984 (0.055)

Flexible Weight 3.941 (.023) -.289 (.002) 10.758 (0.053)

NewReg 4.022 (.026) -.297 (.004) 11.077 (0.070)
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(d) S0 = 44 (out-of-the-money)

Figure 1. Graphs of the optimal exercise boundary for the

American put option . The optimal exercise boundary is shown for
the several LSM methodologies w.r.t the time-to-maturity, where the op-
tion is exercisable 100 times per year. The benchmark case is obtained
by using the implicit FDM (IFDM) with 104 time steps and the same
number of underlying state steps. The American put option has K = 40,
σ = 40%, r = .06, and T = 1. The simulation is based on 2 · 104 (104

plus 104 antithetic) paths for the underlying price process following the
geometric Brownian motion. Minimum is obtained from taking the min-
imum of the simulated prices at each exercisable time. (b) is obtained
from utilizing the decreasing property of optimal exercise boundaries as
the time-to-maturity increases.
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(b) Early stop model
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(c) Flexible upper bound
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(d) Early stop + Flexible Bound

Figure 2. Graphs of the average optimal exercise boundary for

the ITM American put option . The average optimal exercise bound-
ary is shown for the several LSM methodologies, including the original
LS approach, early stop model, flexible upper bound model, and the last
two-combined model, w.r.t the time-to-maturity, where the option is ex-
ercisable 100 times per year. The benchmark case is obtained by using
the IFDM with 104 time steps and the same number of underlying state
steps. The American put option has S0 = 36, K = 40, σ = 40%, r = .06,
and T = 1. Each curve is computed from averaging 50 estimated curves,
each estimate based on 2 · 104 (104 plus 104 antithetic) paths for the
underlying price process. Each different model uses the same simulated
data.
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(b) Early stop model
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(c) Flexible upper bound
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(d) Early stop + Flexible Bound

Figure 3. Graphs of the average optimal exercise boundary for

the ATMAmerican put option . The average optimal exercise bound-
ary is shown for the several LSM methodologies, including the original
LS approach, early stop model, flexible upper bound model, and the last
two-combined model, w.r.t the time-to-maturity, where the option is ex-
ercisable 100 times per year. The benchmark case is obtained by using
the IFDM with 104 time steps and the same number of underlying state
steps. The American put option has S0 = 40, K = 40, σ = 40%, r = .06,
and T = 1. Each curve is computed from averaging 50 estimated curves,
each estimate based on 2 · 104 (104 plus 104 antithetic) paths for the
underlying price process. Each different model uses the same simulated
data.
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(b) Early stop model
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(c) Flexible upper bound
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(d) Early stop + Flexible Bound

Figure 4. Graphs of the average optimal exercise boundary for

the OTM American put option . The average optimal exercise
boundary is shown for the several LSM methodologies, including the orig-
inal LS approach, early stop model, flexible upper bound model, and the
last two-combined model, w.r.t the time-to-maturity, where the option is
exercisable 100 times per year. The benchmark case is obtained by using
the IFDM with 104 time steps and the same number of underlying state
steps. The American put option has S0 = 44, K = 40, σ = 40%, r = .06,
and T = 1. Each curve is computed from averaging 50 estimated curves,
each estimate based on 2 · 104 (104 plus 104 antithetic) paths for the
underlying price process. Each different model uses the same simulated
data.
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(a) Longstaff-Schwartz Model
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(b) Weighted Model
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(c) New Regressor Model

Figure 5. Graphs of the average optimal exercise boundary for

the American put option under the combined model of early

stop and flexible boundary. The average optimal exercise boundary
is shown w.r.t the time-to-maturity, where the option is exercisable 100
times per year. The benchmark case is obtained by using the IFDM
with 104 time steps and the same number of underlying state steps. The
American put option has S0 = 36, 40, 44, K = 40, σ = 40%, r = .06, and
T = 1. Each curve is computed from averaging 50 estimated curves, each
estimate based on 2 ·104 (104 plus 104 antithetic) paths for the underlying
price process. Each different model uses the same simulated data.
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(d) S0 = 44 (out-of-the-money)

Figure 6. Graphs of the average optimal exercise boundary for

the American put option . The average optimal exercise boundary
is shown for the several LSM methodologies w.r.t the time-to-maturity,
where the option is exercisable 100 times per year. The benchmark case
is obtained by using the implicit FDM (IFDM) with 104 time steps and
the same number of underlying state steps. The American put option has
K = 40, σ = 40%, r = .06, and T = 1. Each curve is computed from av-
eraging 100 estimated prices at each exercisable time, each estimate based
on 2 · 104 (104 plus 104 antithetic) paths for the underlying price process.
Minimum is obtained from taking the minimum of the simulated prices
at each exercisable time. (b) is obtained from utilizing the decreasing
property of optimal exercise boundaries as the time-to-maturity increases.
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(d) β1 with S0 = 40

Figure 7. Graphs of the coefficient for the regression . The co-
efficient for the regression optimal exercise boundary is shown for the
several LSM methodologies w.r.t the time-to-maturity, where the option
is exercisable 100 times per year. The benchmark case is obtained by us-
ing the implicit FDM (IFDM) with 104 time steps and the same number
of underlying state steps. In this comparison, the strike price of the put
is 40, the short-term interest rate is .06, the underlying stock price S0,
the volatility of returns σ = 40%, and the year until the final expiration
T = 1. The simulation is based on 2·104 (100,000 plus 100,000 antithetic)
paths for the underlying price process following the geometric Brownian
motion. Minimum is obtained from taking the minimum of the simulated
prices at each exercisable time. (b) is obtained from utilizing the de-
creasing property of optimal exercise boundaries as the time-to-maturity
increases.
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(b) Upper bound for regressor’s observa-
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(c) # of observations for regressors

Figure 8. Graphs of summary statistics for independent regres-

sors. (a) describes the cumulative probability, pt,T = P∗[S
(i)
t |S(i)

t <
Ke−r(T−t) ] at each decision time t for simulated paths. (b) describes the
upper bound for regressor’s observations in the linear regression model
at each decision time t, which is Ur(t) = K = 40 for the fixed case

and Ur(t) = S0e
(r−σ2/2)t+σ

√
tqt,T for the flexible case, where qt,T satisfies

P∗[φ ≤ qt,T ] = 1.1pt,T with φ ∼ N(0, 1). (c) describes the observation

numbers at the decision time t satisfying S
(i)
t < Ur(t) with the initial

stock price S0 = 36, 40, 44.
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(a) R2 with S0 = 36 and flexible
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(c) R2 with S0 = 40 and flexible
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(d) R2 with S0 = 44 and flexible

Figure 9. Graphs of average R2s for regressions. The average R2

values for the regression are shown for the several LSM methodologies,
including the original LS approach, weighted regression model, and new
regressor model and each model with (fixed or flexible) upper bound for
the independent regressor variable with respect to the time-to-maturity,
where the option is exercisable 100 times per year. The American put
option hasK = 40, σ = 40%, r = .06, and T = 1. Each curve is computed
from averaging 50 estimated R2 values at each exercisable time te, each
estimate computed from the linear regression model with the independent
regressors, where numbers of their observation are dependent on the fixed
(K) or flexible (S0e

(r−σ2/2)te+σ
√
teqte,T ) upper bound.


