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The two phase behavior of Korean treasury bond (KTB) futures is investigated in Korean
exchange market. We examine the real data such as KTB futures and the correlated Brownian
process. By adding those correlations inherent in KTB futures series to Brownian walks, we
study whether the volatility clustering plays a key role in the equilibrium and nonequilibrium
states of financial markets. It is shown that the two phase behavior is basically resulted from the
heavy-tailed behavior of the distribution of price increments.

Several stylized facts of financial markets, such as the power-law distribution of price increments, traded volumes,
and volatilities, have recently been reported [1− 5]. Critical phenomena in the physical systems have been the most
interesting fields, and in these fields the twin concepts of scaling and universality have been proved to be important
in a number of scientific fields [6]. Following these arguments, several works have been performed to financial systems
and they have also reported some reasonable results [7−9]. In those works, the authors argued that the analogy with
thermodynamic systems at critical point can be led to the explanation of the two-phase behavior of financial markets.

In the minority games, the volatility clustering is detected. To investigate the possible relationship between volatility
clustering and the two phase phenomena, Zheng et al [10] have analyzed the two-phase phenomena with the German
DAX and compare it with those in minority games and herding models. They concluded that the volatility clustering
and the two-phase phenomena are independent characteristics of financial dynamics. Matia and Yamasaki [11] showed
that the scaling of trading volumes was to be a key factor in the emergence of two-phase behavior of volume imbalance
conditional to the local intensity.

The purpose of this paper is to examine the two-phase phenomena of the futures market and more importantly
to focus on how the volatility clustering and the distribution of price increments affect the emergence of two-phase
phenomena. As done in [10], we analyzed the two-phase phenomena with the volatility instead of the volume imbalance
[9]. In order to investigate the dependence of two-phase phenomena on the volatility clustering and the distribution
of price increments, respectively, we generated the geometric Brownian walks and added to them a higher-order
correlation inherent in the real futures quotations.

The logarithmic increment is represented in units of ticks as

G(t) = log y(t+ ∆)− log y(t) (1)

where y(t) denotes the futures quotation at time t, and ∆ is the size of window, over which the logarithmic increment
and the volatility are defined. The volatility of logarithmic increments is described as

r(t) = 〈| log y(t′′ + 1)/y(t′′)− 〈log y(t′′ + 1)/y(t′′)〉|〉 (2)

Here the bracket denotes the average over the interval [t, t+ ∆]. The window size ∆ is set to be 10 min. The window
size has no effect on the two phase behavior of the time series. To guarantee a large number of statistics under
analysis, the statistics can be calculated using the overlapping window.

Next we calculate the autocorrelation function and the detrended fluctuation analysis on the KTB412, shuffled
KTB412, geometric Brownian walk, and correlated Brownian walk in order to check the existence of higher-order
correlation. This analysis is performed on the volatility with ∆ = 1 min. The detrended fluctuation analysis helps us
to detect an inherent correlation in time series, and the detrended fluctuation is defined as

F (s) = [
1
Ns

Ns∑
ν=1

F 2(ν, s)]1/2 ∼ sα, (3)
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FIG. 1: Plot of the detrended fluctuation analysis of four time series; the KTB412, shuffled KTB412, geometric Brownian walk,
and correlated geometric Brownian walk for ∆ = 1 min.
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FIG. 2: P (G|r∗) of (a) the KTB412 and (b) the correlated geometric Brownian walk. These are conditional to the volatility.
r∗ is used as a scale of real volatility and the scale is determined by dividing the range of volatilities into 100 intervals. A large
r is excluded since the corresponding data size is too small to get a reliable result.

where the root mean square fluctuation is determined by

F 2(ν, s) =
1
s

s∑

k=1

[Y {(ν − 1)s+ k} − Zν(k)]2 (4)

for each segment ν, where ν = 1, · · · , Ns. Here Y (i) is the integrated time series or profile and Zν(k) is the fitting
polynomial in segment ν.

We analyze the two-phase behavior of the derivative security from the data set of tick-by-tick recorded KTB412
futures quotations which was traded for six months from 1st July of 2004. This tick data consists of about 14, 000
quotations. In general, since the trade of contracts becomes active as getting close to the maturity, the quotations
are concentrated in the period of 3 months close to the maturity of contracts.

For a cumulative distribution P (≥ G) ∼ G−µ, we obtain µ ' 2.3 and µ ' 2.1 for logarithmic increments and
volatility(∆ = 10) of the KTB412, respectively. Fig. 1 shows that α ' 0.50 and α ' 0.50 for shuffled KTB412
and the Brownian walk, respectively, which means that there is no correlation. However, for the KTB412 and the
correlated Brownian walk, we also obtain α ' 0.75 and α ' 0.91, respectively. Next we calculate the distribution
of the logarithmic increments conditional to the volatility to examine the two phase behavior of KTB412 following
the procedure taken in Ref. [10]. Figs. 2(a) and 2(b) show the distribution P (G|r∗) for the KTB412 and correlated
Brownian walk. For convenience, we use the rescaled volatility, r∗ = 1, 2, · · ·, for which a volatility range is defined
as [rmin + (r∗ − 1)× (rmax − rmin)/100), rmin + r∗ × (rmax − rmin)/100], where rmin = 0 and rmax = 44.46. For the
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KTB412, it appears two phase phenomena at r∗ = 5, comparable to the German DAX [10]. The other data set of
the correlated Brownian walk shows no clear distinction between distributions conditional to varying volatilities. It
means that the two phase phenomena is not consistent with the volatility clustering.

In conclusion, we have examined the two phase phenomena for the KTB412 and the correlated Brownian walk. We
have confirmed that KTB412 with heavy-tailed distribution has the two phase behavior, while the Brownian walk has
no clue of it, which means that the two phase behavior is independent of the clustering volatility. For a small volatility
the price changes accumulate near zero, which implies that the market is efficient. As the volatility increases, it goes
to the two phase. According to this result, we can easily determine the state of the market if we find a reliable and
novel method to estimate a volatility from small number of quotations.
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