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Abstract

We study optimal portfolio, consumption-leisure and retirement choice of an infinitely-

lived economic agent whose instantaneous preference is characterized by a constant elas-

ticity of substitution(CES) function of consumption and leisure. We integrate in one

model the optimal consumption-leisure-work choice, optimal portfolio selection, and the

optimal stopping problem in which the agent chooses her retirement time. The economic

agent derives utility from both consumption and leisure, and is able to adjust her supply

of labor flexibly above a certain minimum work-hour, and also has a retirement option.

We solve the problem analytically by considering a variational inequality arising from the

dual functions of the optimal stopping problem. The optimal retirement time is charac-

terized as the first time when her wealth exceeds a certain critical level. We provide the

critical wealth level for retirement and characterize the optimal consumption-leisure and

portfolio policies before and after retirement in closed forms. We also derive properties of

the optimal policies. In particular, we show that consumption in general jumps around

retirement.
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1 Introduction

We study optimal portfolio, consumption-leisure and retirement choice of an infinitely-

lived economic agent whose instantaneous preference is characterized by a constant elastic-

ity of substitution(CES) function of consumption and leisure. The problem is formulated

mathematically as a mixture of portfolio and consumption-leisure choice and an optimal

stopping time problem. In the consumption-leisure and portfolio choice problem the agent

chooses optimally consumption, leisure and portfolio (c, l, π) and in the optimal stopping

problem she chooses the time of retirement τ .

The economic agent in this paper derives utility from both consumption and leisure,

and is able to adjust her supply of labor flexibly above a certain minimum work-hour,

and also has a retirement option. Namely, the agent chooses her hours of work every

day and eventually a retirement time considering the trade-off between the utility effect

of leisure and the wealth effect of labor. Before retirement the agent receives income at

a rate proportional to her hours of work. We assume that she has to work minimum

hours in order to keep her employment, but is free to choose her hours of work above

this minimum level. Retirement is an irreversible decision that allows the agent to enjoy

leisure full-time at the cost of foregone wage income.

We solve the problem analytically by considering a variational inequality arising from

the dual functions of the optimal stopping problem. A general property of the solution

is that the optimal retirement time is the first time when her wealth exceeds a certain

critical level. We provide the critical wealth level for retirement and characterize the

optimal consumption-leisure and portfolio policies before and after retirement in closed

forms.

We can derive a few results concerning the behavior of the optimal policies. We first

compare the optimal strategies in our model with those in a different model where the

agent does not have a retirement option and is always forced to work at least for minimum

hours (for instance, under slavery) and show that the agent consumes less and invests more

2



in the risky asset in our model where she has a retirement option than she does when

there is no such option (see Figure 1 and 2). Intuitively, with a retirement option at hand

the agent tries to accumulate her wealth fast enough to reach the critical level. After

attaining the wealth level, she is able to enjoy leisure full-time; this incentive lets her

save more and take more risk. Consistent with this intuitive explanation, it can be shown

that typically as the agent’s wealth approaches the critical level she tends to invest in the

risky asset more aggressively. We also show that generally there is a consumption jump

at the critical wealth level; the hours of leisure jumps around retirement and consumption

jumps as well. Some numerical examples are provided. And we also consider the liquidity

constraints. To model the liquidity constraints for the future income arises another free

boundary in a variational inequality problem, which eventually requires massive algebraic

calculation, especially in the case of CES utility, but it is still tractable in a reasonable

condition.

Bodie, Merton, and Samuelson (1992) have studied an optimal consumption and in-

vestment problem of an economic agent who has flexibility in labor supply and shown that

flexibility in labor supply tends to increase the agent’s risk taking in market securities.

Bodie et al. (2004) have studied a similar problem in the context of retirement planning,

i.e., there is a fixed time of retirement and the agent chooses consumption and investment

in preparation for a scheduled retirement. However, they have not solved for the agent’s

optimal choice of retirement time, as we have done in this paper.

Karatzas and Wang (2000) first studied a discretionary stopping problem by using

the martingale method. They have introduced the family of stopping time problems to

reduce the problems into easy forms. Choi and Koo (2005) have studied the effect of a

preference change around a discretionary stopping time. Jeanblanc, Lakner, and Kadam

(2004) have solved a problem of an agent under obligation to pay a debt at a fixed rate

who can declare bankruptcy by using the dynamic programming method. Choi and Shim

(2006) have studied a problem in which a wage earner can choose consumption/investment

policies, and the time to retire considering a trade-off between income and disutility from

labor by using the dynamic programming method. But they have not considered the

consumption-leisure choice problem as we have done in this paper.

He and Pagès (1993) have studied the optimal consumption and portfolio problem in

which the agent is subject to the liquidity constraints. (See also Dybvig and Liu (2005).)

Farhi and Panageas (2007) have independently studied a model similar to ours. They
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have considered the optimal consumption and portfolio problem with retirement time.

They have solved this problem with Cobb-Douglas utility and a binomial choice of leisure

(l1 = 1 or l̄ when retire) with the liquidity constraints and the finite horizon problem with

retirement. The main difference between our paper and theirs consists of two aspects.

First, in this paper we employ a general CES utility to model choice between consump-

tion and leisure, whereas they have confined their attention to the Cobb-Douglas utility

function which is a special case of the CES function. Second, we allow a continuum of

choice between labor and leisure, while they have considered a binomial choice, to work

or to retire. Whether labor supply is flexible or not is largely an empirical question. How-

ever, consideration of flexible labor supply has contributed greatly to the understanding

of macroeconomic labor supply, consumption and asset prices (see e.g. Mankiw, Rotem-

berg, and Summers (1985), Eichenbaum, Hansen, and Singleton (1988), Kennan (1988),

Basak (1999)). Furthermore, the general CES specification allows the elasticity of substi-

tution between labor and leisure to take any positive real numbers, and therefore, becomes

an essential feature when labor supply flexibility is introduced in the model (see Basak

(1999)).

The rest of this paper proceeds as follows. Section 2 provides the financial market

model and Section 3 describes the optimization problem. In Section 4 we introduce the

results of the duality approach. Section 5 provides a value function by solving a free

boundary value problem and characterizes the optimal policies for an agent with general

CES utility. Some numerical examples are also provided. In Section 6 we consider the

case in which the agent is subject to the liquidity constraints. Section 7 concludes. All

detailed proofs in this paper are given in Appendix.

2 The Financial Market Model

2.1 The Economy

We consider a continuous-time financial market with an infinite-time horizon. Assume

that there are N + 1 assets. One asset is a riskless asset with a constant interest rate

r > 0 and the others are N risky assets(or stocks) whose price processes are governed

by the stochastic differential equation(SDE) with constant parameters, the column vector

b = (bj) of mean rates of return and a volatility matrix σ = (σjk) j, k = 1, · · · , N

dSj(t) = Sj(t)
[

bjdt+
∑N

k=1 σjkdBk(t)
]

, where B(t) = (B1(t), B2(t), · · · , BN (t))⊤ is an
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N -dimensional standard Brownian motion on a probability space (Ω,F ,P), where the

superscript ⊤ denotes the transpose of a matrix or a vector. {Ft}
∞
t=0 is the augmentation

under P of the natural filtration generated by B(t). We assume that the matrix σ is

nonsingular.

We now define the market price of risk, the discount process, the exponential mar-

tingale, and the state-price-density process (or pricing kernel), respectively, by θ ,

σ−1(b − r1N ), ζ(t) , exp{−rt}, Z0(t) , exp
{

−θ⊤B(t) − 1
2 ||θ||

2t
}

, and H(t) ,

ζ(t)Z0(t) = exp
{

−
(

r + 1
2 ||θ||

2
)

t− θ⊤B(t)
}

, where 1N = (1, · · · , 1)⊤ denotes the col-

umn vector of N ones. For each given fixed T > 0, we define the equivalent martingale

measure P̃(A) , E[Z0(T )1A], for A ∈ FT . By Girsanov’s Theorem, we obtain the new

process B̃(t) = B(t) + θt, 0 ≤ t ≤ T, which is a standard Brownian motion under P̃.

Let Xt be the wealth of an agent at time t and let πj(t) be the amount invested

in the risky asset Sj(t) at time t, then Xt −
∑N

j=1 πj(t) can be invested in the riskless

asset. πt , (π1(t), π2(t), · · · , πN (t))⊤ is Ft-measurable adapted such that
∫ t

0 ||πs||
2ds <

∞, for all t ≥ 0, almost surely(a.s.). Let ct ≥ 0 be the agent’s consumption rate at time

t; it is progressively measurable with respect to Ft and nonnegative a.s..

A novel feature of our model is that the agent chooses between labor and leisure. The

sum of rates of labor and leisure is assumed to be a constant L̄. Therefore, if we let lt ≥ 0

be the rate of leisure at time t, which is progressively measurable with respect to Ft, then

L̄ − lt is the rate of work at time t, so that the (effective) total hours of work between t

and s is given by
∫ s

t
(L̄ − lu)du.

We assume that the wage rate is a constant w. Therefore, if the agent works at the

rate L̄− lt, then she receives labor income at the rate w(L̄− lt) at time t. We also assume

that ct satisfies
∫ t

0 csds <∞, for all t ≥ 0, a.s..

The agent chooses her retirement time τ which is assumed to be an Ft-stopping time.

We assume that the agent should work at least at the rate L̄−L > 0 in order to keep her

employment before retirement. That is, L > 0 is the maximum rate of leisure the agent

can choose before retirement. Furthermore, we assume that retirement is a once-and-for-

all decision, i.e., the agent cannot come back to work after retirement.1 The assumptions

1The assumption that there is a positive minimum for the rate of labor is necessary in order to guarantee

the existence of a finite retirement time. If we allow the agent can voluntarily choose a zero labor rate before

retirement, then she will never retire. Choosing a zero labor rate is a better option than retirement, because

the agent has an option to work alive by choosing the former. An obvious shortcoming of the assumption is

5



can be summarized as

(2.1) 0 ≤ lt ≤ L < L̄, for 0 ≤ t < τ and lt = L̄, for t ≥ τ.

In particular, the agent cannot enjoy leisure full-time before retirement.

A consumption-leisure-portfolio plan of the agent is a triple (c, l, π). LetXt = X
(c,l,π,x)
t

be the agent’s wealth process corresponding to a given consumption-leisure-portfolio plan

(c, l, π) with initial wealth X0 = x. Therefore the agent’s wealth process Xt evolves

according as

(2.2) dXt = [rXt + π⊤
t (b − r1N ) − ct + w(L̄− lt)]dt+ π⊤

t σdB(t).

The consumption-leisure-portfolio plan (c, l, π) is called admissible until the stopping time

τ if X
(c,l,π,x)
τ ≥ 0 and X

(c,l,π,x)
t > −wL̄

r
for 0 ≤ t < τ .2 After retirement the agent faces

the liquidity constraints Xt ≥ 0 for all t ≥ τ a.s..3

Under P̃ the wealth process (2.2) is rewritten as

(2.3) dXt = [rXt − ct + w(L̄ − lt)]dt+ π⊤
t σdB̃(t).

By Itô’s formula, we have

(2.4) ζ(t)

(

Xt +
wL̄

r

)

+

∫ t

0

ζ(s) (cs + wls) ds = x+
wL̄

r
+

∫ t

0

ζ(s)π⊤
s σdB̃(s).

For an admissible plan (c, l, π) until a stopping time τ , the third term on right-hand

side of equation (2.4) is a continuous P-local martingale bounded below and therefore a

supermartingale by Fatou’s Lemma. Thus the optional sampling theorem implies

(2.5) E

[
∫ τ

0

H(t) (ct + wlt) dt+H(τ)

(

Xτ +
wL̄

r

)]

≤ x+
wL̄

r
,

for all τ ∈ S where S denotes the set of all F -stopping time τ ’s.

2.2 The Utility Function

The agent has the following von Neumann-Morgenstern utility function:

U ,

∫ ∞

0

e−βtu(ct, lt)dt

that we cannot deal with involuntary unemployment in our model.
2We consider wL̄

r
as the present value of the future income of the agent. So she is able to consume and

invest as long as her wealth level does not fall below −
wL̄
r

.
3We will consider the case in which the agent has the liquidity constraints for all t ≥ 0 in Section 6.
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where β > 0 is the subjective discount rate and a CES(Constant Elasticity of Substitution)

utility function is defined by

(2.6) u(c, l) ,
{αcρ + (1 − α)lρ}

1−γ
ρ

1 − γ
, ρ < 1, ρ 6= 0, 0 < α < 1, γ > 0 and γ 6= 1.

Stiglitz (1969) studied behavior toward risk with multiple commodities and defined co-

efficient of relative (or absolute) risk aversion as that of the indirect utility function of

income when the relative prices of the commodities are fixed. In (2.6) γ is the Stiglitz

coefficient of relative risk aversion when we think of consumption and leisure as two dif-

ferent commodities, 1/(1 − ρ) is the elasticity of substitution between consumption and

leisure and α is a parameter that measures the share of consumption’s contribution to

agent’s period utility.

We introduce a convex dual function ũ(·) of a concave function u(·, ·) by ũ(y) ,

sup{c≥0, L≥l≥0}[u(c, l)− (c+wl)y]. Let I1,c(·) be the inverse function of
∂u

∂c
(·, L), then we

obtain

ũ(y) = A1y
− 1−γ

γ 1{y≥ỹ} + [u(I1,c(y), L) − {I1,c(y) + wL}y]1{0<y≤ỹ},

where

A1 ,
γ

1 − γ
α

1−γ
ργ

(

1 + w

(

αw

1 − α

)
1

ρ−1

)

(1−ρ)(1−γ)
ργ

and

ỹ , α
1−γ

ρ

(

αw

1 − α

)

γ
1−ρ

(

1 + w

(

αw

1 − α

)
1

ρ−1

)

1−ρ−γ
ρ

L−γ .

It can be easily shown that ũ(·) is strictly decreasing and strictly convex.

3 The Optimization Problem

The following assumption is a standard assumption to make the optimization problem

well-defined and holds throughout the paper without further comments.

Assumption 3.1.

K , r +
β − r

γ
+
γ − 1

2γ2
||θ||2 > 0.

Now the agent’s problem is to maximize her expected utility:

J(x; c, l, π, τ) , E

[
∫ ∞

0

e−βtu(ct, lt)dt

]
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subject to the budget constraint (2.5) and the leisure constraint (2.1). We rewrite

J(x; c, l, π, τ) as

J(x; c, l, π, τ) = E

[
∫ τ

0

e−βtu(ct, lt)dt+

∫ ∞

τ

e−βtu(ct, L̄)dt

]

(3.1)

= E

[
∫ τ

0

e−βtu(ct, lt)dt+ e−βτU(X(c,l,π,x)
τ )

]

.

Then the value function is defined by

V (x) , sup
(c,l,π,τ)∈A(x)

J(x; c, l, π, τ),

where A(x) is the set of all admissible plans (c, l, π, τ) such that

E

[
∫ τ

0

e−βtu−(ct, lt)dt+ e−βτU−(X(c,l,π,x)
τ )

]

<∞,

where u− , max(−u, 0).

Remark 3.1. We see that the optimal policies after retirement are obtained using the

solution of the Merton problem. (See a similar result in Proposition 2.4 of Jeanblanc,

Lakner, and Kadam (2004).) That is, for any τ ∈ S and Fτ -measurable random variable

η there exists a consumption-portfolio plan {(ĉt, π̂t) : t ≥ τ} such that

E
[

e−βτU(η)1{τ<∞}

]

= E

[
∫ ∞

τ

e−βtu(ĉt, L̄)dt

]

,

where the wealth dynamics is governed by

dXt = [rXt + π̂⊤
t (b− r1N ) − ĉt]dt+ π̂⊤

t σdB(t) , t ≥ τ, Xτ = η.

We can also develop U(·) according to the framework of Karatzas et al. (1986).

For notational simplicity, we let uL̄(c) , u(c, L̄).

Lemma 3.1. U(·) in (3.1) is given by

U(x) = J0(C(x, 0)),

where C(·, 0) is the inverse function of X0(·),

X0(c) =
c

r
−

2

||θ||2(m+ −m−)

[

(u′
L̄
(c))m+

m+

∫ c

0

dz

(u′
L̄
(z))m+

+
(u′

L̄
(c))m−

m−

∫ ∞

c

dz

(u′
L̄
(z))m−

]

,

1

2
||θ||2m2 −

(

r − β −
1

2
||θ||2

)

m− r = 0,

where are two real roots, m− < −1 and m+ > 0, and

J0(c) =
uL̄(c)

β
−

2

||θ||2(n+ − n−)

[

(u′
L̄
(c))n+

n+

∫ c

0

dz

(u′
L̄
(z))m+

+
(u′

L̄
(c))n−

n−

∫ ∞

c

dz

(u′
L̄
(z))m−

]

8



with n+ = m+ + 1 and n− = m− + 1. Moreover the optimal portfolio and consumption

are

π̂t = −σ−1θ
U ′(Xt)

U ′′(Xt)
and ĉt = c∗∗,

where c∗∗ is the solution to the following algebraic equation

α(c∗∗)
ρ−1

{

α(c∗∗)
ρ + (1 − α)L̄ρ

}

1−γ−ρ
ρ = U ′(Xt).

Proof. In the case of ρ < 0 and γ > 1, we have uL̄(0) = −∞. The proof is done by

Theorem 11.4 of Karatzas et al (1986). In the other case, we have uL̄(0) <∞. Then, we

apply Theorem 10.1 of Karatzas et al (1986).

Now we introduce a convex dual function Ũ(·) of a concave function U(·) by Ũ(y) ,

sup{x≥0}

[

U(x) −
(

x+ wL̄
r

)

y
]

. Let I2(·) be the inverse function of U ′(·), then we obtain

Ũ(y) , U(I2(y)) −

{

I2(y) +
wL̄

r

}

y.

The dual function Ũ(·) is also strictly decreasing and strictly convex.

4 The Martingale Method

We now proceed to solve the optimization problem using a martingale approach. For any

fixed stopping time τ ∈ S, Πτ (x) is denoted by the set of consumption-leisure-portfolio

plan (c, l, π) for which (c, l, π, τ) ∈ A(x). Define the following utility maximization prob-

lem

Vτ (x) , sup
(c,l,π)∈Πτ (x)

J(x; c, l, π, τ).

For a Lagrange multiplier λ > 0, we define a dual value function

(4.1)

Ṽ (λ; τ) , sup
(c,l,π)∈Πτ (x)

(

J(x; c, l, π, τ) − λE

[
∫ τ

0

H(t)(ct + wlt)dt+H(τ)

(

X(c,l,π,x)
τ +

wL̄

r

)])

.

Then

Ṽ (λ; τ) = E

[
∫ τ

0

e−βtũ(λeβtH(t))dt+ e−βτ Ũ(λeβτH(τ))

]

.
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For a fixed τ we can determine optimal policies (cλ, lλ, πλ) to problem (4.1). We consider

the first order conditions, for 0 ≤ t < τ

∂u

∂c
(cλ(t), lλ(t)) = λeβtH(t) and

∂u

∂l
(cλ(t), lλ(t)) = wλeβtH(t), on {0 ≤ l ≤ L},

(4.2)

∂u

∂c
(cλ(t), L) = λeβtH(t) and lλ(t) = L, on {l ≥ L}.(4.3)

By the duality argument, We also have

(4.4) cλ(t) + wlλ(t) = −ũ′(λeβtH(t)), 0 ≤ t < τ.

The optimal replicating portfolio πλ, satisfying the wealth process

(4.5) X(cλ,lλ,πλ,x)
τ = −

wL̄

r
− Ũ ′(λeβτH(τ)),

exists by the following lemma, that is, there exists the optimal portfolio πλ corresponding

to (cλ, lλ, Xτ ) in (4.2), (4.3), (4.4), and (4.5).

Lemma 4.1. For any τ ∈ S, any Fτ -measurable random variable B with P [B > 0] = 1,

any progressively measurable process ct ≥ 0 and lt ≥ 0 that satisfy

E

[
∫ τ

0

H(t)(ct + wlt)dt+H(τ)

(

B +
wL̄

r

)]

= x+
wL̄

r
,

there exists portfolio π(·) such that, a.s.

X
(c,l,π,x)
t > −

wL̄

r
, 0 ≤ t < τ and X(c,l,π,x)

τ = B.

Proof. This lemma is similar to Lemma 6.3 of Karatzas and Wang (2000).

Now for a fixed τ , let (cλ, lλ, πλ) be the policies that provide the supremum value in

(4.1). We have from the definition of Vτ (x) and Ṽ (λ; τ)

V (x) = sup
τ∈S

Vτ (x) = sup
τ∈S

inf
λ>0

[

Ṽ (λ; τ) + λx +
λwL̄

r

]

.

For a given Lagrange multiplier λ, we define

Ṽ (λ) , sup
τ∈S

Ṽ (λ; τ).

Then the following proposition provides the value function V (·) which is an analogue to

Karatzas and Wang (2000).
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Proposition 4.1. If Ṽ (λ) exists and is differentiable for λ > 0, then

(4.6) V (x) = inf
λ>0

[

Ṽ (λ) + λx+
λwL̄

r

]

for any x ∈ (−wL̄
r
,∞). In particular, the optimal policies are represented by (4.2), (4.3),

(4.4) and (4.5) with λ attaining the minimum value at (4.6).

Proof. See Section 8, especially Theorem 8.5 and consequently Corollary 8.7 of Karatzas

and Wang (2000).

5 A Solution to the Free Boundary Value Problem

We define yλ
t , λeβtH(t). Then Ṽ (λ; τ) is rewritten as Ṽ (λ; τ) = E

[

∫ τ

0 e
−βtũ(yλ

t )dt+ e−βτ Ũ(yλ
τ )
]

.

Let yt = λ exp{(β − r − 1
2 ||θ||

2)t− θ⊤B(t)}. By Itô’s formula, we have

(5.1) dyt = yt{(β − r)dt − θ⊤dB(t)}.

It can be easily seen that yλ
t is a unique strong solution to (5.1) with initial value yλ

0 = λ.

We consider the following optimal stopping problem

(5.2) φ(t, y) = sup
τ>t

E
yt=y

[
∫ τ

t

e−βsũ(ys)ds+ e−βτ Ũ(yτ )

]

,

where we denote E
yt=y = E

y for simplicity. We consider the differential operator L =

∂
∂t

+(β−r)y ∂
∂y

+ 1
2 ||θ||

2y2 ∂2

∂y2 acting on a mapping ψ : (0,∞)×R
+ −→ R

+. A solution to

the following free boundary value problem is a solution to the optimal stopping problem

(5.2).

Variational Inequality 1. Find a free boundary ȳ > 0 and a function φ̃(·, ·) ∈ C1((0,∞)×

R
+) ∩ C2((0,∞) × (R+ \ {ȳ})) satisfying

(1) Lφ̃+ e−βtũ(y) = 0, ȳ < y

(2) Lφ̃+ e−βtũ(y) ≤ 0, 0 < y ≤ ȳ

(3) φ̃(t, y) ≥ e−βtŨ(y), ȳ ≤ y

(4) φ̃(t, y) = e−βtŨ(y), 0 < y ≤ ȳ

for all t > 0.

We consider the quadratic equation

(5.3)
1

2
||θ||2n2 +

(

β − r −
1

2
||θ||2

)

n− β = 0

with two roots n+ > 1 and n− < 0, for the next proposition. The next proposition

provides a solution to Variational Inequality 1.
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Proposition 5.1. We consider the function

v(y) =



































C2y
n− + A1

K
y−

1−γ
γ if y ≥ ỹ

D1y
n+ +D2y

n− − wL
r
y + 2y

n+

||θ||2(n+−n−)

∫ y

ỹ

zI1,c(z)−u(I1,c(z),L)

zn++1 dz

− 2yn
−

||θ||2(n+−n−)

∫ y

ỹ

zI1,c(z)−u(I1,c(z),L)

z
n
−

+1 dz if ȳ < y ≤ ỹ

U(I2(y)) −
(

I2(y) + wL̄
r

)

y if 0 < y ≤ ȳ,

where ȳ, C2, D1, and D2 are determined by the following algebraic equations

D1 = −
1

n+ − n−

(

1 − γ

γ
+ n−

)

A1

K
ỹ−

1−γ
γ

−n+ +
1 − n−

n+ − n−

wL

r
ỹ1−n+ ,

D1ȳ
n+ +

2ȳn+

||θ||2(n+ − n−)

∫ ȳ

ỹ

zI1,c(z) − u(I1,c(z), L)

zn++1
dz

+
n−

n+ − n−
U(I2(ȳ)) +

1 − n−

n+ − n−

(

I2(ȳ) +
w(L̄− L)

r

)

ȳ = 0,

from which ȳ is derived,

D2 =
n+

n+ − n−
ȳ−n−U(I2(ȳ)) −

n+ − 1

n+ − n−

(

I2(ȳ) +
w(L̄ − L)

r

)

ȳ1−n−

+
2

||θ||2(n+ − n−)

∫ ȳ

ỹ

zI1,c(z) − u(I1,c(z), L)

zn−+1
dz,

and

C2 = −
1

n+ − n−

(

1 − γ

γ
+ n+

)

A1

K
ỹ−

1−γ
γ

−n− −
n+ − 1

n+ − n−

wL

r
ỹ1−n− +D2.

Then φ̃(t, y) = e−βtv(y) is a solution to Variational Inequality 1 provided that

(5.4) −βU(I2(y)) + ryI2(y) −
1

2
||θ||2y2I ′2(y) + u(I1,c(y), L) − yI1,c(y) + w(L̄ − L)y ≤ 0,

for 0 < y ≤ ȳ,

D1y
n+ +D2y

n− +
w(L̄ − L)

r
y +

2yn+

||θ||2(n+ − n−)

∫ y

ỹ

zI1,c(z) − u(I1,c(z), L)

zn++1
dz

−
2yn−

||θ||2(n+ − n−)

∫ y

ỹ

zI1,c(z) − u(I1,c(z), L)

zn−+1
dz − U(I2(y)) + yI2(y) ≥ 0,(5.5)

for ȳ < y ≤ ỹ, and

(5.6) C2y
n− +

A1

K
y−

1−γ
γ − U(I2(y)) + yI2(y) +

wL̄

r
y ≥ 0,

for y ≥ ỹ.

Proof. See Appendix A.
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Theorem 5.1. If the pair (ȳ, φ̃(t, y)) is a solution to Variational Inequality 1, then φ̃(t, y)

coincides with φ(t, y) of (5.2) and an optimal stopping time is given by

τy = inf {s > t | ys ≤ ȳ } <∞, a.s.

Proof. We directly obtain this result from Theorem 10.4.1 of Øksendal (1998).

By the results of Theorem 5.1 and Proposition 4.1, we obtain the value function V (x).

Since Ṽ (λ) is obtained from φ(t, y) at t = 0, y = λ and consequently Ṽ (λ) = v(λ). The

optimal stopping time corresponding to λ is characterized as τλ = inf
{

t > 0 | yλ
t ≤ ȳ

}

.

So we obtain the value function V (x) using the following theorem.

Theorem 5.2. Let

(5.7) x̃ = −n−C2ỹ
n−−1 +

1 − γ

γ

A1

K
ỹ−

1
γ −

wL̄

r
and x̄ = I2(ȳ).

Then, the value function is

V (x) =















































C2(λ∗∗)
n− + A1

K
(λ∗∗)

− 1−γ
γ + (λ∗∗)x + wL̄

r
(λ∗∗) if −wL̄

r
< x ≤ x̃

D1(λ
∗∗)n+ +D2(λ

∗∗)n− + w(L̄−L)
r

(λ∗∗) + (λ∗∗)x

+ 2(λ∗∗)n+

||θ||2(n+−n−)

∫ λ∗∗

ỹ

zI1,c(z)−u(I1,c(z),L)

z
n++1 dz

− 2(λ∗∗)n
−

||θ||2(n+−n−)

∫ λ∗∗

ỹ

zI1,c(z)−u(I1,c(z),L)

zn
−

+1 dz if x̃ ≤ x < x̄

U(x) if x ≥ x̄,

where λ∗∗ and λ∗∗ are determined from the following algebraic equations

(5.8) −n−C2(λ∗∗)
n−−1 +

1 − γ

γ

A1

K
(λ∗∗)

− 1
γ −

wL̄

r
= x, for −

wL̄

r
< x ≤ x̃

and

− n+D1(λ
∗∗)n+−1 − n−D2(λ

∗∗)n−−1 −
2n+(λ∗∗)n+−1

||θ||2(n+ − n−)

∫ λ∗∗

ỹ

zI1,c(z) − u(I1,c(z), L)

zn++1
dz

+
2n−(λ∗∗)n−−1

||θ||2(n+ − n−)

∫ λ∗∗

ỹ

zI1,c(z) − u(I1,c(z), L)

zn−+1
dz −

w(L̄ − L)

r
= x, for x̃ ≤ x < x̄.

(5.9)

Remark 5.1. It is easily seen the one-to-one correspondences between λ∗∗ ∈ (ỹ,∞) and

x ∈ (−wL̄
r
, x̃) at (5.8) and λ∗∗ ∈ (ȳ, ỹ) and x ∈ (x̃, x̄) at (5.9) using decreasing property

of (5.8) and (5.9) with respect to λ∗∗ and λ∗∗ respectively.
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The optimal stopping times τ∗ are determined by means of (5.9) such that

(5.10) τ∗ = τλ∗∗ = inf
{

t > 0 | yλ∗∗

t ≤ ȳ
}

.

We now assume that there is 1 risky asset to represent the optimal solution without

notational complexity. Let yλ∗∗

t and yλ∗∗

t be solutions of SDE (5.1) with an initial value

y0 = λ∗∗ and y0 = λ∗∗, respectively. In order to find an optimal portfolio we consider the

optimal wealth process. In order to obtain the optimal wealth process we substitute yλ∗∗

t

for λ∗∗ into (5.9). Then

X∗∗(t) = −n+D1(y
λ∗∗

t )n+−1 − n−D2(y
λ∗∗

t )n−−1 −
w(L̄ − L)

r

−
2n+(yλ∗∗

t )n+−1

θ2(n+ − n−)

∫ yλ∗∗

t

ỹ

zI1,c(z) − u(I1,c(z), L)

zn++1
dz

+
2n−(yλ∗∗

t )n−−1

θ2(n+ − n−)

∫ yλ∗∗

t

ỹ

zI1,c(z) − u(I1,c(z), L)

zn−+1
dz.(5.11)

Similarly we substitute yλ∗∗

t for λ∗∗ into (5.8). Then

(5.12) X∗∗(t) = −n−C2(y
λ∗∗

t )n−−1 +
1 − γ

γ

A1

K
(yλ∗∗

t )−
1
γ −

wL̄

r
.

Theorem 5.3. The optimal policies are given by (c∗, l∗, π∗, τ∗) such that

c∗t =



























α
1−γ
ργ

(

1 + w
(

αw
1−α

)
1

ρ−1

)

1−ρ−γ
ργ

(yλ∗∗

t )−
1
γ if −wL̄

r
< Xt ≤ x̃

I1,c(y
λ∗∗

t ) if x̃ ≤ Xt < x̄

c∗∗ if Xt ≥ x̄

,

l∗t =



























α
1−γ
ργ

(

αw
1−α

)
1

ρ−1

(

1 + w
(

αw
1−α

)
1

ρ−1

)

1−ρ−γ
ργ

(yλ∗∗

t )−
1
γ if −wL̄

r
< Xt ≤ x̃

L if x̃ ≤ Xt < x̄

L̄ if Xt ≥ x̄

,

and

π∗
t =



























































θ
σ

{

n−(n− − 1)C2(y
λ∗∗

t )n−−1 + 1−γ
γ2

A1

K
(yλ∗∗

t )−
1
γ

}

if −wL̄
r
< Xt ≤ x̃

θ
σ

{

n+(n+ − 1)D1(y
λ∗∗

t )n+−1 + n−(n− − 1)D2(y
λ∗∗

t )n−−1

+
2n+(n+−1)(yλ∗∗

t )n+−1

θ2(n+−n−)

∫ yλ∗∗

t

ỹ

zI1,c(z)−u(I1,c(z),L)

z
n++1 dz

−
2n−(n−−1)(yλ∗∗

t )n
−

−1

θ2(n+−n−)

∫ yλ∗∗

t

ỹ

zI1,c(z)−u(I1,c(z),L)

zn
−

+1 dz

+ 2
θ2

yλ∗∗

t I1,c(y
λ∗∗

t )−u(I1,c(yλ∗∗

t ),L)

yλ∗∗

t

}

if x̃ ≤ Xt < x̄

− θ
σ

U ′(Xt)
U ′′(Xt)

if Xt ≥ x̄

with

τ∗ = inf {t > 0 | X∗∗(t) ≥ x̄ } .
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In this case c∗∗ is a solution to the following algebraic equation

α(c∗∗)
ρ−1 {α(c∗∗)

ρ + (1 − α)Lρ}
1−γ−ρ

ρ = U ′(Xt).

Proof. See Appendix B.

Now we will compare the optimal policies in our model with those when the agent

does not have a retirement option, i.e., τ is forced to be infinite. This is an optimization

problem of an agent who chooses 0 ≤ lt ≤ L. In the case of no retirement option, the

optimal consumption and portfolio are given as follows:

c∗t,N =















α
1−γ
ργ

(

1 + w
(

αw
1−α

)
1

ρ−1

)

1−ρ−γ
ργ

(yλ∗∗

t,N )−
1
γ if −wL̄

r
< Xt ≤ x̃N

I1,c(y
λ∗∗

t,N ) if Xt ≥ x̃N

and

π∗
t,N =



















































θ
σ

{

n−(n− − 1)(C2 −D2)(y
λ∗∗

t,N )n−−1 + 1−γ
γ2

A1

K
(yλ∗∗

t,N )−
1
γ

}

if −wL̄
r
< Xt ≤ x̃N

θ
σ

{

n+(n+ − 1)D1(y
λ∗

t )n+−1

+
2n+(n+−1)(yλ∗∗

t,N )n+−1

θ2(n+−n−)

∫ yλ∗∗

t,N

ỹ
zI1,c(z)−u(I1,c(z),L)

z
n++1 dz

−
2n−(n−−1)(yλ∗∗

t,N )n
−

−1

θ2(n+−n−)

∫ yλ∗∗

t,N

ỹ
zI1,c(z)−u(I1,c(z),L)

z
n
−

+1 dz

+ 2
θ2

yλ∗∗

t,N I1,c(y
λ∗∗

t,N )−u(I1,c(yλ∗∗

t,N ),L)

yλ∗∗

t,N

}

if Xt ≥ x̃N

,

where the wealth level corresponding to ỹ is given by

(5.13) x̃N = −n−(C2 −D2)ỹ
n−−1 +

1 − γ

γ

A1

K
ỹ−

1
γ −

wL̄

r

and the optimal wealth processes are given by

X∗∗
N (t) = −n+D1(y

λ∗∗

t,N )n+−1 −
w(L̄ − L)

r
−

2n+(yλ∗∗

t,N )n+−1

θ2(n+ − n−)

∫ yλ∗∗

t,N

ỹ

zI1,c(z) − u(I1,c(z), L)

zn++1
dz

+
2n−(yλ∗∗

t,N )n−−1

θ2(n+ − n−)

∫ yλ∗∗

t,N

ỹ

zI1,c(z) − u(I1,c(z), L)

zn−+1
dz

(5.14)

and

(5.15) X∗∗,N (t) = −n−(C2 −D2)(y
λ∗∗

t,N )n−−1 +
1 − γ

γ

A1

K
(yλ∗∗

t,N )−
1
γ −

wL̄

r
.

Remark 5.2. It can be easily seen that x̃ > x̃N from comparing (5.7) with (5.13) provided

that D2 > 0. (Here we assume that D2 > 0.)
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Proposition 5.2. Suppose that the agent has a CES period utility function, then the

agent in our model consumes less and invest more before retirement than she does when

there is no retirement option. In other words,

c∗t,N > c∗t for −
wL̄

r
< Xt < x̄

and

π∗
t,N < π∗

t for −
wL̄

r
< Xt < x̄.

Proof. See Appendix C.

Figures 1 and 2 provide illustrations of results concerning the optimal policies in

Proposition 5.2. The agent consumes less and takes risk more before the wealth of the

agent reaches the critical level, because she has an incentive to reach the level and retire

fast enough. This tendency becomes more apparent as the wealth level becomes closer to

the critical level. A notable feature of the consumption behavior is its discontinuity at

the critical wealth level. This is because the leisure rate is discontinuous at the level.

Several numerical examples are given. Figure 3 shows that the critical wealth level is

an increasing function of the maximum leisure rate L (with L̄ fixed). It is clear that if the

difference between the maximum rate of leisure during employment and the rate of leisure

after retirement is smaller, then the agent will choose to retire with higher wealth. Figure

4 illustrates that as the wage rate w becomes higher, the critical wealth level becomes

higher (it exhibits an approximately linear relationship); the higher the wage rate, the

higher the agent’s income while she works, so she tends to retire at a higher wealth level.

Figure 5 shows that the critical wealth level is an increasing function of α, which is a

weight for consumption in the period utility function. With a higher α, consumption

contributes more to the agent’s utility, therefore, the agent tends to retire at a higher

wealth level.
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Figure 1: Optimal consumption (β = 0.1, r = 0.02, b = 0.07, σ = 0.2, γ = 2, α = 0.2, L̄ =

1, L = 0.75, w = 10 and ρ → 0). Dotted line gives optimal consumption for the case where

the agent does not have a retirement option, i.e., τ is forced to be infinite, and the solid

line gives optimal consumption for the case in our model where retirement time τ is chosen

optimality.
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Figure 2: Optimal investment in the risky asset (β = 0.1, r = 0.02, b = 0.07, σ = 0.2, γ =

2, α = 0.2, L̄ = 1, L = 0.75, w = 10 and ρ → 0). Dotted line gives optimal investment in

the risky asset for the case where the agent does not have a retirement option, i.e., τ is forced

to be infinite, and the solid line gives optimal investment in the risky asset for the case in our

model where retirement time τ is chosen optimality.

0 0.2 0.4 0.6 0.8

Maximum Leisure Rate

0

200

400

600

800

1000

C
rit

ic
al

W
ea

lth
Le

ve
l

Figure 3: The critical wealth level x̄ as a function of the maximum leisure rate L (β = 0.1, r =

0.02, b = 0.07, σ = 0.2, γ = 2, α = 0.2, L̄ = 1, w = 10 and ρ→ 0).
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Figure 4: The critical wealth level x̄ as a function of the wage rate w (β = 0.1, r = 0.02, b =

0.07, σ = 0.2, γ = 2, α = 0.2, L̄ = 1, L = 0.75 and ρ→ 0).
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Figure 5: The critical wealth level x̄ as a function of α (β = 0.1, r = 0.02, b = 0.07, σ =

0.2, γ = 2, L̄ = 1, L = 0.75, w = 10 and ρ→ 0).
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6 Liquidity Constraints

6.1 Introduction

In this section we will consider the optimization problem in which the agent faces liquidity

constraints, Xt ≥ 0 for all 0 ≤ t ≤ τ .4 From (2.3) we obtain

ζ(τ)Xτ − ζ(t)Xt =

∫ τ

t

ζ(s)
(

−cs + w(L̄ − ls)
)

ds+

∫ τ

t

ζ(s)π⊤
s σdB̃(s).

Consequently, we have the following budget constraint (cf. (2.5))

E

[
∫ τ

0

H(t)
(

(ct + wlt) − wL̄
)

dt+H(τ)Xτ

]

≤ x

and the liquidity constraint, Xt ≥ 0 for all 0 ≤ t ≤ τ , takes the form

(6.1) 0 ≤ Et

[
∫ τ

t

H(s)

H(t)

(

(cs + wls) − wL̄
)

ds+
H(τ)

H(t)
Xτ

]

, for all 0 ≤ t ≤ τ.

(See He and Pagès (1993) and Farhi and Panageas (2007).) Similar to He and Pagès

(1993) and Farhi and Panageas (2007), we consider Dt > 0 which is non-increasing with

D0 = 1.5

4Since the character of the problem under liquidity constraints is now well-understood, here we sketch

derivation of a solution. For a detailed explanation the reader is referred to He and Pagès (1993), Dybvig and

Liu (2005) and Farhi and Panageas (2007).
5Dt has an intuitive interpretation as the integral of shadow prices of the liquidity constraints. See He and

Pagès (1993).
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For any real number λ > 0, we have

J(x; c, l, π, τ) = E

[
∫ τ

0

e−βt
{

u(ct, lt) − λDte
βtH(t) (ct + wlt)

}

dt+ e−βτ
{

U(Xτ ) − λDτe
βτH(τ)Xτ

}

]

+ λE

[
∫ τ

0

DtH(t) (ct + wlt) dt+DτH(τ)Xτ

]

≤ E

[
∫ τ

0

e−βtũ(λDte
βtH(t))dt + e−βτ Ũ1(λDτe

βτH(τ))

]

+ λE

[
∫ τ

0

DtH(t) (ct + wlt) dt+DτH(τ)Xτ

]

= E

[
∫ τ

0

e−βtũ(λDte
βtH(t))dt + e−βτ Ũ1(λDτe

βτH(τ))

]

+ λE

[
∫ τ

0

DtH(t) (ct + wlt) dt−

∫ τ

0

wL̄DtH(t)dt+DτH(τ)Xτ +

∫ τ

0

wL̄DtH(t)dt

]

= E

[
∫ τ

0

e−βtũ(λDte
βtH(t))dt + e−βτ Ũ1(λDτe

βτH(τ))

]

+ λE

[
∫ τ

0

wL̄DtH(t)dt+H(τ)Xτ +

∫ τ

0

H(t) (ct + wlt) dt−

∫ τ

0

wL̄H(t)dt

]

+ λE

[
∫ τ

0

H(t)Et

[

H(τ)

H(t)
Xτ +

∫ τ

t

H(s)

H(t)
(cs + wls) ds−

∫ τ

t

wL̄
H(s)

H(t)
ds

]

dDt

]

≤ E

[
∫ τ

0

e−βtũ(λDte
βtH(t))dt + e−βτ Ũ1(λDτe

βτH(τ))

]

+ λE

[
∫ τ

0

wL̄DtH(t)dt

]

+ λx

= E

[
∫ τ

0

e−βt
(

ũ(λDte
βtH(t)) + wL̄λDte

βtH(t)
)

dt+ e−βτ Ũ1(λDτe
βτH(τ))

]

+ λx

, Ṽ (λ,Dt; τ) + λx,

where

Ũ1(y) , sup
{x≥0}

[U(x) − xy] = U(I2(y)) − yI2(y).

The second inequality is obtained from constraint (6.1) and dDt ≤ 0. In the last equality,

we have defined Ṽ (λ,Dt; τ). For a fixed τ ∈ S, Vτ (x) ≤ inf{λ>0, Dt>0}[Ṽ (λ,Dt; τ) + λx]

and the equality holds if for 0 ≤ t < τ

∂u

∂c
(ct, lt) = λDte

βtH(t) and
∂u

∂l
(ct, lt) = wλDte

βtH(t), on {0 ≤ lt ≤ L},

∂u

∂c
(ct, L) = λDte

βtH(t) and lt = L, on {lt ≥ L},

Xτ = I2(λDτe
βτH(τ)),

E

[
∫ τ

0

H(t)
(

(ct + wlt) − wL̄
)

dt+H(τ)Xτ

]

= x

and

Et

[
∫ τ

t

H(s)

H(t)

(

(cs + wls) − wL̄
)

ds+
H(τ)

H(t)
Xτ

]

= 0
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for all 0 ≤ t ≤ τ where dDt is non-zero, i.e., D· is not a constant over a neighborhood of

t. So we obtain Vτ (x) = inf{λ>0, Dt>0}[Ṽ (λ,Dt; τ) + λx]. Therefore the value function

V (·) is obtained by

V (x) = sup
τ∈S

Vτ (x) = sup
τ∈S

inf
{λ>0, Dt>0}

[Ṽ (λ,Dt; τ) + λx].

Similar to Karatzas and Wang (2000) we redefine

Ṽ (λ) , sup
τ∈S

inf
Dt>0

Ṽ (λ,Dt; τ) = inf
Dt>0

sup
τ∈S

Ṽ (λ,Dt; τ)

and we obtain the value function

V (x) = inf
λ>0

[

Ṽ (λ) + λx
]

.

(cf. Proposition 4.1)

6.2 The Optimization Problem

For simplicity we again assume that there is only one risky asset, i.e., N = 1. In order to

obtain Ṽ (λ) we define

φ(t, z) = sup
τ>t

inf
Dt>0

E
zt=z

[
∫ τ

t

e−βs{ũ(zs) + wL̄zs}ds+ e−βτ Ũ1(zτ )

]

,

where zt = λDte
βtHt, z0 = λ > 0. Itô’s formula implies dzt

zt
= dDt

Dt
+ (β − r)dt− θdBt.

Then we obtain the following Bellman equation

(6.2) min

{

Lφ(t, z) + e−βt{ũ(z) + wL̄z},−
∂φ

∂z

}

= 0,

where the differential operator is given by

L =
∂

∂t
+ (β − r)z

∂

∂z
+

1

2
θ2z2 ∂

2

∂z2
.

(For a more detailed derivation of a similar equation, see Section 5 of He and Pagès

(1993)).

Now let D∗
t be the optimal solution of the Bellman equation (6.2), then the optimal

stopping time problem can be derived by the following changed variational inequality.

Variational Inequality 2. Find a free boundary z̄ > 0, ẑ which makes zero wealth level

and a function φ̃(·, ·) ∈ C1((0,∞) × R
+) ∩ C2((0,∞) × (R+ \ {z̄})) satisfying

(1) ∂φ̃
∂z

(t, z) = 0, z ≥ ẑ

(2) ∂φ̃
∂z

(t, z) ≤ 0, 0 < z ≤ ẑ
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(3) Lφ̃+ e−βt(ũ(z) + wL̄z) = 0, z̄ < z ≤ ẑ

(4) Lφ̃+ e−βt(ũ(z) + wL̄z) ≤ 0, 0 < z ≤ z̄

(5) φ̃(t, z) ≥ e−βtŨ1(z), z > z̄

(6) φ̃(t, z) = e−βtŨ1(z), 0 < z ≤ z̄,

for all t > 0, with the boundary conditions

(6.3)
∂φ̃

∂z
(t, ẑ) = 0 and

∂2φ̃

∂z2
(t, ẑ) = 06.

Now we need to divide the problem into two cases: one is the case where 0 < z̄ < ỹ < ẑ

and the other is the case where 0 < z̄ < ẑ(< ỹ).7 The following proposition gives the

optimal policies for each case.

Proposition 6.1. 1. (The Case Where 0 < z̄ < ỹ < ẑ) The optimal policies are given

by (c∗, l∗, π∗, τ∗) such that

c∗t =



























α
1−γ
ργ

(

1 + w
(

αw
1−α

)
1

ρ−1

)

1−ρ−γ
ργ

(yλ∗

t )−
1
γ if 0 ≤ Xt ≤ x̃1

I1,c(y
λ∗

t ) if x̃1 ≤ Xt < x̄1

c∗∗ if Xt ≥ x̄1

,

l∗t =



























α
1−γ
ργ

(

αw
1−α

)
1

ρ−1

(

1 + w
(

αw
1−α

)
1

ρ−1

)

1−ρ−γ
ργ

(yλ∗

t )−
1
γ if 0 ≤ Xt ≤ x̃1

L if x̃1 ≤ Xt < x̄1

L̄ if Xt ≥ x̄1

and

π∗
t =



























































θ
σ

{

n+(n+ − 1)c1(y
λ∗

t )n+−1 + n−(n− − 1)c2(y
λ∗

t )n−−1 + 1−γ
γ2

A1

K
(yλ∗

t )−
1
γ

}

if 0 ≤ Xt ≤ x̃1

θ
σ

{

n+(n+ − 1)d1(y
λ∗

t )n+−1 + n−(n− − 1)d2(y
λ∗

t )n−−1

+
2n+(n+−1)(yλ∗

t )n+−1

θ2(n+−n−)

∫ yλ∗

t

ỹ

zI1,c(z)−u(I1,c(z),L)

zn++1 dz

−
2n−(n−−1)(yλ∗

t )n
−

−1

θ2(n+−n−)

∫ yλ∗

t

ỹ

zI1,c(z)−u(I1,c(z),L)

z
n
−

+1 dz

+ 2
θ2

yλ∗

t I1,c(yλ∗

t )−u(I1,c(y
λ∗

t ),L)

yλ∗

t

}

if x̃1 ≤ Xt < x̄1

− θ
σ

U ′(Xt)
U ′′(Xt)

if Xt ≥ x̄1

with

τ∗ = inf {t > 0 | X∗(t) ≥ x̄1 } .

6Equation (1) of Variational Inequality 2 implies that ∂2φ̃

∂z2 (t, z) = 0 for all z > ẑ. By the smooth-pasting,

i.e., C2-condition of φ̃(t, ·) we obtain ∂φ̃

∂z
(t, ẑ) = 0 and ∂2φ̃

∂z2 (t, ẑ) = 0 at z = ẑ.
7This case converges to that of Farhi and Panageas (2007) as ρ approaches 0.
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In this case the optimal wealth processes are given by

X∗(t) = −n+c1(y
λ∗

t )n+−1 − n−c2(y
λ∗

t )n−−1 +
1 − γ

γ

A1

K
(yλ∗

t )−
1
γ −

wL̄

r

and

X∗(t) = −n+d1(y
λ∗

t )n+−1 − n−d2(y
λ∗

t )n−−1 −
w(L̄ − L)

r

−
2n+(yλ∗

t )n+−1

θ2(n+ − n−)

∫ yλ∗

t

ỹ

zI1,c(z) − u(I1,c(z), L)

zn++1
dz

+
2n−(yλ∗

t )n−−1

θ2(n+ − n−)

∫ yλ∗

t

ỹ

zI1,c(z) − u(I1,c(z), L)

zn−+1
dz.

2. (The Case Where 0 < z̄ < ẑ(< ỹ)) The optimal policies are given by (c∗, l∗, π∗, τ∗)

such that

c∗t =







I1,c(y
λ∗

t ) if 0 ≤ Xt < x̄1

c∗∗ if Xt ≥ x̄1

,

l∗t =







L if 0 ≤ Xt < x̄1

L̄ if Xt ≥ x̄1

and

π∗
t =















































θ
σ

{

n+(n+ − 1)d1(y
λ∗

t )n+−1 + n−(n− − 1)d2(y
λ∗

t )n−−1

+
2n+(n+−1)(yλ∗

t )n+−1

θ2(n+−n−)

∫ yλ∗

t

ẑ

−w(L̄−L)z+zI1,c(z)−u(I1,c(z),L)

z
n++1 dz

−
2n−(n−−1)(yλ∗

t )n
−

−1

θ2(n+−n−)

∫ yλ∗

t

ẑ

−w(L̄−L)z+zI1,c(z)−u(I1,c(z),L)

zn
−

+1 dz

+ 2
θ2

−w(L̄−L)yλ∗

t +yλ∗

t I1,c(yλ∗

t )−u(I1,c(yλ∗

t ),L)

yλ∗

t

}

if 0 ≤ Xt < x̄1

− θ
σ

U ′(Xt)
U ′′(Xt)

if Xt ≥ x̄1

with

τ∗ = inf {t > 0 | X∗(t) ≥ x̄1 } .

In this case the optimal wealth process is given by

X∗(t) = −n+d1(y
λ∗

t )n+−1 − n−d2(y
λ∗

t )n−−1

−
2n+(yλ∗

t )
n+−1

θ2(n+ − n−)

∫ yλ∗

t

ẑ

−w(L̄− L)z + zI1,c(z) − u(I1,c(z), L)

zn++1
dz

+
2n−(yλ∗

t )
n−−1

θ2(n+ − n−)

∫ yλ∗

t

ẑ

−w(L̄ − L)z + zI1,c(z) − u(I1,c(z), L)

zn−+1
dz.

(Other coefficients are given in Appendix D.)
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7 Conclusion

We have solved an optimal portfolio and consumption-leisure and retirement choice prob-

lem of an agent who has a period utility function with a constant elasticity of substitu-

tion(CES) between consumption and leisure and a constant Stiglitz relative risk aversion

coefficient. We have obtained a closed form solution by solving a free boundary value

problem by using a martingale approach. We have provided the optimal policies in closed

forms and characterized properties of the optimal policies.

The optimal retirement time is characterized by the first hitting time of a threshold

wealth level. Generally consumption jumps around retirement due to discontinuity in

leisure rates. We have also considered the case with liquidity constraints, i.e., the case

where the agent cannot borrow against her future labor income.

A Proof of Proposition 5.1

We consider the PDE (1) of Variational Inequality 1

(A.1) Lφ+ e−βtũ(y) = 0, y > ȳ,

with a boundary condition φ(t, ȳ) = e−βtŨ(ȳ). First we consider the equation (A.1) for

y ≥ ỹ. That is,

∂φ

∂t
+ (β − r)y

∂φ

∂y
+

1

2
||θ||2y2∂

2φ

∂y2
+ e−βtA1y

− 1−γ
γ = 0, y ≥ ỹ.

Guessing a solution form φ(t, y) = e−βtv(y), then we derive

v(y) = C2y
n− +

A1

K
y−

1−γ
γ , y ≥ ỹ,

by solving the second order ordinary differential equation(ODE), where

1

2
||θ||2n2 +

(

β − r −
1

2
||θ||2

)

n− β = 0

with two roots n+ > 1 and n− < 0. Similarly, for ȳ < y ≤ ỹ, we also derive

v(y) = D1y
n+ +D2y

n− −
wL

r
y +

2yn+

||θ||2(n+ − n−)

∫ y

ỹ

zI1,c(z) − u(I1,c(z), L)

zn++1
dz

−
2yn−

||θ||2(n+ − n−)

∫ y

ỹ

zI1,c(z) − u(I1,c(z), L)

zn−+1
dz.

From the principle of the C1-condition at y = ỹ and y = ȳ, we derive the coefficients

C2, D1, D2 and the free boundary ȳ as follows:

D1 = −
1

n+ − n−

(

1 − γ

γ
+ n−

)

A1

K
ỹ−

1−γ
γ

−n+ +
1 − n−

n+ − n−

wL

r
ỹ1−n+ ,
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D1ȳ
n+ +

2ȳn+

||θ||2(n+ − n−)

∫ ȳ

ỹ

zI1,c(z) − u(I1,c(z), L)

zn++1
dz

+
n−

n+ − n−
U(I2(ȳ)) +

1 − n−

n+ − n−

(

I2(ȳ) +
w(L̄− L)

r

)

ȳ = 0,

from which ȳ is derived,

D2 =
n+

n+ − n−
ȳ−n−U(I2(ȳ)) −

n+ − 1

n+ − n−

(

I2(ȳ) +
w(L̄ − L)

r

)

ȳ1−n−

+
2

||θ||2(n+ − n−)

∫ ȳ

ỹ

zI1,c(z) − u(I1,c(z), L)

zn−+1
dz,

and

C2 = −
1

n+ − n−

(

1 − γ

γ
+ n+

)

A1

K
ỹ−

1−γ
γ

−n− −
n+ − 1

n+ − n−

wL

r
ỹ1−n− +D2.

Now we will show that v′′(·) is continuous at y = ỹ. It is sufficient to show that

n+(n+ − 1)D1ỹ
n+ + n−(n− − 1)(D2 − C2)ỹ

n− −
1 − γ

γ2

A1

K
ỹ−

1−γ
γ

+
2

||θ||2
{−u(I1,c(ỹ), L) + I1,c(ỹ)ỹ} = 0,

with C2, D1 and D2 obtained from the previous processes. Now we show the statement

as follows:

(LHS) = −
1

n+ − n−

{

n+(n+ − 1)

(

1 − γ

γ
+ n−

)

− n−(n− − 1)

(

1 − γ

γ
+ n+

)}

A1

K
ỹ−

1−γ
γ

− (n+ − 1)(n− − 1)
wL

r
ỹ −

1 − γ

γ2

A1

K
ỹ−

1−γ
γ +

2

||θ||2
{−u(I1,c(ỹ), L) + I1,c(ỹ)ỹ}

= −

{

(n+ + n− − 1)
1 − γ

γ
+ n+n− +

1 − γ

γ2

}

A1

K
ỹ−

1−γ
γ

+
2

||θ||2
wLỹ −

2

||θ||2

(

A1ỹ
− 1−γ

γ + wLỹ
)

= 0

since

−
2

||θ||2
K = (n+ + n− − 1)

1 − γ

γ
+ n+n− +

1 − γ

γ2

and

A1ỹ
− 1−γ

γ + wLỹ = u(I1,c(ỹ), L) − I1,c(ỹ)ỹ

by definition of ũ(·).

The inequality of (2) of Variational Inequality 1 is equivalent to (5.4) and the inequality

of (3) of Variational Inequality 1 is equivalent to (5.5) and (5.6).

26



B Proof of Theorem 5.3

Note that the optimal stopping time τ∗ is a rewriting of (5.10) by using the optimal

wealth process X∗∗(t) of (5.11). Also we can easily see the optimal consumption and

leisure from Lemma 3.1 and (4.2), (4.3), (4.4), and (4.5). So it is enough to show that the

given consumption, leisure and portfolio processes 8 generate the optimal wealth processes

X∗∗(t) and X∗∗(t) of (5.12) and (5.11), respectively.

For −wL̄
r
< Xt ≤ x̃, applying Itô’s formula to (5.12), then we have

dX∗∗(t) =

[

−n−(n− − 1)C2(y
λ∗∗

t )n−−2 −
1 − γ

γ2

A1

K
(yλ∗∗

t )−
1+γ

γ

]

dyλ∗∗

t

+
1

2

[

−n−(n− − 1)(n− − 2)C2(y
λ∗∗

t )n−−3 +
1 − γ2

γ3

A1

K
(yλ∗∗

t )−
1+2γ

γ

]

(dyλ∗∗

t )2

=

[

−n−(n− − 1)C2(y
λ∗∗

t )n−−1 −
1 − γ

γ2

A1

K
(yλ∗∗

t )−
1
γ

]

[(β − r)dt − θdB(t)]

+
1

2

[

−n−(n− − 1)(n− − 2)C2(y
λ∗∗

t )n−−1 +
1 − γ2

γ3

A1

K
(yλ∗∗

t )−
1
γ

]

θ2dt

= r

[

−n−C2(y
λ∗∗

t )n−−1 +
1 − γ

γ

A1

K
(yλ∗∗

t )−
1
γ −

wL̄

r

]

dt

+ θ2
[

n−(n− − 1)C2(y
λ∗∗

t )n−−1 +
1 − γ

γ2

A1

K
(yλ∗∗

t )−
1
γ

]

dt

− α
1−γ
ργ

(

1 + w

(

αw

1 − α

)
1

ρ−1

)

1−ρ−γ
ργ

(yλ∗∗

t )−
1
γ dt

+ w



L̄− α
1−γ
ργ

(

αw

1 − α

)
1

ρ−1

(

1 + w

(

αw

1 − α

)
1

ρ−1

)

1−ρ−γ
ργ

(yλ∗∗

t )−
1
γ



 dt

−
1 − γ

γ

[

β − r

γ
+ r +

γ − 1

2γ2
θ2 −K

]

A1

K
(yλ∗∗

t )−
1
γ dt

− n−C2

[

1

2
θ2n2

− +

(

β − r −
1

2
θ2
)

n− − β

]

(yλ∗∗

t )n−−1dt

+ θ

[

n−(n− − 1)C2(y
λ∗∗

t )n−−1 +
1 − γ

γ2

A1

K
(yλ∗∗

t )−
1
γ

]

dB(t).

Here we can see that the fifth and the sixth terms of the right hand side of the last equality

are equal to zero by definitions of K and n’s.(See equation (5.3).) For the last term, if we

correspond

π∗
t σ = θ

[

n−(n− − 1)C2(y
λ∗∗

t )n−−1 +
1 − γ

γ2

A1

K
(yλ∗∗

t )−
1
γ

]

,

8For 0 ≤ t < τ , the optimal portfolio is unknown yet. We will compare the coefficients of the wealth

dynamics with those of the SDEs obtained from applying Itô’s formula to (5.11) and (5.12). Then we can

determine the optimal portfolio for each case.
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then we obtain

dX∗∗(t) = [rX∗∗(t) + π∗
t (b − r) − c∗t + w(L̄ − l∗t )]dt+ π∗

t σdB(t).

So the optimal wealth is induced from the strategies (c∗, l∗, π∗) for −wL̄
r
< Xt ≤ x̃.

Similarly, for x̃ ≤ Xt < x̄, we also obtain the optimal portfolio

π∗
t σ = θ

[

n+(n+ − 1)D1(y
λ∗∗

t )n+−1 + n−(n− − 1)D2(y
λ∗∗

t )n−−1

+
2n+(n+ − 1)(yλ∗∗

t )n+−1

θ2(n+ − n−)

∫ yλ∗∗

t

ỹ

zI1,c(z) − u(I1,c(z), L)

zn++1
dz

−
2n−(n− − 1)(yλ∗∗

t )n−−1

θ2(n+ − n−)

∫ yλ∗∗

t

ỹ

zI1,c(z) − u(I1,c(z), L)

zn−+1
dz

+
2

θ2
yλ∗∗

t I1,c(y
λ∗∗

t ) − u(I1,c(y
λ∗∗

t ), L)

yλ∗∗

t

]

.

Thus we obtain

dX∗∗(t) = [rX∗∗(t) + π∗
t (b− r) − c∗t + w(L̄ − l∗t )]dt+ π∗

t σdB(t).

So the optimal wealth is induced from the strategies (c∗, l∗, π∗) for x̃ ≤ Xt < x̄.

C Proof of Proposition 5.2

We see that X∗∗(t) and X∗∗(t) in (5.11) and (5.12) are decreasing with respect to yλ∗∗

t

and yλ∗∗

t respectively. (we can see from Remark 5.1.) For fixed Xt, so we can see that

yλ∗∗

t > yλ∗∗

t,N and yλ∗∗

t > yλ∗∗

t,N

by comparing (5.11) with (5.14) and (5.12) with (5.15), and by the assumption D2 > 0 in

Remark 5.2. Thus we obtain from comparing c∗t with c∗t,N

c∗t,N > c∗t for −
wL̄

r
< Xt < x̄.9

Next, we compare π∗
t with π∗

t,N . For −wL̄
r
< Xt ≤ x̃ and fixed, we obtain the following

equality from (5.12) and (5.15),

Xt = −n−C2(y
λ∗∗

t )n−−1 +
1 − γ

γ

A1

K
(yλ∗∗

t )−
1
γ −

wL̄

r

= −n−(C2 −D2)(y
λ∗∗

t,N )n−−1 +
1 − γ

γ

A1

K
(yλ∗∗

t,N )−
1
γ −

wL̄

r
.

9In fact, we need to divide the interval −wL̄
r

< Xt < x̄ into three cases: −
wL̄
r

< Xt < x̃N , x̃N < Xt < x̃

and x̃ < Xt < x̄. The first and the third cases are obvious. The second case is also trivial since ỹ(= ỹN)

correspond to x̃ and x̃N , respectively and the optimal consumption process is increasing with respect to the

wealth process.
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We multiply both sides of the above equality by n− − 1, then we obtain

− n−(n− − 1)C2(y
λ∗∗

t )n−−1 + (n− − 1)
1 − γ

γ

A1

K
(yλ∗∗

t )−
1
γ

= −n−(n− − 1)(C2 −D2)(y
λ∗∗

t,N )n−−1 + (n− − 1)
1 − γ

γ

A1

K
(yλ∗∗

t,N )−
1
γ

and we rewrite the equality as

−
σ

θ
π∗

t + (n− − 1)
1 − γ

γ

A1

K
(yλ∗∗

t )−
1
γ +

1 − γ

γ2

A1

K
(yλ∗∗

t )−
1
γ

= −
σ

θ
π∗

t,N + (n− − 1)
1 − γ

γ

A1

K
(yλ∗∗

t,N )−
1
γ +

1 − γ

γ2

A1

K
(yλ∗∗

t,N )−
1
γ .

Sequentially,

σ

θ
π∗

t,N =
σ

θ
π∗

t +

(

n− − 1 +
1

γ

)

1 − γ

γ

A1

K

{

(yλ∗∗

t,N )−
1
γ − (yλ∗∗

t )−
1
γ

}

.

If we substitute γ−1
γ

for n into (5.3), then

1

2
θ2
(

γ − 1

γ

)2

+

(

β − r −
1

2
θ2
)(

γ − 1

γ

)

− β = −K < 0.

So we obtain n− − 1 + 1
γ
< 0. Since yλ∗∗

t > yλ∗∗

t,N , we obtain

π∗
t,N < π∗

t for −
wL̄

r
< Xt ≤ x̃N .

Similarly we obtain

π∗
t,N < π∗

t for x̃N ≤ Xt < x̄.

D Coefficients in Proposition 6.1

D.1 The Case Where 0 < z̄ < ỹ < ẑ in Proposition 6.1

If we can determine the values of z̄ and ẑ from the following two equations

1

n−

(

n+ +
1 − γ

γ

)

1 − γ

γ

A1

K
ẑ−(n−+ 1−γ

γ ) −
n+ − 1

n−

wL̄

r
ẑ1−n−

= −
w(L̄ − L)

r
(n+ − 1)z̄1−n− +

2

θ2

∫ z̄

ỹ

zI1,c(z) − u(I1,c(z), L)

zn−+1
dz

+ n+z̄
−n−U(I2(z̄)) − (n+ − 1)z̄1−n−I2(z̄)

−

(

n+ +
1 − γ

γ

)

A1

K
ỹ−(n−+ 1−γ

γ ) −
wL

r
(n+ − 1)ỹ1−n−
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and

−
1

n+

(

n− +
1 − γ

γ

)

1 − γ

γ

A1

K
ẑ−(n++ 1−γ

γ ) +
n− − 1

n+

wL̄

r
ẑ1−n+

=
w(L̄ − L)

r
(n− − 1)z̄1−n+ −

2

θ2

∫ z̄

ỹ

zI1,c(z) − u(I1,c(z), L)

zn++1
dz

− n−z̄
−n+U(I2(z̄)) + (n− − 1)z̄1−n+I2(z̄)

+

(

n− +
1 − γ

γ

)

A1

K
ỹ−(n++ 1−γ

γ ) +
wL

r
(n− − 1)ỹ1−n+ ,

then we have

c1 = −
1

n+(n+ − n−)

(

n− +
1 − γ

γ

)

1 − γ

γ

A1

K
ẑ−(n++ 1−γ

γ ) +
n− − 1

n+(n+ − n−)

wL̄

r
ẑ1−n+

and

c2 =
1

n−(n+ − n−)

(

n+ +
1 − γ

γ

)

1 − γ

γ

A1

K
ẑ−(n−+ 1−γ

γ ) −
n+ − 1

n−(n+ − n−)

wL̄

r
ẑ1−n− .

Moreover we can also obtain

d1 = c1 −
1

n+ − n−

(

n− +
1 − γ

γ

)

A1

K
ỹ−(n++ 1−γ

γ ) −
n− − 1

n+ − n−

wL

r
ỹ1−n+

and

d2 = c2 +
1

n+ − n−

(

n+ +
1 − γ

γ

)

A1

K
ỹ−(n−+ 1−γ

γ ) +
n+ − 1

n+ − n−

wL

r
ỹ1−n− .

Critical wealth levels are given by x̄1 = I2(z̄) and x̃1 = −n+c1ỹ
n+−1 − n−c2ỹ

n−−1 +

1−γ
γ

A1

K
ỹ−

1
γ − wL̄

r
.

D.2 The Case Where 0 < z̄ < ẑ(< ỹ) in Proposition 6.1

If we can determine the values of z̄ and ẑ from the following two equations

1

n−

2

θ2
(

−w(L̄ − L)ẑ + ẑI1,c(ẑ) − u(I1,c(ẑ), L)
)

ẑ−n−

=
2

θ2

∫ z̄

ẑ

−w(L̄− L)z + zI1,c(z) − u(I1,c(z), L)

zn−+1
dz

+ n+z̄
−n−U(I2(z̄)) − (n+ − 1)z̄1−n−I2(z̄)

and

−
1

n+

2

θ2
(

−w(L̄ − L)ẑ + ẑI1,c(ẑ) − u(I1,c(ẑ), L)
)

ẑ−n+

= −
2

θ2

∫ z̄

ẑ

−w(L̄− L)z + zI1,c(z) − u(I1,c(z), L)

zn++1
dz

− n−z̄
−n+U(I2(z̄)) + (n− − 1)z̄1−n+I2(z̄),
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then we have

d1 = −
1

n+(n+ − n−)

2

θ2
(

−w(L̄ − L)ẑ + ẑI1,c(ẑ) − u(I1,c(ẑ), L)
)

ẑ−n+

and

d2 =
1

n−(n+ − n−)

2

θ2
(

−w(L̄− L)ẑ + ẑI1,c(ẑ) − u(I1,c(ẑ), L)
)

ẑ−n− .

Critical wealth level is given by x̄1 = I2(z̄).
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