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Abstract

Theory-Based Illiquidity and Asset Pricing

Many proxies of illiquidity have been used in the literature that relates illiquidity to

asset prices. These proxies have been motivated from an empirical standpoint. In this

study, we approach liquidity estimation from a theoretical perspective. Our method ex-

plicitly recognizes the analytic dependence of illiquidity on more primitive drivers such

as trading activity and information asymmetry. More specifically, we estimate illiquid-

ity using structural formulae for Kyle’s (1985) lambda for a comprehensive sample of

NYSE/AMEX and NASDAQ stocks. The empirical results provide convincing evidence

that theory-based estimates of illiquidity are priced in the cross-section of expected stock

returns, even after accounting for risk factors, firm characteristics known to influence

returns, and other illiquidity proxies prevalent in the literature.



The question of whether investors demand higher returns from less liquid securities is

an enduring one in financial economics. In a seminal paper on this issue, Amihud and

Mendelson (1986) find evidence that asset returns include a significant premium for the

quoted bid-ask spread. Since that study, Brennan and Subrahmanyam (1996), Bren-

nan, Chordia and Subrahmanyam (1998), Jacoby, Fowler, and Gottesman (2000), Jones

(2002), and Amihud (2002) all elaborate upon the role of liquidity as a determinant of

expected returns. Further, Pástor and Stambaugh (2003) and Acharya and Pedersen

(2005) relate liquidity risk to expected stock returns.1

An important issue in studies that relate illiquidity to asset prices is the measure-

ment of illiquidity. Other than direct empirical measurements of illiquidity by the bid-ask

spread, the approach taken in the literature has been to employ empirical arguments and

econometric techniques to measure illiquidity. For example, Amihud (2002) proposes

the ratio of absolute return to volume as a measure of illiquidity. Brennan and Subrah-

manyam (1996), based on the analysis of Glosten and Harris (1988), suggest measuring

illiquidity by the relation between price changes and order flows. Pástor and Stambaugh

(2003) measure illiquidity by the extent to which returns reverse upon high volume, an

approach based on the notion that such a reversal captures inventory-based price pres-

sures. Hasbrouck (2005) provides a comprehensive set of estimates of these and other

measures, and we will not duplicate his efforts by describing these measures in detail.

These empirical proxies have added considerably to our understanding of illiquidity.

However, there are some issues related to this literature that are matters of concern.

First, because these measures have yielded mixed results, the significance of the findings

is difficult to interpret. Thus, for example, Brennan and Subrahmanyam (1996) find a

negative relation between bid-ask spread and expected returns which is at odds with the

1Two recent theoretical papers attempt to endogenize liquidity in asset-pricing settings. Eisfeldt
(2004) relates liquidity to the real sector and finds that productivity, by affecting income, feeds into
liquidity. Johnson (2005) models liquidity as arising from the price discounts demanded by risk-averse
agents to change their optimal portfolio holdings. He shows that such a measure may dynamically
vary with market returns and, hence, help provide a rationale for liquidity dynamics documented in the
literature.
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liquidity premium argument. Spiegel and Wang (2005) do not find a significant relation

between expected returns and a variety of empirically-motivated illiquidity proxies, which

also appears to muddy the conclusions on whether illiquidity is related to asset returns.

Second, the empirical arguments proposed to justify such proxies often do not mesh well

with theory. For example, although many microstructure theories have been developed,

extant economic models are unable to map precisely on to the Amihud (2002) construct

of the ratio of absolute return to volume. Third, illiquidity is endogenous and depends on

many variables that are related to asset prices via other models. For instance, illiquidity

depends on volatility, but volatility is related to expected returns via traditional risk-

return arguments.

In this paper, we propose a new approach to measure illiquidity and relate our mea-

sures to expected asset returns, thus providing stronger theoretical underpinnings to the

empirical illiquidity-return relation relative to the existing literature. Specifically, we

turn to theory in order to consider illiquidity estimates that can be estimated by way

of closed-form expressions. The basis for our work emanates from Brennan and Subrah-

manyam (1995), who test a structural representation of a theoretically derived estimate of

illiquidity and relate it to analyst following. Their estimates derive from the price impact

measure, lambda, which is, in turn, based on the Kyle (1985) model and its adaptation by

Admati and Pfleiderer (1988) to explain intraday patterns. The advantage of estimating

the equilibrium versions of Kyle lambdas is that the expressions are in terms of quantities

that are relatively easy to comprehend and for which plausible empirical proxies can be

devised at low cost.

Our analysis considers illiquidity to be endogenous insofar as it arises as an outcome

of trading patterns in financial markets. Unlike a stock’s return beta, which depends

on influences extraneous to financial markets, such as a firm’s line of business and the

cyclicality of a firm’s revenue stream, the endogeneity of illiquidity makes it difficult to

interpret results from asset pricing regressions. For example, illiquidity depends on total
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volatility, including systematic risk.2 Lack of adequate controls for systematic risk (e.g.,

only through the CAPM, as in Amihud and Mendelson, 1986; Brennan and Wang, 2005)

could create the appearance that illiquidity is priced because illiquidity depends on true

systematic risk. Liquidity also depends on volume. If volume captures investor senti-

ment (viz., Baker and Stein, 2004), then illiquidity may again appear to be priced, even

though what the researcher may be capturing is the impact of volume through its impact

on illiquidity. As such, a complete approach to understanding the pricing of illiquidity

would model illiquidity’s dependence on primitive economic forces and separately control

for systematic risk and trading volume, which is what our study attempts to accom-

plish. Furthermore, in contrast to the ad hoc measures of illiquidity in the literature, the

functional form of illiquidity that we use is obtained from an equilibrium setting.

We estimate two variants of closed-form expressions for Kyle lambdas, one of which

assumes perfectly correlated information signals, while the other postulates diverse sig-

nals. Many of the empirical proxies for the inputs to the Kyle (1985) model are similar

to those used by Brennan and Subrahmanyam (1995), and some are new. In examining

the time-series behavior of such lambdas, we find a decline in the measures over time,

which mirrors the behavior of other illiquidity proxies, such as bid-ask spreads (Jones,

2002). We then examine whether these lambdas are priced in the cross-section of stock

returns, using a comprehensive set of NYSE/AMEX and NASDAQ stocks over the last

three decades. After controlling for known characteristics such as book-to-market equity

and momentum as well as for known sources of risk such as the Fama and French (1993)

factors, we find convincing evidence that both our versions of Kyle lambdas are priced in

the cross-section of stock returns. We check the robustness of our findings by using mid-

point returns and conducting quarterly regressions with quarterly compounded returns.

In addition, we run a “horse race” with other commonly used (il)liquidity measures,

demonstrating that the theory-based illiquidity is a priced factor even after accounting

2This holds as long as agents have private information about firm-specific as well as systematic
components of firm value, as in Brennan, Jegadeesh, and Swaminathan (1993), Subrahmanyam (1991),
or Kumar and Seppi (1993).
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for the effects of other competing (il)liquidity measures.

The remainder of this paper is organized as follows. In Section 1, we present the

theoretical background and estimation of the two theory-based illiquidity measures in

the context of Kyle lambdas. Section 2 describes the methodology. Section 3 outlines

the data, definitions, and descriptive statistics. Section 4 discusses the empirical results

and robustness checks. In Section 5, we compare the effects of the theory-based measures

with those of other alternative (il)liquidity measures. Section 6 concludes.

1 Estimates of Kyle Lambdas

In this section, we provide the theoretical background for our lambda estimation. We

estimate two versions of Kyle lambdas, with and without signal noise. We begin by

linking illiquidity and asset pricing in the context of Kyle lambdas.

1.1 The Link between Kyle Lambdas and Illiquidity Pricing

The Kyle (1985) model does not provide a direct link to illiquidity pricing. However,

assuming that a liquidity trader is the marginal agent allows the incorporation of a

link. Thus, suppose that an asset is traded over two dates. At date 2, it pays off

W = W + δ, where W is nonstochastic and the payoff innovation (δ) is a normally

distributed variable with a mean of zero. Informed traders obtain a (possibly noisy)

signal about δ. Trading of the asset occurs at date 1. As usual the price P is set

to be of the form P = W + λQ, where λ is the impact of order flows on prices and

Q is the total order flow. Prior to the date 1 trading (at date 0), a “discretionary”

uninformed (liquidity) trader contemplates investing in the asset. This trader’s demand

is denoted by D, which is normally distributed with mean zero. There also is a set of

non-discretionary liquidity traders, whose total demand is also normally distributed with

a zero mean, and equals U , with D and U being independent of each other. We define

z ≡ U + D to be the total demand from the liquidity traders. The discretionary and
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non-discretionary liquidity demands are independent of δ. For a given λ, the expected

cost to the discretionary liquidity trader is then given by E[(P −W )D] = λD2.

Assuming that the risk-free discount rate is zero across dates 0 and 2, we normalize

the asset’s supply to one share.3 The date 0 price is the shadow price at which the

discretionary trader is indifferent between holding the stock and not doing so. At date

0, the risk-neutral discretionary liquidity trader will be willing to pay an amount

W − λD2.

Thus, the expected price change across dates 0 and 2 is given by4 λD2, and is thus

proportional to λ (ignoring cross-sectional variation in D for convenience). It follows

that expected future returns are linearly related to λ divided by the initial price of the

stock. As we describe below, for our empirical work we estimate λ’s each month for each

stock and proxy the initial price by the market price of the stock (P ) as of the end of

the month previous to the one in which λ is measured.

Our study uses structural estimates of two versions of Kyle lambdas: one with, and

the other without, signal noise. In the following two subsections, we present the theory-

based illiquidity measures and discuss how to estimate them using proxy variables. We

first present our main results using a base set of inputs and then examine in section 4.3

the robustness of our results to using alternative input variables, mid-point returns, and

different frequency in regressions.

3The supply of shares does not play any role at date 1 because prices are set by risk neutral market
makers who are willing to absorb any quantity of excess shares at an unbiased price.

4Note that the expected price change across dates 1 and 2 is zero (the date 1 price is semi-strong
efficient), and the expected price change across dates 0 and 1 is equal to the expected price change across
dates 0 and 2. The expected price change across dates 0 and 2, therefore, is the only unique, non-zero
expected price change in our model.
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1.2 An Illiquidity Measure Without Noise in the Information
Signals

When the informed traders observe, without any noise, a signal that is informative about

the payoff on a risky asset, the Appendix shows in detail that the illiquidity (or price

impact) measure, lambda, in a standard Kyle (1985) market is given by

λ =

√
Nvδ

(N + 1)
√
vz
, (1)

where N is the number of informed traders, vδ is the variance of the payoff, and vz is the

variance of uninformed trades. Dividing both sides of Eq.(1) by the price P in order to

get a price-scaled illiquidity measure, we have5

λ

P
= P−1

√
Nvδ

(N + 1)
√
vz

=

√
N V ar(R)

(N + 1)
√
vz

=
N0.5std(R)

(N + 1)std(z)
, (2)

where R is the asset return, and std(z) is the standard deviation of uninformed trades.

Eq.(2) is our first measure of illiquidity used in this study, and we call it ILLIQ 1.

To estimate ILLIQ 1 each month for each stock, we employ proxy variables as inputs

for each of the original variables in Eq. (2). Our approach in this subsection is not to

condition on any specific source of information (such as earnings) but to assume that

private information is about value innovations as reflected in the series of stock price

movements. We use analyst following to proxy for informed agents. This approach toward

estimating lambdas is very similar to that of Brennan and Subrahmanyam (1995). Our

specific inputs are as follows:

5For Eq.(2), note that at time t the conditional variance of returns is V ar(R) =

V ar Pt
Pt−1

− 1 | It−1 = V ar(Pt)
P 2
t−1

.
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N : One plus the number of analysts following a firm in each month, notated as ANA.6

std(R): This is proxied by the standard deviation of daily returns within the previous

month (month t− 1), notated as STD(RET). To obtain this variable for each month, we
use firms that have at least 10 daily returns in the previous month from the CRSP daily

file.

std(z): The average of daily dollar volume (in $million) within the previous month,

notated as AVG(DVOL).7 To obtain this variable for each month, we use firms that have

at least 10 daily trading records in the previous month from the CRSP daily file.

We now discuss how to measure lambdas when information signals are assumed to be

noisy and diverse.

1.3 An Illiquidity Measure with Noisy Information Signals

When the informed traders observe diverse signals, so that each trader observes the

asset’s payoff plus an error term that is independent and identically distributed across

agents, the Appendix shows that Kyle’s (1985) measure, λ, is in this case given by

λ =
vδ

(N + 1)vδ + 2vε

N(vδ + vε)

vz
, (3)

where N is the number of informed traders, vδ is the variance of the asset payoff, vz is

the variance of uninformed trades, and vε is the variance of signal innovations. Dividing

both sides of Eq.(3) by Pt−1, we have

λ

P
= P−1

vδ
(N + 1)vδ + 2vε

N(vδ + vε)

vz
. (4)

Eq.(4) is our second measure of illiquidity used in this study, and we call it ILLIQ 2.

Note that this measure requires a proxy for signal noise variance as well as the signal

6If N is zero, then the illiquidity measure in equation (2) will also be zero, which is not reasonable.
To get around this, we use a variable ANA, which is one plus the number of analysts. In this way, we
avoid a sample bias because firms not covered by analysts are included in our sample (our approach
mimicks that of Brennan and Subrahmanyam, 1995).

7Note that since uninformed trades (z) follow the normal distribution, i.e., z ∼ N(0, vz), E[|z|] =
2
π std(z). Thus,

√
vz = std(z) =

π
2E[|z|], which in turn can be proxied by average trading volume.
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itself. It is difficult to obtain such a proxy from the return series alone. Therefore, in an

approach that is different from that in the previous section, we condition on a specific

informational event, namely, earnings announcements, in the calculation of the lambda

with signal noise. In this case, the noise in the signal can readily be calculated in this

context by considering the discrepancy between actual earnings and analysts’ earnings

forecasts. Thus, to estimate ILLIQ 2 for each stock in each month, our proxy variables

for each of the original variables in Eq.(4) are as follows (as mentioned earlier, we consider

alternative proxies for the inputs in Subsection 4.3):

P : the stock price at the previous month’s end.

vδ: This variable is proxied by EVOLA-sqr, which is the squared value of earnings

volatility (EVOLA), where EVOLA is the standard deviation of earnings per share (EPSs)

from the most recent eight quarters.

vε: This variable is proxied by ESURP-sqr, which is the squared value of earnings

surprise (ESURP), where ESURP is the absolute value of the current earnings per share

(EPS) minus the EPS forecast four quarters ago.

vz: We proxy this variable by AVG(DVOL)-sqr, which is the squared value of the

average of daily dollar volume (in $million) within the previous month. To obtain this

variable for each month, we use firms that have at least 10 daily trading records in the

previous month from the CRSP daily file.

1.4 Estimation of the Illiquidity Measures

To estimate our illiquidity measures (ILLIQ 1 and ILLIQ 2) according to Eq.(2) and

Eq.(4), the input variables related to the number of analysts (ANA), earnings surprise

(ESURP, ESURP-sqr), and earnings volatility (EVOLA, EVOLA-sqr) are extracted from

the I/B/E/S database. If a firm has one or more missing value(s) in the number of

analysts, the missing months are filled with the previous month’s value up to two quarters.

We use the CRSP daily and monthly files to obtain other input variables: STD(RET),
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AVG(DVOL), AVG(DVOL)-sqr, and P. The average numbers of component stocks used

each month to estimate ILLIQ 1 and ILLIQ 2 for NYSE/AMEX stocks are 1,845.1 and

1,683.1, respectively. Those for NASDAQ stocks are 2,663.8 and 1,967.0, respectively.

Table I contains the descriptive statistics for the input variables of the first illiquid-

ity measure, ILLIQ 1. As one would expect, the mean of ANA for NASDAQ (inter-

changeably, the “OTC market”) stocks (3.15) is much lower than that for NYSE/AMEX

(interchangeably, the “exchange market”) stocks (5.52). Given that the NASDAQ mar-

ket is often comprised of smaller firms, it is intuitive that average daily dollar volume,

AVG(DVOL), in this market ($3.61 million) is lower than that in the exchange market

($5.26 million). Because NASDAQ stocks are more high-tech oriented as well as smaller,

it also is not surprising that daily return volatility, STD(RET), in the OTC market

(4.4%) is far higher than that in the exchange market (2.7%).

To check the descriptive statistics of the input variables for the second illiquidity

measure, ILLIQ 2, we again see that ANA and AVG(DVOL)-sqr are qualitatively sim-

ilar to the corresponding input variables for ILLIQ 1. In the same context, the price

level in the exchange market ($31.31) is much higher than in the OTC market ($14.16).

While earnings surprise variables (ESURP and ESURP-sqr) are higher in the exchange

market than in NASDAQ, earnings volatility variables (EVOLA and EVOLA-sqr) are

considerably higher in the NASDAQ market. Also note that ESURP-sqr is much more

variable across firms in the NASDAQ market than in the exchange market.

After having described our estimation procedure and summary statistics, we discuss

and reiterate some advantages of our approach relative to estimation of illiquidity using

intradaily data (e.g., as in Brennan and Subrahmanyam, 1996 or Sadka, 2006). In ad-

dition to using closed-form expressions obtained from equilibrium economic theory, our

estimation method also avoids noise that might be induced when obtaining order flows

through the Lee and Ready (1991) algorithm. Furthermore, the Lee and Ready (1991)

algorithm only signs market orders, which may induce additional errors. We also do not

have to worry about microstructural issues that may complicate the estimation process,
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such as price discreteness and inventory concerns, or about the appropriate aggregation

interval for order flows. Last, our method enables us to use a far broader cross-section

and longer time-series of data because we do not need to process the Institute for the

Study of Securities Markets (ISSM) and TAQ databases, which are not available prior to

1983. We realize that in spite of all these advantages, the key challenge is to show if our

measures actually are priced after accounting for other popular illiquidity proxies also

estimable over long time-periods; and we will show below that this is indeed the case.

2 Methodology

Assume that returns are generated by an L-factor approximate factor model:

R̃jt = E(R̃jt) +
L

k=1

βjkf̃kt + ẽjt, (5)

where R̃jt is the return on security j at time t, and f̃kt is the return on the k-th factor

(k = 1, 2, ..., L) at time t. The exact or equilibrium version of the arbitrage pricing

theory (APT) in which the market portfolio is well diversified with respect to the factors

(Connor, 1984; Shanken, 1985, 1987) implies that the expected excess returns may be

written as

E(R̃jt)−RFt =
L

k=1

θktβjk, (6)

where RFt is the return on the risk-free asset and θkt is the risk premium on the factor

portfolio k. Plugging Eq.(6) into Eq.(5), the APT implies that realized returns are given

by

R̃jt −RFt =
L

k=1

βjkF̃kt + ẽjt, (7)

where F̃kt ≡ θkt + f̃kt is the sum of the risk premium and return on the factor k.

Our goal is to test whether the two illiquidity measures derived in Section 1, based

on the strategic microstructure model, have incremental explanatory power for returns

relative to the Fama and French (FF, 1993) 3-factor benchmark, after controlling for other
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security characteristics. For this purpose, a standard application of the Fama-MacBeth

(1973) procedure would involve estimation of the following equation:

R̃jt+1 −RFt+1 = c0 + φILLIQ ijt +
L

k=1

θkβjkt +
M

m=1

cmZmjt + ẽjt+1, (8)

where ILLIQ ijt (i = 1 or 2) is one of our illiquidity measures (ILLIQ 1 or ILLIQ 2)

for security j in month t estimated in Section 1, and a vector of control variables, Zmjt, is

firm characteristic m (m = 1, ..., M) for security j in month t. Note that the right-hand

side variables in Eq.(8) are all lagged one-period in order to ensure that we capture pure

predictive relations. Under the null hypothesis that expected excess returns depend only

on the risk characteristics of the returns notated by βjk, then φ and cm (m = 1, ..., M)

will be zero. This hypothesis can be tested in principle by first estimating the factor

loadings each month using the past data, conducting a cross-sectional regression for each

month in which the independent variables are an illiquidity measure, factor loadings,

and other non-risk characteristics, and then averaging the monthly coefficients over time

and computing their standard errors. This basic Fama-MacBeth approach, however, will

present a problem if the factor loadings are measured with errors.

In order to address the above issue arising from error-prone loadings estimates, we

adopt the Brennan, Chordia, and Subrahmanyam (1998) approach. Specifically, we per-

form risk adjustments in returns using the Fama-French (1993) factors (MKTt, SMBt,

andHMLt)
8 in two different ways. In the first method, we compute risk-adjusted returns,

R̃∗1jt , for each month as the sum of the intercept and the residual, i.e.,

R̃∗1jt = (R̃jt −RFt)− (β∗j1MKTt + β∗j2SMBt + β∗j3HMLt)

= α∗ + ẽ
∗
jt, (9)

after conducting regressions in Eq.(7) (but with a constant term α) using the entire

sample range (from January 1972 to December 2002 for NYSE/AMEX stocks and from

8MKT is the excess return on the market portfolio, SMB is the return on a zero net investment
portfolio which is long in small firms and short in large firms, and HML is the return on a zero net
investment portfolio which is long in high book-to-market firms and short in low book-to-market firms.
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January 1983 to December 2002 for NASDAQ stocks ) of the data.9 We call this risk-

adjusted return (R̃∗1jt ) FF3-adj EXSRET1. We also use another version of risk adjustment

for robustness. Thus, in the second method, we obtain rolling estimates of the factor

loadings, βjk, for each month over the sample period for all securities using the time

series of the past 60 months (at least 24 months) with Eq.(7). Given the current month’s

data (R̃jt-RFt, MKTt, SMBt, and HMLt) and the factor loadings (β
∗∗
jk) estimated each

month for all stocks, we can compute the risk-adjusted return on each of the securities,

R̃∗2jt , for each month t as follows:

R̃∗2jt = (R̃jt −RFt)− (β∗∗j1MKTt + β∗∗j2SMBt + β∗∗j3HMLt). (10)

We call this risk-adjusted return (R̃∗2jt ) FF3-adj EXSRET2.

The risk-adjusted returns from Eq.(9) and Eq.(10) constitute the raw material for the

estimates that we present in the following Fama-Macbeth (1973) cross-sectional regres-

sions:

R̃∗hjt+1 = c0t + φtILLIQ ijt +
M

m=1

cmtZmjt + ẽjt+1, h=1 or 2. (11)

Note that the error term in Eq.(11) is different from that in Eq.(8) because the error

in Eq.(11) also contains terms arising from the measurement error associated with the

factor loadings.

To check whether illiquidity is priced, we report three types of statistics based on

regressions in Eq.(11): the statistics based on regressions with the dependent variable

in Eq.(11) being 1) risk-unadjusted excess returns (we call this unadjusted return as

EXSRET); 2) risk-adjusted excess returns using the first method, FF3-adj EXSRET1;

and 3) risk-adjusted excess returns using the second method, FF3-adj EXSRET2. For

our purposes, we estimate the vector of coefficients ct = [c0t φt c1t c2t...cMt] from Eq.(11)

each month with a simple OLS regression as

ct = (ZtZt)
−1ZtR̃

∗h
t+1,

9In the first method, therefore, for each stock we have only one set of the factor loadings (β∗jk)
estimated using the whole time-series of the data.
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where h = 1 or 2, Zt = [ILLIQ i Z1 Z2...ZM ] , and R̃
∗h
t+1 is the vector of risk-adjusted

excess returns based on Eq.(9) or Eq.(10). The standard Fama-MacBeth (1973) estimator

is the time-series average of the monthly coefficients, and the standard error of this

estimator is taken from the time series of monthly coefficient estimates, ct. Note that

although factor loadings are estimated with error in Eq.(7), this error affects only the

dependent variable, R̃∗ht+1, as we see in Eq.(9), Eq.(10), and Eq.(11). While the factor

loadings will be correlated with vector Zt = [ILLIQ i Z1 Z2...ZM ] , there is no a priori

reason to believe that the errors in the estimated loadings will be correlated with the

vector Zt. This implies that the coefficient vector ct estimated in Eq.(11) is unbiased.
10

3 Data, Definitions, and Descriptive Statistics

For this study, we use data at a daily and/or monthly frequency over the 372 months (31

years: 197201-200212) for NYSE/AMEX stocks and the 240 months (20 years: 198301-

200212) for NASDAQ stocks. For those cases in which accounting variables and other

data are available only on a yearly (or quarterly) basis, we keep the relevant values

constant for 12 months (or 3 months) in the regressions.11

The three dependent variables (EXSRET, FF3-adj EXSRET1, and FF3-adj EXS-

RET2) defined in Section 2 for the Fama and MacBeth (1973) regressions are obtained

or estimated using the CRSP monthly file and the FF 3 factors are available from Ken-

10If the errors in the estimated factor loadings are correlated with the explanatory variables Zt =
[ILLIQ i Z1 Z2...ZM ] , the monthly estimates of the coefficients, ct, will be correlated with the factor
realizations, and thus the mean of these estimates (which is the Fama-MacBeth estimator) will be biased
by an amount that depends on the factor realizations. Therefore, as a check on the robustness of our
results, we also obtained a “purged” estimator for each of the explanatory variables in the regressions of
FF3-adj EXSRET1 and FF3-adj EXSRET2: i.e., the constant term (and its t-value) from the regression
of the monthly coefficients (ct) estimated in Eq.(11) on the time series of FF 3 factor realizations. This
estimator, which was developed by Black, Jensen, and Scholes (1972), purges the monthly estimates
of the factor-dependent component so that it is unbiased even when the errors in the factor loading
estimates are correlated with vector Zt.
11The data series available only on a yearly basis are the variables related to the book-to-market ratio

(BM Raw, BM Trim, and BTM) and the effective cost measure (Roll Gibbs: to be explained later).
Those available only on a quarterly basis are accounting performance-related variables, ESURP-sqr and
EVOLA-sqr.
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neth French’s web site. In addition to the variables mentioned above, we use six firm

characteristics in the regressions as control variables: SIZE, BTM, MOM1-MOM4. The

definitions of the control and related variables are as follows:

MV: The market value defined as the month-end stock price times the number of

shares outstanding (in $million).

SIZE: The natural logarithm of MV.

BM Raw: The untrimmed book-to-market ratio defined as BV/MV, where the book

value (BV) is common equity plus deferred taxes (in $million).

BM Trim: The trimmed book-to-market ratio, where BM Raw values greater than

the 99.5 percentile value or less than the 0.5 percentile value in a month are set equal to

the 99.5 and 0.5 percentile values, respectively.

BTM: The natural logarithm of BM Trim. Following Fama and French (1992), we fill

monthly BM Raw (hence BM Trim and BTM) values for July of year t to June of year

t+1 with the value computed using the accounting data at the end of year t−1, assuming
a lag of six months before the annual accounting numbers are known to investors.

MOM1: The compounded holding period return of a stock over the most recent 3

months (from month t− 1 to month t− 3).

MOM2: The compounded holding period return over the next recent 3 months (from

month t− 4 to month t− 6).

MOM3: The compounded holding period return over the 3 months from month t− 7
to month t− 9.

MOM4: The compounded holding period return over the 3 months from month t− 9
to month t− 12. For each of the above four momentum variables to exist, a stock should
have all three consecutive monthly returns over the corresponding three-month period.

Later, in Section 5, we run a horse race to compare the effects of our two illiquidity

measures with those of four other alternative (il)liquidity measures commonly used in
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the literature. The alternative measures to be analyzed in our study are notated and

defined as follows:

Amihud: The illiquidity measure of Amihud (2002). We estimate this measure each

month as the average of |r|/DV OL, where r is the daily stock return, and DVOL is the
daily dollar volume in $1000.

Roll Gibbs: The market risk-adjusted effective bid-ask spread of Roll (1984), esti-

mated at an annual frequency using the Gibbs sampler. This measure was obtained from

Joel Hasbrouck’s website.

PS: The illiquidity measure (gamma) of Pastor and Stambaugh (2003). We esti-

mate this measure by running monthly regressions, using the CRSP daily data whose

transaction records are kept for at least fifteen days within a month (see Section 5 for

details).

TURN : The average of daily share turnover values within each month for each stock.

The variables related to the book-to-market ratio are constructed using the CRSP and

CRSP/Compustat Merged (CCM) files. Other firm characteristic and related variables

(MV, SIZE, and MOM1-MOM4) are also extracted from the CRSP monthly file. The

three (il)liquidity measures (Amihud, PS, and TURN) are estimated using the CRSP

daily or monthly file. The average number of component stocks used each month in the

Fama-MacBeth (1973) cross-sectional regressions for NYSE/AMEX stocks is 1,845.1,

while that for NASDAQ stocks is 2,667.5.

Table II reports the time-series average values of monthly means, medians, standard

deviations (STD), and other descriptive statistics for our key variables. The values of

each statistic are first computed cross-sectionally and then averaged in the time-series

over the sample period. Insofar as the average means of the two illiquidity measures

(ILLIQ 1 and ILLIQ 2) in the NASDAQ market are higher by a factor of almost five

than in the exchange market, the NASDAQ market appears to be less liquid in general.

Considering that the NASDAQ market is characterized by young, small, and high-tech
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firms (with large values of information asymmetry) on average, this result seems reason-

able. Moreover, the variations of the measures across stocks in the NASDAQ market are

also far higher. The differences in the levels of the two illiquidity measures across the

two different markets point out that proxying (il)liquidity by share turnover only may

be misleading. Chordia, Huh, and Subrahmanyam (2005) document that turnover in the

NASDAQ market has been much higher than that in the exchange market. However,

this finding may partly result from the double counting in the NASDAQ market (Atkins

and Dyl, 1997), indicating that despite the higher turnover in the NASDAQ market, we

cannot say that the NASDAQ market is more liquid than the exchange market.

Another noteworthy aspect is that ILLIQ 1 and ILLIQ 2 are highly leptokurtic as

well as significantly skewed to the left in both markets. The large kurtoses of ILLIQ 1

and ILLIQ 2 also imply that sample distributions of the two measures exhibit many

extreme observations. To alleviate this problem, Hasbrouck (1999, 2005, 2006) advocates

employing the square-root transform of liquidity measures.12 For this reason, we include

in our analyses the empirical results based on the square-root transform of our theory-

based measures, in addition to those based on the raw measures themselves. To obtain

the equivalent transformation of Pastor and Stambaugh’s (2003) measure, whose sign

often varies, we multiply the sign of the measure by the square root of the absolute value

of the measure as Sign(PS)[|PS|]1/2. As we see in Table II, the skewnesses and kurtoses
of the corresponding measures ([ILLIQ 1]1/2, [ILLIQ 2]1/2) are substantially reduced

by the square-root transformation.

To examine the time-series behavior of our two illiquidity measures, we plot the

value-weighted series of the transformed measures in Figures 1 and 2 for the two mar-

kets over the sample period. As we see in Figure 1(a), value-weighted [ILLIQ 1]1/2 of

NYSE/AMEX stocks demonstrates a huge run-up after the oil crisis in November 1973.

However, it generally exhibits a decreasing time trend after 1974, suggesting that market

12Hasbrouck (2006) eschews the logarithmic transformation because it is theoretically possible for
illiquidity to be zero. Given that our two illiquidity measures often have values near zero, we opt to use
the square-root instead of the log transform.
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liquidity has improved since the mid-1970s in the exchange market. As mentioned above,

the average level of monthly illiquidity in the OTC market [Figure 1(b)] is consistently

higher, but the measure is also decreasing from the late 1980s. Some large spikes in

the four graphs in common also present that the market liquidity decreased during the

months after the stock market crash in October 1987, the Iraqi invasion of Kuwait in

August 1990, and the Russian default as well as the Long-Term Capital Management

(LTCM) debacle in June to October 1998. Reflecting the recent economic recession and

the 9/11 events, the transformed ILLIQ 1 in the OTC market shows a more salient

increase in 2001-2002 than that in the exchange market. As can be seen in Figure 2, the

trend of [ILLIQ 2]1/2 is qualitatively similar to that of [ILLIQ 1]1/2, with its volatil-

ity and 2001-2002 level increase being more pronounced in the NASDAQ market. For

brevity, we do not report the graphs based on the series of the equal-weighted illiquidity

measures. But their trends are qualitatively similar, with the absolute levels generally

being higher than those of the value-weighted series.

Other discernible facts in Table II are as follows. NYSE/AMEX stocks are larger

by a substantial margin, and NASDAQ stocks are more likely to be growth stocks (see

BM Raw). The four momentum variables (MOM1-MOM4) are consistently negative in

the NASDAQ market, while they are positive in the exchange market. In addition, the

firm size (MV) and the book-to-market ratio (BM Raw) tend to be left-skewed.

Next, we examine the average correlation coefficients between our explanatory vari-

ables in Table III.13 The lower and upper triangles in the table present the correlations

for NYSE/AMEX and NASDAQ stocks, respectively. Our two illiquidity measures are

highly correlated in both markets: 64% between the two untransformed measures and

79% between the two transformed measures in the exchange market; and 46% between

the first ones and 64% between the second ones in the NASDAQ market. The two

measures are negatively correlated with the four momentum variables, suggesting that

13To save space, we do not report the correlation coefficients between the three types of excess returns
to be used as a left-hand side variable in the regressions. They are highly correlated (coefficients greater
than 94%) in both markets.
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good past price performance of a stock tends to contribute to improving the liquidity

of that stock. It also is not surprising to observe that correlation of SIZE with the two

illiquidity measures is negative and statistically significant at any conventional level in

both markets because we would expect larger firms with greater breadth of ownership to

be more liquid than smaller ones. In both markets, the correlation coefficients between

the book-to-market ratio and the two illiquidity measures are positive and statistically

significant. This indicates that value stocks are likely to be more illiquid.

4 Empirical Results

4.1 Features of the Portfolios Formed on Illiquidity and Size

Before moving on to regression analyses, we report the average values of monthly return,

firm size, and illiquidity for the 25 portfolios formed by sorting on illiquidity and firm size.

For this purpose, each month we first sort sample stocks by ILLIQ 1 in ascending order

and split them into five portfolios with the equal number of stocks. Then, each of the five

portfolios is again sorted by firm size (MV) and split into five portfolios, resulting in the

25 portfolios. Next, the average values of return, size, and illiquidity are computed each

month for each of the 25 portfolios, and the time-series averages of the three variables

over the sample period are reported in each panel of Table IV.

Panel A in Table IV shows that for a given size group (especially size groups 1-3)

the average return tends to increase with illiquidity in both markets, while for a given

illiquidity group the average return tends to decrease with firm size. The latter confirms

the small-firm effect documented by many researchers. The t-values (italicized in Panel

A) also demonstrate that monthly portfolio returns are mostly significantly different from

zero. In particular, note that the average return of the portfolio with smallest size and

highest illiquidity (2.91%) is three times higher than that of the other extreme portfolio

(with largest size and lowest illiquidity, 0.93%) in the NYSE/AMEX market, and eight

times higher in the NASDAQ market. Within a given size group, the return difference
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between the two extreme portfolios (the highest and lowest illiquidity groups) is always

positive and is significant at the 5% level for the first two size groups, and at the 10%

level for the third size group. This finding supports the notion that illiquidity pricing

may be especially pronounced for the smaller firms. Of course, the portfolio analysis is

preliminary in the sense that it does not account for other characteristics that may affect

stock returns; moreover, averaging returns across stock groups may obscure illiquidity

pricing phenomena that may be particularly prominent at the individual stock level. We

address these issues by way of regression analysis in the next subsection.

As can be seen in Panels B and C of Table IV, average firm size (within a given

size group) is related negatively to illiquidity, and average illiquidity (within a given

ILLIQ 1 group) is mostly negatively related to firm size. To save space, we do not

report the analog table with ILLIQ 2, but the results are qualitatively similar to those

using ILLIQ 1.

4.2 Cross-Sectional Regressions

We have observed in Table IV that within a given size group the average portfolio return

is likely to increase with illiquidity, suggesting that theory-based illiquidity is a priced

factor. In this section, we formally test whether our two illiquidity measures predict

returns. As mentioned above, our test involves the following cross-sectional regression

estimated at the monthly frequency:

R̃∗jt+1 = c0t + φtILLIQ ijt +
M

m=1

cmtZmjt + ẽjt+1, i=1 or 2, (12)

where R̃∗jt+1 represents either the risk-unadjusted excess return (EXSRET) or the two

risk-adjusted excess returns (FF3-adj EXSRET1 and FF3-adj EXSRET2) defined and

estimated in Section 2, ILLIQ ijt is either of our two theory-based illiquidity measures

(ILLIQ 1, ILLIQ 2, and their transforms) derived and estimated in Section 1, and Zmjt

denotes firm characteristic m for stock j in month t.14

14Note that unlike the contemporaneous regressions in Fama and MacBeth (1973), our explanatory
variables are all lagged one period because we are interested in capturing pure predictive relations.
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We report the standard Fama-MacBeth statistics (the time-series average of the esti-

mated coefficients from the equation above and its t-statistic) in Tables V and VI. Along

with the average coefficients and t-statistics, we provide two other types of statistics in

the tables: the average of the adjusted R2 values from the individual regressions (Avg

R-sqr), and the average number of companies used in the regression each month over the

sample period (Avg Obs).

The regression results based on Eq.(12) with ILLIQ 1 or its transform are presented

in Table V, while those with ILLIQ 2 appear in Table VI. As we see in Panel A of

Table V, the average number of component stocks used in the monthly regressions for

NYSE/AMEX stocks ranges from 1,797.7 to 1,845.1, and that for NASDAQ stocks ranges

from 2,406.3 to 2,663.8, depending on data availability of the variables. Avg R-sqr is in

the 3-5% range in the exchange market, and that for NASDAQ stocks is slightly lower.

The explanatory power of the regressions tends to be higher with the unadjusted excess

returns (EXSRET) than with the risk-adjusted returns (FF3-adj EXSRET1, FF3-adj

EXSRET2) in both markets. Given that ILLIQ 2 requires more input variables, Table

VI shows that the average number of component stocks used in the regressions with this

illiquidity measure decreases by 7-8% to 1667.6-1683.1 for NYSE/AMEX stocks, and

by 21-26% to 1907.3-1967.0 for NASDAQ stocks (see Panel A). Other aspects of the

explanatory power are similar to those with ILLIQ 1.

We first discuss the results from the Fama-MacBeth regressions of EXSRET on

ILLIQ 1 as well as other firm characteristics that are best known to be associated

with expected returns, namely, SIZE, BTM, and the four momentum variables (MOM1-

MOM4). Panel A of Table V shows that the average coefficients of ILLIQ 1 are positive

and statistically significant at any conventional level in both markets after controlling for

other firm characteristics, confirming the hypothesis that stocks with higher illiquidity

are expected to have higher (excess) returns. The coefficients of SIZE and BTM are

respectively negative and positive, and they are statistically significant at the 5% level in

both markets. These size and book-to-market effects are consistent with previous studies,
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such as Fama and French (1992). We also find that the sensitivity of returns to these

variables is much greater in the NASDAQ market than in the exchange market. The

four momentum variables are all strongly positively related to returns in the exchange

market, whereas they become weaker in the OTC market.

We now consider whether the relations observed above are maintained when the de-

pendent variable is risk-adjusted using the FF factors. The estimates of illiquidity and

characteristic rewards (φ, cm) for returns adjusted by the first method in Section 2 (FF3-

adj EXSRET1) are presented in the next column of Panel A. By risk-adjusting, the

coefficients of the right-hand side variables tend to attenuate slightly, but the relations

are essentially unchanged, with the levels of statistical significance becoming even rein-

forced in may cases. ILLIQ 1 continues to be strongly positively related to risk-adjusted

returns, firm size is negatively related to returns, and a higher book-to-market ratio pre-

dicts higher returns in both markets. Overall, SIZE and BTM play more important roles

in the NASDAQ market than in the NYSE/AMEX market in predicting stock returns.

The momentum variables again demonstrate that better price performance in the past is

expected to provide higher returns in the current month, especially in the NYSE/AMEX

market. This finding confirms the continuation of short-term returns documented by

Jegadeesh and Titman (1993) and Fama and French (1996).

In the last column, we report the estimates of illiquidity and characteristic rewards (φ,

cm) for excess returns (FF3-adj EXSRET2), which are now risk-adjusted by the second

method in Section 2. First, the impact of ILLIQ 1 on risk-adjusted returns is virtually

the same as the result with FF3-adj EXSRET1: positive and statistically significant in

the two markets. SIZE and BTM continue to have a strong impact on excess returns

in both markets, though their statistical significance is slightly lower in the exchange

market. Another discernible feature is that the momentum variables now show a contrast

between the two different markets. Using FF3-adj EXSRET2, these variables are strongly

positively related to returns in the exchange market. In the NASDAQ market, however,

the coefficients of the variables become insignificant without exception, an interesting
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aside, which deserves investigation in future research.

Now we examine the results with [ILLIQ 1]1/2 in Panel B. Overall, the features with

the transformed measure are very similar to those in Panel A. However, two aspects

are worth mentioning. First, the sensitivity of returns to illiquidity and the statistical

significance of the relevant coefficients are reinforced, particularly for NASDAQ stocks.

To gauge the effect of illiquidity on the stock return in the EXSRET specification, we

find that an increase in illiquidity ([ILLIQ 1]1/2) by one standard deviation requires

higher monthly (excess) returns of 0.35% in the exchange market and 0.72% in the OTC

market. The magnitude of these additionally required monthly returns is economically

significant, given that Chordia, Huh, and Subrahmanyam (2005) document that average

monthly return is 1.19% for 1,647.2 NYSE/AMEX stocks over the past 39.5 years and

1.46% for 1,722.1 NASDAQ stocks over the past twenty years. The other noteworthy

point is that with the transformed measure, the size effect is attenuated in the exchange

market.

Next, we investigate in Table VI how the effects of illiquidity and other firm character-

istics on returns change when we employ the second measure, ILLIQ 2, or its transform

in the regressions. We see in Panel A of Table VI that the coefficients of ILLIQ 2

are also statistically different from zero at the 5% level in the exchange market after

accounting for the effects of other characteristics, while the significance phases out in

the NASDAQ market. It is possible that analyst forecasts for tech-oriented NASDAQ

stocks are more prone to error due to greater cash flows uncertainty for such stocks. This

may induce noise in the estimates of ILLIQ 2, which relies on analyst-related data to

estimate signal noise. However, if we use the transformed measure, which subdues the

influence of extreme observations, our second theory-based measure is strongly related to

excess returns as we see in Panel B. As observed in Table V about the roles of SIZE and

BTM, the size of the coefficients and the level of their statistical significance are again

larger in the NASDAQ market than in the exchange market. The momentum effects for

NYSE/AMEX stocks are similar to those in Table V, but the effects become more salient
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for NASDAQ stocks than in Table V. For example, the coefficient estimates of more re-

cent past returns (MOM1-MOM2) for NASDAQ stocks are now statistically significant

at the 5% level in both panels for the FF3-adj EXSRET2 specification.

4.3 Robustness Checks

4.3.1 Different Combinations of Input Variables in Estimating the Illiquidity
Measures

As checks on the robustness of our results, we have used three different types of excess

returns (EXSRET, FF3-adj EXSRET1, and FF3-adj EXSRET2).15 We have also con-

sidered the effects of our choices of input variables used to estimate the two illiquidity

measures. As pointed out in Section 1, the two important input variables in estimating

ILLIQ 1 and ILLIQ 2 are, among others, the standard deviation of daily returns in

month t − 1 and the average of daily dollar volume in month t − 1. For robustness, we
have obtained standard deviations of returns computed each month with daily returns

in month t− 2, daily returns in the past 36 months, and monthly returns in the past 60
months. Moreover, as a proxy for std(R), we also have used an idiosyncratic risk measure

against the FF 3 factors using data from the past 60 months in line with Spiegel and

Wang (2005). For the average volume as a proxy for std(z), we tried many candidates,

including average daily share volume, average daily dollar volume, and daily turnover

in month t − 1, t − 2, and in the past 36 months. We estimated the two illiquidity
measures using a number of combinations of these as inputs. Cross-sectional regressions

using illiquidity measures estimated with different combinations of input variables do

not significantly change our results, especially the effects of illiquidity, firm size, and

book-to-market equity.

15As mentioned earlier, we additionally obtained a “purged” estimator of Black et al. (1972) for
each of the explanatory variables in the regressions of FF3-adj EXSRET1 and FF3-adj EXSRET2. The
results were very similar to those of the “raw” estimator, and are not reported. The results imply that
the estimation errors in factor loadings are not correlated with the vector of explanatory variables. The
results are all available from the authors upon request.
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4.3.2 Using Quote Mid-point Returns

A recent study by Bessembinder and Kalcheva (2006) argues that empirical pricing tests

using observed returns calculated using the reported closing prices might induce mi-

crostructure biases because of the bid-ask bounce, suggesting that asset-pricing tests

with quote mid-point returns can reduce this problem. To address this issue, we obtain

mid-point returns for both markets. For NYSE/AMEX stocks, monthly quote mid-point

returns are calculated based on the first (open) quote mid-point and the last (close) quote

mid-point (open-to-close mid-points) within each month over the 180 months from 1988

to 2002 (fifteen years: 198801-200212). For NASDAQ stocks, we compute returns based

on the mid-points of the monthly closing quotes (close-to-close mid-points) using the

NASDAQ National Market System (NMS) data in the CRSP file over the 240 months

(twenty years: 198301-200212) from 1983 to 2002.16

The cross-sectional regression results using mid-point returns are reported in Table

VII. As shown in Panel A, the coefficients of [ILLIQ 1]1/2 are statistically significant

at 5% in the exchange market and at 1% in the OTC market, with the magnitude of

them being much larger compared to the result in Panel B of Table V. The slightly

lower t-values of the illiquidity measure in the exchange market might result from the

shorter sample period used to compute mid-quote returns. Panel B shows that with

the usage of mid-point returns the magnitude and statistical significance of our second

illiquidity measure ([ILLIQ 2]1/2) are actually reinforced in the NASDAQ market, while

the corresponding coefficient in the exchange market is comparable to that obtained using

transaction returns in Panel B of Table VI.17

16Month-end bid and ask quotes for the NASDAQ National Market System (NMS) stocks are obtained
using the CRSP file, in which closing bid and ask NASDAQ market quotes are available from November
1982 onwards.
17We do not report the tables with non-transformed measures (ILLIQ 1 and ILLIQ 2), but the results

are qualitatively similar to those with the transformed measures.
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4.3.3 Quarterly Cross-sectional Regressions

Brennan and Wang (2006) argue that in asset-pricing tests with monthly returns, vari-

ables correlated with short-horizon mispricing, such as illiquidity measures, may be spu-

riously related to future returns. They indicate that the mispricing bias is likely to be

attenuated in longer-horizon quarterly returns. Thus, we now present the results from

quarterly cross-sectional regressions. We compute quarterly returns (compounded) for

the dependent variable and three-month average values for the explanatory variables.

The sample range is 124 quarters (31 years: 197201-200204) for NYSE/AMEX stocks

and 80 quarters (20 years: 198301-200204) for NASDAQ stocks.

The results are contained in Table VIII. Panel A exhibits that the statistical signif-

icance level of the loadings on [ILLIQ 1]1/2 is very similar to the monthly regression

results reported in Panel B of Table V. Panel B shows that the magnitude and statistical

significance of the coefficient for [ILLIQ 2]1/2 becomes stronger in quarterly regressions,

especially for NASDAQ stocks, than those in the monthly regressions of Table VI.

So far, we have demonstrated that the two theory-based illiquidity measures continue

to be priced in the cross-section of stock returns, regardless of using: 1) different input

variables in estimating the illiquidity measures; 2) mid-point returns; or 3) quarterly

returns. However, two more questions still remain to be answered: (i) Do the theory-

based measures perform better than the other commonly used (il)liquidity measures in

the finance literature? (ii) Do the two measures continue to be priced after accounting

for the effects of other competing (il)liquidity measures? To further test the robustness of

our findings, we compare the results of the theory-based measures to those of alternative

illiquidity measures in the next section.
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5 A Horse Race with Alternative Measures

5.1 Selection of Alternative Measures and their Relations to
the Theory-based Illiquidity Measures

There are a number of (il)liquidity measures that have been used in the asset-pricing

or microstructure literature. Some measures have been obtained or estimated from the

TAQ intradaily file, while others come from the CRSP daily file. As Hasbrouck (2005)

admits, however, estimating the measures using high-frequency trade and quote data,

such as the TAQ database, limits the availability to the relatively small and recent data

samples. Moreover, Merton (1980) suggests that the accuracy in estimating first moments

hinges upon the length of the data sample and not the sampling frequency. It also is

relevant to recognize the computational economy of and hence the importance of liquidity

measures that can be constructed from data of daily or lower frequency. Of course, our

two theory-based measures can be constructed from the CRSP daily file and the lower

frequency I/B/E/S database. As such, given the issues described above in selecting

alternative measures for comparison purposes, we limit our choices to the measures that

can be estimated using the CRSP daily file, and thus over the same horizons as our

measures.

First, we consider Amihud’s (2002) illiquidity measure, which is defined as |r|/DV OL,
where r is the daily stock return and DVOL is the daily dollar volume (in $1,000).

For monthly regressions, we compute each month the average of the daily estimates

of illiquidity within a month. Roughly speaking, this measure (notated as Amihud in

our analysis) is similar to Kyle’s (1985) λ, which is the basis of our two theory-based

illiquidity measures. However, the Amihud measure is distinct from Kyle’s λ in the

sense that Amihud captures the absolute return impact of unsigned volume, while λ

is the price impact of signed order flows. From an operational standpoint, our closed-

form expressions for lambdas include the impact of analyst following, over and above

the volatility and volume measures, since it is an economic link between illiquidity and
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information flows. Given the fact that the Amihud measure has been used widely in recent

literature, however, we include Amihud as one of the competing illiquidity measures.

Attempting to answer the question of how well high-frequency measures can be prox-

ied using daily data, Hasbrouck (2005) suggests that the market risk-adjusted effective

cost of Roll (1984), estimated using the Gibbs sampler, is one of appropriate CRSP-

based proxies for a TAQ-based effective cost. We thus consider this measure (notated as

Roll Gibbs) in our study.18 Next, if a stock is not perfectly liquid, order flows or signed

volume may induce corrections in stock prices that initially overshoot and subsequently

revert to the true values. Therefore, we estimate a reversal measure of illiquidity each

month for each stock using the CRSP daily file as in Pastor and Stambaugh (2003) who

estimate γ from the regression equation,

rej,d+1,t = a+ brj,d,t + γsign(rej,d,t)DVOLj,d,t + ςj,d+1,t,

where rj,d,t is the raw return and r
e
j,d,t is the excess return (over the CRSP value-weighted

index return) of stock j at day d within month t (we require at least fifteen days of data

per month in the CRSP daily file to estimate γ). We call this measure PS. Lastly,

share turnover has been used as an (il)liquidity proxy by many researchers such as Bren-

nan, Chordia, and Subrahmanyam (1998). For this reason, we consider monthly share

turnover (notated as TURN) as one of the liquidity proxies in the analysis. We estimate

each month the three illiquidity measures (Amihud, PS, and TURN), while we obtain

Roll Gibbs from the web site of Joel Hasbrouck. The Roll Gibbs measure is at an annual

frequency.

Table IX presents the correlation coefficients between the (il)liquidity measures. The

lower triangle in Panel A shows that in the NYSE/AMEX market, both ILLIQ 1 and

ILLIQ 2 are most highly correlated with Amihud, followed by Roll Gibbs. Both PS and

TURN are negatively correlated with the two theory-based measures, but the size of the

coefficients is small. For NASDAQ stocks (in the upper triangle), the two theory-based

18We initially used cGibbs, estimated in Hasbrouck (2005), and later replaced it with c BMA, estimated
in Hasbrouck (2006), for he updates the paper and data. The results are virtually the same.
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measures are most highly correlated with Roll Gibbs. But PS is very weakly related to

the two theory-based measures in both markets. Another discernible fact is that while PS

is weakly correlated in general with any other (il)liquidity measures, Amihud is highly

correlated with Roll Gibbs in both markets. Panel B is the analog to Panel A with all

the transformed measures. With the square-root transforms, the absolute correlations

substantially increase, but the patterns are qualitatively the same as in Panel A.

5.2 Cross-Sectional Regressions with Alternative Illiquidity Mea-
sures

In this subsection, we conduct a horse race between one of our two theory-based illiquidity

measures and one (or all) of the four competing measures considered in the previous

subsection. Our goal is to test whether the effects of our theory-based measures on

expected returns are comparable to those of other competing measures and, going one

step further, to check whether each of the theory-based measures still has an incremental

impact on returns after accounting for the effects of the four alternative measures.

First, we run the regression with each of the competing measures or their transforms

by replacing ILLIQ ijt with one of the four measures (Amihud, Roll Gibbs, PS, and

TURN) in Eq.(12). Because Roll Gibbs is of annual frequency, we keep the annual

values of this measure constant over the twelve months within each year for the monthly

regressions. For brevity, we report in Table X the results with only the transformed

measures.19

As the correlation coefficients in Table IX suggest, Panel A of Table X exhibits that

the impact of the transformed Amihud on returns is consistently strong in both markets,

which is comparable to that of the transformed ILLIQ 1 or ILLIQ 2 in Panel B of Tables

V-VI. However, the impact of [Roll Gibbs]1/2 in Panel B has the wrong sign (negative),

although it is statistically significant. This is surprising, given that this measure is highly

correlated with [Amihud]1/2 as well as with the two transformed theory-based measures.

19However, the results with raw measures are similar to those with transformed measures.
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Hasbrouck (2006) as well as Spiegel and Wang (2005) also conduct similar analyses

with the same measure, documenting that Roll Gibbs is positively related to returns but

mostly not significant.20 The reason(s) that this measure exhibits such equivocal effects

may be one or more of the following: 1) The estimation is not sufficiently accurate; 2)

Estimates at the annual frequency are not suitable for monthly regressions; or 3) This is

not a priced characteristic. As Hasbrouck (2006) indicates, the limitation of Roll Gibbs

stems from the fact that it does not explicitly incorporate the price impact effects of

trading volume or order flow, which may be endogenous with price dynamics. As we see

in Panels C-D, the impact of transformed PS and TURN on returns is negligible after

controlling for other firm characteristics. The weak role of PS in our study is consistent

with Hasbrouck (2005).21

Next, we run a horse race between one of our two theory-based illiquidity measures

and all the four competing measures. For this purpose, we augment Eq.(12) by including

four more variables as in the equation,

R̃∗jt+1 = c0t + φtILLIQ ijt +
4

n=1

ϕntALTnjt +
M

m=1

cmtZmjt + ẽjt+1, i=1 or 2, (13)

where ALTnjt (n = 1,..., 4) denotes one of the four alternative (il)liquidity measures

(Amihud, Roll Gibbs, PS, and TURN). We again report the results with only the

transformed measures.

As shown in Panel A of Table XI, by including additional four (il)liquidity measures

in the regressions, the number of average component stocks decreases, while the adjusted

R2 increases relative to the results in Panel B of Table V. We also observe in Panel

A that the transformed ILLIQ 1 continues to be priced even after controlling for the

alternative measures. The effects of [Amihud]1/2 and [Roll Gibbs]1/2 are similar to those

of Panels A and B in Table X, respectively, although there are some differences in the

size or statistical significance of their coefficients. It is interesting to see that by including

the competing measures, the coefficients of the transformed PS and TURN tend to be

20See Table 6 and Table 8 of Hasbrouck (2006).
21See Table 5 of Hasbrouck (2005).
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significant in the NASDAQ market. However, their effects in the exchange market are

insignificant or of the wrong sign. With the additional (il)liquidity variables, the size

effect still exists in both markets, but the book-to-market effect disappears for NASDAQ

stocks. Panel B of Table XI reports the analog of Panel A with [ILLIQ 2]1/2. The

impact of [ILLIQ 2]1/2 continues to be positive and statistically significant at the 5%

level in the exchange market, but it phases out in the OTC market after accounting for

the effects of competing measures. PS plays no role. The other variables show patterns

similar to those in Panel A.

To conserve space, we do not report the horse-racing results analogous to Table XI

with mid-point returns or quarterly returns. But a couple of features from these results

deserve mentioning. With mid-point returns, the loadings on [ILLIQ 1]1/2 are statisti-

cally significant at 1-10% in both markets, but the loadings on the four alternative mea-

sures are no longer significant. Another noticeable aspect with mid-point returns is that

the impact of [ILLIQ 2]1/2 is positive and statistically significant at 1% in the NASDAQ

market. In quarterly regressions, the coefficients of both [ILLIQ 1]1/2 and [ILLIQ 2]1/2

are significant at 1-10% in both markets, with the loadings on [ILLIQ 2]1/2 being so at

the 1% level in the NASDAQ market.

Overall, the empirical tests show that while our second illiquidity measure is priced

in the exchange market in any case, it exhibits relatively weaker behavior in the NAS-

DAQ market in some situations, indicating that information about the earnings of highly

volatile firms is harder to come by, which would imply that our measure is not a perfect

measure of information asymmetry. On balance, however, our analyses provide strong

evidence that theory-based illiquidity is a priced attribute, even after controlling for the

four alternative measures.
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6 Conclusion

Empirical proxies for illiquidity have been subject to controversy because they have

achieved mixed results in answering the question of whether illiquidity is related to asset

returns. Further, these proxies typically do not emanate from an equilibrium model,

raising the question of whether the informal reasoning that justifies the measures is the

cause of conflicting conclusions about the illiquidity-return relation.

We use an alternative approach to measuring illiquidity. Specifically, we explicitly

model the functional relation between illiquidity and its primitive drivers and thus pro-

vide stronger economic underpinnings for the estimation of illiquidity relative to those

in the extant literature. We estimate Kyle lambdas, using analytic formulae that are

derived from an equilibrium framework. We use plausible empirical proxies for inputs

to the theoretical expressions, along the lines of Brennan and Subrahmanyam (1995).

Our lambdas are estimated for a comprehensive sample of NYSE/AMEX and NASDAQ

stocks, spanning more than 30 years. In asset pricing regressions, although our measure of

illiquidity does not completely subsume other measures of illiquidity, it generally remains

significant even after accounting for the effects of these empirically-motivated measures.

Overall, the results provide convincing evidence that our theory-based lambdas are priced

in the cross-section of expected stock returns.

Future research would focus on illiquidity-risk pricing and also why and how such

theory-based illiquidity measures vary over time and across firms. For example, are

such lambdas relatively high when the firm is young and information asymmetry plays

a predominant role? Do they decline as the clientele for holding stocks changes from

ostensibly informed institutions to uninformed individual investors? Can these lambdas

be estimated for other markets, such as fixed income, and do these vary with credit risk

(presumably because the potential for asymmetric information is greater in bonds with

high default probability)? Such issues are left for future research.
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Appendix: Derivation of the Two Theory-based Illiquidity Measures

In this appendix, we derive the illiquidity measure (λ) used in our analysis, assuming

that there are many informed traders in Kyle’s (1985) setting. We begin our analysis

by stating a few standard assumptions that are made in much of the literature on Kyle

(1985)-type frameworks. Consider an asset that pays off W̃ = W + δ̃, where W̃ is the

liquidation value of the asset (or the common value that all traders assign to it), W

is the expected value of the asset, and δ̃ is the innovation in the asset payoff that is

normally distributed (with its mean being zero), i.e., δ̃ ∼ N(0, vδ). There are N informed
traders who observes a signal that is informative about δ̃. For now, we assume that

informed trader i observes a signal with an error, δ̃ + ε̃i (i=1, 2, 3, ..., N), where ε̃i s are

iid and normally distributed, i.e., ε̃i ∼iid N(0, vε). Informed traders maximize expected
profits. There are also uninformed traders who trade randomly, and their total trades,

z, are normally distributed, i.e., z ∼ N(0, vz). It is assumed that δ, ε, and z are all

independent. Risk-neutral market makers set the prices of assets equal to the expected

values of the liquidation values, conditional on information about the quantities traded

by other participants. They are competitive and efficient, earning zero expected profits

and ensuring that markets clear.

At each auction, trading of an asset occurs in two steps. In the first step, the informed

and uninformed traders submit orders simultaneously to a market maker. In the second

step, the market maker quotes a price contingent on the combined trades (order flows)

of both types of traders. The market maker does not observe the individual quantities

traded by the informed or the uninformed. He does not have any other information than

the combined total trades by the two types of traders. Therefore, price fluctuations of

an asset are purely a result of order flow innovations.

Suppose that informed trader i conjectures that other informed traders use trading strate-

gies of a form γ(δ̃ + ε̃j)., i.e., a trade of informed trader j is given by

xj = γ(δ̃ + ε̃j), (14)
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and also that for informed trader i is

xi = γ(δ̃ + ε̃i). (15)

From the above equations, the combined total trades (order flows), ω, are expressed as

a sum of informed and uninformed trades, i.e.,

ω = {xi + (N − 1)xj}+ z
= {xi + (N − 1)γδ̃ + γ

j=i

ε̃j}+ z (16)

= Nγδ̃ + γ
i

ε̃i + z. (17)

The asset price, P , is set by the market maker after he observes ω so that22

P = E W + δ̃ | ω = Nγδ̃ + γ
i

ε̃i + z (18)

= W +
Cov δ̃,Nγδ̃ + γ

i
ε̃i + z

V ar Nγδ̃ + γ
i
ε̃i + z

Nγδ̃ + γ
i

ε̃i + z . (19)

In addition, Kyle (1985) suggests that P should also be a linear function of order flows

in a form,

P = W + λω (20)

= W + λ Nγδ̃ + γ
i

ε̃i + z , (21)

where λ is the sensitivity of the asset price to order flows. Also, the profit of informed

trader i is expressed as

πi = (W̃ − P )xi. (22)

22Equation (19) comes from the property of the multivariate normal distribution. Let two random

variables, X1 and X2, be jointly normally distributed so that
X1
X2

∼ N µ1
µ2

,
Σ11 Σ12
Σ21 Σ22

.

Then, we can show that E[X1|X2] = µ1+ Σ12Σ
−1
22 (X2 − µ2), and V ar[X1|X2] = Σ11− Σ12Σ−122 Σ21. For

details, see Anderson (1984).
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In this setting, we can solve for the equilibrium that satisfies the two conditions: profit

maximization by the informed and market efficiency.

In Eq.(20) and Eq.(21), λ is an illiquidity measure and its inverse, 1
λ
, is sometimes called

the “depth” of the market. If a market is very liquid, one would expect that combined

trades, ω, may not affect the asset price very much, and hence the level of λ is low. Our

goal is to solve λ as a measure of illiquidity from the equilibrium conditions.

First, informed trader i’s problem is:

Max : E πi |δ̃ + ε̃i

= E

W+ δ̃ −W− λ

xi + (N− 1)γδ̃ + γ
j=i

ε̃j}+ z
 xi | δ̃ + ε̃i


= E δ̃ | δ̃ + ε̃i − λxi − λ(N − 1)γE δ̃ | δ̃ + ε̃i xi

= −λx2i + xi {1− λ(N − 1)γ}E δ̃ | δ̃ + ε̃i . (23)

The first order condition of Eq.(23) gives −2λxi + {1− λ(N − 1)γ}E δ̃ | δ̃ + ε̃i = 0.

Thus,

xi =
1

2λ
{1− λ(N − 1)γ}E δ̃ | δ̃ + ε̃i

=
1

2λ
{1− λ(N − 1)γ} vδ

vδ + vε
(δ̃ + ε̃i). (24)

Therefore, from Eq.(15) and Eq.(24), we have γ = 1
2λ
{1− λ(N − 1)γ} vδ

vδ+vε
, which in

turn leads to

γ =
vδ

vδ+vε

λ 2 + vδ
vδ+vε

(N − 1) . (25)

Next, from Eq.(19) and Eq.(21), the market efficiency condition is equivalent to

λ =
Cov δ̃,Nγδ̃ + γ

i
ε̃i + z

V ar Nγδ̃ + γ
i
ε̃i + z

=
Nγvδ

N2γ2vδ + γ2Nvε + vz
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=
Nvδ

γ(N2vδ +Nvε) +
1
γ
vz
. (26)

Plugging Eq.(25) into Eq.(26) gives

λ =
vδ

(N + 1)vδ + 2vε

N(vδ + vε)

vz
. (27)

Note that initially we assumed informed traders observe a signal with noise, ε̃i (i=1, 2,

3, ..., N). Now suppose there is no noise in the signal so that vε = 0. Then, Eq.(27) is

reduced to

λ =

√
Nvδ

(N + 1)
√
vz
. (28)

In this study, Eq.(27) and Eq.(28) are used as the primary basis of our two illiquidity

measures.
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Table I 

Descriptive Statistics for the Input Variables of the Two Illiquidity Measures 
This table reports descriptive statistics for the input variables of our two theoretically derived illiquidity measures, ILLIQ_1 =  

)()1(
)(5.0

zstdN
RstdN

+
,  and ILLIQ_2 = 

zv
vvN

vvN
v

P
)(

2)1(
1 εδ

εδ

δ +
++

− , where each input variable is defined as follows: N: the 

number of informed traders; std(R): standard deviation of returns; std(z): standard deviation of noise trades; P: asset price; δv : 

variance of payoff innovations; 
εv : variance of signal innovations; and zv : variance of noise trades. The above original input 

variables are in turn proxied by the variables shown in the second column of the table below. Each proxy variable is defined as 
follows: ANA: one plus the number of analysts following a firm; STD(RET): standard deviation of daily returns in the previous 
month; AVG(DVOL): average of daily dollar volume (in $million) in the previous month; P: month-end stock price of the 
previous month; EVOLA-sqr: squared value of earnings volatility (EVOLA), which is defined as standard deviation of EPSs 
from the most recent eight quarters; ESURP-sqr: squared value of earnings surprise (ESURP), which is defined as the absolute 
value of the current earnings per share (EPS) minus the EPS from four quarters ago;  and AVG(DVOL)-sqr: squared value of 
AVG(DVOL). The sample periods are the past 372 months (31 years: 197201-200212) for NYSE/AMEX stocks and the 240 
months (20 years: 198301-200212) for NASDAQ stocks. The values of each statistic are first calculated cross-sectionally each 
month and then the time-series averages of those values are reported here. The average numbers of component stocks used each 
month for ILLIQ_1 and ILLIQ_2 in Panel A (NYSE/AMEX stocks) are 1,845.1 and 1,683.1, respectively. Those in Panel B 
(NASDAQ stocks) are 2,667.5 and 1,967.0, respectively.  

                      

Panel A: NYSE/AMEX 
Original Input  Proxy Variables  For ILLIQ_1  For ILLIQ_2 

Variables  Employed  Mean Median STD  Mean Median STD 
N  ANA  5.52 2.46 6.34  5.73 2.67 6.47 

std(R)  STD(RET)  0.027 0.022 0.025  - - - 
std(z)  AVG(DVOL)  5.26 0.53 16.88  - - - 

P  P  - - -  31.31 18.06 379.92 

δv   EVOLA-sqr  - - -  173.80 0.06 6298.46 
         

εv   ESURP-sqr  - - -  69.68 0.02 2920.24 
         zv    AVG(DVOL)-sqr   - - -   933.97 0.75 11061.09 

Panel B: NASDAQ 
Original Input  Proxy Variables  For ILLIQ_1  For ILLIQ_2 

Variables  Employed  Mean Median STD  Mean Median STD 
N  ANA  3.15 1.37 4.01  3.70 1.79 4.56 

std(R)  STD(RET)  0.044 0.036 0.039  - - - 
std(z)  AVG(DVOL)  3.61 0.12 27.86  - - - 

P  P  - - -  14.16 9.76 14.80 

δv   EVOLA-sqr  - - -  1781.81 0.03 96989.02 
         

εv   ESURP-sqr  - - -  3.22 0.01 73.02 
         zv    AVG(DVOL)-sqr   - - -   2639.84 0.04 53269.12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table II 

Descriptive Statistics for Key Variables 
This table reports descriptive statistics (Mean, Median, Standard Deviation (STD), Coefficient of Variation (CV), Skewness, and 
Kurtosis) for the key variables to be used on the right-hand side in the Fama-MacBeth (1973) cross-sectional regressions. Each 
variable is defined as follows: ILLIQ_1: the first illiquidity measure defined as in Table I; ILLIQ_2: the second illiquidity 
measure defined as in Table I; MV: market value defined as the month-end stock price times the number of shares outstanding 
(in $million); SIZE: natural logarithm of MV; BM_Raw: the untrimmed book-to-market ratio defined as BV/MV, where the book 
value (BV) is common equity plus deferred taxes (in $million); BM_Trim: the trimmed book-to-market ratio, where BM_Raw 
values greater than the 99.5 percentile value or less than the 0.5 percentile value in a month are set equal to the 99.5 and 0.5 
percentile values, respectively; BTM: natural logarithm of BM_Trim; MOM1: compounded holding period return of a stock over 
the most recent 3 months (from month t-1 to month t-3); MOM2: compounded holding period return over the next recent 3 
months (from month t-4 to month t-6); MOM3: compounded holding period return over the 3 months from month t-7 to month t-
9; MOM4: compounded holding period return over the 3 months from month t-9 to month t-12. The sample periods are the past 
372 months (31 years: 197201-200212) for NYSE/AMEX stocks and the 240 months (20 years: 198301-200212) for NASDAQ 
stocks. The values of each statistic are first calculated cross-sectionally each month and then the time-series averages of those 
values are reported here. The average number of component stocks used in a month to compute the statistics for each variable in 
Panel A (NYSE/AMEX stocks) is 1,845.1 (except that it is 1,683.1 for ILLIQ_2), while that in Panel B (NASDAQ stocks) is 
2,667.5 (except that it is 1,967.0 for ILLIQ_2).  

                

Panel A: NYSE/AMEX 
Variables  Mean Median STD CV Skewness Kurtosis 

ILLIQ_1  2.14 0.11 14.92 686.22 17.29 441.55 
[ILLIQ_1]1/2  0.60 0.24 1.12 199.87 6.12 74.05 
ILLIQ_2  9.34 0.04 161.08 1229.57 24.13 730.84 
[ILLIQ_2]1/2  0.73 0.16 2.38 329.14 10.90 200.60 
MV  1722.92 245.01 6140.44 368.03 12.05 215.85 
SIZE  5.15 5.13 1.98 39.10 0.09 -0.42 
BM_Raw  1.02 0.87 0.78 78.08 4.92 80.07 
BM_Trim  1.01 0.87 0.69 69.69 2.10 8.40 
BTM  -0.27 -0.20 0.71 -387.46 -0.81 2.66 
MOM1  0.011 0.016 0.191 -872.70 -0.27 5.55 
MOM2  0.012 0.016 0.187 -1599.66 -0.18 4.94 
MOM3  0.013 0.016 0.184 257.10 -0.10 4.41 
MOM4   0.014 0.017 0.183 38.04 -0.06 4.14 

Panel B: NASDAQ 
Variables  Mean Median STD CV Skewness Kurtosis 

ILLIQ_1  10.25 0.18 271.22 1154.10 29.12 1130.67 
[ILLIQ_1]1/2  0.96 0.41 2.20 211.36 10.49 243.27 
ILLIQ_2  44.63 0.06 1272.14 1503.41 27.50 937.70 
[ILLIQ_2]1/2  1.02 0.24 4.28 353.70 13.62 315.04 
MV  323.01 47.56 2770.90 570.96 20.12 624.91 
SIZE  3.84 3.76 1.65 43.49 0.24 -0.05 
BM_Raw  0.75 0.58 0.71 93.08 4.23 49.95 
BM_Trim  0.74 0.58 0.65 86.47 2.40 9.96 
BTM  -0.66 -0.55 0.92 -147.06 -0.85 2.14 
MOM1  -0.013 -0.001 0.289 -1496.29 -0.27 4.71 
MOM2  -0.008 0.001 0.284 -11200.06 -0.16 4.05 
MOM3  -0.004 0.004 0.280 64.58 -0.09 3.83 
MOM4   -0.003 0.004 0.278 745.88 -0.06 3.78 

 
 
 
 
 
 
 
 



 

 
Table III 

Correlations between Explanatory Variables 
The lower triangle shows the average correlations between the key variables for NYSE/AMEX stocks over the 372 months (31 years: 
197201-200212), and the upper triangle shows those for NASDAQ stocks over the 240 months (20 years: 198301-200212) The cross-
sectional correlation coefficients are first calculated each month and then the time-series averages of those values over the sample 
periods are reported here. The definitions of the variables are as follows: ILLIQ_1: the first illiquidity measure defined as in Table I; 
ILLIQ_2: the second illiquidity measure defined as in Table I; SIZE: natural logarithm of MV, which is defined as the month-end 
stock price times the number of shares outstanding (in $million); BTM: natural logarithm of BM_Trim, which is the trimmed book-to-
market ratio, where book-to-market ratios greater than the 99.5 percentile value or less than the 0.5 percentile value in a month are set 
equal to the 99.5 and 0.5 percentile values, respectively; MOM1: compounded holding period return of a stock over the most recent 3 
months (from month t-1 to month t-3); MOM2: compounded holding period return over the next recent 3 months (from month t-4 to 
month t-6); MOM3: compounded holding period return over the 3 months from month t-7 to month t-9; MOM4: compounded holding 
period return over the 3 months from month t-9 to month t-12. The average number of component stocks used in a month for 
NYSE/AMEX stocks is 1,845.1 (except that it is 1,683.1 for ILLIQ_2), while that for NASDAQ stocks is 2,667.5 (except that it is 
1,967.0 for ILLIQ_2).  

                        

Average Correlations: NYSE/AMEX (Lower Triangle) and NASDAQ (Upper Triangle) 

   ILLIQ_1 [ILLIQ_1]1/2 ILLIQ_2 [ILLIQ_2]1/2 SIZE BTM MOM1 MOM2 MOM3 MOM4 

ILLIQ_1  1 0.813 0.464 0.538 -0.182 0.072 -0.055 -0.049 -0.040 -0.036 

[ILLIQ_1]1/2  0.846 1 0.412 0.642 -0.501 0.174 -0.127 -0.114 -0.103 -0.099 

ILLIQ_2  0.639 0.533 1 0.860 -0.154 0.065 -0.066 -0.048 -0.046 -0.036 

[ILLIQ_2]1/2  0.726 0.794 0.853 1 -0.393 0.163 -0.134 -0.105 -0.103 -0.092 

SIZE  -0.302 -0.617 -0.184 -0.445 1 -0.247 0.176 0.173 0.172 0.171 

BTM  0.091 0.184 0.064 0.167 -0.290 1 0.089 0.081 0.045 -0.009 

MOM1  -0.088 -0.139 -0.074 -0.137 0.122 0.043 1 0.019 0.045 0.037 

MOM2  -0.079 -0.128 -0.059 -0.115 0.120 0.039 0.015 1 0.014 0.040 

MOM3  -0.072 -0.124 -0.056 -0.113 0.121 0.009 0.047 0.012 1 0.007 

MON4   -0.073 -0.124 -0.054 -0.112 0.122 -0.034 0.052 0.044 0.006 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table IV 
Average Values of Monthly Return, Size, and Illiquidity for the 25 Portfolios Formed on Illiquidity and Size 

This table reports the average values of monthly stock return (Panel A), firm size (Panel B), and illiquidity (Panel C) for the 25 portfolios formed on illiquidity and size. ILLIQ_1 is the illiquidity 
measure defined as in Table I and size is the market value (MV) of a firm (in $million). The component stocks are first split into 5 portfolios (with the equal number of stocks) after being sorted in an 
ascending order by ILLIQ_1 and then each of the 5 portfolios is again split into another 5 portfolios after being sorted by size, resulting in 25 portfolios each month. The average values of return, size, 
and illiquidity are computed each month for each of the 25 portfolios, and then the time-series averages of the 3 variables over the sample period are reported in each panel of the table. Panel A also 
contains t-statistics (italicized), in addition to the average returns. The row High-Low contains the return differential between the portfolios with the highest and lowest values of the illiquidity measure 
(with t-statistics for the null hypothesis that difference equals zero in the following row).  The sample periods are the past 372 months (31 years: 197201-200212) for NYSE/AMEX stocks and the 240 
months (20 years: 198301-200212) for NASDAQ stocks. The average number of component stocks in each portfolio in a month for NYSE/AMEX stocks is 73.4, while that for NASDAQ stocks is 
106.1. 

Panel A: Average Return 
  Size Group (NYSE/AMEX)  Size Group (NASDAQ) 
ILLIQ_1 Group  1 small 2 3 4 5 big  1 small 2 3 4 5 big 

1 low  0.0118 0.0116 0.0104 0.0096 0.0093  0.0110 0.0100 0.0089 0.0083 0.0081 
  3.94 4.29 4.07 3.95 3.91  2.85 2.27 2.28 2.19 2.36 
2  0.0120 0.0124 0.0118 0.0103 0.0103  0.0110 0.0101 0.0076 0.0080 0.0079 
  3.45 4.45 4.09 3.72 4.21  1.90 2.17 2.02 2.29 3.22 
3  0.0120 0.0125 0.0119 0.0110 0.0103  0.0131 0.0101 0.0078 0.0089 0.0088 
  3.35 3.72 3.31 4.03 3.80  2.28 2.10 1.61 2.16 2.61 
4  0.0136 0.0127 0.0124 0.0112 0.0104  0.0207 0.0107 0.0078 0.0091 0.0095 
  3.54 3.54 3.79 3.56 3.66  3.31 2.27 1.80 1.79 2.37 
5 high  0.0291 0.0127 0.0125 0.0114 0.0101  0.0640 0.0244 0.0141 0.0090 0.0089 
    5.27 2.80 2.55 2.40 2.47   8.70 4.58 3.03 2.02 1.27 
High-Low  0.0173 0.0011 0.0021 0.0018 0.0008  0.0530 0.0144 0.0052 0.0007 0.0008 
  3.58 1.97 1.66 0.92 0.61  8.25 2.70 1.88 0.92 1.35 

Panel B: Average Size ($million) 
  Size Group (NYSE/AMEX)  Size Group (NASDAQ) 
ILLIQ_1 Group  1 small 2 3 4 5 big  1 small 2 3 4 5 big 

1 low  1194.29 2179.59 3397.65 5898.20 23237.69  126.85 270.57 437.02 769.11 5160.62 
2  317.96 528.95 739.70 1034.03 2008.78  46.09 79.50 113.26 164.76 335.73 
3  104.28 172.21 240.05 338.44 656.28  18.69 32.40 46.13 66.94 150.88 
4  30.00 52.66 77.31 112.35 238.31  7.93 14.21 20.77 30.49 69.87 
5 high   4.31 9.46 15.65 24.84 61.47   2.36 4.80 7.56 11.97 29.73 

Panel C: Average ILLIQ_1 
  Size Group (NYSE/AMEX)  Size Group (NASDAQ) 
ILLIQ_1 Group  1 small 2 3 4 5 big  1 small 2 3 4 5 big 

1 low  0.008 0.007 0.005 0.003 0.001  0.006 0.008 0.006 0.004 0.002 
2  0.037 0.033 0.029 0.024 0.019  0.056 0.047 0.041 0.037 0.033 
3  0.145 0.126 0.114 0.102 0.091  0.245 0.216 0.196 0.181 0.166 
4  0.683 0.574 0.485 0.418 0.357  1.106 0.965 0.891 0.826 0.752 
5 high   31.766 8.288 4.703 3.175 2.436   173.772 32.932 15.874 20.877 7.853 



 

 
 
 
 
 

Table V 
Results of Monthly Cross-sectional Regressions: with ILLIQ_1 and [ILLIQ_1]1/2 for NYSE/AMEX and NASDAQ Stocks 

This table reports the monthly Fama-MacBeth (1973)-type cross-sectional regressions using ILLIQ_1 (in Panel A) and its square-root values (in Panel B) for NYSE/AMEX stocks over the 372 months 
(31 years: 197201-200212) and for NASDAQ stocks over the 240 months (20 years: 198301-200212). The dependent variables (EXSRET, FF3-adj EXSRET1, and FF3-adj EXSRET2) are all one-
month leading values (no contemporaneous regressors are used). The definitions of the variables are as follows: EXSRET: the monthly risk-unadjusted excess return, i.e., the monthly return less the risk-
free rate proxied by the one-month T-bill rate; FF3-adj EXSRET1: the risk-adjusted excess return using the Fama-French (FF) 3 factors, i.e., the constant term plus the residual from the time-series 
regression of the excess return on the FF 3 factors using the entire sample range of the data; FF3-adj EXSRET2: the risk-adjusted excess return using the Fama-French (FF) 3 factors with factor loadings 
being estimated from the 5-year rolling regressions, i.e., *

iR  computed each month with the current month data from the equation, ]ˆˆˆ[)( 321
* HMLSMBMKTRRR fii βββ ++−−= , after the factor 

loadings ( 321 ,,, βββα ) are first estimated for each month using the time-series data of the past 60 months in the monthly regression, εβββα ++++=− HMLSMBMKTRR fi 321
, where 

fi RR , , and 
mR  are the individual stock return, the risk-free rate, and the market index return, respectively, while MKT, SMB, and HML  are FF 3 factors; ILLIQ_1: the first illiquidity measure 

defined as 
)()1(

)(5.0

zstdN
RstdN

+
, where N is the number of informed traders, std(R) is the standard deviation of returns, and std(z) is the standard deviation of noise trades (the original input variables are 

proxied by the variables as shown in Table I); SIZE: natural logarithm of MV, which is defined as the month-end stock price times the number of shares outstanding (in $million); BTM: natural 
logarithm of BM_Trim, which is the trimmed book-to-market ratio, where book-to-market ratios greater than the 99.5 percentile value or less than the 0.5 percentile value in a month are set equal to the 
99.5 and 0.5 percentile values, respectively; MOM1: compounded holding period return of a stock over the most recent 3 months (from month t-1 to month t-3); MOM2: compounded holding period 
return over the next recent 3 months (from month t-4 to month t-6); MOM3: compounded holding period return over the 3 months from month t-7 to month t-9; MOM4: compounded holding period 
return over the 3 months from month t-9 to month t-12. The average number of component stocks used in the monthly regressions for NYSE/AMEX stocks is 1,845.1, while that for NASDAQ stocks is 
2,667.5. The values in the first row for each explanatory variable are the time-series averages of coefficients obtained from the month-by-month cross-sectional regressions, and the values italicized in 
the second row of each variable are t-statistics computed based on Fama-MacBeth (1973). The coefficients are all multiplied by 100. Avg R-sqr is the average of adjusted R-squared. Avg Obs is the 
monthly average number of companies used in the cross-sectional regressions. Coefficients significantly different from zero at the significance levels of 1% and 5% are indicated by ** and *, 
respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
(Table V continued: Panel A) 

                                      

Panel A: with ILLIQ_1 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 

Intercept  0.994 **  0.187   0.239   2.337 **  1.694 **  1.759 ** 
  2.65   1.19   1.40   4.75   4.58   4.50  
ILLIQ_1  0.044 **  0.039 **  0.041 **  0.035 **  0.033 **  0.033 ** 
  3.55   3.18   3.12   3.94   3.97   3.87  
SIZE  -0.096 *  -0.053 *  -0.053 *  -0.351 **  -0.325 **  -0.325 ** 
  -2.15   -2.19   -2.08   -4.25   -4.43   -4.17  
BTM  0.223 **  0.161 **  0.102 *  0.323 **  0.341 **  0.308 ** 
  3.17   3.40   2.27   2.87   4.34   3.37  
MOM1  0.863 **  0.938 **  0.907 **  0.324   0.431   0.333  
  2.71   3.63   2.94   0.93   1.66   0.87  
MOM2  1.177 **  1.144 **  1.043 **  0.677 *  0.495 *  0.492  
  4.31   5.12   3.91   2.35   2.18   1.61  
MOM3  1.435 **  1.373 **  1.112 **  0.613 *  0.473 *  0.294  
  5.47   6.04   4.10   2.54   2.20   0.95  
MOM4  1.006 **  0.961 **  0.720 **  0.394   0.343   0.209  
  4.76   4.97   2.77   1.83   1.90   0.75  
                   
Avg R-sqr  0.049   0.029   0.032   0.034   0.023   0.028  
Avg Obs   1845.1     1843.4     1797.7     2663.8     2658.9     2406.3   

 
 
 
 
 
 



 

 
 
 
 
 
(Table V continued: Panel B) 

                                      

Panel B: with Square Root of ILLIQ_1 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 

Intercept  0.635   -0.121   -0.054   1.817 **  1.189 **  1.219 ** 
  1.72   -0.91   -0.36   3.50   3.20   3.06  
[ILLIQ_1]1/2  0.315 **  0.274 **  0.274 **  0.326 **  0.310 **  0.325 ** 
  3.78   3.41   3.20   5.02   5.54   5.38  
SIZE  -0.051   -0.014   -0.017   -0.268 **  -0.245 **  -0.239 ** 
  -1.23   -0.76   -0.83   -3.21   -3.33   -3.04  
BTM  0.221 **  0.158 **  0.100 *  0.305 **  0.325 **  0.291 ** 
  3.16   3.36   2.22   2.73   4.14   3.18  
MOM1  0.906 **  0.975 **  0.943 **  0.376   0.476   0.381  
  2.86   3.78   3.07   1.08   1.83   1.00  
MOM2  1.225 **  1.190 **  1.085 **  0.705 *  0.524 *  0.528  
  4.51   5.35   4.07   2.45   2.30   1.72  
MOM3  1.474 **  1.411 **  1.151 **  0.630 **  0.487 *  0.310  
  5.65   6.25   4.25   2.61   2.26   1.01  
MOM4  1.034 **  0.983 **  0.739 **  0.411   0.353 *  0.222  
  4.91   5.09   2.85   1.92   1.96   0.80  
                   
Avg R-sqr  0.050   0.029   0.033   0.034   0.022   0.028  
Avg Obs   1845.1     1843.4     1797.7     2663.8     2658.9     2406.3   

 
 
 
 
 
 



 

 
 
 
 
 

Table VI 
Results of Monthly Cross-sectional Regressions: with ILLIQ_2 and [ILLIQ_2]1/2 for NYSE/AMEX and NASDAQ Stocks 

This table reports the monthly Fama-MacBeth (1973)-type cross-sectional regressions using ILLIQ_2 (in Panel A) and its square-root values (in Panel B) for NYSE/AMEX stocks over the 372 months 
(31 years: 197201-200212) and for NASDAQ stocks over the 240 months (20 years: 198301-200212). The dependent variables (EXSRET, FF3-adj EXSRET1, and FF3-adj EXSRET2) are all one-
month leading values (no contemporaneous regressors are used). The definitions of the variables are as follows: EXSRET: the monthly risk-unadjusted excess return, i.e., the monthly return less the risk-
free rate proxied by the one-month T-bill rate; FF3-adj EXSRET1: the risk-adjusted excess return using the Fama-French (FF) 3 factors, i.e., the constant term plus the residual from the time-series 
regression of the excess return on the FF 3 factors using the entire sample range of the data; FF3-adj EXSRET2: the risk-adjusted excess return using the Fama-French (FF) 3 factors with factor loadings 
being estimated from the 5-year rolling regressions, i.e., *

iR  computed each month with the current month data from the equation, ]ˆˆˆ[)( 321
* HMLSMBMKTRRR fii βββ ++−−= , after the factor 

loadings ( 321 ,,, βββα ) are first estimated for each month using the time-series data of the past 60 months in the monthly regression, εβββα ++++=− HMLSMBMKTRR fi 321
, where 

fi RR , , and 
mR  are the individual stock return, the risk-free rate, and the market index return, respectively, while MKT, SMB, and HML  are FF 3 factors; ILLIQ_2: the second illiquidity measure 

defined as 

zv
vvN

vvN
v

P
)(

2)1(
1 εδ

εδ

δ +
++

− , where P is the asset price, N is the number of informed traders, δv is the variance of payoff innovations, 
εv  is the variance of signal innovations, and 

zv  is the variance of noise trades (the original input variables are proxied by the variables as shown in Table I); SIZE: natural logarithm of MV, which is defined as the month-end stock price times the 
number of shares outstanding (in $million); BTM: natural logarithm of BM_Trim, which is the trimmed book-to-market ratio, where book-to-market ratios greater than the 99.5 percentile value or less 
than the 0.5 percentile value in a month are set equal to the 99.5 and 0.5 percentile values, respectively; MOM1: compounded holding period return of a stock over the most recent 3 months (from month 
t-1 to month t-3); MOM2: compounded holding period return over the next recent 3 months (from month t-4 to month t-6); MOM3: compounded holding period return over the 3 months from month t-7 
to month t-9; MOM4: compounded holding period return over the 3 months from month t-9 to month t-12. The average number of component stocks used in the monthly regressions for NYSE/AMEX 
stocks is 1,683.1, while that for NASDAQ stocks is 1,967.0. The values in the first row for each explanatory variable are the time-series averages of coefficients obtained from the month-by-month 
cross-sectional regressions, and the values italicized in the second row of each variable are t-statistics computed based on Fama-MacBeth (1973). The coefficients are all multiplied by 100. Avg R-sqr is 
the average of adjusted R-squared. Avg Obs is the monthly average number of companies used in the cross-sectional regressions. Coefficients significantly different from zero at the significance levels of 
1% and 5% are indicated by ** and *, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
(Table VI continued: Panel A) 

                                      

Panel A: with ILLIQ_2 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 

Intercept  1.120 **  0.295   0.356 *  1.937 **  1.257 **  1.318 ** 
  2.91   1.74   1.97   3.97   3.54   3.47  
ILLIQ_2  0.010 **  0.008 *  0.009 *  0.008   0.004   0.004  
  2.84   2.37   2.45   1.04   0.55   0.54  
SIZE  -0.112 *  -0.064 *  -0.068 *  -0.242 **  -0.220 **  -0.223 ** 
  -2.42   -2.44   -2.46   -3.09   -3.20   -2.98  
BTM  0.184 **  0.134 **  0.073   0.366 **  0.361 **  0.349 ** 
  2.59   2.74   1.58   2.98   4.15   3.60  
MOM1  0.806 *  0.847 **  0.874 **  0.812 *  0.876 **  0.817 * 
  2.51   3.26   2.87   2.08   2.91   2.05  
MOM2  1.068 **  1.054 **  1.004 **  0.960 **  0.795 **  0.707 * 
  3.90   4.70   3.82   3.05   2.99   2.14  
MOM3  1.362 **  1.301 **  1.071 **  0.699 **  0.612 **  0.323  
  5.15   5.66   3.91   2.73   2.58   1.04  
MOM4  0.954 **  0.930 **  0.652 *  0.568 *  0.575 **  0.440  
  4.33   4.57   2.43   2.20   2.59   1.47  
                   
Avg R-sqr  0.050   0.029   0.032   0.040   0.028   0.032  
Avg Obs   1683.1     1682.0     1667.6     1967.0     1961.6     1907.3   

 
 
 
 
 
 



 

 
 
 
 
 
(Table VI continued: Panel B) 

                                      

Panel B: with Square Root of ILLIQ_2 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 

Intercept  0.903 *  0.111   0.191   1.670 **  1.064 **  1.096 ** 
  2.41   0.76   1.21   3.46   3.11   3.01  
[ILLIQ_2]1/2  0.145 **  0.124 **  0.121 **  0.150 **  0.100 *  0.117 * 
  3.74   3.30   3.06   2.61   1.97   2.10  
SIZE  -0.084   -0.041   -0.047 *  -0.200 **  -0.190 **  -0.189 ** 
  -1.93   -1.82   -1.98   -2.65   -2.86   -2.62  
BTM  0.176 *  0.125 **  0.066   0.352 **  0.351 **  0.338 ** 
  2.49   2.60   1.44   2.88   4.01   3.46  
MOM1  0.866 **  0.899 **  0.921 **  0.863 *  0.914 **  0.857 * 
  2.72   3.47   3.03   2.21   3.05   2.17  
MOM2  1.136 **  1.117 **  1.057 **  0.998 **  0.831 **  0.743 * 
  4.18   5.01   4.03   3.14   3.07   2.22  
MOM3  1.429 **  1.365 **  1.134 **  0.709 **  0.615 **  0.328  
  5.47   6.00   4.16   2.76   2.58   1.05  
MOM4  0.976 **  0.947 **  0.664 *  0.582 *  0.584 **  0.453  
  4.48   4.71   2.49   2.26   2.65   1.52  
                   
Avg R-sqr  0.050   0.030   0.033   0.040   0.027   0.032  
Avg Obs   1683.1     1682.0     1667.6     1967.0     1961.6     1907.3   

 
 
 
 
 
 



 

 
 
 
 
 

Table VII 
Results of Monthly Cross-sectional Regressions Using Quote Mid-point Returns: with [ILLIQ_1]1/2 and [ILLIQ_2]1/2 for NYSE/AMEX and NASDAQ Stocks 

This table reports the monthly Fama-MacBeth (1973)-type cross-sectional regressions using quote mid-point returns with [ILLIQ_1]1/2 (in Panel A) and [ILLIQ_2]1/2 (in Panel B) for 
NYSE/AMEX stocks over the 180 months (15 years: 198801-200212) and for NASDAQ stocks over the 240 months (20 years: 198301-200212). Monthly quote mid-point returns for 
NYSE/AMEX stocks are calculated based on the first (open) quote mid-point and the last (close) quote mid-point (open-to-close mid-points) within each month from 1988 to 2002, while those 
for NASDAQ stocks are calculated based on the mid-points of the monthly closing quotes (close-to-close mid-points) from 1983 to 2002. The dependent variables (EXSRET, FF3-adj 
EXSRET1, and FF3-adj EXSRET2) are all one-month leading values (no contemporaneous regressors are used). The definitions of the variables are as follows: EXSRET: the monthly risk-
unadjusted excess return, i.e., the monthly return less the risk-free rate proxied by the one-month T-bill rate; FF3-adj EXSRET1: the risk-adjusted excess return using the Fama-French (FF) 3 
factors, i.e., the constant term plus the residual from the time-series regression of the excess return on the FF 3 factors using the entire sample range of the data; FF3-adj EXSRET2: the risk-
adjusted excess return using the Fama-French (FF) 3 factors with factor loadings being estimated from the 5-year rolling regressions, i.e.,  *

iR  computed each month with the current month data 

from the equation, ]ˆˆˆ[)( 321
* HMLSMBMKTRRR fii βββ ++−−= , after the factor loadings ( 321 ,,, βββα ) are first estimated for each month using the time-series data of the past 60 

months in the monthly regression, εβββα ++++=− HMLSMBMKTRR fi 321
, where fi RR , , and 

mR  are the individual stock return, the risk-free rate, and the market index return, 

respectively, while MKT, SMB, and HML  are FF 3 factors; ILLIQ_1 and ILLIQ_2: the two illiquidity measures defined in Table I; SIZE: natural logarithm of MV, which is defined as the 
month-end stock price times the number of shares outstanding (in $million); BTM: natural logarithm of BM_Trim, which is the trimmed book-to-market ratio, where book-to-market ratios 
greater than the 99.5 percentile value or less than the 0.5 percentile value in a month are set equal to the 99.5 and 0.5 percentile values, respectively; MOM1: compounded holding period mid-
point return of a stock over the most recent 3 months (from month t-1 to month t-3); MOM2: compounded holding period mid-point return over the next recent 3 months (from month t-4 to 
month t-6); MOM3: compounded holding period mid-point return over the 3 months from month t-7 to month t-9; MOM4: compounded holding period mid-point return over the 3 months from 
month t-9 to month t-12. The average numbers of component stocks used in the monthly regressions for NYSE/AMEX stocks are 1680.7-1748.8, while those for NASDAQ stocks are 2656.9-
2693.5 [note that the model specification for FF3-adj EXSRET2 in the table loses the first 2 year observations in the sample because of rolling estimation for the FF3 factor loadings (using the 
past 60 months or at least 24 months)]. The values in the first row for each explanatory variable are the time-series averages of coefficients obtained from the month-by-month cross-sectional 
regressions, and the values italicized in the second row of each variable are t-statistics computed based on Fama-MacBeth (1973). The coefficients are all multiplied by 100. Avg R-sqr is the 
average of adjusted R-squared. Avg Obs is the monthly average number of companies used in the cross-sectional regressions. Coefficients significantly different from zero at the significance 
levels of 1% and 5% are indicated by ** and *, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
(Table VII continued: Panel A) 

                                      

Panel A: with Square Root of ILLIQ_1 for Quote Mid-point Returns 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 

Intercept  -8.096   -12.668   -24.803   2.603 **  2.177 **  3.073 ** 
  -1.15   -1.44   -1.72   4.39   4.42   4.81  
[ILLIQ_1]1/2  0.975 **  1.421 *  2.213 *  0.510 **  0.488 **  0.534 ** 
  4.55   1.96   2.42   4.16   3.98   3.41  
SIZE  2.314   3.278   4.464   -0.502 **  -0.514 **  -0.682 ** 
  1.13   1.58   1.59   -4.81   -5.29   -5.39  
BTM  5.633   6.553   6.345   -0.038   -0.036   -0.265  
  1.06   1.25   0.94   -0.26   -0.30   -1.55  
MOM1  -1.260   16.416   14.314   -1.370 **  -1.128 **  -1.486 * 
  -0.26   1.40   0.87   -3.61   -3.61   -2.51  
MOM2  -4.457   -8.637   -10.147   -0.833 *  -0.708   -0.654  
  -0.67   -1.12   -0.91   -2.10   -1.95   -1.14  
MOM3  -0.236   -22.224   -54.627   -0.637   -0.962 *  -1.811 ** 
  -0.16   -1.51   -1.52   -1.69   -2.54   -2.84  
MOM4  10.753   4.748   12.236   -0.304   -0.499   -0.707  
  1.03   0.34   0.50   -1.03   -1.81   -1.47  
                   
Avg R-sqr  0.034   0.024   0.053   0.023   0.015   0.019  
Avg Obs   1680.7     1686.7     1748.8     2693.5     2690.0     2656.9   

 
 
 
 
 
 



 

 
 
 
 
 
(Table VII continued: Panel B) 

                                      

Panel B: with Square Root of ILLIQ_2 for Quote Mid-point Returns 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 

Intercept  -7.919   -11.627   -23.765   2.163 **  1.729 **  2.314 ** 
  -1.06   -1.33   -1.71   4.28   4.34   4.44  
[ILLIQ_2]1/2  0.346 **  0.332 *  0.507 *  0.338 **  0.291 **  0.373 ** 
  3.64   2.37   2.36   5.30   4.87   4.87  
SIZE  2.371   3.011   4.439   -0.378 **  -0.396 **  -0.488 ** 
  1.08   1.38   1.53   -4.37   -4.96   -4.67  
BTM  6.043   6.423   6.828   0.164   0.130   0.041  
  1.05   1.14   0.94   1.17   1.14   0.26  
MOM1  -2.559   5.015   12.695   -0.803   -0.671   -0.839  
  -0.43   0.57   0.73   -1.85   -1.80   -1.42  
MOM2  -4.890   2.045   -11.869   -0.121   -0.123   0.062  
  -0.70   0.18   -1.06   -0.33   -0.35   0.12  
MOM3  -0.032   -24.588   -56.674   0.071   -0.301   -0.610  
  -0.02   -1.60   -1.52   0.18   -0.76   -1.02  
MOM4  11.636   5.132   12.847   0.082   0.042   -0.115  
  1.02   0.34   0.50   0.25   0.13   -0.23  
                   
Avg R-sqr  0.034   0.037   0.055   0.027   0.017   0.021  
Avg Obs   1547.7     1553.1     1640.8     2064.6     2062.6     2219.8   

 
 
 
 
 
 



 

 
 
 
 
 

Table VIII 
Results of Quarterly Cross-sectional Regressions: with [ILLIQ_1]1/2 and [ILLIQ_2]1/2 for NYSE/AMEX and NASDAQ Stocks 

This table reports the quarterly Fama-MacBeth (1973)-type cross-sectional regressions with [ILLIQ_1]1/2 (in Panel A) and [ILLIQ_2]1/2 (in Panel B) for NYSE/AMEX stocks over the 124 
quarters (31 years: 197201-200204) and for NASDAQ stocks over the 80 quarters (20 years: 198301-200204). The dependent variables (EXSRET, FF3-adj EXSRET1, and FF3-adj EXSRET2) 
are all one-quarter leading values (no contemporaneous regressors are used). The definitions of the variables are as follows: EXSRET: the quarterly return (compounded over 3 months in each 
quarter) using the monthly risk-unadjusted excess return defined in Table V; FF3-adj EXSRET1: the quarterly return (compounded over 3 months in each quarter) using the monthly risk-
adjusted excess return (by the first method) defined in Table V; FF3-adj EXSRET2: the quarterly return (compounded over 3 months in each quarter) using the monthly risk-adjusted excess 
return (by the second method) defined in Table V; ILLIQ_1 and ILLIQ_2: the averages (over 3 months in each quarter) of the two illiquidity measures defined in Table I; SIZE: the average (over 
3 months in each quarter) of the natural logarithm of MV, which is defined as the month-end stock price times the number of shares outstanding (in $million); BTM: the average (over 3 months 
in each quarter) of the natural logarithm of BM_Trim, which is the trimmed book-to-market ratio, where book-to-market ratios greater than the 99.5 percentile value or less than the 0.5 
percentile value in a month are set equal to the 99.5 and 0.5 percentile values, respectively; MOM1: compounded holding period return of a stock over the most recent 3 months; MOM2: 
compounded holding period return over the next recent 3 months; MOM3: compounded holding period return over the 3 months from month t-7 to month t-9; MOM4: compounded holding 
period return over the 3 months from month t-9 to month t-12. The average numbers of component stocks used in the quarterly regressions for NYSE/AMEX stocks are 1724.0-1758.8, while 
those for NASDAQ stocks are 2454.5-2612.4. The values in the first row for each explanatory variable are the time-series averages of coefficients obtained from the quarter-by-quarter cross-
sectional regressions, and the values italicized in the second row of each variable are t-statistics computed based on Fama-MacBeth (1973). The coefficients are all multiplied by 100. Avg R-sqr 
is the average of adjusted R-squared. Avg Obs is the average number of companies used in the quarterly cross-sectional regressions. Coefficients significantly different from zero at the 
significance levels of 1% and 5% are indicated by ** and *, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
(Table VIII continued: Panel A) 

                                      

Panel A: Quarterly Cross-sectional Regressions with Square Root of ILLIQ_1 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 

Intercept  -1.076   -2.355 **  -2.653 **  2.801   1.431   1.256  
  -0.62   -3.19   -3.47   1.40   1.05   0.89  
[ILLIQ_1]1/2  2.135 **  2.043 **  2.037 **  1.183 **  1.155 **  1.242 ** 
  4.09   4.11   3.92   4.48   5.16   5.33  
SIZE  0.358 *  0.328 **  0.350 **  -0.262   -0.277   -0.220  
  2.09   3.39   3.61   -0.87   -1.03   -0.77  
BTM  0.673   0.662 **  0.572 *  0.988 *  1.031 **  0.988 ** 
  1.91   2.65   2.18   2.16   3.17   2.81  
MOM1  -1.611   -1.850   -2.558   -2.601 **  -2.723 **  -3.717 ** 
  -1.26   -1.68   -1.92   -2.57   -3.07   -3.14  
MOM2  2.936 *  3.276 **  4.390 **  1.411   1.893 **  2.628 ** 
  2.08   2.91   3.35   1.94   2.91   2.63  
MOM3  3.915 **  3.020 **  1.794   1.686 *  1.013   0.089  
  3.23   3.30   1.45   2.43   1.80   0.09  
MOM4  2.501 **  2.447 **  1.759   1.175   0.870   0.212  
  2.76   3.33   1.65   1.61   1.69   0.29  
                   
Avg R-sqr  0.063   0.041   0.049   0.046   0.036   0.045  
Avg Obs   1758.8     1758.5     1724.0     2612.4     2611.1     2454.5   

 
 
 
 
 
 



 

 
 
 
 
 
(Table VIII continued: Panel B) 

                                      

Panel B: Quarterly Cross-sectional Regressions with Square Root of ILLIQ_2 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 

Intercept  0.525   -0.802   -1.025   2.959   1.491   1.470  
  0.30   -0.96   -1.24   1.55   1.14   1.10  
[ILLIQ_2]1/2  0.777 **  0.717 **  0.679 **  0.671 **  0.645 **  0.720 ** 
  3.12   3.02   2.71   3.91   4.03   4.03  
SIZE  0.144   0.123   0.136   -0.194   -0.207   -0.176  
  0.75   1.01   1.19   -0.67   -0.81   -0.67  
BTM  0.537   0.548 *  0.461   1.052 *  1.084 **  1.088 ** 
  1.49   2.15   1.72   2.27   3.28   3.04  
MOM1  -1.227   -1.603   -2.328   -1.623   -1.794   -2.785 * 
  -0.99   -1.50   -1.79   -1.54   -1.94   -2.34  
MOM2  2.959 *  3.201 **  4.308 **  2.634 **  3.078 **  3.591 ** 
  2.11   2.83   3.23   3.24   4.35   3.60  
MOM3  3.759 **  2.808 **  1.589   2.213 **  1.412 *  0.544  
  2.97   3.00   1.27   2.98   2.27   0.56  
MOM4  2.558 **  2.523 **  1.809   1.455   1.356 *  0.499  
  2.76   3.45   1.75   1.87   2.43   0.66  
                   
Avg R-sqr  0.064   0.042   0.049   0.047   0.036   0.043  
Avg Obs   1630.7     1630.6     1621.5     2021.1     2020.6     1992.8   



 

 
Table IX 

Relations of the Theory-based Illiquidity Measures to Alternative Measures 
In Panel A, the lower triangle shows the monthly average correlations between the key (il)liquidity measures for NYSE/AMEX stocks 
over the past 372 months (31 years: 197201-200212), and the upper triangle shows those for NASDAQ stocks over the 240 months 
(20 years: 198301-200212). The cross-sectional correlation coefficients are first calculated each month and then the time-series 
averages of those values over the sample periods are reported here. The definitions of the measures are as follows: ILLIQ_1: the first 
illiquidity measure defined as in Table I; ILLIQ_2: the second illiquidity measure defined as in Table I; Amihud: the illiquidity 
measure of Amihud (2002) estimated each month as the average of |r|/DVOL, where r is the daily stock return and DVOL is the daily 
dollar volume in $1000; Roll_Gibbs: the market risk-adjusted effective bid-ask spread of Roll (1984) estimated using the Gibbs 
sampler, which is of annual frequency obtained from the web site of Joel Hasbrouck; PS: the illiquidity measure (gamma) of Pastor 
and Stambaugh (2003) estimated each month using the CRSP daily file from the regression equation, 
                                                                  ,)( ,1,,,,,,,,1, tdjtdj

e
tdjtdj

e
tdj DVOLrsignbrar ++ +++= ςγ  

where tdjr ,,  is the raw return and e
tdjr ,, is the excess return (over the CRSP value-weighted market return) of stock j at day d within 

month t (the number of days should be equal to or greater than 15 within each month); TURN: the average of daily share turnover 
within each month for each stock. Panel B reports the average correlations between the square-root values of the six corresponding 
(il)liquidity measures. The average number of component stocks used in a year for NYSE/AMEX stocks is 2,236.4, while that for 
NASDAQ stocks is 2,799.4.  

                

Panel A: Average Correlations between (Il)liquidity Measures: NYSE/AMEX (Lower Triangle) and NASDAQ (Upper Triangle) 

   ILLIQ_1 ILLIQ_2 Amihud Roll_Gibbs PS TURN 

ILLIQ_1  1 0.467 0.249 0.388 -0.120 -0.057 

ILLIQ_2  0.602 1 0.248 0.292 -0.032 -0.042 

Amihud  0.657 0.466 1 0.485 -0.156 -0.072 

Roll_Gibbs  0.503 0.322 0.564 1 -0.101 -0.235 

PS  -0.045 -0.022 -0.058 -0.024 1 0.012 

TURN   -0.090 -0.048 -0.097 -0.109 0.005 1 

Panel B: Average Correlations between Square-Root Values of Measures: NYSE/AMEX (Lower Triangle) and NASDAQ (Upper Triangle) 

   [ILLIQ_1]1/2 [ILLIQ_2]1/2 [Amihud]1/2 [Roll_Gibbs]1/2 Sign(PS)[|PS|]1/2 [TURN]1/2 

[ILLIQ_1]1/2  1 0.638 0.559 0.657 -0.114 -0.280 

[ILLIQ_2]1/2  0.776 1 0.462 0.503 -0.063 -0.187 

[Amihud]1/2  0.867 0.701 1 0.704 -0.120 -0.307 

[Roll_Gibbs]1/2  0.698 0.538 0.720 1 -0.070 -0.361 

Sign(PS)[|PS|]1/2  -0.022 -0.013 -0.022 -0.008 1 0.037 

[TURN]1/2   -0.280 -0.182 -0.297 -0.163 0.008 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 

Table X 
A Horse Race with Each of the Four Alternative (Il)liquidity Measures 

This table runs a horse race in the monthly Fama-MacBeth (1973)-type cross-sectional regressions for comparison purposes using 4 alternative (il)liquidity measures for NYSE/AMEX stocks over the 
past 372 months (31 years: 197201-200212) and for NASDAQ stocks over the past 240 months (20 years: 198301-200212). Each of Panels A-D reports the regression results comparable to those in 
Tables V-VI using each of the square-root values of the 4 alternative measures. The dependent variables (EXSRET, FF3-adj EXSRET1, and FF3-adj EXSRET2) are all one-month leading values (no 
contemporaneous regressors are used). The definitions of the variables are as follows: EXSRET: the monthly risk-unadjusted excess return, i.e., the monthly return less the risk-free rate proxied by the 
one-month T-bill rate; FF3-adj EXSRET1: the risk-adjusted excess return using the Fama-French (FF) 3 factors, i.e., the constant term plus the residual from the time-series regression of the excess 
return on the FF 3 factors using the entire sample range of the data; FF3-adj EXSRET2: the risk-adjusted excess return using the Fama-French (FF) 3 factors with factor loadings being estimated from 
the 5-year rolling regressions, i.e., *

iR  computed each month with the current month data from the equation, ]ˆˆˆ[)( 321
* HMLSMBMKTRRR fii βββ ++−−= , after the factor loadings 

( 321 ,,, βββα ) are first estimated for each month using the time-series data of the past 60 months in the monthly regression, εβββα ++++=− HMLSMBMKTRR fi 321
, where fi RR , , and 

mR  are the individual stock return, the risk-free rate, and the market index return, respectively, while MKT, SMB, and HML  are FF 3 factors; Amihud: the illiquidity measure of Amihud (2002) 

estimated each month as the average of |r|/DVOL, where r is the daily stock return and DVOL is the daily dollar volume in $1000; Roll_Gibbs: the market risk-adjusted effective bid-ask spread of Roll 
(1984) estimated using the Gibbs sampler, which is of annual frequency obtained from the web site of Joel Hasbrouck; PS: the illiquidity measure (gamma) of Pastor and Stambaugh (2003) estimated 
each month using the CRSP daily file from the regression equation, 
                                                                                                                          ,)( ,1,,,,,,,,1, tdjtdj

e
tdjtdj

e
tdj DVOLrsignbrar ++ +++= ςγ  

where tdjr ,,  is the raw return and e
tdjr ,, is the excess return (over the CRSP value-weighted market return) of stock j at day d within month t (the number of days should be equal to or greater than 15 

within each month); TURN: the average of daily share turnover within each month for each stock; SIZE: natural logarithm of MV, which is defined as the month-end stock price times the number of 
shares outstanding (in $million); BTM: natural logarithm of BM_Trim, which is the trimmed book-to-market ratio, where book-to-market ratios greater than the 99.5 percentile value or less than the 0.5 
percentile value in a month are set equal to the 99.5 and 0.5 percentile values, respectively; MOM1: compounded holding period return of a stock over the most recent 3 months (from month t-1 to 
month t-3); MOM2: compounded holding period return over the next recent 3 months (from month t-4 to month t-6); MOM3: compounded holding period return over the 3 months from month t-7 to 
month t-9; MOM4: compounded holding period return over the 3 months from month t-9 to month t-12. For monthly regressions, we keep the annual values of Roll_Gibbs constant over the 12 months 
within each year. The average number of component stocks used in the regressions for NYSE/AMEX stocks is 1,845.1, while that for NASDAQ stocks is 2,667.5. The values in the first row for each 
explanatory variable are the time-series averages of coefficients obtained from the month-by-month cross-sectional regressions, and the values italicized in the second row of each variable are t-statistics 
computed based on Fama-MacBeth (1973). The coefficients are all multiplied by 100. Avg R-sqr is the average of adjusted R-squared. Avg Obs is the monthly average number of companies used in the 
cross-sectional regressions. Coefficients significantly different from zero at the significance levels of 1% and 5% are indicated by ** and *, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
(Table X continued: Panel A) 

                                      

Panel A: with Square Root of Amihud 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 

Intercept  0.655   -0.099   -0.044   1.810 **  1.209 **  1.184 ** 
  1.77   -0.74   -0.30   3.52   3.30   3.09  
[Amihud]1/2  6.049 **  5.304 **  5.549 **  5.013 **  4.534 **  5.114 ** 
  4.13   3.76   3.69   4.34   4.47   4.89  
SIZE  -0.053   -0.017   -0.019   -0.271 **  -0.251 **  -0.237 ** 
  -1.28   -0.90   -0.90   -3.27   -3.48   -3.14  
BTM  0.220 **  0.158 **  0.098 *  0.295 **  0.317 **  0.281 ** 
  3.14   3.35   2.19   2.63   4.03   3.06  
MOM1  0.912 **  0.980 **  0.950 **  0.426   0.521 *  0.439  
  2.87   3.79   3.08   1.22   2.00   1.15  
MOM2  1.216 **  1.180 **  1.071 **  0.726 *  0.541 *  0.551  
  4.47   5.29   4.01   2.53   2.39   1.81  
MOM3  1.463 **  1.405 **  1.140 **  0.671 **  0.528 *  0.355  
  5.57   6.21   4.19   2.78   2.46   1.16  
MOM4  1.063 **  1.009 **  0.767 **  0.407   0.346   0.211  
  5.01   5.22   2.97   1.90   1.90   0.76  
                   
Avg R-sqr  0.049   0.029   0.032   0.035   0.023   0.029  
Avg Obs   1844.8     1843.1     1797.4     2664.7     2659.9     2407.2   

 
 
 
 
 
 



 

 
 
 
 
 
(Table X continued: Panel B) 

                                      

Panel B: with Square Root of Roll_Gibbs 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 

Intercept  3.392 **  2.802 **  3.000 **  12.099 **  11.166 **  11.228 ** 
  10.07   12.58   12.59   15.61   18.84   18.10  
[Roll_Gibbs]1/2  -16.306 **  -17.919 **  -18.728 **  -41.655 **  -40.456 **  -40.480 ** 
  -7.46   -9.03   -8.92   -16.41   -17.84   -17.32  
SIZE  -0.323 **  -0.297 **  -0.313 **  -1.451 **  -1.395 **  -1.389 ** 
  -8.78   -14.65   -14.25   -15.23   -15.97   -14.94  
BTM  0.219 **  0.158 **  0.100 *  0.307 **  0.312 **  0.274 ** 
  3.18   3.42   2.25   2.69   3.94   2.97  
MOM1  0.125   0.189   0.110   -0.029   0.066   -0.117  
  0.40   0.74   0.36   -0.08   0.24   -0.30  
MOM2  0.412   0.379   0.230   -0.086   -0.206   -0.285  
  1.53   1.72   0.86   -0.29   -0.83   -0.87  
MOM3  0.633 *  0.555 *  0.242   0.126   0.016   -0.270  
  2.48   2.52   0.91   0.49   0.07   -0.84  
MOM4  0.410 *  0.378 *  0.113   0.087   0.010   -0.093  
  1.97   2.05   0.45   0.35   0.05   -0.31  
                   
Avg R-sqr  0.053   0.032   0.036   0.047   0.033   0.037  
Avg Obs   1745.0     1744.0     1700.2     2190.4     2186.0     1981.3   

 
 
 
 
 
 



 

 
 
 
 
 
(Table X continued: Panel C) 

                                      

Panel C: with Sign(PS) x (Square Root of |PS|) 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 

Intercept  1.184 **  0.353 *  0.415 *  2.542 **  1.889 **  1.957 ** 
  3.05   1.98   2.16   5.21   5.11   5.02  
Sign(PS)[|PS|]1/2  0.037   0.024   -0.008   0.052   0.042   0.045  
  0.55   0.37   -0.13   0.92   0.78   0.78  
SIZE  -0.125 **  -0.078 **  -0.080 **  -0.389 **  -0.361 **  -0.362 ** 
  -2.62   -2.80   -2.70   -4.71   -4.93   -4.65  
BTM  0.218 **  0.156 **  0.097 *  0.336 **  0.353 **  0.319 ** 
  3.10   3.30   2.15   2.98   4.51   3.49  
MOM1  0.798 *  0.881 **  0.856 **  0.278   0.388   0.291  
  2.49   3.40   2.77   0.79   1.49   0.76  
MOM2  1.137 **  1.112 **  1.000 **  0.646 *  0.462 *  0.460  
  4.12   4.93   3.71   2.25   2.04   1.50  
MOM3  1.364 **  1.307 **  1.045 **  0.592 *  0.456 *  0.274  
  5.13   5.67   3.81   2.45   2.12   0.89  
MOM4  1.037 **  0.989 **  0.745 **  0.369   0.320   0.180  
  4.82   5.05   2.86   1.72   1.78   0.65  
                   
Avg R-sqr  0.046   0.026   0.029   0.033   0.022   0.028  
Avg Obs   1845.0     1843.2     1797.5     2667.5     2662.7     2409.7   

 
 
 
 
 
 



 

 
 
 
 
 
(Table X continued: Panel D) 

                                      

Panel D: with Square Root of TURN 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 

Intercept  1.255 **  0.486 *  0.568 **  2.456 **  1.879 **  2.004 ** 
  3.43   2.50   2.75   5.57   5.26   5.36  
[TURN]1/2  -0.317   -2.897   -3.213   4.972   2.803   0.937  
  -0.11   -1.29   -1.36   1.39   1.23   0.38  
SIZE  -0.135 **  -0.079 **  -0.082 **  -0.430 **  -0.392 **  -0.384 ** 
  -2.75   -2.83   -2.75   -5.12   -5.22   -4.72  
BTM  0.221 **  0.151 **  0.091 *  0.370 **  0.366 **  0.313 ** 
  3.25   3.26   2.05   3.95   5.10   3.63  
MOM1  0.974 **  1.029 **  1.010 **  0.387   0.462   0.380  
  3.22   4.07   3.31   1.25   1.81   1.01  
MOM2  1.221 **  1.193 **  1.087 **  0.659 *  0.494 *  0.477  
  4.56   5.34   4.05   2.44   2.21   1.58  
MOM3  1.332 **  1.320 **  1.069 **  0.502 *  0.413 *  0.233  
  5.12   5.71   3.86   2.20   1.95   0.76  
MOM4  1.058 **  0.988 **  0.756 **  0.376   0.316   0.200  
  5.12   5.11   2.93   1.91   1.77   0.72  
                   
Avg R-sqr  0.050   0.027   0.030   0.038   0.023   0.029  
Avg Obs   1845.0     1843.2     1797.5     2667.5     2662.7     2409.7   

 
 
 
 
 
 



 

 
 
 
 
 

Table XI 
A Horse Race with All the (Il)liquidity Measures 

This table runs a horse race in the monthly Fama-MacBeth (1973)-type cross-sectional regressions using one of our illiquidity measures together with the 4 alternative (il)liquidity measures for 
NYSE/AMEX stocks over the past 372 months (31 years: 197201-200212) and for NASDAQ stocks over the past 240 months (20 years: 198301-200212). Panel A contains the results for ILLIQ_1 with 
the 4 alternative measures, while Panel B does the same for ILLIQ_2. The dependent variables (EXSRET, FF3-adj EXSRET1, and FF3-adj EXSRET2) are all one-month leading values (no 
contemporaneous regressors are used). The definitions of the variables are as follows: EXSRET: the monthly risk-unadjusted excess return, i.e., the monthly return less the risk-free rate proxied by the 
one-month T-bill rate; FF3-adj EXSRET1: the risk-adjusted excess return using the Fama-French (FF) 3 factors, i.e., the constant term plus the residual from the time-series regression of the excess 
return on the FF 3 factors using the entire sample range of the data; FF3-adj EXSRET2: the risk-adjusted excess return using the Fama-French (FF) 3 factors with factor loadings being estimated from 
the 5-year rolling regressions, i.e., *

iR  computed each month with the current month data from the equation, ]ˆˆˆ[)( 321
* HMLSMBMKTRRR fii βββ ++−−= , after the factor loadings 

( 321 ,,, βββα ) are first estimated for each month using the time-series data of the past 60 months in the monthly regression, εβββα ++++=− HMLSMBMKTRR fi 321
, where fi RR , , and 

mR  are the individual stock return, the risk-free rate, and the market index return, respectively, while MKT, SMB, and HML  are FF 3 factors; ILLIQ_1: the first illiquidity measure defined as 

)()1(
)(5.0

zstdN
RstdN

+
, where N is the number of informed traders, std(R) is the standard deviation of returns, and std(z) is the standard deviation of noise trades (the original input variables are proxied by the 

variables as shown in Table I); ILLIQ_2: the second illiquidity measure defined as 

zv
vvN

vvN
v

P
)(

2)1(
1 εδ

εδ

δ +
++

− , where P is the asset price, N is the number of informed traders, δv is the 

variance of payoff innovations, 
εv  is the variance of signal innovations, and zv  is the variance of noise trades (the original input variables are proxied by the variables as shown in Table I); Amihud: the 

illiquidity measure of Amihud (2002) estimated each month as the average of |r|/DVOL, where r is the daily stock return and DVOL is the daily dollar volume in $1000; Roll_Gibbs: the market risk-
adjusted effective bid-ask spread of Roll (1984) estimated using the Gibbs sampler, which is of annual frequency obtained from the web site of Joel Hasbrouck; PS: the illiquidity measure (gamma) of 
Pastor and Stambaugh (2003) estimated each month using the CRSP daily file from the regression equation, ,)( ,1,,,,,,,,1, tdjtdj

e
tdjtdj

e
tdj DVOLrsignbrar ++ +++= ςγ where tdjr ,,  is the raw return 

and e
tdjr ,, is the excess return (over the CRSP value-weighted market return) of stock j at day d within month t (the number of days should be equal to or greater than 15 within each month); TURN: the 

average of daily share turnover within each month for each stock; SIZE: natural logarithm of MV, which is defined as the month-end stock price times the number of shares outstanding (in $million); 
BTM: natural logarithm of BM_Trim, which is the trimmed book-to-market ratio, where book-to-market ratios greater than the 99.5 percentile value or less than the 0.5 percentile value in a month are 
set equal to the 99.5 and 0.5 percentile values, respectively; MOM1: compounded holding period return of a stock over the most recent 3 months (from month t-1 to month t-3); MOM2: compounded 
holding period return over the next recent 3 months (from month t-4 to month t-6); MOM3: compounded holding period return over the 3 months from month t-7 to month t-9; MOM4: compounded 
holding period return over the 3 months from month t-9 to month t-12. For monthly regressions, we keep the annual values of Roll_Gibbs constant over the 12 months within each year. The average 
number of component stocks used in the regressions for NYSE/AMEX stocks is 1,845.1, while that for NASDAQ stocks is 2,667.5. The values in the first row for each explanatory variable are the time-
series averages of coefficients obtained from the month-by-month cross-sectional regressions, and the values italicized in the second row of each variable are t-statistics computed based on Fama-
MacBeth (1973). The coefficients are all multiplied by 100. Avg R-sqr is the average of adjusted R-squared. Avg Obs is the monthly average number of companies used in the cross-sectional regressions. 
Coefficients significantly different from zero at the significance levels of 1%, 5%, and 10% are indicated by ***, **, and *, respectively.   
 
 
 
 
 
 



 

 
 
(Table XI continued: Panel A) 

                                      

Panel A: with Square Root of ILLIQ_1 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 
Intercept  3.168 ***  2.676 ***  2.888 ***  14.580 ***  13.811 ***  14.097 *** 
  9.81   11.58   11.73   19.10   20.60   20.09  
[ILLIQ_1]1/2  0.550 ***  0.529 ***  0.519 ***  1.466 ***  1.347 ***  1.522 *** 
  4.89   4.99   4.44   7.43   6.98   5.76  
[Amihud]1/2  11.892 ***  11.520 ***  11.989 ***  10.515 ***  9.476 **  9.933 * 
  6.80   6.88   6.51   2.76   2.50   1.86  
[Roll_Gibbs]1/2  -30.059 ***  -31.452 ***  -32.519 ***  -71.463 ***  -69.394 ***  -71.368 *** 
  -14.32   -16.54   -16.14   -22.75   -22.82   -22.77  
Sign(PS)[|PS|]1/2  0.047   0.035   -0.003   0.176 **  0.164 *  0.095  
  0.68   0.53   -0.05   1.96   1.87   0.87  
[TURN]1/2  4.933 *  1.922   1.682   -6.666 *  -8.761 ***  -10.338 *** 
  1.68   0.83   0.70   -1.83   -3.44   -3.66  
SIZE  -0.217 ***  -0.188 ***  -0.200 ***  -1.431 ***  -1.390 ***  -1.386 *** 
  -5.75   -9.73   -9.51   -14.89   -15.65   -14.45  
BTM  0.210 ***  0.141 ***  0.083 *  0.104   0.097   0.035  
  3.21   3.16   1.92   1.09   1.34   0.40  
MOM1  0.454   0.487 *  0.421   0.519   0.556 **  0.446  
  1.52   1.93   1.39   1.61   2.06   1.15  
MOM2  0.560 **  0.523 **  0.384   -0.016   -0.146   -0.196  
  2.17   2.41   1.45   -0.06   -0.61   -0.62  
MOM3  0.632 ***  0.591 ***  0.294   -0.052   -0.104   -0.373  
  2.59   2.72   1.12   -0.22   -0.47   -1.18  
MOM4  0.438 **  0.372 **  0.116   0.039   -0.040   -0.160  
  2.23   2.06   0.47   0.17   -0.20   -0.54  
                   
Avg R-sqr  0.070   0.045   0.049   0.067   0.049   0.054  
Avg Obs   1744.9     1743.9     1700.1     2189.4     2185.1     1980.4   

 



 

 
 
(Table XI continued: Panel B) 

                                      

Panel B: with Square Root of ILLIQ_2 
Explanatory  NYSE/AMEX  NASDAQ 

Variables  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2  EXSRET  FF3-adj EXSRET1  FF3-adj EXSRET2 
Intercept  3.166 ***  2.678 ***  2.855 ***  13.614 ***  12.875 ***  13.051 *** 
  9.62   11.28   11.43   16.75   17.58   17.16  
[ILLIQ_2]1/2  0.141 ***  0.120 ***  0.116 **  0.328   0.276   0.267  
  2.97   2.60   2.39   1.40   1.25   1.04  
[Amihud]1/2  15.533 ***  15.269 ***  16.035 ***  29.828 ***  25.624 ***  30.463 *** 
  8.45   8.50   8.38   3.35   3.08   3.35  
[Roll_Gibbs]1/2  -27.715 ***  -29.116 ***  -30.114 ***  -65.958 ***  -64.194 ***  -65.759 *** 
  -12.98   -14.99   -14.71   -19.49   -19.86   -19.96  
Sign(PS)[|PS|]1/2  0.071   0.057   0.017   -0.047   -0.062   -0.043  
  1.00   0.82   0.24   -0.27   -0.35   -0.22  
[TURN]1/2  3.781   0.622   1.093   -4.248   -6.010 **  -7.152 ** 
  1.29   0.27   0.46   -1.08   -2.09   -2.34  
SIZE  -0.223 ***  -0.191 ***  -0.205 ***  -1.334 ***  -1.302 ***  -1.293 *** 
  -5.70   -9.39   -9.50   -13.40   -14.03   -12.97  
BTM  0.179 ***  0.121 ***  0.065   0.108   0.091   0.080  
  2.71   2.65   1.46   0.93   0.94   0.73  
MOM1  0.443   0.439 *  0.450   0.423   0.419   0.435  
  1.47   1.73   1.50   1.15   1.24   1.02  
MOM2  0.577 **  0.546 **  0.465 *  0.300   0.165   0.105  
  2.23   2.50   1.78   0.88   0.54   0.28  
MOM3  0.661 ***  0.625 ***  0.359   0.052   0.002   -0.212  
  2.71   2.86   1.36   0.20   0.01   -0.66  
MOM4  0.388 *  0.337 *  0.052   0.199   0.205   0.080  
  1.91   1.79   0.20   0.77   0.86   0.26  
                   
Avg R-sqr  0.071   0.047   0.050   0.072   0.054   0.057  
Avg Obs   1602.0     1601.2     1587.0     1743.2     1738.2     1690.2   

 



 

 
Figure 1. Trends of the Value-weighted Illiquidity Measure: for [ILLIQ_1]1/2  
The following graphs show the trends of the market value-weighted series for the square-root values of ILLIQ_1 over the past 372 
months (31 years: 197201-200212). The value-weighted illiquidity series are the monthly cross-sectional (market-value weighted) 
averages of the square root of ILLQ_1 over the sample period. ILLIQ_1 is defined as in Table I. Figure 2(a) is for the stocks on the 
NYSE/AMEX, and Figure 2(b) for those on the NASDAQ (available from January 1983 to December 2002 only). The average 
numbers of component stocks used each month are 1,845.1 for NYSE/AMEX (197201-200212) stocks and 2,667.5 for NASDAQ 
(198301-200212) stocks. 
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Value-Weighted Square Root of ILLIQ_1 for NASDAQ
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Figure 2. Trends of the Value-weighted Illiquidity Measure: for [ILLIQ_2]1/2  
The following graphs show the trends of the market value-weighted series for the square-root values of ILLIQ_2 over the past 372 
months (31 years: 197201-200212). The value-weighted illiquidity series are the monthly cross-sectional (market-value weighted) 
averages of the square root of ILLQ_2 over the sample period. ILLIQ_2 is defined as in Table I. Figure 2(a) is for the stocks on the 
NYSE/AMEX, and Figure 2(b) for those on the NASDAQ (available from January 1983 to December 2002 only). The average 
numbers of component stocks used each month are 1,683.1 for NYSE/AMEX (197201-200212) stocks and 1,967.0 for NASDAQ 
(198301-200212) stocks. 
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Value-Weighted Square Root of ILLIQ_2 for NASDAQ
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