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Abstract
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and the other a non-sufficient statistic. As a consequence, the optimal aggregate performance mea-
sure in general is not a sufficient statistic, unless the principal is risk neutral. We further discuss
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team contracts sometimes provide lower-powered effort incentives than individually separate con-
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1 Introduction

We present a continuous-time principal-agent model under moral hazard with many agents. Since

Holmstrom and Milgrom [1987], continuous-time approaches have been powerfully applied to vari-

ous principal-agent problems, particularly because continuous-time approaches offer tractable ways to

resolve well-known serious technical difficulties existing in the discrete-time literature, and produce

relatively simple forms of optimal contracts.1 However, thus far, no continuous-time multi-agency mod-

els have been rigorously attempted, even though there has already been a significant amount of the

discrete-time multi-agency literature.2

Our model is a continuous-time counterpart of Holmstrom’s [1982] discrete-time model, and can be

viewed as an extension of Holmstrom and Milgrom [1987] with a team of many agents. We use Schättler

and Sung’s [1993] martingale method to model both the principal and agents’ problems in which all

agents jointly choose probability distributions of given outcome processes. All agents exhibiting constant

absolute risk aversion (CARA) are assumed to be Nash game players: namely, each agent chooses his/her

effort level as if all other agents’ effort choices have already been made. We show that as is the case with

Holmstrom and Milgrom’s standard principal-agent model, optimal team contracts for many agents in

this paper are also linear in all outcomes. For the linearity result, the Nash-game assumption appears to

be important, because under the assumption, our model preserves Holmstrom and Milgrom’s stationary

decision-making environment for the principal, which is critical to produce linear contracts as optimal

contracts.

We utilize the linearity result to examine multi-agency/team effects on the structure of optimal

performance measures and on agents’ effort decisions. First, we reconfirm the well-known Holmstrom-

Mookherjee’s sufficient statistics results when the principal is risk neutral.3 However, we argue that the

same results may not hold, when the principal is risk averse.

In particular, optimal team contracts in this paper strikingly reveal that the optimal performance

measure for each agent consists of two orthogonal metrics: one is a sufficient statistic for effort incentive

and the other a non-sufficient statistic for risk sharing. It is noteworthy that the latter is orthogonal to

the sufficient statistic, containing zero information content about the agent’s marginal effort level. As

a special case, if the principal is risk neutral, the performance measure for each agent turns out to be

a sufficient statistic, because the risk-neutral principal is not concerned with risk-sharing. However, if
1See Schättler and Sung [1993] for a detailed discussion of the resolution of technical difficulties that have long existed

in the discrete-time literature. More discussion on methodologies for continuous-time principal agent problems can be
found in Sung [1995, 1997], Cadenillas, Cvitanic and Zapatero [2003], Williams [2003], and Cvitanic, Wan and Zhang
[2005].

2See Holmstrom [1982] and Mookherjee [1984] for discrete-time multi-agency models under moral hazard. The relative
performance evaluation literature is also related to the multi-agency models. See Lazear and Rosen [1981], Nalebuff and
Stiglitz [1983], Gibbons and Murphy [1990], Dye [1992], Core and Guay [2003], and Ou-Yang [2005].

3Holmstrom [1982] and Mookherjee [1984] derive the celebrated “sufficient statistics result”, which states that the
optimal salary function of each agent in a team under moral hazard should depend only on sufficient statistics for his/her
effort, not on the effort outcomes of other agents. However, as Holmstrom noted, the result may depend on the assumption
that the principal is risk neutral.
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the principal is risk averse, the performance measure for each agent becomes a combination of sufficient

and non-sufficient statistics, and thus it fails to be a sufficient statistic.

In order to investigate team effects on contracting, we compare our team contracts with individually

separate contracts. In this paper, each of the team contracts is allowed to depend on all agents’

outcomes in the team, whereas each of individually separate contracts is allowed to depend only on

the individual’ own outcome, but not on other agents’. Team contracting in general improves both

incentives and risk-sharing. Our quadratic-cost example suggests that risk-sharing can be improved

because team contracting enables the principal to distribute among agents the risks that are unrelated

to effort incentives.4 Incentives can also be improved because correlations among individual outcomes

can be utilized to reduce the volatility of the effort performance measure for each agent.

However, it is also striking that team contracts do not always provide higher effort incentives than

individually separate contracts do. This result is somewhat counterintuitive, because it is tempting to

conclude the contrary based on a reasoning as follows: team contracts typically can be used to reduce

volatilities of agents’ performance risks, and thus effort incentives under team contracts should be always

higher than or equal to those under individually separate contracts. We argue that this reasoning is

not always true.

To see the possibility of lower effort incentives under team contracts than those under individually

separate contracts, consider a case where individual-effort outcomes of all agents with CARA preferences

in a team are independent of each other and there are no joint-effort outcomes. Note that, under

individually separate contracts, risk-averse principal’s risk-sharing with each agent can only be arranged

by increasing the contract sensitivity to each agent’s own outcome. However, under team contracts, the

performance measure for each agent can consist of his own outcome for effort incentives and other agents’

outcomes for risk-sharing. Since the other agents’ outcomes are independent of each agent’s effort, his

effort incentive is unaffected by the principal’s risk-sharing motivation. As a result, individually separate

contracts sometimes stipulate higher-powered incentives than team contracts do.

This paper is organized as follows. In the next section, we describe the general model of the paper.

General forms of optimal contracts are derived in Section 3, and then special cases are discussed in

Section 4. Finally, in Section 5 we provide a brief summary of results of the paper.

2 A Multi-Agency Problem in Continuous Time

We investigate optimal contracts in a continuous-time principal-agent problem where there are one

principal (investors) and multiple agents (managers) under moral hazard. The time horizon of interest

is the unit interval [0, 1]. The principal is endowed with a set of N production tasks. At time zero,

4The distribution of unrelated risks across agent in a team can be eventually related to a diversification effect, which
is studied in detail in our companion paper, Koo, Shim and Sung [2006].

2



the principal and a team of N agents sign on N contracts {Sa, a ∈ A} for the N tasks: agent a,

a ∈ A := {1, ..., N}, is in charge of task a during the time period [0, 1], and will be compensated at time

1 according to the compensation scheme specified by contract Sa. The principal and agents’ preferences

are characterized by exponential utility functions, and the principal’s and agent a’s coefficients of

absolute risk aversion are, respectively, R ≥ 0 and Ra > 0 for a ∈ A.

All agents carry out their tasks under uncertainty. There are M(> N) sources of uncertainty

represented by an M -vector of standard independent Wiener processes Wt = (W 1
t , · · · ,WM

t )> on the

probability space (Ω,Ft, P ), where > denotes the transpose of a matrix or a vector, and Ft is the

augmentation of the filtration generated by Wt. Outcomes of agents’ effort over time are described by

an N -vector of outcome processes {Yt} which evolves as follows.

dYt = σdWt,

where Yt = (Y 1
t , · · · , Y Nt )> is an N -dimensional outcome vector at the time t, and σ(∈ RN×M ) is a

bounded N ×M volatility matrix. We let σa, a ∈ A, denote the a-th row of matrix σ, and Q an N ×N
matrix of instantaneous variances and covariances of Yt, i.e., Q = σσ>.

Carrying their tasks, agent a, a ∈ A, exerts effort µat ∈ U , t ∈ [0, 1], incurring personal (monetary)

cost at a rate of ca(µat ), where U is a bounded open interval. We assume no discounting and thus agent

a’s total cost of effort during the contract period is
∫ 1

0
ca(µat )dt. We also assume all cost functions

are strictly increasing and convex in effort, i.e., caµ > 0, and caµµ > 0 for a ∈ A, where subscripts

µ and µµ denote the first and second order partial derivatives with respect to µat , respectively. Let

µt = (µ1
t , ..., µ

N
t )>, and u = {µt}. Then µt is an N -vector of all agents’ effort at time t, and u is an

N -vector process of all agents’ effort.

By exerting effort u, all agents jointly change the probability measure of {Wt} and thus that of {Yt}
from P to Pu, where

dPu
dP

= e

∫ 1

0
(φ(µt))

>dWt− 1
2

∫ 1

0
‖φ(µt)‖2dt,

and φ : UN → RM is a bounded function such that σφ(µt) is increasing and concave in µt. We assume

that Pu cannot be observed/verified. This assumption leads to a nontrivial agency problem involving

conflicts of interest between the principal and agents over effort choices.

Under Pu,

But = Wt −
∫ t

0

φ(µt)ds

is an M -vector of standard Wiener processes, and

dYt = σ (dBut + φ(µt)dt) .

Let

f(µt) ≡ (f1(µt), ..., fN (µt))> := σφ(µt).
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Then dynamics of Y can be equivalently written as

dYt = f(µt)dt+ σdBut .

These equivalent dynamics allow us to alternatively interpret agents’ effort as follows: each agent’s

effort affects the drift of the outcome process {Yt}. However, with this alternative interpretation, it

is important to assume that the principal cannot observe and verify Bµt separately from the outcome

process {Yt}, because otherwise our agency problems can be trivially resolved.

In particular, we make the following informational assumptions. Both the principal and agents

observe the whole outcome processes {Yt}, and thus the diffusion rate matrix σ is common knowledge.5

Each agent can observe his/her own effort levels, but cannot directly observe the other agents’ effort

levels. Moreover, the principal can directly observe/verify none of agents’ effort levels.6

Given the above informational constraint and given a contract Sa, agent a(∈ A) chooses an effort-

level process {µat } to maximize his/her expected utility of compensation net of the cost of effort. We

assume that agent a’s reservation utility at time zero is −e−rWa
0 , a ∈ A, and that each agent chooses

his/her effort levels over time as if all other agents effort decisions had already been made and his/her

effort decisions would not affect other agents’ current and future effort decisions. That is, all agents

behave like Nash game players. On the other hand, taking into account all agents’ reservation utility

levels and behaviors in their effort choices, the principal would like to design a set of team contracts

{Sa, a ∈ A} to maximize her expected utility of the total final output after compensations to all agents.

We also assume that admissible contracts for agent a, a ∈ A, have the following structure:

Sa(Y ) = Sa1 (Y ) +
∫ 1

0

αa(t, Y )dt+
∫ 1

0

(βa)>(t, Y )dYt,

where S1 is a bounded F1-measurable random variable; and αa and βa are bounded Ft-predictable

processes. Note that we allow all individual components of Sa to be non-Markovian, i.e., Sa1 (Y ),

αa(t, Y ) and (βa)>(t, Y ) can be non-Markovian.

3 Optimal Contracts

Let Eu denote the expectation operator under probability measure Pu, and E(ûa;u−a) under P(ûa;u−a),

where (ûa;u−a) ≡ {({µ1
t}, ..., {µa−1

t }, {µ̂at }, {µa+1}, ..., {µN})}. Then the principal’s problem is now

stated as:

5See Sung (1995) for a case of one principal and one agent where the principal can only observe the final outcome Y1

and the agent is allowed to control the diffusion rate.
6If the agents’ effort levels are observable to the principal, then the first best is obtainable and it can be shown that

the optimal salary functions of agents are linear functions of total output by extending the argument for the case where
there is a single agent as in Sung (1991) and Müller (1998)
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Problem 3.1 Choose u (or probability measure Pu) and compensation schemes {Sa, a ∈ A} to

max Eu

[
− exp

{
−R

{
Y T1 −

∑

a∈A
Sa(Y )

}}]

s.t. (1) dYt = σdWt,

(2) ∀a ∈ A, given {Sa, a ∈ A} and u−a, ua(= {µat }) is a solution to the following problem:

max
ûa

E(ûa;u−a)

[
− exp

{
−Ra

{
Sa(Y )−

∫ 1

0

ca(µ̂at )dt
}}]

,

(3) ∀a ∈ A, Eu

[
− exp

{
−Ra

{
Sa(Y )−

∫ 1

0

ca(µat )dt
}}]

≥ − exp {−RaWa
0 } .

Note that constraints (2) and (3) are agents’ incentive compatibility and participation conditions. In

constraint (2), agent a chooses ua, as if all other agents’ choices u−a were given. That is, we try to

investigate Nash equilibrium solutions.

3.1 Agents’ Problems

Let us start with agents’ incentive compatibility conditions. Given u−a and Sa with (αa, βa), agent a’s

problem is as follows:

max
ûa

E(ûa;u−a)

[
− exp

{
−Ra

(
Sa(Y )−

∫ 1

0

ca(µ̂at )dt
)}]

= E(ûa;u−a)

[
− exp

{
−Ra

(
Sa1 (Y ) +

∫ 1

0

(
αa + (βa)>f(µ̂at ;µ−at )− ca(µ̂at )

)
dt

+
∫ 1

0

(βa)>σdB(ûa;u−a)
t

)}]
.

Recall that in the above stochastic control problem, αa, βa and Sa1 (Y ) may not be Markovian. We

examine this potentially non-Markovian stochastic control problem using the same martingale method

as in Schättler and Sung [1993].

Lemma 3.1 (Schättler and Sung [1993, Theorem 3.1]) Given u−a and Sa with (αa, βa), let µa∗t ,

t ∈ [0, 1], be optimal for agent a’s problem. Then, there exist Ft-adapted processes Vt and ∇Vat ≡
(∇Va1

t , ...,∇VaNt )> such that optimal µat maximizes

Ha
t (µ̂at ;µ−a, σ, αa, βa,Vat ,∇Vat )

:= (∇Vat )>
{
f(µ̂a;µ−a)−Raσσ>βa}

+Vat
{
Ra
{
ca(µat )− αa − (βa)>f(µ̂a;µ−a)

}
+

1
2

(Ra)2‖σ>βa‖2
}
. (1)

Furthermore, Vt is the value process, i.e.,

Vat = max
µ̂as ,s∈[t,1]

E(ûa;u−a)

[
− exp

{
−Ra

(
Sa1 (Y )

+
∫ 1

t

(
αa + (βa)>f(µ̂at ;µ−at )− ca(µ̂as)

)
dt+

∫ 1

t

(βa)>σdB(û,u−a)
s

)}∣∣∣∣ Ft
]
,
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with the following dynamics:

Vat = Va0 −
∫ t

0

Ha
s ds+

∫ t

0

(∇Vas )>dYs, (2)

where Ha
t := maxµ̂at H

a
t (µ̂at ;µ−a, σ, αa, βa,Vat ,∇Vat ).

We utilize Lemma 3.1 to examine necessary conditions for optimal contracts. First, let us define

vat ≡ (va1
t , ..., v

aN
t )> = βa − 1

RaVa∇V
a
t ,

vt = (v1
t , ..., v

N
t )>,

and

fµat (µt) =
(
f1
µat

(µt), ..., fNµat (µt)
)>

,

where f bµat denotes the partial derivative of f b with respect to µat , i.e., fµat is an N -vector of marginal

products of agent a’s effort. As will be seen in the following proposition, vat turns out to be an N -

vector of sensitivities of the optimal contract for agent a to outcome vector Y . For brevity we let

ν := (ν1, ..., νN ) and νa := {vat }.

Proposition 3.1 Given an admissible contract Sa(Y ) and {µ−at }, let, for all t,

µat ∈ arg max
µ̂

Ha
t (µ̂;µ−at , σ, αa, βa,Vat ,∇Vat ).

Then agent a’s salary function Sa(Y ) can also be expressed in the following form:

Sa(Y ;ua, νa;u−a) =Wa
0 +

∫ 1

0

(
ca(µat )− (vat )>f(µt) +

Ra

2

∥∥(vat )>σ
∥∥2
)
dt+

∫ 1

0

(vat )>dYt, (3)

where µat satisfies the following equation.

(vat )>fµat (µt)− caµa(µat ) = 0. (4)

Proof: Note that condition (4) immediately follows from agent a’s first order condition (FOC) to

maximize agent a’s Hamiltonian (1) in Lemma 3.1. On the other hand, define the certainty equivalent

wealth process Wa
t as follows:

Wa
t = − 1

Ra
log (−Va(t, Yt)).

Then, by Itô’s rule,

Wa
t =Wa

0 −
∫ t

0

1
RaVa dV

a
s +

1
2

∫ t

0

1
Ra(Va)2

d〈Va,Va〉s.
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By substituting (2) into the above, we have

Wa
t −Wa

0 =
∫ t

0

1
RaVa (Ha

t dt−∇Vat dYt) +
1
2

∫ t

0

1
Ra(Va)2

‖∇Vat σ‖2dt

=
∫ t

0

(
1

RaVa∇V
a
t

{
f(µt)−Raσσ>βa

}
+ ca(µat )− αa − (βa)>f(µt) +

1
2
Ra‖σ>βa‖2

+
1
2

1
Ra(Va)2

‖∇Vat σ‖2
)
dt−

∫ t

0

1
RaVa∇V

a
t dYt

=
∫ t

0

(
ca(µat )− αa +

{
1

RaVa∇V
a
t − (βa)>

}
f(µt)− 1

RaVa∇V
a
t R

aσσ>βa +
1
2
Ra‖σ>βa‖2

+
1
2

1
Ra(Va)2

‖∇Vat σ‖2
)
dt−

∫ t

0

(βa)>dYt −
∫ t

0

{
1

RaVa∇V
a
t − (βa)>

}
dYt.

Since Wa
1 is Sa1 by construction, the above equation implies (3). 2

Remark 1: The salary function in (3) together with (4) is a multi-agent generalization of Schättler

and Sung [1993, Theorem 4.1].

Remark 2: If N = M = 1 and f(µt) = µt, then Eq. (4) implies that vaat = cµ(µt), v−at = 0N−1, and

the representation of the salary function Sa in (3) reduces to that of Holmstrom and Milgrom

[1987].

Since (3) subject to (4) is a necessary condition for optimal contracts, we henceforth only focus on

this class of contracts. Eq.(4) simply describes agent a’s behavior over his/her effort choice: that is, the

agent chooses the effort in such a way that the marginal cost of effort is equal to the marginal expected

compensation.

However, an issue can arise, because the class of salary functions described by (3) subject to (4)

can still be too large, and not all contracts in the class can be implementable. That is, given an

arbitrary contract Sa(Y ; µ̄a, ν̄a; µ̄−a) of the form (3), agent a may not optimally choose effort controls

µ̄a. In this case, Sa(Y ; µ̄a, ν̄a; µ̄−a) may not be implementable, and the principal can safely ignore such

non-implementable contracts, because she can always find another contract of the same form (3) with

implementable controls without sacrificing her expected utility. See Sung [1997, Proposition 1]. The

following proposition helps eliminate such non-implementable contracts from class (3), and we only

consider the class (3) of contracts with implementable controls.

Proposition 3.2 If, for all β ∈ RN and µ−a ∈ RN−1, βf(µ) − ca(µa) is concave in µa, then salary

function Sa(Y ;ua, νa;u−a) that is given in the form of (3) satisfying (4) is implementable, i.e., given

the salary function, agent a optimally chooses ua(= {µat }).

Remark: The concavity assumption is always satisfied if f(µ) is linear in µ, and c is convex.
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Proof: Let Sa be a salary function given to agent a with parameters {µat }, and {vat } in the form

of (3) satisfying (4). Then, agent a’s problem is to choose { µ̂at } to maximize

E(ûa;u−a)

[
− exp

{
−Ra

(
Sa −

∫ 1

0

ca(µ̂at )dt
)}]

= E(ûa;u−a)

[
− exp

{
−Ra

(
Wa

0 +
∫ 1

0

(
ca(µat )− (vat )>f(µt) +

Ra

2

∥∥(vat )>σ
∥∥2 − ca(µ̂at )

)
dt

+
∫ 1

0

(vat )>dYt

)}]

= E(ûa;u−a)

[
− exp

{
−Ra

(
Wa

0 +
∫ 1

0

(
ca(µat )− (vat )>f(µt)− ca(µ̂at ) + (vat )>f(µ̂at ;µ−at )

)
dt

)}

× exp
{
− (Ra)2

2

∫ 1

0

‖(vat )>σ‖2dt−Ra
∫ 1

0

(vat )>σdBut

}]
.

Recall that Sa with parameters ua, u−a and va in the form of (3) is constructed to satisfy −caµa(µat ) +

(vat )>fµa(µ) = 0. Thus, the concavity assumption implies ca(µat )−(vat )>f(µt)−ca(µ̂at )+(vat )>f(µ̂at ;µ−at ) ≤
0 with equality at µ̂at = µat . That is, given Sa and u−a, the agent’s expected utility for all admissible

ûa(= {µ̂at }) is less than or equal to −e−RaWa
0 , and the equality, i.e., the maximum expected utility, is

achieved at µ̂at = µat . Therefore, given the salary function Sa, the agent optimally chooses {µat }, and

Sa is implementable. 2

3.2 The Principal’s Problem

In fact, Eq.’s (3) and (4) in Proposition 3.1 presents necessary conditions for agents’ incentive and

participation constraints, and conditions for Proposition 3.2 are sufficient for Eq.’s (3) and (4) to

satisfy agents’ incentive compatibility conditions. Thus, we simplify and solve the principal’s problem

by substituting Eq.(3) for Sa(Y ) in her expected utility. Then the solution becomes optimal if it satisfies

the implementability condition in Proposition 3.2.

Let us define constant N -vectors µ := (µ1, ..., µN ) and va = (va1, ..., vaN )>, for µa, vab ∈ R, and a

constant N ×N -matrix v = (v1, ..., vN ). Also define the principal’s Hamiltonian as follows.

HP (µ, v;σ,R, {Ra, a ∈ A})

=
∑

a∈A
fa(µ)−

∑

a∈A

(
ca(µa) +

Ra

2

∥∥(va)>σ
∥∥2
)
− R

2

∥∥∥∥∥

(
1> −

∑

a∈A
(va)>

)
σ

∥∥∥∥∥

2

. (5)

Theorem 3.1 For all a ∈ A, µ−a ∈ RN−1, and β ∈ RN , assume βf(µ) − ca(µa) is concave in µa.

Suppose that there exist µ∗ = (µ1∗, ..., µN∗)> and v∗ = (v1∗, ..., vN∗) maximizing

HP (µ, v;σ,R, {Ra, a ∈ A}), s.t. caµa(µa)− (va)>fµa(µ) = 0, ∀a ∈ A. (6)

Then µ∗ and v∗ are the principal’s optimal controls for (µt, vt) for all t, the principal’s expected utility

is given by − exp
{−R (−∑a∈AWa

0 +HP (µ∗, v∗;σ,R, {Ra, a ∈ A}))}, and optimal contracts for all
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agents are linear in the final outcome vector Y1 as follows: for all a ∈ A,

Sa(Y1) =Wa
0 + ca(µa∗)− (va∗)>f(µ∗) +

Ra

2

∥∥(va∗)>σ
∥∥2

+ (va∗)>Y1, (7)

where the pair (µa∗, va∗) satisfies (va∗)>fµa∗(µ∗)− caµa(µa∗) = 0.

Proof: The principal’s problem is to choose u(= {µt}) and v(= {vt}) to maximize the following

quantity subject to caµa(µat )− (vat )>fµat (µ) = 0:

Eu

[
− exp

{
−R

(
Y T −

∑

a∈A
Sa

)}]

= Eu

[
− exp

{
−R

(
−
∑

a∈A
Wa

0 −
∫ 1

0

∑

a∈A

(
ca(µat )− (vat )>f(µ) +

Ra

2

∥∥(vat )>σ
∥∥2
)
dt

+
∫ 1

0

(1> −
∑

a∈A
(vat )>)dYt

)}]

= Ẽu

[
− exp

{
−R

(
−
∑

a∈A
Wa

0 +
∫ 1

0

HP (µt, vt;σ,R, {Ra, a ∈ A})dt
)}]

,

where expectation Ẽ in the last equality is taken under P̃u which is defined such that

dP̃u

dPu
= exp



−

R2

2

∫ 1

0

∥∥∥∥∥

(
1> −

∑

a∈A
(vat )>

)
σ

∥∥∥∥∥

2

dt−R
∫ 1

0

(
1> −

∑

a∈A
(vat )>

)
σdBut



 .

However,

Ẽu

[
− exp

{
−R

(
−
∑

a∈A
Wa

0 +
∫ 1

0

HP (µt, vt;σ,R, {Ra, a ∈ A})dt
)}]

≤ − exp

{
−R

(
−
∑

a∈A
Wa

0 +HP (µ∗, v∗;σ,R, {Ra, a ∈ A})
)}

, (8)

because HP is independent of time and state, (µ∗, v∗) maximizes HP (µ, v;σ,R, {Ra, a ∈ A}), and

E[dP̃u/dPu] = 1. However, since the inequality (8) becomes equality when the constant pair (µt, vt) is

chosen to be (µ∗, v∗) for all t, the constant control pair is the principal’s optimal control pair for (µt, vt)

for all t, i.e., (µ∗, v∗) = (µ∗t , v
∗
t ). Thus, the principal’s optimal utility is as stated in the proposition.

Furthermore, since the optimal control pair (µ∗t , v∗t ) is constant over time, (3) implies that optimal

contracts are linear in Y1. 2

Next, in order to examine conditions for the existence of (µ∗, v∗), we directly try to solve the

principal’s constrained maximization (6). For simplification, we first eliminate the constraints (agents’

FOCs) by directly substituting them into the principal’s objective function. Note that the constraint

for agent a’s FOC implies

vaa = c̃a(µ)− (va−a)>f̃a(µ), (9)

9



where va−a = (va1, ..., va,a−1, va,a+1, ..., vaN )>,

c̃a(µ) :=
caµa(µa)
faµa(µ)

, and f̃a(µ) :=

(
f1
µa(µ)
faµa(µ)

, · · · , f
a−1
µa (µ)
faµa(µ)

,
fa+1
µa (µ)
faµa(µ)

· · · , f
N
µa(µ)
faµa(µ)

)>
.

The substitution of vaa in (9) into the principal’s objective function in (5) reduces the principal’s choice

variables to µ and {va−a; a ∈ A}. With the substitution, the performance-based part of the salary

function can be rewritten as

(va)>Y1 = c̃a(µ)Y a1 + (va−a)>
(
Y −a1 − f̃a(µ)Y a1

)
.

Note that the Y −a1 − f̃a(µ)Y a1 is a vector of the portions of other agents’ outcomes that are independent

of marginal changes in µa.

For brevity, let Cab be an (N − 1) × (N − 1) matrix of covariances between Y −a − f̃aY a and

(Y −b − f̃ bY b), i.e.,

Cab := Cov
(

(Y −a − f̃aY a), (Y −b − f̃ bY b)
)
,

and qab be an (N − 1)-vector of covariances between Y a and Y −b − f̃ bY b, i.e.,7

qab := Cov
(
Y a, (Y −b − f̃ bY b)

)
.

Also let D(µ) be an (N − 1)N × (N − 1)N -matrix such that

D(µ) =




C11
R

R1+RC12
R

R1+RC13 · · · R
R1+RC1N

R
R2+RC21 C22

R
R2+RC23 · · · R

R2+RC2N

...
...

...
...

...
R

RN+R
CN1

R
RN+R

CN2
R

RN+R
CN3 · · · CNN


 .

Now, we are ready to state a condition for the existence of va∗−a, a ∈ A, the optimal contract sensitivities

for agent a to other agents’ effort outcomes.

Theorem 3.2 Assume that the matrix D(µ) is invertible for all µ ∈ UN . Then {va∗−a, a ∈ A} is the

unique solution to the following system of linear equations: for all a ∈ A,

Caav
a
−a +

R

Ra +R

∑

b∈A,b6=a
Cabv

b
−b =

R

Ra +R

∑

b∈A
(1− c̃b)qba − Rac̃a

Ra +R
qaa. (10)

7Both Cab and qab can be related to the variance-covariance matrix Q = σσ> as follows.

Cab = Q−ab − f̃ap>ab − pba(f̃b)> + σa(σb)>f̃a(f̃b)>,

and
qab = pab − σa(σb)>f̃b,

where Q−ab be a submatrix of Q obtained by deleting the a-th row and the b-th column from Q, and pab is a vector of

instantaneous covariances between Y a and Y −b. Note that both Cab and qab are functions of µt.
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Proof: First, we substitute agents’ FOCs (9) into the Euclidean norms appearing in the principal’s

Hamiltonian (5).

∥∥(va)>σ
∥∥2

= V ar((va)>Y ) = V ar
{
c̃aY a + (va−a)>

(
Y −a − f̃aY a

)}

= (c̃a)2σa(σa)> + 2c̃a(va−a)>qaa + (va−a)>Caaua−a.
∥∥∥∥∥

(
1>N −

∑

a∈A
(va)>

)
σ

∥∥∥∥∥

2

= V ar

((
1>N −

∑

a∈A
(va)>

)
Y

)

= V ar

(∑

a∈A

{
(1− c̃a(µ))Y a − (va−a)>(Y −a − f̃a(µ)Y a)

})

=
∑

a∈A

∑

b∈A

{
(1− c̃a)(1− c̃b)σa(σb)> + (va−a)>Cabvb−b − 2(1− c̃b)(va−a)>qba

}
.

Thus, the principal’s problem is to choose µ and {va−a; a ∈ A} to maximize

∑

a∈A
fa(µ)−

∑

a∈A
ca(µa)−

∑

a∈A

Ra

2
{

(c̃a)2σa(σa)> + 2c̃a(va−a)>qaa + (va−a)>Caava−a
}

−R
2

∑

a∈A

∑

b∈A

{
(1− c̃a)(1− c̃b)σa(σb)> + (va−a)>Cabvb−b − 2(1− c̃b)(va−a)>qba

}
. (11)

Then, the FOC with respect to va−a for the above principal’s problem is

0N−1 = Ra
(
c̃aqaa + Caav

a
−a
)

+R
∑

b∈A

{
Cabv

b
−b − (1− c̃b)qba

}
.

This FOC can be rearranged as in (10) for all a ∈ A. Since D is invertible for all µ ∈ UN by assumption,

a unique solution exists, and the solution should be equal to {va∗−a, a ∈ A}. 2

Theorem 3.2 tells us that given µ∗, va∗−a, the optimal sensitivities of each managerial contract to

other managerial effort outcomes, are determined by solving the linear system of equations in Eq.(10).

Then optimal µ∗ can be found by maximizing the principal Hamiltonian (5) over µ after eliminating

va−a and vaa from the Hamiltonian by substitution of solutions to Eq.’s (10) and (9) given µ. In the

next section we use special cases to explore properties of va∗ and µ∗.

4 Special Cases

Arguably, one of the most important issues with a multi-agent principal-agent model is about the

structure of the optimal performance measure for each agent. We examine the structure of optimal

performance measures using two special cases in the following two subsections. In the first case, we

assume the principal is risk neutral, and in the second case, the principal is allowed to be either risk-

neutral or risk-averse, and agents are identical in terms of their risk aversion and effort production

functions. Then, we further present a subcase of the second case with two identical agents. With the

subcase, we examine team effects on each agent’s optimal effort choices.
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4.1 A Risk-neutral Principal

In this subsection we assume R = 0, i.e., the principal is risk-neutral.

Proposition 4.1 Suppose that R = 0 and the matrix D(µ) is invertible for all µ ∈ UN . Then the

optimal salary function is linear in Y1 as in Eq.(7) with

va∗−a = −c̃a(µ∗)Caa(µ∗)−1qaa(µ∗).

Proof: The proposition follows directly from Eq.(10). 2

When the principal is risk-neutral, Proposition 4.1 suggests that the performance based part of the

optimal salary function (7) for agent a takes the following form:

c̃a(µ∗)
[
Y a1 − Caa(µ∗)−1qaa(µ∗)(Y −a1 − f̃a(µ∗)Y a1 )

]
.

One may interpret the quantity inside the square bracket as the optimal measure of agent a’s effort

performance. The structure of the measure is intuitive. Recall that Caa is the variance-covariance

matrix of (Y −a1 − f̃a(µ∗)Y a1 ) and qaa is a covariance vector between Y a1 and (Y −a1 − f̃a(µ∗)Y a1 ). Thus,

Caa(µ∗)−1qaa(µ∗)(Y −a1 − f̃a(µ∗)Y a1 ) is a projection of Y a1 onto the space generated by Y −a1 − f̃a(µ∗)Y a1 ,

or a multiple regression of Y a on Y −a1 −f̃a(µ∗)Y a1 . The quantity Y −a1 −f̃a(µ∗)Y a1 is a vector of outcomes

of other agents’ effort after adjusting for agent a’s marginal contribution to the outcomes, and becomes

independent of agent a’s marginal effort, although it might still be related to the noise of Y a, i.e.,

σaBµ
a

1 . Thus, having the projection subtracted from Y a, the resulting performance measure for agent

a becomes free from both marginal contributions by other agents to Y a, and systematic noises that are

present in outcomes across all agents, while keeping the information content about µa. In other words,

the measure is a sufficient statistic for µa.

To see that the measure is indeed a sufficient statistic, recall the sufficient statistics result in Holm-

strom [1982], and the definition of such a statistic in mathematical statistics. First, in mathematical

statistics, a function T a(Y ) is said to be sufficient for µa if there exist functions ha(·), pa(·) such that

g(Y, µ) = ha(Y, µ−a)pa(T a(Y ), µ) (12)

for all Y and µ values in the support of the probability distribution function g of Y . Holmstrom also

defines T (Y ) to be sufficient at µa if for all a ∈ A and T a

gµa(Y1, µ)
g(Y1, µ)

=
gµa(Y2, µ)
g(Y2, µ)

(13)

for almost all Y1, Y2 ∈ {Y |T a(Y ) = T a}. If T (Y ) is sufficient for all µ ∈ U , then it is said to be globally

sufficient. The global sufficiency is equivalent to sufficiency defined by Eq.(12).

12



Proposition 4.2 Suppose that R = 0. Then, S(Y ) is sufficient for µa at µa = µa∗, a ∈ A. Further-

more, if f is linear, then S(Y ) is globally sufficient for all µa.

Proof: At µ = µ∗, the performance measure Y a1 −Caa(µ∗)−1qaa(µ∗)(Y −a1 − f̃a(µ∗)Y a1 ) is independent

of Y −a1 − f̃a(µ∗)Y a1 for each a ∈ A. Thus Sa(Y ) is independent of Y −a1 − f̃a(µ∗)Y a1 , because Sa(Y ) is

linear in Y a1 − Caa(µ∗)−1qaa(µ∗)(Y −a1 − f̃a(µ∗)Y a1 ). Therefore, we know that

g(Y ) = pa(S(Y ))ha(Y −a1 − f̃a(µ∗)Y a1 )

for some pa(·) and ha(·). On the other hand, note that since, at µ = µ∗,

∂

∂µa
{Y −a1 − f̃a(µ∗)Y a1 } = f−aµa (µ∗)− f̃a(µ∗)faµa(µ∗) = 0,

we have

haµa(Y −a1 − f̃a(µ∗)Y a1 ) = 0.

Now consider Y and Y ′ such that Sa(Y ) = Sa(Y ′). Then clearly pa(S(Y ), µ∗) = pa(S(Y ′), µ∗), and

paS(S(Y ), µ∗) = paS(S(Y ′), µ∗). Moreover, Sµa(Y ) = c̃(µ∗) = Sµa(Y ′). Therefore,

paS(S(Y, µ∗)Sµa(Y )
p(S(Y ), µ∗)

=
paS(S(Y ′, µ∗)Sµa(Y ′)

p(S(Y ′), µ∗)
,

and the condition (13) is satisfied. This proves the first assertion.

To prove the second assertion, suppose now that f is linear. Then it can be easily shown that

Y −a1 − f̃a(µ∗)Y a1 is a function of µ−a only, and is completely independent of µa. Therefore, for any µa,

g(Y ) can be written as

g(Y ) = pa(S(Y ), µ∗)ha(Y −a1 − f̃a(µ∗)Y a1 ),

where ha(.) is a function of µ−a and independent of µa. Since S(Y ) is linear in µa, using the same

argument as in the proof of the first assertion, one can show that condition (13) is also satisfied even

when agent a choose µa that is different from µa∗. 2

Proposition 4.2 reconfirms Holmstrom’s sufficient statistics result. However, this result depends on

the assumption of the risk-neutrality of the principal. In the next section, we examine the structure of

optimal performance measure in more generality.

4.2 Identical Agents

In this section, the principal can be either risk-averse or risk-neutral, i.e., R ≥ 0, and all agents are

identical in the following sense. For all a ∈ A, Ra = R̄, ca(·) = c(·), and fa(µ) = f(µa, µ−a) where f is
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a symmetric function of µ−a. Moreover

Q =




σ2
c + σ2

i σ2
c σ2

c · · · σ2
c

σ2
c σ2

c + σ2
i σ2

c · · · σ2
c

...
...

...
...

...
σ2
c σ2

c σ2
c · · · σ2

c + σ2
i


 ,

where σc is the volatility of a common shock affecting outputs of all agents identically and σi is that of an

idiosyncratic shock affecting only one agent. As a result, one may write Y a1 = f(µa;µ−a)+σcBc1 +σiBa1 ,

where Bc and Ba are independent standard Brownian motions/normal random variables. Then, we have

the following proposition.

Proposition 4.3 Suppose that agents are identical and that the matrix D(µ) is invertible for all µ ∈
UN . Then the optimal salary function for agent a is linear in Y1 as in Eq.(7) with

va∗−a =
[
I +

R

R+R

∑

b6=a
Caa(µ∗)−1Cab(µ∗)

]−1

×
[R(1− c̃(µ∗))

R+R
Caa(µ∗)−1

∑

b∈A
qab(µ∗)− Rc̃a

R+R
Caa(µ∗)−1qaa(µ∗)

]
.

Proof: Since all agents are identical, va∗ = vb∗ for a, b ∈ A, and the proposition follows from equation

Eq.(10). 2

When all agents are identical, Proposition 4.3 indicates that the performance-based part of the

optimal salary function of agent a is given in the following form:

c̃(µ∗)Y a1 + (γ1 + γ2)>
(
Y −a1 − f̃a(µ∗)Y a1

)
, (14)

where

γ1 = −Rc̃(µ
∗)

R+R

[
I +

R

R+R

∑

b6=a
Caa(µ∗)−1Cab(µ∗)

]−1

Caa(µ∗)−1qaa(µ∗),

γ2 =
R(1− c̃(µ∗))

R+R

[
I +

R

R+R

∑

b6=a
Caa(µ∗)−1Cab(µ∗)

]−1

Caa(µ∗)−1
∑

b∈A
qab(µ∗).

Note that Caa(µ∗)−1qaa(µ∗)(Y −a1 − f̃a(µ∗)Y a1 ) is a projection of Y a1 onto the space generated by Y −a1 −
f̃a(µ∗)Y a1 , and that Caa(µ∗)−1

∑
b∈A qba(µ∗)(Y −a1 − f̃a(µ∗)Y a1 ) is a projection of total output Y T onto

the space generated by Y −a1 − f̃a(µ∗)Y a1 and therefore can be regarded as a transfer of risk by the

principal to the agent.

The performance-based part (14) can also be rearranged as follows:

c̃(µ∗)Y a1 + (γ1 + γ2)>
(
Y −a1 − f̃a(µ∗)Y a1

)

= c̃(µ∗)
{
Y a1 −

(
C−1
aa qaa

)>
(Y −a − f̃aY a)

}

+
{
c̃(µ∗)

(
C−1
aa qaa

)
+ γ1 + γ2

}> (
Y −a1 − f̃a(µ∗)Y a1

)
. (15)
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This rearrangement reveals a striking structure of optimal performance measures. Note that the first

component of the RHS of Eq.(15) is a sufficient statistic for µa, and the second is a non-sufficient

statistic that is orthogonal to the sufficient statistic. In particular, note that the second component

vanishes, when the principal is risk-neutral, i.e., R = 0, and therefore, the performance measure turns

out to be a sufficient statistic. However, if the principal is risk averse, i.e., R 6= 0, then the second

component becomes nontrivial. That is, if R 6= 0, then the resulting aggregate performance measure is

not a sufficient statistic. To recapitulate, the optimal aggregate performance measure for each agent can

be orthogonally decomposed into two statistics; one is a sufficient statistic and the other a non-sufficient

statistic.

The structure in Eq.(15) suggests that in constructing the optimal performance measure for agent

a, the principal uses effort performance outcomes of other agents for two purposes: one to construct a

sufficient statistic for the agent’s effort incentives, and the other to construct a non-sufficient statistic

for sharing risks with the agent without directly affecting the agent’s optimal incentives.

Thus far, we have discussed how optimal contracts and optimal performance measures are con-

structed, however without explicit solutions. Finally, in next subsection, we provide an explicit solution

to the principal’s problem with two identical agents, and examine optimal effort decisions under team

contracts.

4.3 Two Identical Agents

Let us assume that there are two identical agents with ca(·) = c(·), Ra = R̄ for a ∈ A = {1, 2}, and

that expected outcomes of agents’ effort, fa’s, have identical structures as follows;

f1(µ) = µ1 + κµ2, f2(µ) = µ2 + κµ1,

where 0 ≤ κ < 1 is a constant. We also assume that the variance-covariance matrix Q of the outcomes

is given by

Q =
[
Q11 Q12

Q21 Q22

]
=
[
σ2
c + σ2

i σ2
c

σ2
c σ2

c + σ2
i

]
.

The above set-up with two identical agents implies that each agent a mutually affects the other

agent’s expected effort outcome by κµa, and that outcomes of both agents’ effort are correlated with

each other through the common uncertainty with a covariance of σ2
c .

Let cx(·) and cxx(·) denote the first and second derivatives of c(·), respectively, with respect to the

argument. Then, we have

c̃1(µ) = cx(µ1), c̃2(µ) = cx(µ2),

C11 = (1 + κ2)Q11 − 2κQ12 = C22,

C12 = (1 + κ2)Q12 − 2κQ11 = C21,
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q11 = Q12 − κQ11 = q22,

and

q12 = Q11 − κQ12 = q21.

By (10), the principal’s FOCs with respect to v12 and v21 are as follows:

(R̄+R)C11v
12 +RC12v

21 = R
(
1− cx(µ1)

)
q11 +R

(
1− cx(µ2)

)
q21 − R̄cx(µ1)q11,

(R̄+R)C22v
21 +RC12v

12 = R
(
1− cx(µ2)

)
q22 +R

(
1− cx(µ1)

)
q12 − R̄cx(µ2)q22.

Substituting these FOCs back into the principal’s Hamiltonian (11), and maximizing it with respect to

µ1 and µ2, we have

µ1 = µ2 = µ∗,

v12 = v21 =
R
(
1− cx(µ∗)

)
(q11 + q12)− R̄cx(µ∗)q11

(R̄+R)C11 +RC12
,

where µ∗ satisfies the following FOC:

0 = 1 + κ− cx(µ∗)− (R̄+R)cx(µ∗)cxx(µ∗)Q11 +Rcxx(µ∗)Q11

+
(
1− cx(µ∗)

)
Rcxx(µ∗)Q12

−{R̄q11 +R(q11 + q12)
}
cxx(µ∗)

R
(
1− cx(µ∗)

)
(q11 + q12)− R̄cx(µ∗)q11

(R̄+R)C11 +RC12
. (16)

The first five terms of the RHS of the above equation are identical to those which would also appear in

the FOC for a risk-averse principal’s problem with a single agent. Alternatively, the first six terms of

the RHS would have been the FOC for a risk-averse principal’s problem, had she contracted each agent

based on the agent’s own outcome alone. We call this alternative case the case of individually separate

contracts under which the contract for agent a is given in the form of constant + cx(µI)Y a, where µI

satisfies

0 = 1 + κ− cx(µI)− (R̄+R)cx(µI)cxx(µI)Q11 +Rcxx(µI)Q11

+
(
1− cx(µI)

)
Rcxx(µI)Q12. (17)

Then, comparing team contracts in this paper with individually separate contracts, one may say the

last term of the RHS of (16) captures “team” contracting effects. We shall compare explicit solutions

resulting from the two different contracting regimes.

For explicit solutions, assume quadratic costs such that c(x) = K
2 x

2. Then, by using (16), we have

Kµ∗ =
NUM

DEN
, (18)
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where

NUM = 1 + κ+RK(Q11 +Q12)− RK(q11 + q12)
{
R(q11 + q12) + R̄q11

}

R(C11 + C12) + R̄C11
,

DEN = 1 +RK(Q11 +Q12) + R̄KQ11 −
K
{
R(q11 + q12) + R̄q11

}2

R(C11 + C12) + R̄C11
.

It is easy to show that R(C11 + C12) + R̄C11 > 0. By some calculation one can also show that both

NUM and DEN are strictly positive. On the other hand, by using (17), we compute optimal effort

levels under individually separate contracts, denoted by µI , as follows:

KµI =
1 + κ+RK(Q11 +Q12)

1 +RK(Q11 +Q12) + R̄KQ11
. (19)

In order to examine team effects on optimal levels of effort, we compare (18) and (19). The com-

parison is summarized in the following proposition.

Proposition 4.4 µ∗ <, (=, >)µI if and only if DET > (=, <)0, where

DET =
{
R(1− κ)(Q11 +Q12) + R̄(Q12 − κQ11)

}

× [R(Q11 +Q12)
{
R̄K(Q11 −Q12)− κ(1− κ)

}− (1 + κ)R̄ {Q12 − κQ11}
]
.

Proof: The proof is immediate from the following algebraic relation: for real numbers x, y, z, w, if

x > 0 and x − z > 0, then the sign of y
x − y−w

x−z is equal to that of xw − yz. Using this, the sign of

KµI −Kµ∗ is equal to that of K
R(C11+C12)+R̄C11

×DET . 2

As a corollary to Proposition 4.4, we consider two sub-special cases: (i) risk-neutral principal, i.e.,

R = 0, and (ii) no common uncertainty and joint productions, i.e., σc = κ = 0. The first case enables us

to isolate team contract effects on effort incentives, and the second case to examine those on risk-sharing,

which in turn can also, albeit indirectly, affect optimal effort levels.

Corollary 4.1 i. Suppose that R = 0 and q11 = Q12−κQ11 6= 0. Then DET = −(1+κ)R̄2q2
11 < 0,

and thus µ∗ > µI . If R = q11 = 0, then µ∗ = µI .

ii. Suppose σc = κ = 0. In this case, if R > (=)0, then DET = R2R̄KQ3
11 > (=)0, and thus

µ∗ < (=)µI .

Recall that when R = 0, the principal is only concerned with agents’ effort incentives, and when

q11 6= 0, the other manager’s outcome after adjusting from agent 1’s contribution is still correlated

with the agent’s outcome. Thus, the principal can utilize this correlation to reduce the volatility of the

agent 1’s effort performance measure, and as a result, team contracts can be higher-powered in effort
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incentives than individually separate contracts. However, if q11 = 0 and R = 0, then team contracts

cause no effects on effort incentives.

When σc = κ = 0, the other agent’s outcome is not useful in reducing the volatility of agent 1’s

effort performance measure. However, the other agent’s outcome can still be utilized for risk-sharing

purposes, reducing risk-burden on the principal. Intuitively, when R > 0, under individually separate

contracts, the risk-averse principal can share outcome risks using each agent’s own outcome only, and

thus when additional risk-sharing is desired, she has to increase effort incentives excessively more than

she would, were she risk-neutral. However, under team contracts, the principal can utilize the agent’s

own outcome mostly for incentives and other agents’ outcomes mostly for risk-sharing. As a result,

each agent’s own outcome is less excessively used for risk-sharing purposes than it is under individually

separate contracting arrangements. Thus, when σc = κ = 0, effort incentives under team contracts are

lower than those under individually separate contracts.

The two benchmark cases described in Corollary 4.1 suggest that team contracts can improve both

incentives and risk sharing. Risk-sharing can be improved because team contracts enable the princi-

pal to distribute risks unrelated to effort incentives across agents.8 Incentives can be also improved

because correlations among individual and joint outcomes can be utilized to reduce the volatility of

the effort performance measure for each agent. However, improvements in both incentives and risk-

sharing under team contracts can result in either higher- or lower-powered effort incentives than those

under individually-separate contracting can. For, improvement in risk-sharing drives down the contract

sensitivity to effort-performance measure, whereas improvement in incentives due to reduction in the

volatility drives up the sensitivity.

5 Conclusion

In this paper we have presented a multi-agent principal-agent moral-hazard problem in continuous time.

We have derived optimal salary functions for all agents as a team and shown that they are jointly linear

in all effort outcomes. Based on this linearity result, we have examined the general structure of optimal

performance measures, and have shown that the optimal aggregate performance measure for each agent

can be decomposed into two orthogonal statistics: one being a sufficient statistic mainly for incentives

and the other a non-sufficient statistic for risk-sharing.

In particular, we have shown that Holmstrom’s sufficient statistics result is valid if the principal is

risk neutral. However, when the principal is risk averse, the agent’s salary function depends not only on

a sufficient statistic but on a non-sufficient statistic that is independent of the agent’s marginal effort.

The inclusion of the non-sufficient statistic in each contract is from the principal’s motivation to share
8This distribution effect is consistent with the diversification effect extensively discussed in our companion paper, Koo,

Shim and Sung [2006].
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total-output risks with agents. As a result, the aggregate performance measure, in general, cannot be

a sufficient statistic.

We have examined team effects on contracting by comparing our team contracts with individually

separate contracts. Team contracting helps improve both incentives and risk-sharing, by enabling the

principal to reduce volatilities of effort performance measures, and to distribute total-output risks among

many agents. However, team contracts do not always provide higher effort incentives than individually

separate contracts do. The reason is that as compared with individually-separate contracting, improve-

ments in both incentives and risk-sharing under team contracting affect optimal effort incentives in the

opposite directions: the improvement in incentives increases contract sensitivities to effort performance

measures, but the improvement in risk-sharing decreases the sensitivities. We have shown that if the

principal is risk averse and each outcome contains no joint outputs and is independent of all other

outcomes, then each contract sensitivity to the effort performance measure under team contracting is

lower than that under individually separate contracting.
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