
NONLINEAR DRIFT MODEL
IN THE SHORT-TERM INTEREST RATE

BY YOUNGSOO CHOI AND YOONDONG LEE

FIRST DRAFT: JANUARY 2007. THIS VERSION: MAY 2007.

Abstract. This paper propose a new short-term interest rate model having a dif-

ferent nonlinear drift function and the same diffusion coefficient with Chan, Karolyi,

Longstaff, and Sanders (1992) model. The fractional polynomial power of the drift

function in our model is linked to the local volatility elasticity of the diffusion coeffi-

cient. While the nonlinear drift function estimated by Aı̈t-Sahalia (1996a) and others

has a feature that higher interest rates tend to revert downward and low rates upward,

the drift function estimated by our nonlinear model shows that higher interest rate

mean-reverts strongly, but, medium rates has almost zero drift and low rates has a

very small drift. This characteristic coincides the empirical result based on the non-

parametric methodology by Stanton (1997) and the implication by the scatter plot of

the short rate data. Furthermore, if our model is transformed to make the diffusion

process have a constant term, the drift term in our model is very similar to that in

Aı̈t-Sahalia model. In the viewpoint of data, while his model is applied to the original

interest rate data, our model is applied to the transformed data.
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1. Introduction

Risk-free short-term interest rate (or short rate) is used in financial economics to

determine term structure of interest rates and prices of bonds of various maturities at

any given time. Short rates also serve as an important element in the development

of tools for risk management of valuing and hedging the huge institutional holdings of

fixed income securities and in empirical work on term premiums and yield curves, where

short rates are treated as reference rates for other interest rates.

The dynamics of the short rate, rt, are usually described in the form of continuous-

time diffusion models having linear drifts (local expected changes) and often linear

diffusion coefficients (variances of local changes). However, these linear term structure

models are developed, since it is convenient for driving and estimating explicit forms

of the term structure of interest rates. Empirical observations by Chan et al. (1992;

hereafter CKLS) on the U.S. Treasury Bill rate show that ”the dynamics of the short rate

should be those that allow the volatility of interest rate changes to be highly sensitive

to the level of the short rate.” Volatilities may be estimated relatively accurately using

high-frequency observations of the short rate with the Generalized Method of Moments.

To find the genuine data property of the short rate, Aı̈t-Sahalia (1996a) and Stanton

(1997) propose nonparametric methods for estimating the drift and diffusion of the

short rate. Both papers show that, while the estimated diffusion term is similar to that

estimated by CKLS, the substantial nonlinearity in the drift term is observed and this

feature is the main source of rejection of the linear drift models of CKLS and others.

Aı̈t-Sahalia finds that the short rate behaves like a random walk around its mean,

reverting toward the mean when it is far away from the mean. Stanton shows that

the drift term is close to zero for low and medium rates, but revert toward the mean

at higher interest rates. Similar results are reported by Conley et al. (1997; hereafter

CHLS), who show that ”when interest rates are high, local mean reversion is small

and the mechanism for inducing stationarity is the increased volatility of the diffusion

process.”
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Figure 1 plots the drift functions – the local expected change in the short rate per

year as a function of the level of the rate – estimated by Aı̈t-Sahalia and our generalized

nonlinear drift, constant elasticity of variance (GNCEV) models using one-month U.S.

Treasury bill rates like CKLS and one-month Eurodollar deposits rates. This figure

is similar to Figure 1 of Jones (2003); in the case of having the same drift functions

of Aı̈t-Sahalia, higher interest rates tend to revert downward and low rates upward.

However, the drift function estimated by our nonlinear model shows that, while higher

interest rate mean-reverts strongly, medium rates has almost zero drift and low rates

has a very small drift depending on the data. This characteristic coincides the empirical

result based on the nonparametric methodology by Stanton (1997) and the implication

of scatter plot of the short rate data.

Our model is proposed on the base of empirical observations; the QQ-plot and Jarque-

Bera test for the short rate show that it does not satisfy the normality assumption. As

an improvement tool, we use the common Box-Cox (1964) transformation to produce

a Gaussian time series for the short rate, but transformed series has serial correlations.

Hence, it is natural to assume that transformed series follow the Ornstein-Uhlenbeck (O-

U) process. Applying Ito’s lemma to the transformation and extending the output, the

continuous-time diffusion model having nonlinear drift and diffusion term is obtained.

The fractional polynomial power of the drift function in our model is linked to the local

volatility elasticity of the diffusion coefficient.

If our model is transformed to make the diffusion process have a constant term, the

drift term in our model is very similar to that in Aı̈t-Sahalia and CHLS models. That

is, while their models are applied to the original interest rate data, our model is applied

to the transformed data.

The remainder of this paper is organized as follows: In Section 1, we derive a new

short rate model and compare it with the existing models. In Section 2, we illustrate the

empirical analysis with the Generalized method of moments (GMM) and conditional

multiple regression methods, and in Section 4, we draw conclusions.
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Figure 1. Drift function estimates: The first (second) figure contains
the drift function estimated by Aı̈t-Sahalia and our nonlinear drift models
using monthly one-month U.S. Treasury bill (Eurodollar deposit) rates.

2. One factor interest rate models

In this section, we construct a new model for the short-term interest rate using the

Box-Cox transformation model and introduce several existing models as a comparison.

Modelling process and other models



NONLINEAR DRIFT MODEL 5

Empirical observations on the TBills show that the short term interest rate, rt, does

not satisfy the normality assumption through the QQ-plot and Jarque-Bera test. We

use the Box-Cox transform to produce a Gaussian time series for the short term interest

rate as follows:

r
(λ)
t =





rλ
t −1

λ
for λ 6= 0,

ln rt for λ = 0.

(1)

Thus, it is natural to assume that a new state variable r(λ) follows the OU-process:

dr
(λ)
t = (α + βr

(λ)
t )dt + σdWt. (2)

Applying Ito’s lemma to the function rt = (1 + λr
(λ)
t )1/λ, we have

drt = (1 + λr
(λ)
t )

1−λ
λ

[
(α + βr

(λ)
t )dt + σdWt

]
+ 1

2
(1− λ)(1 + λr

(λ)
t )

1−2λ
λ σ2dt

=
[(

α− β
λ

)
r1−λ
t + β

λ
rt + 1

2
(1− λ)σ2r1−2λ

t

]
dt + σr1−λ

t dWt.

(3)

Thus, replacing 1− λ by γ, that is, 1− λ = γ, (3) can be written as

drt =
[(

α− β
1−γ

)
rγ
t + β

1−γ
rt + 1

2
γσ2r2γ−1

t

]
dt + σrγ

t dWt. (4)

Note that (4) nests the Vasicek process in the case of γ = 0:

drt =
(
α− β + βrt

)
dt + σdWt

and the Black-Karasinski model as γ approaches 1, since

lim
γ→1

r
(λ)
t = lim

λ→0

rλ
t −1

λ
= ln rt.

Thus we consider the generalized nonlinear drift, constant elasticity of variance (CEV)

process as follows

drt =
(
a + brt + crγ

t + dr2γ−1
t

)
dt + σrγ

t dWt, (5)

which nests the CKLS model with the linear drift term a + brt.
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Several existing one-factor short rate models having nonlinear drifts are introduced

to compare them with our model. Aı̈t-Sahalia (1996b) proposes the following model:

drt =
(
a + brt + cr2

t + d/rt

)
dt +

√
b0 + b1rt + b2r

b3
t dWt. (6)

CHLS (1997) adopt the same drift parameterization as Aı̈t-Sahalia but keep the CEV

diffusion used by Chan et. al. (1992):

drt =
(
a + brt + cr2

t + d/rt

)
dt + σrγ

t dWt. (7)

Eom (1998) considers the nonlinear drift CEV (NCEV) process with the CEV diffusion

used by Chan et. al. (1992), but selects some drift parts of equation (5):

drt =
(
brt + dr2γ−1

t

)
dt + σrγ

t dWt. (8)

As a comparison, we also consider the nonlinear drift CEV process with the CEV

diffusion used by Chan et. al. (1992), but selects another drift parts of equation (5):

drt =
(
brt + crγ

t

)
dt + σrγ

t dWt. (9)

The properties of our model

While the coefficient of r2γ−1
t in the equation (4) is restricted to be γσ2/2, that

of equation (5) is free. It is related to the normality assumption of the conditional

probability density function and the existence of a weak solution for the continuous-

time parametric diffusion process (5). Let pR(∆, r | r0; θ) denote the conditional density

of rt+∆ = r given rt = r0 induced by the model (5), also called the transition function. If

sampling of the process is discrete, the transition function pR is not only unavailable in

closed-form expression, but also cannot be approximated for fixed ∆ around a Normal

density.

However, following the methodology of Aı̈t-Sahalia (2002), we can obtain an expan-

sion that converges as more correction terms are added while ∆ remains fixed. Since
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the empirical estimate by CKLS (1992) guarantees γ > 11, we transform rt into a new

variable as follows: ∫ rt 1

uγ
du =

r1−γ
t

1− γ
,

Consider the transformed process yt = r1−γ
t . Then yt maps from the domain of

DR = (0,∞) onto DY = (0,∞) reversely. Applying Ito’s lemma, yt satisfies a dif-

fusion equation with constant diffusion term:

dyt = −(γ − 1)
(
ay

γ
γ−1
t + byt + c + (d− γσ2/2)

1

yt

)
dt + (1− γ)σdWt. (10)

Note that the above diffusion process has a similar nonlinear drift term like models

(6) and (7) with just a different term y
γ/(γ−1)
t instead of y2

t . That is, our model is very

similar to the Aı̈t-Sahalia and CHLS models for the drift term with a different diffusion

term. While their models are applied to the original interest rate data, our model is

applied to the transformed data to make the diffusion process have a constant term.

While the 1/yt term in the drift function is the dominant growth factor for the left

boundary of DY , y
γ/(γ−1)
t and yt terms works as a leading growth factor for the right

boundary of DY . If the coefficient (1 − γ)(d − γσ2/2) of 1/yt is greater than 1, it

satisfies the left boundary assumption of Assumption 3 in Aı̈t-Sahalia (2002). Also,

if the coefficient (1 − γ)a is less than 0 and (1 − γ)b is greater than 0, it satisfies the

right boundary assumption of Assumption 3. If the above conditions are satisfied, there

exists a weak solution {yt | t ≥ 0}, unique in probability law, for every distribution of

its initial value y0.

Since the diffusion term for the transformed process is constant, the random term in

yt+∆ given yt for Euler and Milstein schemes can be represented by a Normal distribution

and that for order 1.5 (2.0) strong Taylor scheme is written as the weighted sum of two

independent Normal distributions. Thus, the conditional density of yt+∆ | yt, denoted

by pY (∆, y | y0; θ), is approximated for fixed ∆ around a Normal density.

1This restriction is unessential. It is OK as far as γ > 0.
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3. Empirical analysis

In this section, we introduce the data used in our empirical work, find the appropriate

parameters of several generalized nonlinear drift, CEV process and Aı̈t-Sahalia model by

using the Generalized Method of Moments (GMM) or the multiple regression analysis,

and finally describe the model feature on the basis of the drift estimate function.

Data sources

The time series data used to model the short-term interest rate are the same monthly

one-month Treasury bill rates used by Chan et. al (1992) and monthly one-month Eu-

rodollar deposit rates. The Treasury bills cover the period from June 1964 to November

1989, providing 306 observations. The one-month Eurodollar yields are based on bid

rates for Eurodollar deposits collected around 9:30 a.m. Eastern time and annualized

using a 360-day year or bank interest. They cover the period from January 1971 to

January 2007, providing 433 observations. Their time series data are plotted in Figure

2.

Parameter estimates using GMM

The Euler scheme of the generalized nonlinear drift, CEV process for rt in equations

(5) and (8)-(9) is needed for parameters estimation and can be written over time steps

of length h:

∆r = rt+h − rt = µ(rt)h + σrγ
t zt+h, zt+h ∼ N(0, h),

where µ(rt) = a + brt + crγ
t + dr2γ−1

t (µ(rt) = brt + dr2γ−1
t , µ(rt) = brt + crγ

t ) is for

equation (5) ((8), (9)). The error term ut+h = σrγ
t zt+h = ∆r − µ(rt)h satisfies the
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Figure 2. Monthly one-month rate: The first (second) figure con-
tains the monthly one-month Treasury bill (Eurodollar) rate from June
1964 to November 1989 (from January 1971 to January 2007).

following conditional expectations:

Et[ ut+h] = 0

Et[ u
2
t+h] = σ2r2γ

t h.
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Using instruments Zt =
(
1 rt

)
, we have unconditional moment conditions

E[ ut+h ] = 0

E[ rtut+h ] = 0

E[ u2
t+h − σ2r2γ

t h ] = 0

E[ rt(u
2
t+h − σ2r2γ

t h) ] = 0

The number of parameters is restricted to be less than or equal to four for these above

moment conditions. Thus, the process for equation (5) is restricted to be like equation

(3) as follows:

µ(rt) = brt + crγ
t +

1

2
σ2γr2γ−1

t . (11)

Table 1 reports the parameter estimates, associated standard deviation errors and

p-values, and R2
j information about how well the corresponding models are able to

forecast the future rate change and volatility. The R2
j statistics are computed as the

proportion of the total variation of the actual yield changes, yt ≡ rt − rt−h, for j = 1

and their volatility (squared yield changes) for j = 2 explained by the predictive values

of corresponding models, ŷt, as follows:

R2
1 = 1− V̂ar(yt − ŷt)

V̂ar(yt)
(12)

R2
2 = 1− V̂ar((yt − ŷt)

2)

V̂ar(y2
t )

(13)

Parameter estimates using multiple regression

If the number of parameters in the model is greater than four, a simple extension

of instruments like Zt =
(
1 rt r2

t

)
does not guarantee the convergence of the sample

moment conditions for the GMM estimation. Thus, we employ the two-stage procedure:

First, given γ in the appropriate range, run the multiple regression for the dependent
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Table 1. Estimates of alternative models for the short rate: The
estimation horizon for rt, the annualized one-month U.S. Treasury bill yield,
is from June, 1964 to December, 1989 (306 observations). The parameters are
estimated by the GMM with standard deviations in parentheses and p-values
in [ ]. The R2

j statistics are computed as the proportion of the total variation
of the actual rate changes (j = 1) and their volatility (squared rate changes)
(j = 2) explained by the predictive values of corresponding models.

Model Equation Equation Equation CKLS Vasicek

(11) (9) (8)

a 0 0 0 0.042 0.030

(0.016) (0.014)

[0.0009] [0.033]

b 1.268 1.170 0.593 -0.608 -0.449

(0.631) (0.647) (0.317) (0.270) (0.247)

[0.045] [0.071] [0.061] [0.024] [0.069]

c or d -4.825 -4.108 -6.801 0 0

(2.511) 1.913 (7.311)

[0.055] [0.032] [0.352]

σ2 1.625 1.614 1.552 1.779 0.0004

(2.572) (2.532) (2.366) (2.906) (0.0001)

[0.527] [0.524] [0.512] [0.540] [0.0009]

γ 1.491 1.490 1.482 1.508 0

(0.304) 0.301 (0.293) (0.313)

[0.000] [0.000] [0.000] [0.000]

R2
1(∆r) 0.037 0.038 0.041 0.027 0.025

R2
2(∆r) 0.209 0.213 0.230 0.163 0.130

variable, yt = rt − rt−1, as follows

yt = f(rt,β) + εt, εt
i.i.d∼ D(0, σ2),
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where the independent variables with β =
(
a, b, c, d

)
are given by

f(rt,β) =





a + brt CKLS model,

a + brt + crγ
t Equation (9),

a + brt + dr2γ−1
t Equation (8),

a + brt + crγ
t + dr2γ−1

t Equation (5),

a + brt + cr2
t + d 1

rt
Aı̈t-Sahalia.

(14)

Figure 3 plots the multiple R2-values as a function of γ: The first (second) figure

contains the multiple R2 values measured by equation (12) as a function of γ using the

one-month Treasury bill (Eurodollar deposit) rates. For example, the legend, BCT-γ

(CEV, BCT-ext’ed), means that the R2-values are obtained from the multiple regression

with independent variables, Equation (9) ((8), (5)). The R2-value of the CKLS model

is independent of the value of γ and is similar to the value shown in Table 1. The

R2-value of the Aı̈t-Sahalia model, 0.058, is also independent of the value of γ and is

twice larger than that of the CKLS model, 0.027. However, Figure 3 implies that the

best predictive model is the GNCEV process by taking the appropriate value for γ.

Second, select the optimal γ having the largest R2-value for the multiple regression

model in (14) with equation (5) and then run the multiple regression for the equation

(5) and Aı̈t-Sahalia models. Table 2 reports the parameter estimates, F -statistics, and

multiple R2-values. While just two independent variables in the GNCEV process are

significant, four all independent variables including the intercept term in the Aı̈t-Sahalia

model are significant. However, regression results such as R2-values and F -statistics for

both data sets imply that the GNCEV process is better than the Aı̈t-sahalia model.

The drift function estimates using the parameter estimates in Table2 is plotted in

Figure 1 and is similar to Figure 1 of Jones (2003); in the case of having the same

drift functions of Aı̈t-Sahalia, higher interest rates tend to revert downward and low

rates upward. However, the drift function estimated by our GNCEV model shows that,
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Table 2. Estimates of multiple regression: The annualized one-
month U.S. Treasury bill yield covers from June 1964 to December 1989 (306
observations) and the annualized one-month Eurodollar rate covers from Janu-
ary 1971 to January 2007 (433 observations). The parameters are estimated by
the multiple regression analysis with standard deviations in parentheses and
p-values in [ ]. The F -statistics are reported with p-values in parentheses and
associated degrees of freedom (d.f.). The R2

j statistics are computed as the
proportion of the total variation of the actual rate changes (j = 1) and their
volatility (squared rate changes) (j = 2) explained by the predictive values of
corresponding models.

Data Treasury Bill Eurodollar rate

Models Aı̈t-Sahalia Eq. (5) Aı̈t-Sahalia Eq. (5)

a -0.045 3.64e-03 -6.22e-03 9.34e-04

(0.021) (2.59e-03) (3.30e-03) (1.32e-03)

[.036] [.162] [.060] [.479]

b 0.707 -6.88e-02 1.46e-01 -2.70e-02

(0.295) (5.18e-02) (5.88e-02) (3.01e-02)

[.017] [.185] [.013] [.370]

c -3.448 7.23e+01 -8.40e-01 4.28

(1.232) (4.15e+01) (2.67e-01) (2.50)

[.005] [0.082] [.0018] [.087]

d 0.0009 -2.95e+04 6.00e-05 -1.67e+02

(0.0005) (1.11e+04) (4.08e-05) (6.00e+1)

[.051] [.008] [.143] [.0058]

γ 4.08 3.06

σ 0.008 .008 .008 .007

F-stat. 6.281 8.637 5.551 8.669

(.0004) (1.6e-05) (9.59e-04) (1.35e-05)

d.f. (3,301) (3,301) (3,428) (3, 428)

R2
1(∆r) 0.059 0.079 0.037 .057

R2
2(∆r) 0.343 0.422 0.163 .202

while higher interest rate mean-reverts strongly, medium rates has almost zero drift

and low rates has a very small drift depending on the data. This characteristic comes

from the negative reaction between independent variables rγ
t and r2γ−1

t . Furthermore,

this feature coincides the empirical result based on the nonparametric methodology by

Stanton (1997) and the implication of scatter plot of the short rate data in Figure 3.

Figure 3 shows that our model drift function is close to that obtained by a LOWESS
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nonparametric regression at low and medium rates, but our model has a very strong

mean-reversion trend at high rates: this phenomenon coincides the scattering plot of

changes in the short rate.

4. Conclusion

In this article, we employ the Box-Cox transformation to fix the normality assump-

tion for the short rate and propose a new short-term interest rate model having a

different nonlinear drift function and the same diffusion coefficient with Chan, Karolyi,

Longstaff, and Sanders (1992) model. The drift function in our model has two fractional

polynomial powers, linked to the local volatility elasticity of the diffusion coefficient.

While the nonlinear drift function estimated by Aı̈t-Sahalia (1996a) and others has a

feature that higher interest rates tend to revert downward and low rates upward, the

drift function estimated by our nonlinear model shows that higher interest rate mean-

reverts strongly, but, medium rates has almost zero drift and low rates has a very small

drift. This characteristic comes from the negative reaction between two fractional poly-

nomials as an independent variables. Furthermore, this feature coincides the empirical

result based on the nonparametric methodology by Stanton (1997) and the implication

of scatter plot of the short rate data.

In future research, we will estimate the parameters in several nonlinear CEV and

Aı̈t-Sahalia models using the maximum likelihood estimation and Bayesian method to

make sure that nonlinear drift is a feature of daily, weekly, and monthly data, which is

contrary to the result obtained by Jones (2003).
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Figure 3. Multiple R2 as a function of γ: The first (second) figure
contains the multiple R2 values measured by equation (12) as a function
of γ using the one-month Treasury bill (Eurodollar deposit) rates.
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Figure 4. Monthly interest rate changes: The first (second) figure
contains the monthly changes in the one-month Treasury bill (Eurodollar
deposit) rates plotted against rates on preceding month. It also contains
three regression lines drawn by a LOWESS nonparametric regression, and
our nonlinear drift and Aı̈t-Sahalia models.


