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ABSTRACT 

This paper investigates the investment horizon effects on dependence structure between 
hedge fund returns and market returns. The key question is whether the nonlinearity (i.e., 
asymmetry) in the dependence structure, observed by several previous studies using 
monthly frequency data, continues to exist between longer horizon returns. In the 
context of hedge funds, this question is particularly important because investing in a 
hedge fund often involves liquidity restrictions such as lock-up periods and redemption 
notice periods. Two main results emerge. First, the asymmetry in their dependence 
relationship is more short-term in nature. Second, the lower tail dependence decreases 
along with the increasing investment time horizon, which suggest the possibility that the 
tail risk of hedge funds can be diversified through time. Our finding of diminishing 
asymmetry in dependence structure along with lengthening investment horizon implies 
that the value of knowing such asymmetries may not be as substantial for long-term 
investors as the previous studies suggest. 
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1. Introduction 

 Returns on many hedge funds exhibit a nonlinear relationship with the return on 

market portfolio. Its implications are important for asset allocation and risk 

management involving hedge funds. For example, when a hedge fund has a payoff 

structure resembling a short position in a put option on the market, which indeed is the 

case according to Agrawal and Naik (2004) among others, the benefit of diversification 

is overstated by those who do not consider the stronger downside (than upside) co-

movements between the fund and the market.  

 Despite the importance of its implications, our understanding of the nonlinear 

dependence between hedge fund returns and market returns is obtained largely by 

analyzing on monthly frequency data. Thus, the question that arises is: Does the 

asymmetry in the dependence structure continue to exist between longer horizon 

returns? In the context of hedge funds, this question is particularly important because 

investing in a hedge fund often involves liquidity restrictions such as lock-up periods 

and redemption notice periods. Hence, we simply have to look beyond one month 

horizon. 

 In this paper, we investigate the dependence structure between hedge fund 

returns and market returns, using short as well as long horizon returns. Thus, this paper 
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can be viewed as an attempt to address the suggestions of Poon et al. (2004), who 

propose studying the effect of investment time horizons on tail dependence. 

Two main results emerge. First, the asymmetry (i.e., nonlinearity) in the 

dependence relationship between a hedge fund and the market return is more short-term 

in nature. Specifically, the dependence structure between short horizon returns on the 

hedge fund and the market is found to be asymmetric, where their co-movements are 

much greater for downside moves than for upside moves. However, as investment 

horizon increases, the asymmetry in the dependence structure is gradually resolved.  

Second, the lower tail dependence (i.e., the probability of an extremely low 

return on a hedge fund conditional on an extremely low return on the market) decreases 

along with the increasing investment time horizon. This indicates that the tail risk of 

hedge funds can be diversified through time. Interestingly, according to Brown and 

Spitzer (2006), this type of risk is not diversifiable by forming a portfolio of hedge 

funds. 

The remainder of this paper is organized as follows. Section 2 discusses our 

research design. Section 3 presents the evidence for horizon effects on dependence 

structure between hedge funds and market returns. Section 4 concludes. 
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2. Research design 

To investigate the horizon effects on dependence structure between a hedge fund 

and the market returns, we create horizon-by-horizon joint distributions of the hedge 

fund and the market returns. Specifically, we simulate quarterly, half-yearly, yearly, 

three-yearly and five-yearly return distributions of the fund and the market. To this end, 

we use both parametric and non-parametric approaches, which we discuss below. We 

first simulate, parametrically and non-parametrically, a path of 60 monthly returns on a 

given fund and the market, and take the first k realizations to compute a k-month 

holding period return: 
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where  is the holding period return over k months beginning from time 0, and 

is the monthly return on the hedge fund at the end of the j-th month (i.e., the j-th 

realization of monthly return on the hedge fund). A similar computations can be done 

for the market return, . From each simulated path, we obtain a single realization of 

one-quarter, six-month, one-year, three-year, and five-year holding period returns 

(i.e., , , , , and  for i=h, m) on the fund and the market, 

respectively. We repeat this procedure B (→∞) times to construct the simulated joint 

distribution of the fund and the market returns for each holding period.  
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2.1. Non-parametric simulation  

The bootstrap has been traditionally used for estimating the distribution of an 

estimator or test statistics by re-sampling historical data. In this paper, we employ a 

block bootstrap technique as a non-parametric way to obtain empirical distribution of k-

month holding period return. The main advantage of this approach is that the univariate 

properties such as serial correlation and heteroskedasticity in the financial time series 

are preserved in block-bootstrapped return series, without making any assumption on 

the underlying process. Specifically, we use the stationary bootstrap of Politis and 

Romano (1994), and the optimal average block size is determined similar to Patton 

(2006): We first apply the algorithm of Politis and White (2004) to returns on a given 

hedge fund and the market, squared returns on the hedge fund and the market, and the 

product of the two returns, then choose the largest of these lengths as the block length 

for both assets. Unlike Patton (2006), however, we re-sample the vector of the fund and 

the market returns, rather than re-sample the fund and the market returns separately. By 

doing so, we ensure that along with the statistical artefacts in univariate series, monthly 

cross-sectional dependence structure between the two assets is also maintained in each 
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block-bootstrapped return series. In application to our dataset, we use 5,000 bootstrap 

replications (i.e., B=5,000) with the size of each bootstrap sample equal to 60.1

 

2.2. Parametric simulation 

Unlike the non-parametric method, the parametric approach involves model 

specification and parameter calibration before used to generate return paths. For this 

reason, Monte Carlo simulation is subject to some degree of model misspecification 

error. Nevertheless, this approach can be very useful in investigating the distributional 

properties of asset returns derived from one’s intended model. Related to this paper, 

Monte Carlo method enables us to examine whether or not lower tail dependency is still 

evident in longer investment horizons when underlying process driving monthly hedge 

fund and market returns is explicitly modelled to generate the lower tail co-movement. 

Of course, no such experiment is possible without a parametric model that produces the 

desired property. Note that the standard families of multivariate distributions such as the 

multivariate normal or the elliptic distributions are not flexible enough to generate such 

tail behaviours. For this reason, we adopt copulas. 

                                                 
1 This may be interpreted as a class of ‘m out of n’ bootstrap since our original sample data includes 150 

monthly observations, which is larger than each bootstrap sample size of 60. It is well known that the ‘m 

out of n’ bootstrap technique performs successfully in many situations where the conventional bootstrap 

fails. 
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2.2.1 Copula-based model specification for simulation 

Typically, the marginal distributions of hedge funds and the market returns are 

skewed and fat-tailed, while their means and variances are time-varying. For hedge fund 

returns, in particular, existence of autocorrelation is well documented in recent literature. 

(see, e.g., Asness et al., 2001; Getmansky et al., 2004). We incorporate these univariate 

statistical properties of the hedge funds and the market returns, along with their 

dependence relationship, for the simulation. For exposition, let us assume that the 

marginal distributions for a hedge fund (i=h) and the market (i=m) returns follow 

AR(pi)-GARCH(qi,ri) processes:  
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where the distribution of the standardized residual (i.e., ti ,υ , i =m, h) is either the 

standard normal, the standardized Student’s t or the skewed Student’s t distribution of 

Hansen (1994), and that their dependence structure is determined by a copula function 

C:    
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where  is the joint cdf of hmF , tmtm hu ,,  and thth hu ,, , and  is the marginal cdf of iF

titi hu ,, , which is the inverse function of ti ,υ . Based on this specification, the 

simulation proceeds as follow: First, we simulate two series of 60 uniformly distributed 

random variables x and y from the copula function C with parameterθ  calibrated to the 

data. Second, we compute two series of standardized innovations tmtm hu ,,  and 

thth hu ,,  by taking their respective inverse cdfs on x and y. Based on the simulated 

time series of standardized innovations and other calibrated parameters, the rest are the 

same as simulating univariate AR(pi)-GARCH(qi,ri) models. We repeat this procedure 

20,000 times (i.e., B=20,000) to create horizon-by-horizon joint distributions of the 

hedge fund and the market returns as illustrated above. While we expect that the 

dependence structure between one-month holding period returns (i.e., , i=m, h) is 

most directly influenced by our choice of copula function, how this dependency changes 

with the varying investment horizon remains to be seen. 

10, →iR

 

3. Empirical results 

Section 3.1 describes our data. Sections 3.2 and 3.3, the heart of this paper, 

examine the effect of investment time horizons on the dependence structure between a 
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given hedge fund and the market portfolio. Our findings are discussed mainly in Section 

3.2 based on results from non-parametric simulation. Using Monte Carlo simulation, 

Section 3.3 serves as a robust check of the results reported in Section 3.2. 

 

3.1. Data   

We use monthly net-of-fee returns of Live and Dead (or Graveyard) hedge funds 

in the TASS database. Specifically, we focus on those that categorize themselves as 

“Long/Short Equity” (LSE hereafter) or “Event-Driven” (ED hereafter) among other 

style designations in the database. There are at least two motivations behind this: First, 

LSE and ED funds are by far the most popular and rapidly growing style categories 

within the hedge fund industry. For example, according to the Tremont Asset Flows 

Report (Fourth Quarter, 2006), the total amount of hedge fund capital devoted to LSE 

and ED funds are in excess of $326.5 billion and $224.2 billion, respectively. These 

amounts respectively account for more than 31.0% and 21.3% of sum of the all hedge 

funds under management. Second, and more importantly, LSE and ED funds are found 

by several previous studies to exhibit a strong nonlinear relation with the return on 

market portfolio. In particular, Brown and Spitzer (2006) observe that the nonlinear 

dependency, where hedge funds are more sensitive to market risk in bear markets than 
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in bull markets, is most pronounced for LSE and ED funds among other style 

designations. Thus, LSE and ED funds provide us with a good laboratory to test 

whether or not the nonlinear dependence structure established between short-horizon 

(i.e., monthly) returns still remains between longer-horizon returns. 

Our hedge fund data run from January 1994 through June 2006 (i.e., 150 

monthly observations). For analysis, we construct an equal-weighted return on all 

eligible Live and Dead funds under each category. To be included in the sample, we 

require a fund to report U.S. dollar denominated returns, net of management and 

incentive fees, on a monthly basis. We also require a fund to have a minium of $5 

million of assets under management and a minimum one-year track record. As a result, 

we are left with 1,296 LSE funds (696 in the Live and 600 in the Dead databases) and 

420 ED funds (241 in the Live and 179 in the Dead databases). As the market index, we 

employ the value-weighted return on all NYSE, AMEX, and NASDAQ stocks (from 

CRSP) throughout this paper. 

 

3.2. Analysis on non-parametrically simulated data  

As a preliminary look at the dependence structure between a given hedge fund 

and the market portfolio, Figures 1 and 2 plot the empirical cdf of  (kmR →0, kmRF
→0,

~  
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hereafter) against that of  (khR →0, khRF
→0,

~  hereafter) for the LSE funds and the ED funds, 

respectively. The advantage of doing this, compared to plotting  against  is 

that we focus solely on the dependence structure by filtering out the influence of 

marginal distributions. Clearly, both Figures 1 and 2 present evidence for the impact of 

the investment horizon on the dependence structure: For the short-term investment 

horizon (i.e., quarterly), the points tend to concentrate near (0, 0), whereas for the long-

term investment horizon (i.e., five-yearly), the points near the two vertices (0, 0) and (1, 

1) in the unit square are of about equal densities.  

kmR →0, khR →0,

Following Longing and Solnik (2000), and Ang and Chen (2002), we also 

consider the exceedance correlation based on the empirical cdfs of and : kmR →0, khR →0,
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where  is the q-th quantile of( )qQi kiRF
→0,

~ , i = m, h. Based on 
kmRF

→0,

~  and 
khRF

→0,

~ , the 

exceedance correlation in Eq. (3) enables the isolation of the dependence structure from 

the influence of marginal distributions. Thus, any subsequent finding of asymmetry will 

be entirely due to the asymmetry in dependence structure. 

 Figures 3 and 4 show the empirical exceedance correlations based on 
kmRF

→0,

~  and 

khRF
→0,

~  for the LSE funds and the ED funds, respectively. Similar in spirit to Longing 

and Solnik (2000), and Ang and Chen (2002), who compare the empirical exceedance 
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correlations with the exceedance correlations derived under the assumption of the 

multivariate normality, we provide a plot of what would be obtained from the normal 

copula in the figures. Analogous to the multivariate normality which some authors have 

used as the benchmark in determining asymmetry in correlation structure, we adopt the 

normal copula as the benchmark for asymmetry in dependence structure. Also presented 

in the figures is a plot of exceedance correlations implied by the Clayton copula, the 

inclusion of which is due to the qualitative similarity between our empirical exceedance 

correlations and the type of dependence suggested by the Clayton copula.  

By inspection of Figures 3 and 4, the investment time horizon again appears to 

have an impact on the dependence structure between the hedge funds and the market. 

Relative to those implied by the normal and Clayton copula models, the empirical 

exceedance correlations based on 
kmRF

→0,

~  and 
khRF

→0,

~  almost always lie somewhere in 

between the two. Interestingly, it is clearly demonstrated the tendency towards the 

normal copula (i.e., symmetry in dependence structure) as with the increasing 

investment horizon. Note that, in particular, the shape of its exceedance correlations for 

five-year holding period return on the ED funds is almost indistinguishable from what 

would be obtained if the funds and the market had the normal copula. In short, 

consistent with Figures 1 and 2, the asymmetry in the dependence relation, which 

 11



indicates the stronger downside co-movement for the short-term investment horizon, is 

resolved for the long-term investment horizon. 

Next, we examine the investment time horizon effect on the lower tail part of 

dependence structure (i.e., tail dependence). Our goal is to check whether the tail risk of 

hedge funds, which Brown and Spitzer (2006) among others find to be not diversified 

by forming a portfolio of hedge funds, is time-diversifiable. To this end, we compute the 

following measure of tail dependency, and compare the results across all holding 

periods: 

( )
u

uuC
uL

,lim
0→

=λ                                                     (4) 

where C denotes the copula function that determines the dependent structure between a 

given hedge fund and the market portfolio. Joe (1997) gives the reasoning behind the Eq. 

(4): When ( , then ) CUU ~, 21

( ) ( )uUuUuUuU
uuL <<=<<=
→→ 120210

PrlimPrlimλ  

In words, Lλ  in Eq. (4) is the probability of an extremely low return on the hedge fund, 

conditional on the fact that an extremely low return on the market portfolio is observed 

(and vice versa). 
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 For the copula function that will be used in Eq. (4), we propose, following Hong 

et al. (2006) among others, a mixture copula that linearly combines the normal copula 

with the Clayton copula: 

 ( ) ( ) ( )τκρκτρκ ;,)1(;,,,;, 212121 uuCuuCuuC claynormmix −+=                  (5) 

where κ (0≤κ ≤1 ) is the mixture parameter, is the normal copula function, and 

is the Clayton copula function. Our choice of the mixture copula is motivated by 

the previous observations in Figures 3 and 4, where the shape of empirical exceedance 

correlation plot appears to be a mixture of those implied by the normal and the Clayton 

copula functions.

normC

clayC

2  In addition, by adjusting the mixture parameter κ , the mixture 

copula captures the gradual change in dependence structure (i.e., from near the Clayton 

towards the normal) with increasing investment horizons. The specification in Eq. (4) 

clearly shows that both the normal and the Clayton copula functions are nested within 

the mixture models as a special case. From Eq. (4) and (5), it can be shown that the 

lower tail dependence for the mixture copula is expressed in terms of the model 

parameters: 

)1(2)1( 1 κλκκλλ τ −=−+= −claynormmix
LLL

                                                

                                (6) 

 
2 Also, the mixture copula model is found to best fit the simulated sample data across all holding periods 

(except for the quarterly holding period return on the LSE funds) among other commonly used copula 

functions in the literature: the normal, the Clayton, the Gumbel, and the Frank copula functions. The 

comparison is based on Junker and May (2002)’s goodness-of-fit test.  2χ
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In what follows, the  for each holding period will be calculated based on the 

estimates of 

mix
Lλ

κ  and τ . 

 Panel A of Table 1 reports the estimation results of the mixture model for the 

LSE funds. The model parameters are estimated by maximizing the pseudo 

loglikelihood, the likelihood of a parametric copula evaluated at nonparametric marginal 

distributions (i.e., the empirical marginal cdfs).3  Throughout, the estimates are very 

precise due to the size of our simulated data. Consistent with what we visually observe 

in Figure 3, Panel A reveals that the mixture parameter κ~ , which determines the 

weight of the normal copula in the mixture model, increases monotonically along with 

the increasing investment horizon. In contrast, the normal parameter ρ~  remains almost 

unchanged, indicating no horizon effects on the overall linear dependency. Although it 

alone implies little change in tail dependence, the Clayton parameter τ~ , when inputted 

into Eq. (4) together with κ~ , yields monotonically decreasing lower tail dependence 

 along with the lengthening investment horizon, mostly due to the effect of the 

mixture parameter 

mix
Lλ

~

κ~ . Panel B tells the same story for the ED funds, though virtual tail 

                                                 
3 The extensive simulation study done in Kim et al. (2006) suggests that the proposed method performs 

better than the ML (maximum likelihood) and the IFM (inference function for margins) methods, overall. 

Their results show that the ML and the IFM methods are not robust against misspecification of the 

marginal distributions. Thus, care should be taken when applying theses methods when the marginal 

distributions are unknown, which is almost always the case in practice. 
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independence (or ‘tail neutrality’, termed by Patton (2006)) for more than one-year 

holding period return is one notable difference.  

In summary, the tail dependence between the hedge funds and the market 

decreases as the investment time horizon increases. Indeed, the tail risk of the hedge 

fund can be, to varying extent, time-diversified.  

 

3.3. Analysis on parametrically simulated data  

 Monte Carlo simulation involves model specifications and parameter 

calibrations. For marginal distributions of the return on the LSE funds and the market 

return, we choose AR(1), skewed t-GARCH(1,1) specifications, whereas for marginal 

distribution of the return on the ED funds, we adopt AR(1), skewed t-GARCH(0,0), 

where there is no time-varying volatility while the residuals are skewed and fat-tailed. 

Though not shown, the distributions of estimated standardized residuals justify the 

proposed specifications. We estimate the parameters in the univariate models, using the 

ML method, and the estimated standardized residuals are stored for the purpose of the 

copula parameter estimation. As explained above, the copula parameter estimations are 
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done by maximizing the pseudo likelihood.4 Regarding the choice of copula model, we 

choose the Clayton copula, which imposes the non-zero lower tail dependence. 

Although the true dependence structure may not exactly conform to this one parameter 

model, we find no evidence against the Clayton copula based on Junker and May 

(2002)’s goodness-of-fit test (not shown). Moreover, though the tail dependence 

generated by the Clayton model may exaggerate the true tail dependence, this should 

provide no problem: Our goal in the end is to check the extent of tail dependence (or the 

asymmetry in dependence structure) between the longer horizon returns when the 

dependence structure between short horizon returns on the hedge fund and the market is 

characterized by those properties.  

2χ

The results based on Monte Carlo simulations are presented in Figures 5 to 8 

and in Table 2. The figures and table provide qualitatively similar results to those 

presented in the previous sub-section. 

 

4. Conclusions 

                                                 
4 This class of semiparametric copula-based model is first introduced in Chen and Fan (2006). They 

specify the conditional mean and the conditional variance of a multivariate time series parametrically, but 

specify the multivariate distribution of the standardized innovation semiparametrically as a parametric 

copula evaluated at nonparametric marginal distributions. They show that the limiting distribution of the 

estimator of the pseudo true value of the copula parameter is not affected by the estimation of the 

parameters involved in conditional mean and conditional variance. 
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We have two main results concerning the investment horizon effects on 

dependence structure between hedge fund returns and market returns. First, the 

nonlinearity in their dependence relationship is more short-term in nature. Specifically, 

the short horizon returns on hedge funds and market exhibit the asymmetric dependence 

structure, where their co-movements are much greater for downside moves than for 

upside moves. However, the asymmetry gradually diminishes as investment horizon 

increases. Second, the lower tail dependence decreases along with the increasing 

investment time horizon, which suggest the possibility that the tail risk of hedge funds 

can be diversified through time. Interestingly, according to Brown and Spitzer (2006), 

this type of risk is not diversifiable by forming a portfolio of hedge funds (i.e., fund of 

funds). 

Future research could study the long-term asset allocation implications. Some 

recent papers have evaluated the economic significance of incorporating asymmetric 

dependence into investment decisions (see, e.g., Ang and Chen, 2002; Patton, 2004; 

Hong et al., 2006). Our finding of diminishing asymmetry in dependence structure 

along with lengthening investment horizon implies that the value of knowing such 

asymmetries may not be as substantial for long-term investors as the previous studies 

suggest.  
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Figure 1 Scatter Diagram for the Long/Short Equity Funds based on Non-parametrically Simulated Samples 
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Figure 2 Scatter Diagram for the Event-Driven Funds based on Non-parametrically Simulated Samples 
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Figure 3 Exceedance Correlation Plot for the Long/Short Equity Funds based on Non-parametrically Simulated Samples 
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Figure 4 Exceedance Correlation Plot for the Event-Driven Fund based on Non-parametrically Simulated Samples 
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 Figure 5 Scatter Diagram for the Long/Short Equity Funds based on Parametrically Simulated Samples 
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Figure 6 Scatter Diagram for the Event-Driven Funds based on Parametrically Simulated Samples 
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 Figure 7 Exceedance Correlation Plot for the Long/Short Equity Funds based on Parametrically Simulated Samples 
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Figure 8 Exceedance Correlation Plot for the Event-Driven Funds based on Parametrically Simulated Samples 
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TABLE 1 
Estimation of the Mixture Copula based on Non-parametrically Simulated 

Samples 
Panel A: Long/Short Equity 

  Q HY Y Y3 Y5 
κ  0.599  0.666  0.675  0.792  0.868  
 (0.033)  (0.033)  (0.033)  (0.034)  (0.032)  
ρ  0.876  0.861  0.842  0.808  0.811  
 (0.006)  (0.006)  (0.007)  (0.006)  (0.006)  
τ  3.348  2.900  2.754  2.920  2.634  

 (0.199)  (0.173)  (0.179)  (0.294)  (0.365)  
mix
Lλ  0.326  0.263  0.253  0.164  0.102  

      
Panel B: Event-Driven 

  Q HY Y Y3 Y5 
κ  0.595  0.736  0.865  0.953  0.990  
 (0.036)  (0.034)  (0.030)  (0.017)  (0.005)  
ρ  0.752  0.737  0.721  0.749  0.742  
 (0.012)  (0.009)  (0.007)  (0.007)  (0.007)  
τ  1.453  1.923  2.846  0.748  0.013  

 (0.092)  (0.163)  (0.434)  (0.221)  (0.471)  
mix
Lλ  0.251  0.184  0.106  0.018  0.000  

           
Table 1 reports the pseudo maximum likelihood estimates of the parameters in the mixture copula model. 
The estimations are based on parametrically simulated data. The mixture copula is one that linearly 
combines the normal copula with the Clayton copula: 

( ) ( ) ( )τκρκτρκ ;,)1(;,,,;, 212121 uuCuuCuuC claynormmix −+=  
where κ (0≤κ ≤1 ) is the mixture parameter, is the normal copula function, and is the 
Clayton copula function. The last row in each column represents the lower tail dependence between 
hedge fund returns and market returns, which can be expressed in terms of the model parameters: 
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The reported s for each holding period are calculated based on the corresponding estimates of mix
Lλ κ  

and τ . 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
TABLE 2 

Estimation of the Mixture Copula based on Parametrically Simulated Samples 
Panel A: Long/Short Equity 

  Q HY Y Y3 Y5 
κ  0.425  0.554  0.594  0.654  0.712  
 (0.019)  (0.019)  (0.018)  (0.019)  (0.017)  
ρ  0.766  0.767  0.782  0.752  0.776  
 (0.006)  (0.005)  (0.005)  (0.004)  (0.004)  
τ  2.161  2.278  2.047  2.349  1.768  

 (0.041)  (0.059)  (0.060)  (0.069)  (0.058)  
mix
Lλ  0.417  0.329  0.290  0.258  0.195  

      
Panel B: Event-Driven 

  Q HY Y Y3 Y5 
κ  0.370  0.521  0.659  0.719  0.761  
 (0.022)  (0.021)  (0.021)  (0.020)  (0.019)  
ρ  0.722  0.699  0.705  0.699  0.694  
 (0.010)  (0.007)  (0.006)  (0.005)  (0.005)  
τ  1.414  1.627  1.506  1.593  1.620  

 (0.035)  (0.052)  (0.060)  (0.073)  (0.080)  
mix
Lλ  0.386  0.313  0.215  0.182  0.156  

           
Table 2 reports the pseudo maximum likelihood estimates of the parameters in the mixture copula model. 
The estimations are based on non-parametrically simulated data. The mixture copula is one that linearly 
combines the normal copula with the Clayton copula: 

( ) ( ) ( )τκρκτρκ ;,)1(;,,,;, 212121 uuCuuCuuC claynormmix −+=  
where κ (0≤κ ≤1 ) is the mixture parameter, is the normal copula function, and is the 
Clayton copula function. The last row in each column represents the lower tail dependence between 
hedge fund returns and market returns, which can be expressed in terms of the model parameters: 
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The reported s for each holding period are calculated based on the corresponding estimates of mix
Lλ κ  

and τ . 
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