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Abstract
It is well known that the pattern of implied volatilities in foreign currency

options forms a smile shape which is referred to as a volatility smile. On the
other hand, the volatility skew is a general pattern of implied volatilities in
equity options. In this paper, we consider the Carr-Geman-Madan valuation
of options in incomplete markets on which the preference structure of the
market participants are reflected. Through a simple continuous static no
arbitrage extension, we examine how the smiles and skews are related.

1 Introduction

The celebrated Black-Scholes option pricing formula is derived from the complete
market assumption and from the assumption that stock price process follows the
geometric Brownian motion which satisfies the stochastic differential equation

dSt

St

= µdt + σdWt , (1.1)

where µ is a constant and σ a constant called volatility.
Though it is the most widely using option pricing formula until now, market data

consistently reveal bias to the formula. Indeed, assume σ be unknown variable, while
other variables are fixed to be constants, denotes the Black-Scholes call option price
with strike K by C(σ,K), and solve the equation

C(σ,K) = Cob , (1.2)
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where Cob is the price obseved from the real market. Let σI(K) be the solution of
(1.2), the we call σI(K) the implied volatility, and if the Black-Scholes is correct,
then σI(K) should be constant over K.

However, it is reported that σI(K) shows smile for equity options before 1987 and
currency options. After 1987, crash, σI(K) shows skew. (see Figure 1). Rubinstein
(1994) showed that the implied risk neutral distribution, after the 1987 market crash,
is slightly bimodal. According to him, the bimodality coming from the lower tail
(”crash-o-phobia”) is quite common during the post crash period. (see Rubinstein
(1994))

Many authors have tried to explain the reason of this bias. One successful,
and widely accepted explanation came from the stochastic volatility model, which
assume the stock price process {St}t≥0 satisfies the stochastic differential equations

dSt

St

= µdt + σtdWt (1.3)

dσt = b(σt)dt + a(σt)dZt , (1.4)

where Wt and Zt are Brownian motions and {σt}t≥0 is called the volatility process,
b, a are some functions for σt, and µ a constant. In this case, we can find the
theoretical option price and if we assume the market price of options follow the
theoretical price, then we can show that the implied volatility must skew.

Despite the success of the stochastic model, due to the complexity of the depen-
dence structure between the noise of underlying and the noise of volatility process,
it is hard to analyze the smile-skew relationship. Moreover, the volatility structure
does not fit well.

Our aim is to provide relatively simple models and to analyze smile and skew
phenomena: Indeed, we consider one period continuous Carr-Geman-Madan model
(which we will refer to as CGM) in incomplete markets. Real markets are far
from complete, and in incomplete markets, option price depends on the utility or
the preference structure of the market participants. Our motivation is from the
insight that volatility smile or skew might be a reflection of the preference structure.
We extend CGM to continuous time model which satisfies the static no arbitrage
conditions and includes crash-o-phobia characteristics.

In CGM model, the option price is given by the convex combination of the val-
uation given by test and valuation measures of the traders on which the preference
structure of the participants is reflected. Indeed, CGM starts from defining an
acceptable opportunity, which is drastically weakened in meaning for an arbitrage
opportunity. Every reasonable person but the most risk averse would accept an op-
portunity with mild risks, if the gains would adequately compensate for the costs. To
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test whether a trading strategy is acceptable, Carr, Geman and Madan introduced
a set of measures (test and valuation measures) and associated floors, non positive
numbers. An investment is acceptable if and only if the expected gain under each
measure exceeds its associated floor. Their main contribution is the proof of the first
and second fundamental theorems which demonstrate that under suitable condition,
the state pricing functions can be uniquely determined by a linear combination of
the valuation measures.

Note that the CGM model is basically a one period model. The continuous time
extension can be carried out easily, since European options depend only on the ma-
turity. In the extension, we are not attempt to establish the fundamental theorems
about the existence and uniqueness of the pricing density. Instead, we are more in-
volved in the satisfaction of the minimum requirement as a option pricing machine.
Since the underlying may have jumps, real market is more likely incomplete and,
thus, dynamic hedging itself is costly and risky. In this case, dynamic arbitrage is
had to obtain. As a result, the fact that the price satisfies the static no arbitrage
conditions which Merton first derived would be a good measure for the price to be
acceptable in practice.

In this paper, we do not assume a specific model for the stock price process. It
may have jumps, and it may even be non-Markovian. We only assume that there are
only two valuation measures Q1, Q2. The densities of Q1, Q2 are given by lognormal
densities, i.e.,

fQ1 =
exp

{− 1
2σ2

uT

[
log(x/S0)− (µu − σ2

u/2)T
]2}

√
2πTσux

(1.5)

fQ2 =
exp

{− 1
2σ2

dT

[
log(x/S0)− (µd − σ2

d/2)T
]2}

√
2πTσdx

.

The CGM model gives the European call price by

C(S0, K) = w BS(S0, K, r, r − µu, σu, T ) (1.6)

+ (1− w) BS(S0, K, r, r − µd, σd, T ),

where w = (erT − eµdT )/(eµuT − eµdT ) and BS is the Black-Scholes call option
formula. This model can be extended to a continuous time model by

C(S0, K, t) = wt BS(S0, K, r, r − µu, σ
u
t , t) (1.7)

+ (1− wt) BS(S0, K, r, r − µd(T ), σd, t),

for any t ∈ (0, T̄ ] and wt = (ert−eµd(t)t)/(eµut−eµd(t)t). Note that µd in (1.6 ) becomes
a function of t,i.e., µd(t) in (1.7). Our interest is the case that µd(t) := r−(r−md)t

α,
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with α ≤ 0 and md < r. In this case, by one test measure we expect the return
becomes big negative, which reflects the crash-o-phobia phenomenon in short time.
It turns out that the extended CGM price satisfies Merton’s static no arbitrage
conditions except one, and the remaining one condition can be almost satisfied for
broad class of parameters. Here, we add ‘almost’ since we are not able to prove the
satisfaction of the condition due to the complexity of the equation one must solve,
but we can provide a strong numerical evidence.

With the pricing formula, we analytically derive a condition for the existence
of a convex decreasing interval of implied volatility around the initial stock price.
We also provide various shapes of smile and skew which can be obtained from the
pricing formula. It turns out that for the case σu ≈ σd, the implied volatility
is almost constant, which recovers Black-Scholes. However, if σd À σu, then it
shows smile and skew depends on µu and µd. Roughly, if µd ¿ r < µu, then skew
phenomena is obtained while smile is obtained as µd ↗ r. See Figure 2 and 3. This
results are extended to the volatility surface. Our interpretation is that the small
crash-o-phobia corresponds to smile, while big crash-o-phobia corresponds to skew.
We also obtain a broad class of shapes of volatility structure which quite resemble
the real market surfaces.

This paper is organized as follows. In Section 2, we introduce the CGM model
of option valuation, and its continuous extension. In Section 3, we introduce the
static no arbitrage conditions Merton derived, and discuss whether the continuous
extension satisfies the conditions analytically and numerically. Finally, in section 4,
we provide analytic and numerical evidences of smile and skew.

2 CGM valuation

2.1 CGM model

The single period lognormal model given by Carr-Geman-Madan (2001) describes
an economy open for trading at date t = 0 and at date t = T . There are two assets:
a non-dividend paying stock with price ST at time T , and a bond paying one unit
at time T . Let the current stock price be S0 and bond price be e−rT . There are
two valuation measures Q1, Q2 given by lognomal distributions with mean rates
of returns µu, µd and volatilities σu, σd, respectively, satisfying µd < r < µu and
σu > σd.

This economy is incomplete, since there is an infinite number of terminal states
and there are only two assets. Carr-Geman-Madan’s idea is to set up the the matrix
of asset valuation test measure outcomes M in order to value a European options
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with maturity T . In this case, taking the appropriate expectations, M is given by:

M =

(
S0e

(µu−r)T S0e
(µd−r)T

e−rT e−rT

)
. (2.1)

Note that, for any non zero cost trading strategy, α = (α0, α1) which α0S0 +
α1e

−rT = 0 implies α1 = −α0S0e
rT . Hence

αM = α0S0(e
(µu−r)T − 1, e(µd−r)T − 1). (2.2)

The fact µu > r > µd implies, by CGM, that there is no acceptable opportunity. It
turns out that the unique representative state density function is given by

f(x, T ) = w
exp

{− 1
2σ2

uT

[
log(x/S0)− (µu − σ2

u/2)T
]2}

√
2πTσux

(2.3)

+ (1− w)
exp

{− 1
2σ2

dT

[
log(x/S0)− (µd − σ2

d/2)T
]2}

√
2πTσdx

,

for w = (erT − eµdT )/(eµuT − eµdT ). Note that 0 < w < 1.
Let C(K) and P (K) be European call option price and put option price, re-

spectively. Then C(K) and P (K) are uniquely determined by (2.3). Using the
Black-Scholes formula with dividend yield of r−µ, we can express C(K) and P (K)
by

C(K) = wCu
BS + (1− w)Cd

BS, (2.4)

P (K) = wP u
BS + (1− w)P d

BS,

where

Cu
BS := BSc(S0, K, r, r − µu, σu, T ),

Cd
BS := BSc(S0, K, r, r − µd, σd, T ), (2.5)

P u
BS := BSp(S0, K, r, r − µu, σu, T ),

P d
BS := BSp(S0, K, r, r − µd, σd, T ),

and BSc, BSp are the Black-Scholes call option formula and the Black-Scholes put
option formula, respectively. See Carr et al. (2001) for the details.

This single period model can be generalized to a continuous time model as ex-
plained in the next section.
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2.2 Continuous extension

Consider an economy open for 0 ≤ T ≤ T̄ , where T̄ is a time horizon. For any
European type contingent claim at maturity T ≤ T̄ , suppose the matrix of asset
valuation test measure outcomes M is given by the same way of (2.1). Then we
obtain the same price density which can be applied for all T ∈ (0, T̄ ]. From (2.4),
C(T,K), P (T, K) are given by

C(T, K) = wT

[
S0e

−(r−µu(T ))T Φ(d+)−Ke−rT Φ(d−)
]

(2.6)

+ (1− wT )
[
S0e

−(r−µd(T ))T Φ(d̃+)−Ke−rT Φ(d̃−)
]
,

P (T, K) = wT

[
Ke−rT Φ(−d−)− S0e

−(r−µu(T ))T Φ(−d+)
]

+ (1− wT )
[
Ke−rT Φ(−d̃−)− S0e

−(r−µd(T ))T Φ(−d̃+)
]
,

where wT = (erT − eµd(T )T )/(eµu(T )T − eµd(T )T ), µd(T ) < r < µu(T ),

d± =
log(S0/K) + {µu(T )± σ2

u/2}T
σu

√
T

, (2.7)

d̃± =
log(S0/K) + {µd(T )± σ2

d/2}T
σd

√
T

,

and Φ(x) is the cdf of standard normal.
Note that we make no assumption on the stock price process, so that it may

have jumps, or even it is non-Markovian. No matter how investors judge, if they
select two types of lognormal valuations, the call option price turns out to be (??).
Because of the possible jumps and non-Markovian nature, it is costly and risky to
perform a dynamic hedge.

As Merton (1973) first introduced and Bergman et al. (1996), Figlewski (2002),
Henderson et al. (2005), Jeon and Park (2005) used, static no arbitrage condition
is a main requirement that any reasonable option pricing formula should satisfy.

We show that the pricing formula ‘almost’ satisfies the conditions. Here ‘almost’
means that it satisfies seven among the eight conditions and we can numerically
justify that the remaining condition is not violated.
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3 Static no arbitrage

3.1 Static no arbitrage condition

Let C and P be the prices of European call and put options, respectively, on the
stock price St (t: current time), with strike K, maturity T , and riskless rate r.
We may think of C = Ct,St(T, K) and P = Pt,St(T, K) as functions of maturity and
strike. Merton (1973) first pointed out and Henderson et al. (2004) summarized the
conditions that any option price should satisfy to avoid static arbitrages.

(i) Ct,St(T, K) is a decreasing , convex function of K.

(ii) Ct,St(T, 0) = lim
K↘0

Ct,St(T, K) = St.

(iii) For T1 ≥ T2 ≥ t, Ct,St(T1, Ker(T1−t)) ≥ Ct,St(T2, Ker(T2−t)).

(iv) Put-call parity: Ct,St(T, K)− Pt,St(T,K) = St −Ke−r(T−t).

(v) lim
K→∞

Ct,St(T, K) = 0.

(vi) For T > 0, Ct,St(T, Ste
r(T−t)) > 0.

Considering the call option as a function of St, i.e., Ct,St(T,K) = CT,K(t, St), it
should satisfy

(vii) lim
St↘0

CT,K(t, St) = 0.

(viii) lim
St↗∞

{
CT,K(t, St)− (St − e−r(T−t)K)

}
= 0.

(ix) CT,K(t, St) is an increasing, convex function of asset price.

Note that the conditions (vii), (viii), (ix) depend on the regularity of St. (see
Bergman et al. (1996)) In our case, the pricing formula satisfies the conditions. (see
Proposition 3.2) Now, assume the current time t = 0 and let C0,S0(T,K) = C(T, K)
be the price function of a European call option with strike price K and maturity T .

A simple proof of the condition (iii) is as follows. Assume that short selling
is always possible. Suppose not the condition (iii). Then C1 < C2, where C1 =
C(T1, KerT1) and C2 = C(T2, KerT2). At time t = 0, we buy C1 and sell C2. So our
profit at t = 0 is C2 − C1. Since interest rate r is constant and we can borrow one
stock, if ST2 > KerT2 , our profit at t = T2 is (C2 − C1)e

rT2 − (ST2 −KerT2) + ST2 .

7



Else if ST2 ≤ KerT2 , our profit at t = T2 is (C2−C1)e
rT2 +ST2 . Thus, at time t = T1,

if ST2 > KerT2 and ST1 > KerT1 , our profit is (C2−C1)e
rT1 +KerT1 +(ST1 −KerT1).

Since we borrowed one stock, our net profit is {(C2 − C1)e
rT1 + KerT1 + (ST1 −

KerT1)} − ST1 = (C2 − C1)e
rT1 > 0. If ST2 > KerT2 and ST1 ≤ KerT1 , our net

profit at t = T1 is (C2 − C1)e
rT1 + KerT1 − ST1 > 0. Similarly, if ST2 ≤ KerT2 and

ST1 > KerT1 , our net profit at t = T1 is (C2 − C1)e
rT1 + (ST1 − KerT1) > 0. If

ST2 ≤ KerT2 and ST1 ≤ KerT1 , our net profit at t = T1 is (C2 − C1)e
rT1 > 0. Since

our net profit at t = T1 is positive in all cases, so there exists a static arbitrage.
Thus this completes the proof of condition (iii).

Lemma 3.1 If X ≥ 0, then

EP(X) =

∫ ∞

0

P(X > x)dx.

Proof. By Fubini’s theorem,

∫ ∞

0

P(X > x)dx =

∫ ∞

0

∫

Ω

1{X>x}dPdx

=

∫

Ω

∫ ∞

0

1{X>x}dxdP

=

∫

Ω

∫ X

0

dxdP = EP(X),

where 1 is a characteristic function. 2

Proposition 3.2 Let C(T, K), P (T, K) be given by (2.6). Then C(T, K) satisfies
static no arbitrage conditions : (i),(ii),(iv),(v), (vi), (vii), (viii) and (ix).

Proof. For any T ∈ (0, T̄ ], let QT
1 ,QT

2 be a probability measures and ST a
random variable such that under QT

1 , ST has a density f 1
T , and under QT

2 , ST has a
density f 2

T , where

f 1
T (x) :=

exp
{− 1

2σ2
uT

[
log(x/S0)− (µu(T )− σ2

u/2)T
]2}

√
2πTσux

f 2
T (x) :=

exp
{− 1

2σ2
dT

[
log(x/S0)− (µd(T )− σ2

d/2)T
]2}

√
2πTσdx

.
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Then, form (2.3) and (2.4), C(T, K) and P (T, K) can be expressed by

C(T,K) = wT e−rT EQT
1
[
(ST −K)+

]
+ (1− wT ) e−rT EQT

2
[
(ST −K)+

]
, (3.1)

P (T,K) = wT e−rT EQT
1
[
(K − ST )+

]
+ (1− wT ) e−rT EQT

2
[
(K − ST )+

]
.

Therefore, by Lemma 3.1,

C(T, K) = wT e−rT

∫ ∞

K

QT
1 (ST > x)dx (3.2)

+(1− wT )e−rT

∫ ∞

K

QT
2 (ST > x)dx.

Condition (i): Differentiate both sides of (3.2) with K, we obtain

∂C/∂K = −wT e−rT QT
1 (ST > K)− (1− wT )e−rT QT

2 (ST > K) < 0. (3.3)

Similarly,

∂2C/∂K2 = wT e−rT fT
1 (K) + (1− wT )e−rT fT

2 (K) > 0. (3.4)

Therefore, C(T, K) is a decreasing, convex function of K.

Condition (ii): If K ↘ 0, then Φ(d±) → 1 and Φ(d̃±) → 1. Therefore, from
(2.6), we have

lim
K↘0

C(T, K) = wT (S0e
−(r−µu(T ))T ) + (1− wT ) (S0e

−(r−µd(T ))T )

= S0e
−rT

[
wT eµu(T )T + (1− wT )eµd(T )T

]

= S0e
−rT erT

= S0

Condition (iv): put-call parity:

C(T, K)− P (T, K) = wT e−rT EQT
1
[
(ST −K)+ − (K − ST )+

]

+ (1− wT )e−rT EQT
2
[
(ST −K)+ − (K − ST )+

]

= wT e−rT EQT
1
[
(ST −K)+ − (ST −K)−

]

+ (1− wT )e−rT EQT
2
[
(ST −K)+ − (ST −K)−

]

= e−rT
(
wT EQT

1 (ST −K) + (1− wT )EQT
2 (ST −K)

)

= e−rT
(
wT EQT

1 (ST ) + (1− wT )EQT
2 (ST )−K

)

= S0 −Ke−rT .
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Condition (v): We use the well known upper bound formula for normal cdf,
i.e., for y > 0,

Φ(−y) ≤ exp(−y2/2)/
√

2πy. (3.5)

Let x = log(K/S0)/σ
√

T , then

d1 :=
log(S0/K) + (µT + σ2/2)T

σ
√

T
= −x + a, (3.6)

where a is some constant. For sufficient large K, d1 < 0. Therefore, by (3.5),

0 ≤ KΦ(d1) = S0 exp
(
σ
√

Tx
)
Φ(−x + a) (3.7)

≤ C1
exp(−(x− a)2/2 + σ

√
Tx)

x− a
−→ 0,

as x → ∞, for some constant C1. Thus, if K → ∞, then KΦ(d−), KΦ(d̃−)
converge to zero and Φ(d+), Φ(d̃+) converge to zero. Hence,

lim
K→∞

C(T, K) = 0.

Condition (vi): Since, for T > 0, (ST −S0e
rT )+ is not identically zero, from

(3.2),
C(T, S0e

rT ) > 0.

Condition (vii): For any T and K fixed, the call price can be considered as
a function of S0, say CT,K(0, S0) := C(T,K). Since Φ(d±),Φ(d̃±) converge to
zero as S0 ↘ 0, from (2.6), CT,K(0, S0) converges to 0 as S0 ↘ 0.

Condition (viii): From put-call parity,

CT,K(0, S0)− (S0 −Ke−rT ) = PT,K(0, S0). (3.8)

From (2.6),

PT,K(0, S0) = wT

[
Ke−rT Φ(−d−)− S0e

−(r−µu(T ))T Φ(−d+)
]

(3.9)

+ (1− wT )
[
Ke−rT Φ(−d̃−)− S0e

−(r−µd(T ))T Φ(−d̃+)
]
.

Let z = log(S0/K)/σ
√

T , then

d2 :=
log(S0/K) + (µT + σ2/2)T

σ
√

T
= z + b, (3.10)
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where b is some constant. For sufficient large S0, d2 > 0. Therefore, by (3.5),

0 ≤ S0Φ(−d2) = K exp
(
σ
√

Tx
)
Φ(−z − b) (3.11)

≤ C2
exp(−(z + b)2/2 + σ

√
Tz)

z + b
−→ 0,

as z →∞, for some constant C2. Thus, if S0 →∞, then S0Φ(−d+), S0Φ(−d̃+)
converge to zero and Φ(−d−), Φ(−d̃−) converge to zero. Hence, PT,K(0, S0)
converges to 0 as S0 →∞.

Condition (xi): Using the symmetry of normal density, we can show easily
that (3.1) becomes

CT,K(0, S0) = wT

[
S0σu

√
Te(µu(T )−r−σ2

u/2)T

∫ γu

−∞
e−vσu

√
T Φ(v)dv

]
(3.12)

+ (1− wT )
[
S0σd

√
Te(µd(T )−r−σ2

d/2)T

∫ γd

−∞
e−vσd

√
T Φ(v)dv

]
,

where

γu =
(

log(S0/K) + (µu(T )− σ2
u/2)T

)
/
(
σu

√
T

)
(3.13)

γd =
(

log(S0/K) + (µd(T )− σ2
d/2)T

)
/
(
σd

√
T

)
.

Hence,
∂CT,K(0, S0)

∂S0

becomes

wT σu

√
T

[
e(µu(T )−r−σ2

u/2)T

∫ γu

−∞
e−vσu

√
T Φ(v)dv + Ke−rT Φ(γu)/S0

]

+(1− wT ) σd

√
T

[
e(µd(T )−r−σ2

d/2)T

∫ γd

−∞
e−vσd

√
T Φ(v)dv + Ke−rT Φ(γd)/S0

]
.

Therefore,
∂CT,K(0, S0)

∂S0

> 0.

Similarly,

∂2CT,K(0, S0)

∂S2
0

= wT σu

√
T

[ Ke−rT

S2
0

√
2π

e−γ2
u/2

]
(3.14)

+(1− wT ) σd

√
T

[ Ke−rT

S2
0

√
2π

e−γ2
d/2

]

> 0.
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In total, CT,K(0, S0) is an increasing convex function of asset price.

2

3.2 The validity of condition (iii)

From (2.6), we obtain

C(T, KerT ) = wT

[
S0e

−(r−µu(T ))T Φ(δ+)−KΦ(δ−)
]

+ (1− wT )
[
S0e

−(r−µd(T ))T Φ(δ̃+)−KΦ(δ̃−)
]
,

where

δ± =
log(S0/K) + (µu(T )− r ± σ2

u/2)T

σu

√
T

,

δ̃± =
log(S0/K) + (µd(T )− r ± σ2

d/2)T

σd

√
T

.

Therefore, by a simple calculation, we have

∂C(T, KerT )

∂T
=

∂wT

∂T

[
S0e

−(r−µu(T ))T Φ(δ+)−KΦ(δ−)
]

+ wT

[
S0e

−(r−µu(T ))T
(− r +

∂µu(T )

∂T
T + µu(T )

)
Φ(δ+)

+ S0e
−(r−µu(T ))T 1√

2π
e−δ2

+/2 ∂δ+

∂T
− K√

2π
e−δ2

−/2 ∂δ−
∂T

]

− ∂wT

∂T

[
S0e

−(r−µd(T ))T Φ(δ̃+)−KΦ(δ̃−)
]

+ (1− wT )
[
S0e

−(r−µd(T ))T
(− r +

∂µd(T )

∂T
T + µd(T )

)
Φ(δ̃+)

+ S0e
−(r−µd(T ))T 1√

2π
e−δ̃2

+/2 ∂δ̃+

∂T
− K√

2π
e−δ̃2

−/2 ∂δ̃−
∂T

]
.

Assume µu(T ) = mu > 0 and µd(T ) = r − (r −md)T
α with α ≤ 0.

12



∂C(T, KerT )

∂T
=

∂wT

∂T

[
S0e

−(r−mu)T Φ(δ+)−KΦ(δ−)
]

+ wT

[
S0e

−(r−mu)T (−r + mu)Φ(δ+)

+
S0

2
√

2πσuT 3/2
exp

(− (r −mu)T − δ2
+/2

)

Assume that ranges for variables of ∂C/∂T are as follows:

• 0.06 ≤ mu ≤ 1

• −1 ≤ md ≤ 0.04

• 0.15 ≤ σu ≤ 0.25

• 0.34 ≤ σd ≤ 0.5

• 0.8 ≤ K/S0 ≤ 1.2

• 0.05 ≤ T ≤ 1

• r = 0.05

The mesh size for ranges are assumed to be 0.05. Then, we can calculate the value
of ∂C/∂T for every mesh point. As a result, we note that the minimum value of
∂C/∂T is positive. Therefore, Condition(iii) can be almost satisfied.

4 Smile and Skew

4.1 Analytic result for smile and skew

One natural question is, for no arbitrage pricing functions, when there exist the
smile or skew phenomena. A necessary condition for skew or smile with minimum
volatility at K > S0e

rT is that there exists an interval

L0 = (S0e
rT − h1, S0e

rT + h2), (h1, h2 > 0)

such that the corresponding implied volatility I(K) is decreasing and convex on L0.

13



Suppose the time to maturity T is fixed, and let C(K) := C(T, K) be a given
price function of a European call option with strike price K which is twice differ-
entiable. Let CBS(K, σ) be the Black-Scholes option pricing function, where σ is
the volatility of the model. The implied volatility I(K) is, then, the solution of the
equation

C(K) = CBS(K, I(K)). (4.1)

Let I0 := I(S0e
rT ). Then we have a necessary condition as follows.

Theorem 4.1 Suppose C ′(S0e
rT ) ≤ −1

2
e−rT and

C ′′(S0e
rT ) ≥ e−2rT−I2

0T/8

S0I0

√
2πT

,

then there exist h1, h2 > 0 such that I(K) is convex and decreasing on L0, where
L0 = (S0e

rT − h1, S0e
rT + h2)

Proof. Since C(K) = CBS(K, I(K)), differentiate both sides with respect to K,
then

C ′(K) =
∂CBS

∂K
+

∂CBS

∂σ

dI

dK
(4.2)

i.e.

dI

dK
=

C ′(K)− ∂CBS
∂K

∂CBS

∂σ

. (4.3)

By a simple calculation we can show

dI

dK
=

e−rT Φ(d2) + C ′(K)
S0

√
T√

2π
e−d2

1/2
, (4.4)

where

d1 =
log(S0/K) +

(
r + 1

2
I(K)2

)
T

I(K)
√

T

d2 =
log(S0/K) +

(
r − 1

2
I(K)2

)
T

I(K)
√

T
= d1 − I(K)

√
T .

Replacing K by S0e
rT in the numerator we can show

dI

dK

∣∣∣
K=S0erT

= c
(
e−rT Φ(−I0

√
T/2) + C ′(S0e

rT )
)

≤ c
(
e−rT Φ(−I0

√
T/2)− e−rT /2

)
< 0,

14



where c is a positive constant. Hence there is a decreasing interval around S0e
rT .

Now, differentiate (4.2) once more, we get

C ′′(K) =
∂2CBS

∂K2
+ 2

∂2CBS

∂σ∂K

dI

dK
+

∂2CBS

∂σ2

( dI

dK

)2

+
∂CBS

∂σ

d2I

dK2
. (4.5)

By a direct calculation, we can get

d2I

dK2

∣∣∣
K=S0erT

=

√
2π

S0

√
T

eI2
0T/8

{
C ′′(S0e

rT )− e−2rT−I2
0T/8

I0S0

√
2πT

−3e−rT

2S0

[
e−rT Φ(−I0

√
T/2) + C ′(S0e

rT )
]

+
I0

√
2πT

4S0

eI2
0T/8

[
e−rT Φ(−I0

√
T/2) + C ′(S0e

rT )
]2}

.

Thus we obtain
d2I

dK2

∣∣∣
K=S0erT

> 0,

since

C ′′(S0e
rT ) ≥ e−2rT−I2

0T/8

S0I0

√
2πT

,

and
e−rT Φ(−I0

√
T/2) + C ′(S0e

rT ) ≤ e−rT Φ(−I0

√
T/2)− e−rT /2 < 0.

2

Suppose a European call option price function C(T, K) is given by (2.6). Re-
placing K by S0e

rT in (4.1) , we get a equation as follows.

CBS(S0e
rT , I0) = C(T, S0e

rT ). (4.6)

From (4.6),

S0Φ(I0

√
T/2)− S0Φ(−I0

√
T/2) = wT

[
S0e

−(r−µu(T ))T Φ(α+)− S0Φ(α−)
]

(4.7)

+ (1− wT )
[
S0e

−(r−µd
T )T Φ(α̃+)− S0Φ(α̃−)

]
,

where

α± =
(
(µu(T )− r)/σ ± σ/2

)√
T , α̃± =

(
(µd

T − r)/σ ± σ/2
)√

T .
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Using the symmetry of normal cdf, from (4.7), we obtain

I0 =
2√
T

Φ−1
{1

2
+

1

2
wT

[
e−(r−µu(T ))T Φ(α+)− Φ(α−)

]
(4.8)

+
1

2
(1− wT )

[
e−(r−µd

T )T Φ(α̃+)− Φ(α̃−)
]}

.

Theorem 4.2 For fixed T > 0, let C(K):=C(T, K) be given by (2.6). Choose
µu(T ), µd

T with

erT − eµd
T T

eµu(T )T − eµd
T T

Φ(α−) +
eµu(T )T − erT

eµu(T )T − eµd
T T

Φ(α̃−) ≥ 1/2. (4.9)

Let I0 be given by (4.8). Suppose

C ′′(S0e
rT ) ≥ e−2rT−I2

0T/8

S0I0

√
2πT

,

then there exist h1, h2 > 0 such that I(K) is convex and decreasing on L0, where
L0 = (S0e

rT − h1, S0e
rT + h2).

Proof. From (3.3)and (4.9),

∂C

∂K

∣∣∣
K=S0erT

= −wT e−rT Φ(α−)− (1− wT )e−rT Φ(α̃−)

≤ −e−rT /2.

Thus, by assumption and by Proposition 4.1, this completes the proof. 2

4.2 Numerical illustration
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