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Abstract 
The optimal conditions of mean reversion speed for log-return of a stock is 
derived and approximate solutions are obtained. A value of a derivative under 
the initial measure is compared with the value under minimum variance 
measure. Moreover, the results provide an efficient way to simulate an 
underlying asset so that more accurate sensitivity analysis can be performed. 

 
 

1. Introduction 
It is not too much to say that pricing, hedging and synthesizing of an asset are 

everything in financial market. Specially, trader or risk manager lay emphasis on 
hedging and synthesizing of their positions. These days many assets traded in over-the-
counter market are customized and hybrid so that there are hardly closed-form formulae 
for pricing and hedging. Usual ways to handle such an asset are numerical methods like 
trees, partial differential equations and simulations. It seems that Monte Carlo 
simulations are more extensively used than the other two methods even though each 
method has both advantages and disadvantages in stability as well as efficiency. To 
pursue efficiency in calculating Greeks using Monte Carlo simulation, one can recycle 
the random numbers which are already occurred to price the value. However for such a 
case, the Greeks may be underestimated than as used to be. Or one can generate random 
numbers one more time to value the position fully even though it is costly. In this case a 
Greek like delta can have the opposite sign which means that a hedger should have their 
position clear and make a new opposite position. This problem has been worse in 
according to the number of underlying assets increased and the structure of payoffs 
complicated. Indeed this situation can happen in real financial market.  

The aim of this article is to provide a technical method to reduce potential trade-off 
between stability and efficiency when Monte Carlo simulations are used in delta 



hedging. The basic idea accomplishing the goal is to determine a control variable 
minimizing the Radon-Nikodym derivative which measures the sensitivity of two 
measures. This is in line with selecting an optimal measure from a class of probability 
measure by perturbing the initial measure in incomplete markets as in Rouge and El 
Karaoui (2000). Schellhorn (2004) applied the same idea for an interest rate whose 
dynamic follows Ornstein-Uhlenbeck process. Linearity of OU process allows the 
analytic tractability easy. However such a process is not appropriate for stocks, so we 
try to extend the method with the stock which is governed by a lognormal process. 

One advantage of our model is that stochastic control problem is transformed into a 
system of ordinary differential equations which make implementation of the target 
measure possible. (Here the initial measure is used to price the value of an derivative 
and the target measure is for Greeks calculation.)  

The rest of the paper is organized as follows. Section 2 sets up optimization problem 
and solves two kinds of variance minimization problem. Section 4 presents numerical 
results, and section 4 concludes. 

 
2. Model 

Let ( )IPF ,,Ω  be the complete filtered probability space and  a supported 
Brownian motion. It is assumed that the dynamic of a stock price process is initially a 
lognormal process 
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where r  is a constant risk-free interest rate and σ  a constant volatility of the stock 

returns. The scaled stock price denominated by the current price, , follows 

the same process as (1) but  is normalized i.e., 

*
0

* / SSS tt =

0S 10 =S . The terminal measure TP  

supports a Brownian motion  and  is perturbed from the initial Brownian 
motion by 
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where  is a time-varying but deterministic function. It is noted that the terminal 

variance of the state variable  is the same as the initial one of the state variable . 

Under the new measure 

( )ta

tS *
tS

TP , the dynamic of stock price process is 
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and Ito’s lemma shows that log returns of stock are mean reversion process below, 
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so that  represents a mean reversion speed of stock’s log return. Once  is 
specified, the terminal measure 

( )ta ( )ta
TP  is completely determined. When , the 

SDE (4) is the same as the dynamic of the log return under the initial measure. Since the 
terminal measure is stochastically changed from the initial measure by (2), the Radon-
Nikodym derivative also moves stochastically and the second moment is calculated in 
the Lemma below. 

( ) 0=ta

 
Lemma 2.1: Let ( )Tξ  be the Radon-Nikodym derivative of the terminal measure with 
respect to the initial measure at time horizon , i.e., T
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Then the second moment is given by 
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where 

( ) ( ) ( ) ( ) ( )
2
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2224

σ
σ tatftfta

dt
tdf

−−= ,                        (6) 

( ) ( ) ( ) ( ) ( ) ( ) ( )tgtftfrtgta
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tdg 22 222 σσ −++= ,                (7) 

( ) ( ) 0== TgTf . 
 

Proof : see Appendix. 
 
Lemma shows the Radon-Nikodym derivative is an exponential function satisfying a 
system of ordinary differential equations. A Riccardi equation (6) can not be analytically 
solvable unless  is a constant. The next theorem provides one way to select control 
variable  minimizing variance of the Radon-Nikodym derivative over the whole 
time interval. The average variance constraint problem is set up to solve as follows;  

( )ta
( )ta

for some constant ,  AM
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Theorem 2.1 : The solution  of average variance constraint problem is given by ( )ta
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where  are given by (6)-(7) and , ( ) ( )tgtf , v 1µ , 2µ  and 3µ  solve the following 

boundary value problem: for some value ,0≥λ  
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Proof: It is enough to show that ( )ta  satisfying (8) minimizes ( )[ ]2log TE I ξ  instead 

of (5) under the same constraints. Let λ  be an Lagrange multiplier of inequality 

constraint (9) and ( ) ( )[ ]2log t
T SEtv = . Solving the SDE (10),  is a Gaussian 

process below, 
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The dynamic of the second moment of logarithm of  is tS
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( ) ( ) 22 σ+−= tvta . 
 
Applying Pontryagin Maximum Principle (see Intriligator 2002) to the equivalent 
maximization problem, Hamiltonian becomes 
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so that the solution of Hamiltonian equation ( ) 0/ =∂∂ atH  is given by the formula 
(11) and conditions (12)-(15) also follow.  
 
While Theorem 2.1 has an advantage that a stochastic control problem is changed into a 
system of ordinary differential equations, it states only a necessary condition since the 
Hessian of the minimized Hamiltonian is not positive-definite. So the solution described 
in Theorem 2.1 is a suboptimal solution. It is worthy to mention that it has a problem to 
implement  since the initial condition for ( )ta ( )tv  is given while all other equations 
start with terminal conditions. So start any value for ( )Tv  and find  finally. If 

 is not 0, it needs to adjust 
( )0v

( )0v ( )Tv  and iterate the procedure. The next proposition 
finds another suboptimal solution which approximates the variance . It is 
possible that all terms multiplied by 

( )[ TVar I ξ ]
( )tf  or ( )tg  in (6) and (7) turn out to be small 

when the variance of ( )Tξ  is small.  
 
Proposition 2.1: Suppose that  
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2
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Then the variance has an upper bound below 
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Proof: Condition (1) guarantees that ( ) 0' ≥tg  for all t  by (7). Since  at the 
terminal time, 
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( ) 0≤tg  on the whole time interval so that  
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Hence it suffices to show that  
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The inequality step follows since the first three terms are negative by hypotheses (1) 
and (2). Since ( ) ( )00 zy = , Sturm Comparison Theorem says that  
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Using integration by parts, (16) in Proposition 2.1 can be restated below: 
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Corollary 2.1 The approximated average variance constraint problem has the solution 
as follows: 

( ) ( ) ( )
tT
tvt

ta
−

−= 3µ  

where , ( )tv ( )t3µ  satisfy (12), (15), respectively. 

 
Proof: Applying Pontryagin Maximum Principle to minimizing of the equation (20) 
once again, the result is obtained.  
 
Instead of minimizing average variance on the whole time interval, the variance at 
terminal time can be minimized as follows; 
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The solution of this problem is similar with the one in Theorem 2.1. In this case the 
terminal variance condition is specifically given. 
 
The analog of Theorem 2.1 for terminal variance constraint problem is 
 
Theorem 2.2 A necessary condition for terminal variance constraint problem is 
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where  are given by (6)-(7) and , ( ) ( )tgtf , v 1µ , 2µ  and 3µ  solve the following 

boundary value problems: 
 

( ) ( ) ( ) ,2 2σ+−= tvta
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Solving terminal variance constraint problem is easier than solving average variance 
constraint problem since Lagrangian multiplier λ  disappears. Since the control 
parameter  is a constant for terminal variance constraint problem, (6) and (7) will be 
explicitly solved so that Radon-Nikodym derivative given by (2) is specifically 
calculated. 

a

 
Corollary 2.2 The terminal variance constraint problem has the solution as follows: 

TM
a
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Proof : Terminal value of the solution of Equation (21) has the upper bound  
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Hence the minimum is attained when ( ) TMTv = .  
 
Since the control variable  is chosen for each constraint problem, the terminal 
measure 

( )ta
TP  and Radon-Nikodym derivative are completely determined so that pricing 

of derivatives is possible as in theorem next. 
 
Theorem 2.3 Under the measure TP , the price of a derivative whose payoff  at 
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where ( )Tξ  is a Radon-Nikydym derivative defined by (5). 
 
Proof : Let ( ) ( ) σθ /log tStat −=  be a market price of risk. Since the drift and diffusion 
of (3) is adapted to the filtration, Girsanov theorem shows that  is a 
martingale where 

( ) ( )TVTZ
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Then the price of the derivative is 
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3. Application to Greeks 
 
4. Conclusion 

This article is mainly contributed to show that the variance of the Radon-Nikodym 
derivative is the exponential of the time-integral of the solution of a system of ordinary 
differential equations. Average variance constraint problem and terminal variance 
constraint problem are solved. Using the control variables which are solutions of 
minimization problems, Greeks can be efficiently calculated without generating random 
numbers twice. However it is unfortunate that the solutions satisfy only a necessary 
condition so are suboptimal. 
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Appendix 
 
Proof of Lemma 
 
Define a new measure MP  so that the process defined below becomes a new 
Brownian motion under this measure, 
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so that  
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By Ito’s lemma, the dynamics of new scaled process above is  
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Integration by parts shows that 
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Taking a conditional expectation up to t under MP  and defining  as 

, we have an equation as follows: 
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A trial function is defined by 
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A system of simultaneous ordinary differential equation is derived below 
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Terminal conditions are ( ) ( ) ( ) 0000 === CBA . 
It is hardly to have a closed form solution since ( )ta  is a time-varying function. By 
changing variables as ( ) ( ) ( ) 22 /στCtatf =  and ( ) ( ) ( ) στ /Btatg = , a simpler system 
of ordinary differential equations is followed: 
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Using  and ( ) 0log0 == Sx 0 ( )[ ] ( )( ) ( )( )TAxhTE I exp0,02 ==ξ , the result is held.  
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