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Abstract

We present a moral-hazard-based hierarchical contracting model, where investors con-
tract the top manager and the top manager contracts all middle managers. We compare
effects of hierarchical contracting on managerial contract sensitivities with those of a di-
rect contracting benchmark where investors directly contract all managers. We argue that
under hierarchical contracting, the top manager shifts his compensation risk to middle man-
agers by providing middle managers with higher-powered incentive contracts than would
be desired by investors under direct contracting. It is striking that this top managerial risk-
shifting behavior motivates investors to design the top managerial contract in such a way
that the top-managerial hierarchical contract sensitivity approaches either the first best or
zero, as the firm size grows. However, under some reasonable conditions such as correlated
managerial effort outcomes, the top managerial sensitivity quickly approaches zero as the
firm size increases, and consequently, the sensitivity for large firms can be far lower than
predicted by the standard agency theory. This result can serve as an explanation of widely
observed firm-size effects on CEO compensations, namely, lower pay sensitivities for large
firms than those for small firms. We also argue that even when investors are risk-neutral
and then individual performance outcomes of nonexecutive employees may be very weakly
correlated to the total outcome of the firm, company-wide bonus plans for nonexecutive
employees can still be justified under hierarchical contracting.
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1 Introduction

We present a hierarchical contracting model under moral hazard with many agents, where

investors (the principal) contract the top manager who in turn subcontracts many middle

managers. The model enables us to examine effects of not only hierarchical contracts but the

firm size on incentives of individual employees including the top manager. Throughout the

paper, the firm size is synonymous with the number of middle managers.

Publicly held corporations can be viewed as organizations established with various sets

of contracts among investors and employees. In financial economics, standard principal agent

models, structured with one principal and one agent, are frequently utilized to analyze contrac-

tual relationships between investors and the top manager of the firm, completely ignoring other

employees and the organizational form of the firm. Such frequent practices are based on the

implicit assumption that the top manager can represent all employees including himself, and

his incentives are not affected by the organizational form. Being made mostly for tractability

of models, the assumption is at best a very crude abstraction of complicated issues that may

arise because of the organizational form, and interaction with other employees.

In real life, typical contracts for employees of the firm are hierarchically organized with “a

cascade of principal-agent relationships.” In the literature, there are many reasons offered to

justify such hierarchical forms of organizations: for information processing and communication

(Radner [1992, 1993], Bolton and Dewatripont [1994], Marschak and Reichelstein [1998], and

Stein [2002]); for authority and control in decision making (see Rosen [1982], Aghion and Tirole

[1997], and Hart and Moore [2005]); and for monitoring subordinates’ outputs/effort levels,

(see Williamson (1967), Mirrlees (1976), Calvo and Wellisz (1978,1979), and Qian [1994]).1

However, none of the above studies examine how the hierarchy of the firm can affect optimal

managerial contracts.

Radner (1992) states:

In fact, most organizations combine aspects of both the partnership and principal-

agent models. A hierarchy of authority can be thought of as a cascade of principal-

agent relationships, each supervisor acting as a principal to his subordinates, and

as an agent in relationship to his own supervisor. On the other hand, in most

cases the valued outcomes of organizational activity depend on the joint action of

several agents, as in the partnership model, so that the assignment of individual

responsibility for specific outcomes as required by the principal-agent model may

not be justified. Unfortunately, I am not aware of significant progress on more
1All of these authors study various motivations for hierarchical organizations, but provide no formal analysis

on managerial contracting problems.
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comprehensive theoretical models of the firm that combine these two submodels in

a systematic way.

We believe, even up to this date, Radner’s comment still holds. In this paper, we try to

start such a comprehensive model using moral hazard problems as an underlying basis.2 Our

model may also be viewed as a modest step beyond the existing “teams” literature such as

Holmstrom [1982] and Mookherjee [1984] by introducing a cascade of principal-agent problems

in a hierarchically organized firm with its total outcome resulting from joint/individual actions

of the top and middle managers.

In this paper, investors are risk neutral and all managers are risk averse. There are multiple

tasks in the firm and each task is carried out by one manager. The top manager exerts effort

which affects not only his own but all middle managerial effort outcomes. He also acts as

both a principal and a monitor to each middle manager. In particular, he monitors all middle-

managerial effort outcomes, and compensates each middle manager based on all outcomes. On

the other hand, investors can only observe the aggregate outcome net of the aggregate middle

managerial compensation.3

We compare the optimal structure of managerial hierarchical contracts with that of man-

agerial contracts resulting from direct contracting with full information under which investors

directly contract each manager and observe all managerial effort outcomes. In the literature, it

has been widely recognized that if the principal is risk neutral and all managerial outcomes are

independent of each other, optimal performance measures for each manager can be constructed

by using sufficient statistics of the managerial effort (see Holmstrom [1982] and Mookherjee

[1984]). Although we reconfirm the sufficient statistics result for our direct contracting case,

the sufficient statistics do not provide a necessary set of performance measures for our optimal

hierarchical contracts, because the top manager acting as a principal to middle managers is

risk averse.

Under our hierarchical contracting, each optimal middle managerial contract between the

top and middle managers is based on three performance measures: the individual middle-

managerial effort outcome, top managerial effort outcome, and the total outcome of the firm.

Note that the first measure is a sufficient statistic of the individual middle managerial effort.

The other two measures are also added because the risk-averse top manager tries to share

his own compensation risk with middle managers, even when the two measures have almost

nothing to do with middle managerial effort levels. This observation may provide a rationale
2Melumad, Mookherjee, and Reichelstein [1995] examine effects of adverse selection under a hierarchical

contracting environment. In their model, there is only one middle manager, and all managers are risk-neutral.
3The monitoring structure of the firm in this paper is somewhat similar to that of Mirrlees [1976, section 5],

although he does not discuss optimal contracts.

2



to justify common managerial compensation practices such as company-wide bonus programs

and stock option plans for nonexecutive employees (see Core and Guay [2001] for stock option

plans for nonexecutive employees).4

We also compare optimal top and middle-managerial contract sensitivities of our hierarchi-

cal contracts with those of the direct contracting benchmarks. As compared with the direct

contracting with full information, inefficiency can arise under our hierarchical contracting, as

the risk-averse top manager tries to shift his own compensation risk to middle managers by

providing too high-powered middle managerial effort incentives.5 As a consequence, middle

managers work harder than they do under direct contracting.6 Furthermore, we show that

as the firm size increases, sensitivities of middle managerial hierarchical contracts decrease

toward those of direct contracts. The reason is that as the firm size increases, the top manager

keeps shifting his own compensation risk to middle managers, but this shifted risk is gradually

diversified away because the risk is shared by a large number of middle managers.

On the other hand, we show that the top managerial (contract) sensitivity depends on

several economic factors such as common uncertainty across all managerial effort outcomes,

returns to scale on the firm’s production, the top managerial effort productivity relative to that

of middle managers, and the aggregate middle managerial risk-sharing premium. In particular,

for large firms, the sensitivity of the top managerial hierarchical contract can be either much

higher or lower than that of the direct contracting case.

We discuss the case of independent outcomes, first, and then the case of correlated out-

comes with common uncertainty. For the case of independent outcomes where all managerial

outcomes are independent of each other, we show that if the firm’s production function exhibits

nonincreasing returns to scale in labor, and the relative effort productivity of the top manager

is lower (higher) than a certain threshold, the optimal top managerial sensitivity approaches

zero (the first best), as the firm size increases. The threshold depends on top managerial effort

productivity and the aggregate middle managerial risk-sharing premium.

The intuition for the two extreme top-managerial sensitivities (i.e., either zero or the first

best) for large firms is as follows: Given a top managerial contract in place, the risk averse
4The dependence of middle managerial contracts on top managerial effort outcome and the aggregate outcome

may also provide a new insight into relative performance evaluation. Traditional literature on relative schemes
(e.g., Lazear and Rosen 1981, Nalebuff and Stiglitz 1983, Gibbons and Murphy 1990, Dye 1992, Core and
Guay 2003) emphasize their usefulness for filtering common noises and identifying true effort levels of individual
workers. We show, however, that dependence of a middle manager’s compensation of outputs of others in the
same firm is not necessarily based on filtering, but may be caused by the top manager’s incentive to share risk.

5Of course, investors can be better off with our hierarchical contracting than direct contracting if they can
observe only the aggregate of all managerial effort outcomes under direct contracting. In this paper, we do not
discuss this straightforward direct contracting case with the limited information structure.

6This result may be indirectly related to a recent empirical finding by Aggarwal and Samwick [2003] who
document positive and significant (pay-divisional) sensitivities of middle managerial contracts. Our results
indicate that more future empirical research is called for.
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top manager assigns an excessively high-powered incentive contract to each middle manager in

order to reduce his own compensation risk, and each middle manager demands a risk-sharing

premium for the excessive compensation risk imposed by the top manager. The aggregate

risk-sharing premium is eventually shifted to investors, decreasing investors’ expected wealth.

However, the risk-shifting behavior engenders not only a cost but a benefit to investors, because

with reduced compensation risk, the top managerial incentive to work is improved. Therefore,

investors strike a balance between the cost and benefit, in order to determine whether to

encourage or discourage such risk-shifting/risk-sharing behavior.

If the marginal gain from an improvement of the top managerial effort incentives dominates

(is dominated by) the marginal aggregate risk-sharing premium to be paid to middle managers,

investors would like to encourage (discourage) the top managerial risk-shifting behavior by in-

creasing (decreasing) the top managerial sensitivity. Thus, when the relative effort productivity

of the top manager is sufficiently higher (lower) than the aforementioned threshold, the top

managerial sensitivity is higher (lower) than that of the direct contracting benchmark, and in

fact, the sensitivity approaches the first best (zero) as the firm size grows.

Although the above independent-outcome case helps us understand various tradeoffs, it

may be more realistic for managerial effort outcomes to be correlated with each other through

some sort of common uncertainty within the firm. We find that even in the presence of common

uncertainty, the top managerial contract sensitivity still depends on the basic tradeoff between

the marginal top managerial incentives and the marginal aggregate middle managerial risk-

sharing premium. However, the risk-sharing premium in the case of common uncertainty grows

much faster than it does in the case of independent outcomes.

The reason is that unlike risks of independent outcomes, the common uncertainty, being

present across all managerial effort outcomes, cannot be diversified away through risk-sharing

among managers. Consequently, the aggregate middle managerial risk-sharing premium can

explode as the firm size increases. This implies that unless the top managerial effort productiv-

ity explodes even at a faster speed than the aggregate common risk-sharing premium can, the

premium in the case of common uncertainty can become much more important to investors’

expected wealth than it can in the case of independent outcomes.

In particular, we show that in the presence of common uncertainty, if the aggregate top

managerial contribution to middle managerial outcomes is bounded, and the production tech-

nology of the firm does not exhibit too high a degree of increasing returns to scale in labor,

then the sensitivity of the top managerial hierarchical contract is much lower than that of

the top managerial direct contract, approaching zero as the firms size grows. The reason is

that under the above stated conditions, the aggregate risk-sharing premium can grow with the
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firm size so fast that investors are much more willing to sacrifice top managerial incentives in

order to reduce the aggregate middle managerial risk-sharing premium than they are in the

case of independent outcomes. Note that the condition on the firm’s production technology

for this result is general enough to encompass Baker and Hall’s [2004] empirical finding that

firms typically have decreasing returns to scale technologies.

We believe the above result can serve as an explanation of the puzzle presented by Jensen

and Murphy [1990]: the average wealth changes of CEOs for large and small firms are, respec-

tively, $3.25 and about $8.00 for every $1,000 change in shareholder wealth.7 Moreover, our

result is also consistent with an intuition that as the firm size becomes larger, top managerial

effort decisions can be less important than his decisions on middle managerial contracts, and

thus investors would like to decrease the top managerial effort incentives in order to induce

the top manager to make decisions more like investors in contracting middle managers.

The paper is organized as follows: In the next section we start with the general description

of our hierarchical contracting environment. In Section 3, we consider a direct contracting

benchmark where investors can directly contract all managers with full information about

all individual managerial effort outcomes. For this benchmark, we extend Holmstrom and

Milgrom [1987] with many agents. Section 4 is the main section of the paper. This section

consists of two subsections: the first is a case where all managerial outcomes are independent

of each other, and the other is a case where all outcomes are correlated with each other through

common uncertainty of the firm. In Section 5, we compare both top and middle managerial

sensitivities under the two different direct and hierarchical contracting environments. Finally,

Section 6 provides a brief summary of results of the paper. All proofs are presented in the

Appendix.

2 The Model

There are two dates, 0 and 1, and a firm with N + 1 managers 0, 1, ..., N where manager 0 is

the top manager and the rest are middle managers. Throughout the paper, we interpret N

7Hall and Liebman (1999), Aggarwal and Samwick [2003], and Baker and Hall [2004] document higher
sensitivities than Jensen and Murphy. However, the magnitude of these sensitivities are generally small and the
firm-size effect still exists: the larger the firm, the lower the sensitivity. Another comment is in order. In the
literature, using an implication from the standard one-principal and one-agent model, it is commonly argued
that the sensitivities of large firms should be lower than those of small firms, because the volatilities of aggregate
outcomes of large firms are larger than those of small firms. Unfortunately, this argument may not be correct
because it ignores the firm size effect on the productivity of the CEO (the agent) of the firm. Since the CEO
marginal productivity is positively related to the sensitivity, the standard model can also produce the opposite
of the firm size effect if the volatility of the profit of the firm grows sufficiently slower than the productivity
does as the firm size increases. However, given that it does not tells us why the volatility of the profit of the
firm should grow sufficiently slower or faster than the productivity does as the firm size increases, the standard
principal-agent model does not provide a satisfactory explanation of the firm-size effect.
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synonymously with the firm size. Within the firm, there can be (N +1) individual productions

(outcomes) Y i, i = 0, 1, ..., N , resulting in a total production of
∑N

i=0 Y i. Middle manager i

exerts effort µi to increase Y i at a personal (monetary) cost of ci(µi). The top managerial

effort µ0, however, can affect, at a cost of c0(µ0), not only his own outcome Y 0 but all middle

managerial outcomes. We assume that for all i = 0, 1, ..., N , ci
µ ≥ 0, ci

µµ > 0. Throughout the

paper, we say cost functions are quadratic if ci(µ) = (Ki/2)µ2, i = 0, 1, ..., N . The individual

outcomes have the following structures.

Y 0 = µ0N−δ0
+ σcξc + σ0ξ0,

Y i = (µi + κi(N)µ0)N−δi
+ σcξc + σiξi, i = 1, ..., N,

where κi(N) ≥ 0 is a function of N ; ξc and ξi are independent identically distributed standard

normal random variables; and σc ≥ 0, and σi > 0, for i = 0, 1, ..., N . The random variable ξc

captures the source of risk common to all managers in the firm, and ξi’s are idiosyncratic risk

sources unique to individual managers.

The parameter δi represents a scale effect on the production function of the firm: if δi > (=

, <)0 for all i, each production function in the firm exhibits decreasing (constant, increasing,

respectively) returns to scale in labor.8 For simplicity, we assume that δi’s, i = 0, 1, ..., N,

have the same signs across all managers, e.g., if δ0 is positive, then all δi’s, i = 1, ..., N are

positive. When δi > 0, manager i would find it increasingly more difficult to increase the

expected outcome for a given level of effort, as the firm size grows. In other words, if δi’s are

positive and the total number of employees is doubled with all effort levels held constant, then

the total output will be less than doubled. The case of decreasing returns to scale may be

the most reasonable description of the firm in the long run. Nonetheless, we shall examine all

three cases, because some small firms can sometimes exhibit increasing returns to scale in the

short run, or during some contracting periods.

The term κi(N)µ0N−δi
, i = 0, 1, ..., N , describes contribution by the top manger to middle

manager i’s effort outcome Y i, and thus the sum
∑N

i=1 κi(N)N−δi
µ0 is the top managerial

contribution to the aggregate middle managerial output. This term plus µ0N−δ0
captures in

spirit the influence of the top managerial effort on the total output of the firm as in Rosen

[1982]. We assume that the top managerial contribution to the aggregate middle managerial
8Scale effects in production functions in this paper can be equivalently interpreted as those in managerial

cost functions, because the model specification can be equivalently transformed as follows.

Y 0 = m0 + σcξc + σ0ξ0, Y i = mi + σcξc + σiξi, i = 1, ..., N,

c0 = c0(m0Nδ0
), ci = ci(miNδi − κi(N)m0), i = 1, ..., N.

Under this equivalent specification, the top managerial effort helps reduce middle managerial costs of effort.
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output increases and approaches a finite nonnegative number q as the firm size increases, i.e.,
∑N

i=1 κi(N)N−δi ↑ q < ∞, as N →∞. This assumption implies that the marginal productivity

of the top managerial effort to increase the aggregate middle managerial outcome cannot grow

to infinity as the firm size grows.

Investors are risk neutral, and managers exhibit constant absolute risk aversion (CARA)

with CARA coefficient Ri, i = 0, 1, ..., N . We assume the reservation utility of manager i,

for i = 0, 1, ......, N , is e−RiWi
0 . It is well accepted that investors exhibit risk neutrality as

far as contracting is concerned, because risks relevant to contracting are firm-specific, whereas

managers exhibit risk aversion, because significant portions of their wealth are exposed to firm-

specific risks of the firm, and these exposures cannot be diversified away in capital markets. As

will be seen later, top managerial risk aversion plays a particularly important role in hierarchical

contracting.

We consider two different types of contracting problems. The first is the case of direct

contracting where investors observe all individual outcomes, and directly contract each man-

ager. The other is the hierarchical contracting case where investors can only observe the total

outcome net of all middle managerial compensations, and contract the top manager who has

technology to observe all individual outcomes and is given a mandate to contract all middle

managers. We assume all managerial contracts are linear in observable outcomes of managerial

efforts. Further details of admissible contracts shall be given in Sections 3 and 4. The linearity

assumption is without loss of generality, as long as we interpret our results in the context of a

continuous-time model described in the Appendix.

For brevity, we express managerial effort outcomes with vector Y as follows:

Y = e + Dξ,

where

Y =
[

Y 0 Y 1 ... Y N
]>

,

e =
[

µ0N−δ0
(µ1 + κ1(N)µ0)N−δ1

... (µN + κN (N)µ0)N−δN
]>

,

ξ =
[

ξc ξ0 ξ1 ... ξN
]>

,

and D is an (N + 1)× (N + 2) matrix such that

D =




σc σ0 0 ... ....... 0
σc 0 σ1 0 ... 0

....... ... ... ... ... ...
σc ... ... ... 0 σN


 .
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We often use notation Y−i to denote an N -vector constructed from the (N + 1)-vector Y with

its i-th element removed. That is,

Y−i =
[

Y 0 Y 1 ... Y i−1 Y i+1 ... Y N
]>

.

Throughout the paper, any vector with subscript −i means the vector with its i-th element

removed.

On the other hand, the variance-covariance matrix of Y , denoted by Q, is an (N+1)×(N+1)

matrix such that

Q = DD> =




(σc)2 + (σ0)2 (σc)2 ... ... (σc)2

(σc)2 (σc)2 + (σ1)2 (σc)2 ....... (σc)2

....... ... ... ... ...
(σc)2 ... ... (σc)2 (σc)2 + (σN )2


 ,

which is clearly positive definite. Define Q−i to be be an N × N submatrix of Q, resulting

from deleting the (i + 1)-th row and column of Q for i = 0, 1, ..., N . Then Q−i is the variance-

covariance matrix of Y−i for i = 0, 1, ..., N . Also define, for i = 0, 1, ..., N , an (N + 1)-vector p

as follows:

p =
[

Cov(Y i, Y 0) ... Cov(Y i, Y N )
]>

=
[

(σc)2 ... (σc)2
]>

.

Later, it will be seen that quantity p−i can be used in filtering common noise out of individual

effort outcomes.

3 Direct Contracting with Complete Information

Before starting our discussion on our hierarchical contracting problem, we first examine a

direct-contracting benchmark problem, the solution to which we will later compare with that

of the hierarchical contracting problem.

In the benchmark problem, investors can observe all individual outcomes and directly

sign contracts with all managers. Economic implications of such a case are in fact relatively

thoroughly examined in the literature on moral hazard in teams consisting of one risk-neutral

principal and many risk-neutral/risk-averse agents. We simply recover existing results with

additional features which allow the top manager to affect outcomes of other managers, and all

outcomes to depend on the firm size.9 These features are to distinguish the top manager from

middle managers, and enable us to better examine the firm size effect.
9Our companion paper, Koo, Shim, and Sung (2006) studies a case with a risk averse principal and production

functions which allow general interaction among agents.
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Since individual outcomes Y i, i = 0, 1..., N , are observable, all salary functions are allowed

to depend on all individual outcomes as follows:

Si(Y ) = αi + (βi)>Y, i = 0, 1, ..., N,

where

βi =
[

βi0 βi1 ... βiN
]>

, i = 0, 1, ..., N.

Let

µ =
[

µ0 µ1 ... µN
]>

.

Then, the investors’ problem is to choose Si, i = 0, 1, ..., N , to maximize

E

[
1>N+1Y −

N∑

i=0

Si

]

subject to, for i = 0, 1, ..., N ,

µi ∈ arg max
µ̂

E[− exp {−Ri(Si − ci(µ̂))} |µ−i],

and

E[− exp {−Ri(Si − ci(µi))} |µ−i] ≥ − exp {−RiW i
0}.

Note that we look at Nash equilibria where each manager chooses his/her own effort level, as

if effort levels of all other managers were exogenously given. Throughout the paper, we only

focus on Nash equilibria.

Let

F := Q−0 − 2N δ0
(p−0)θ> + [(σc)2 + (σ0)2]N2δ0

θθ>,

G := (p−0)− [(σc)2 + (σ0)2]N δ0
θ,

θ :=
[

κ1(N)N−δ1
... κN (N)N−δN

]>
.

Note that θ is an N -vector of top managerial marginal effort-products through all middle

managerial outcomes.

The following proposition provides the solution to our benchmark problem, and extends

Holmstrom and Milgrom’s [1987] model by allowing the principal to contract many agents.

Proposition 1. Let (µ0, µi) be the solution to the following equations: for i = 1, ...., N ,

[
N−δ0

+
N∑

i=1

κi(N)N−δi]− c0
µ(µ0)

−R0N2δ0
c0
µ(µ0)c0

µµ(µ0)
[
(σc)2 + (σ0)2 −G>F−1G

]
= 0, (1)

N−δi − ci
µ(µi)−RiN2δi

ci
µ(µi)ci

µµ(µi)
[
(σc)2 + (σi)2 − (p−i)>(Q−i)−1p−i

]
= 0. (2)
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Then, the optimal contracts for the top and middle managers are as follows:

S0 = W0
0 + N δ0

c0
µ(µ0)

(
F−1G

)>
e−0 −

(
1 + N δ0(

F−1G
)>

θ
)
c0
µ(µ0)µ0 + c0(µ0)

+
R0

2
(
N δ0

c0
µ(µ0)

)2
[
(σc)2 + (σ0)2 −G>F−1G

]

+N δ0
c0
µ(µ0)

{
Y 0 − (

F−1G
)>(

Y−0 − θN δ0
Y 0

)}
, (3)

Si = W i
0 + N δi

ci
µ(µi)(p−i)>(Q−i)−1e−i − ci

µ(µi)(µi + κi(N)µ0) + ci(µi)

+
Ri

2
(
N δi

ci
µ(µi)

)2
[
(σc)2 + (σi)2 − (p−i)>(Q−i)−1p−i

]

+N δi
ci
µ(µi)

{
Y i − (p−i)>(Q−i)−1Y−i

}
. (4)

Proposition 1 implies that in the presence of common noise, the optimal managerial perfor-

mance measure for middle manager i, i = 1, ..., N , is Y i−(p−i)>(Q−i)−1Y−i, where (p−i)>(Q−i)−1

is a vector of slope coefficients of the multiple regression of Y i on Y−i. In particular, the vec-

tor of slopes is constructed in such a way that the resulting volatility of the performance

measure is minimized.10 On the other hand, the top managerial performance measure is

Y 0 − (
F−1G

)> (
Y−0 − θN δ0

Y 0
)
, which also minimizes the volatility of the performance mea-

sure.11 Alternatively,
(
F−1G

)> can be viewed as a vector of regression slope coefficients when

Y 0 is regressed on Y−0 − θN δ0
Y 0. Note that the vector Y−0 − θN δ0

Y 0 is independent of µ0

and it is used to filter a part of the common noise out of Y 0.

The above implies that when correlated signals for managerial effort are available, the

signals can be utilized to reduce the volatility of the managerial performance measure. If

the signals have no information content about managerial effort, that is, if all outcomes are

independent such that σc = 0, and κi(N) = 0, then each manager’s salary depends on his/her

own outcome alone.
10That is, [(σc)2 + (σi)2 − (p−i)

>(Q−i)
−1p−i] is the minimum value of x>DD>x, where x is an arbitrary

(N +1)-vector with its (i+1)-th component being one. Since DD> and (Q−i)
−1 are positive definite, and since

p−i is a nonzero vector, we have (p−i)
>(Q−i)

−1p−i > 0, i = 1, ...., N , which implies that

(σc)2 + (σi)2 > (σc)2 + (σi)2 − (p−i)
>(Q−i)

−1p−i > 0, i = 1, ..., N.

11 For an arbitrary (N +1)-vector x =
h

x0 x1 ... xN

i>
, and x−0 =

h
x1 ... xN

i>
, (σc)2 +(σ0)2−

G>F−1G is the minimum value of x>DD>x subject to x0 = 1−Nδ0
(x−0)

>θ. Since DD> and F−1 are positive
definite, and since G is a nonzero vector, we have

(σc)2 + (σ0)2 > (σc)2 + (σi)2 −G>F−1G > 0.
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Furthermore, it can be shown that all of the above performance measures both for the

top and middle managers are sufficient statistics for their effort levels. See Koo, Shim and

Sung [2006] for a general proof. Consequently, the performance measures in this section are

consistent with Holmstrom’s [1982] sufficient statistics result.

In the next section, we shall examine the case of hierarchical contracting, assuming identical

middle managers, and then in Section 5, we will compare sensitivities of optimal hierarchical

contracts with those of direct contracts. In order to facilitate the comparison, we simplify

Proposition 1 with identical middle managers as in the following corollary.

Corollary 1. Suppose all middle managers are identical in the following sense:

Ri ≡ RM , ci(·) ≡ cM (·), σi ≡ σM , W i
0 ≡ WM

0 , δi ≡ δM , κi(N) ≡ κ(N), i = 1, ..., N.

Then, the optimal contracts for the top and middle managers are given as in (3) and (4),

respectively, with

(F−1G)> =
(σc)2 − [(σc)2 + (σ0)2]κ(N)N δ0−δM

(σM )2 + N
[
(σc)2(1− κ(N)N δ0−δM )2 + (σ0)2(κ(N)N δ0−δM )2

]1>N

(p−i)>(Q−i)−1 =
(σc)2

(σM )2[(σc)2 + (σ0)2] + (N − 1)(σc)2(σ0)2
[

(σM )2 (σ0)2 ... (σ0)2
]
,

and µ0 and µM satisfy

[
N−δ0

+ κ(N)N1−δM ]− c0
µ(µ0)−R0N2δ0

c0
µ(µ0)c0

µµ(µ0)

× [(σc)2 + (σ0)2](σM )2 + N(σ0)2(σc)2

(σM )2 + N
[
(σc)2(1− κ(N)N δ0−δM )2 + (σ0)2(κ(N)N δ0−δM )2

] = 0 (5)

N−δM − cM
µ (µM )−RMN2δM

cM
µ (µM )cM

µµ(µM )

×
(σM )2

(
(σM )2[(σc)2 + (σ0)2] + N(σc)2(σ0)2

)

(σM )2[(σc)2 + (σ0)2] + (N − 1)(σc)2(σ0)2
= 0. (6)

From the above corollary, one can double check that F−1G and
(
(p−i)>Q−i)−1

)> are vectors

of multiple regression coefficients, respectively, from regressing Y 0 on Y−0−1Nκ(N)N δ0−δM
Y 0,

and from regressing Y i on Y−i.

4 Hierarchical Contracting

In this section, for simplicity, we assume that all middle managers are identical with Ri ≡
RM , ci(·) ≡ cM (·), σi ≡ σM , W i

0 ≡ WM
0 , δi ≡ δM , κi(N) ≡ κ(N), i = 1, ..., N . At

11



time zero, investors and the top manager sign a compensation contract S0, and then the top

manager recruits N middle managers with contract Si, i = 1, ..., N . After all contracts are

signed, both the top and middle managers together carry out N + 1 tasks.

Both the top and middle managers can observe all Y i’s, outcomes of individual tasks. When

Y is realized, middle manager i is paid Si based on Y , i.e., Si = αi + (βi)>Y , for i = 1, ..., N .

The top manager reports to investors the net profit, X, which is the total production net

of middle managerial salaries, i.e., X = 1>N+1Y − ∑N
i=1 Si. Then the top manager receives

compensation S0 based on the net profit, X, i.e., S0(X) = A + BX. Investors claim the rest

1>N+1Y − S0 −∑N
i=1 Si. We assume investors cannot monitor the structure of Si, i = 1, ..., N

without incurring a prohibitably high cost.12 Thus the top manager is in effect given complete

discretion to design Si, i = 1, ..., N .13

We first consider the case where agents’ outcomes are independent in Subsection 4.1, and

then generalize it with correlated outcomes in Subsection 4.2. Although the correlated out-

come case can be more realistic, it is algebraically more complex than the independent case.

The independent outcome case enables us to see main economics of our hierarchical contracts

much clearly and help entangle economics hidden behind complex algebraic equations for the

correlated outcome case.

4.1 Independent Outcomes

In this subsection, we assume that all outcomes are independent, that is, σc = 0. In our hier-

archical world, the top and middle managerial contracts cannot be determined independently

of each other, because the top managerial contract necessarily affects middle managerial con-

tracts. However, for ease of exposition, we first present necessary forms of middle managerial

contracts in Proposition 2 and then we do the same for the top managerial contract in Propo-

sition 3. Proofs of both propositions are however omitted because they are special cases of

Propositions 4 and 5 with σc = 0.

Let us first define β, γ0 and γM as follows:

β = N δM
cM
µ (µM ), γ0 =

R0B

NR0B + RM
, and γM =

R0B
(
1− β

)

(N − 1)R0B + RM
,

12In this paper we do not explicitly model the monitoring costs that the top manager should incur in order
to observe individual middle managerial performances. It appears that monitoring costs can be related to the
optimal hierarchical structure of the firm, and we leave this potentially interesting issue of optimal hierarchy
for future research.

13Even without invoking high monitoring costs, the hierarchical contracting may be rationalized if investors
are uncertain about middle managers’ ability levels, but after the top managerial contract is signed, the top
manager can identify their ability levels with higher precisions than investors can. However, we do not model
adverse selection problems here.
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which then become sensitivities for each middle managerial contract, respectively, to his/her

own outcome, the top managerial outcome and all other middle managerial outcomes, as can

be seen in the following proposition.

Proposition 2. Suppose that the top managerial contract S0(X) = A + BX is given. Under

optimal middle managerial contracts, all middle managers exert the same levels of effort such

that µi = µj = µM , for i, j = 1, ..., N , and each optimal middle managerial contract is given

in the following form: For i = 1, ..., N ,

Si(Y ) = WM
0 − (βi)>e + cM (µM ) +

RM

2



(βi0)2(σ0)2 +

N∑

j=1

(βij)2(σM )2



 + (βi)>Y, (7)

where βi is an (N + 1)-vector consisting of βi0 = γ0, βii = β, and βij = γM , for j = 1, ..., N

and j 6= i.

Proposition 2 implies that although individual outcomes are independent of each other, each

middle managerial salary function Si can depend on three metrics: Y i, Y 0, and
∑N

j=1,i6=i Y
j

which are individual i’s own, the top managerial and the aggregate of all other middle manage-

rial outcomes. Note that Y i is a sufficient statistic for middle manager i’s effort level, and that

the two other metrics are non-sufficient statistics that are orthogonal to the sufficient statistic.

The sufficient statistic is obviously to give the middle manager incentives to work, whereas the

other two non-sufficient statistics are for risk-sharing.

If the top manager were risk neutral, i.e., if R0 = 0, then γ0 = γM = 0, and the middle

managerial contract would be independent of the other two metrics, Y 0, and
∑N

j=1,j 6=i Y
j .

However, when the top manager is risk-averse, he is concerned not only with middle managerial

incentives but also with shifting a part of his compensation risk to middle managers. The

latter risk-sharing need motivates the top manager to require that each middle managerial

compensation also depend on both the top managerial and aggregate outcomes, although the

two metrics have nothing to do with the middle manager effort incentives. Therefore, under

hierarchical contracting, even when the principal is risk neutral and all managerial outcomes

are independent, the optimal performance measure for each middle managerial contract consists

of not only a sufficient statistic but a non-sufficient statistic that is orthogonal to the sufficient

statistic.

Alternatively, one may rewrite Si as follows:

Si = αM + (β − γM )Y i + (γ0 − γM )Y 0 + γM
N∑

j=0

Y j , (8)
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where αi = αj = αM for i, j = 1, ..., N . Under this alternative expression, Si depends on a new

set of three metrics: individual i’s own, the top managerial, and the aggregate of all outcomes,

i.e., Y i, Y 0, and
∑N

j=0 Y j , respectively. Even when it may be very weakly correlated with

agent i’s performances, the aggregate economic profit of the firm before all salaries,
∑N

j=0 Y j ,

is included in the optimal performance measure for agent i, in order to improve risk-sharing.

Consequently, the expression in (8) may provide a rationale to justify common managerial

compensation practices such as company-wide bonus programs including stock option plans

for nonexecutive employees. See Core and Guay [2001] for empirical evidence of stock option

plans for nonexecutive employees.

Sharing risk with middle managers brings about both a benefit and a cost to the top

manager: a marginal decrease in the top managerial compensation risk and a marginal increase

in the aggregate middle managerial compensation-risk premium. (We will shortly discuss this

top managerial cost-benefit tradeoff from investors’ perspective.) From (7), note that each

middle managerial compensation risk premium consists of two terms:

RM

2
β2(σM )2 +

RM

2
[
(γ0)2(σ0)2 + (N − 1)(γM )2(σM )2

]
. (9)

The first term of the above quantity is a usual risk premium associated with middle managerial

effort performance risk, and the second is an individual middle managerial compensation-risk

premium attributed to risk-sharing. We call the first term the middle managerial (effort)

performance risk premium and the second the middle managerial risk-sharing premium.

It is noteworthy that roles of risk-sharing are mostly ignored in the standard agency lit-

erature, partly because shareholders of a firm are typically assumed to be well-diversified and

thus exhibit risk-neutrality over idiosyncratic risk such as contracting risk, and partly because

risk-sharing issues are considered as well-understood in the neoclassical world. However, in

a hierarchical contracting environment, the risk-sharing issue reemerges in a nontrivial way,

because although shareholders may be risk neutral, the top manager exhibits risk aversion over

idiosyncratic risk of the firm and acts as a principal to middle managers. Thus, in contracting

middle managers, it is important for the top manager to take into account not only middle

managerial incentives but also sharing risk with them. In other words, the top manager is

willing to pay middle managers risk-sharing premia for their sharing his own compensation

risk. Of course, the cost of the top managerial risk-sharing incentive or the middle manage-

rial risk-sharing premia will eventually be shifted to shareholders. Thus, although they are

risk neutral, shareholders, in turn, have to consider middle managerial risk-sharing premia in

designing the top managerial compensation contract.
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In this paper, it is this top managerial risk-sharing motivation that complicates both top

and middle managerial incentive problems. Now, let us look at the top managerial contract.

Proposition 3. The optimal top managerial contract S0(X) under the hierarchical contracting

is given in the following form.

S0(X) = W0
0 + c0(µ0)−BE[X] +

R0

2
B2V ar(X) + BX,

where

B =
c0
µ(µ0)

N−δ0 + κ(N)N1−δM (10)

E[X] = (N−δ0
+ κ(N)N1−δM

)µ0 + N

[
N−δM

µM −WM
0 − cM (µM )

−RM

2

{(
γ0

)2 (σ0)2 +
(
β2 + (N − 1)

(
γM

)2
)

(σM )2
}]

, (11)

V ar(X) =
( RM

NR0B + RM

)2
(σ0)2 + N

( (
1− β

)
RM

(N − 1)R0B + RM

)2
(σM )2, (12)

and µ0 and µM satisfy

N−δM − cM
µ (µM )−RMN2δM

cM
µ (µM )cM

µµ(µM )(σM )2

+R0B

(
RM

(
1− β

)
N δM

cM
µµ(µM )(σM )2

(N − 1)R0B + RM

)
= 0. (13)

Condition (13) immediately implies 0 < β(= βii = N δM
cM
µ ) < 1. This condition is from

one of the first order conditions (FOCs) of the top managerial expected utility maximization

given a top managerial contract with sensitivity B, subject to middle managerial incentive

and participation constraints. Thus, conditions (10) and (13) completely describe the top

managerial decision rule on his own effort choice and middle managerial effort incentives.

The first three terms of the LHS of condition (13) are familiar terms that appear when

investors directly contract each middle manager.14 The three terms are related to a marginal

change in E[X] with respect to a marginal increase in β. The fourth term, representing a

hierarchical contracting effect, is associated with a marginal reduction in the top managerial

compensation risk burden (premium) on X, as the top manager increases each middle manage-

rial effort incentive β. (Equation (12) implies that the top manager can shift his compensation
14For the three terms under direct contracting, see Eq.(2) with σc = 0. Assuming identical middle managers,

Eq.(2) becomes N−δM − cM
µ (µM )−RMN2δM

cM
µ (µM )cM

µµ(µM )(σM )2 = 0.
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risk by increasing middle managerial contract sensitivities.) It is this marginal reduction that

motivates the top manager to shift his own compensation risk to middle managers by increasing

middle managerial contract sensitivities more than desired by investors, and as a result, middle

managers work harder than desired by investors under direct contracting.

The more risk averse the top manager, the above effect is more pronounced. Indeed Equa-

tion (13) implies that the higher the top managerial risk aversion R0, the higher the middle

managerial effort incentive β. With the same level of top managerial effort incentive B, the

variance of total output after payment of middle managerial salaries is smaller for a more risk

averse top manager. (See Equation (11).)

Taking top-managerial effort and risk-sharing incentives into account, investors design a

top managerial contract by choosing µ0 and µM to maximize the following expected net profit

subject to (13):

E[X − S0(X)]

= N

[
N−δM

µM −WM
0 − cM (µM )− RM

2

{ (
R0B

NR0B + RM

)2

(σ0)2

+


β2 + (N − 1)

(
R0B

(
1− β

)

(N − 1)R0B + RM

)2

 (σM )2

}]

+(N−δ0
+ κ(N)N1−δM

)µ0 −W0
0 − c0(µ0)

−R0

2
B2

[( RM

NR0B + RM

)2
(σ0)2 + N

( (
1− β

)
RM

(N − 1)R0B + RM

)2
(σM )2

]
, (14)

where

B =
c0
µ(µ0)

N−δ0 + κ(N)N1−δM and β = N δM
cM
µ (µM ).

The quantity inside the first square bracket in the RHS of (14) is the net profit from each

middle managerial contract, and the other terms all together are the net profit from the top

managerial contract. However, the above maximand is highly nonconcave.

Propositions 2 and 3 shed light on the investors’ problem stated in (14), in terms of the top

managerial responses to investors’ decision on B. A few implications of the two propositions

are summarized in the following corollary.

Corollary 2. Assume cM
µµ = KM , a constant. Holding other things constant, if the sensitivity

B of S0 is increased, Propositions 2 and 3 imply that the top manager responds by changing

sensitivities of middle managerial contracts as follows:

∂β

∂B
> 0,

∂γ0

∂B
> 0,

∂γM

∂B
> 0, and

∂V ar(X)
∂B

< 0.
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Corollary 2 implies that as the top-managerial sensitivity B is increased, the top manager

shifts more of his own compensation risk to middle managers by increasing middle managerial

contract sensitivities γ0, γM , and β, and as a result the volatility of the top managerial

performance measure decreases. However, increasing the top managerial sensitivity introduces

two conflicting effects on the investors’ expected wealth: (1) a marginal effort efficiency gain

from top managerial contracting, because the top managerial compensation risk declines as the

top manager shifts his own compensation risk to middle managers; and (2) a marginal aggregate

middle managerial contract efficiency loss, because middle managerial contract sensitivities

are excessively increased by the top manager. The marginal efficiency loss consists of both a

marginal increase in the aggregate middle managerial risk-sharing premium and an excessive

marginal increase in the aggregate middle managerial effort level.15 Thus, it is reasonable to

conjecture that if the top managerial efficiency gain dominates (is dominated by) the aggregate

middle managerial efficiency loss, then the top managerial sensitivity would be higher (lower)

than that of the direct contracting case discussed in Section 3. Moreover, the tradeoff between

the two effects can be affected by the firm size.

Thus, the main question of this paper is: What would be the effect of hierarchical con-

tracting on the top managerial sensitivity, as the firm size increases? Would the positive effect

eventually dominate the other, or the other way around?

In order to obtain an insight into the above questions, we simplify the investors’ problem

using quadratic cost functions. Let us suppose that

c0(µ0) =
K0

2
(µ0)2, and cM (µM ) =

KM

2
(µM )2. (15)

Then, Eq.(13), the main constraint to the investors’ problem, can be rewritten as follows.

1− β − aβ +

(
aB

(
1− β

)

(N − 1)B + r

)
= 0, (16)

where

a := RMN2δM
KM (σM )2, b := a + 1, and r :=

RM

R0
.

Hence, we have

1− β =
a
(
(N − 1)B + r

)

(bN − 1)B + rb
, or β =

(N − 1 + a)B + r

(bN − 1)B + rb
. (17)

15Constraint (13) implies the excessive marginal increase occurs because the top manager always tries to
induce the middle managerial effort levels higher than desired by investors in the direct contracting case.

17



Using (16) and (17), the investors’ problem in (14) can be simplified as follows: choose B

to maximize

Φ(B; N) =
N

2bN2δM KM
− a2N

2bN2δM KM

(
aB

(bN − 1)B + rb

)2

+
(N−δ0

+ κ(N)N1−δM
)2

K0

(
B − B2

2

)

−RM

2

[
(N + r)

(
B

NB + r

)2

(σ0)2

+N(N − 1 + r)
(

aB

(bN − 1)B + rb

)2

(σM )2
]
. (18)

Even after the simplification with quadratic cost functions as above, the investors’ problem

still is highly complex, and may have multiple local maxima. The following lemma tells us a

possible range where the global maximum lies.

Lemma 1. Let B∗ ∈ arg maxB Φ(B, N). Then B∗ ∈ (0, 1).

Lemma 1 implies that the optimal top managerial sensitivity is between zero and one, with

one being the first best sensitivity. That is, Φ(B∗, N) should be greater than the larger of

the two, Φ(0, N) or Φ(1, N). We investigate the objective function Φ for a large N , or for a

large firm. Later in Theorem 1, we shall show that as the firm size grows, the top managerial

sensitivity under our hierarchical contracting approaches either of two extremes: either as low

as zero or as high as the first best.

In fact, a close look at Eq.(18) reveals that investors can derive profits from two sources:

one from the top manager and the other from middle managers. However, the two sources are

intertwined in such a way that an increase in B can improve the first source of profits, but it

can hurt the second source. The reason is that an increase in B motivates the top manager

not only to work harder but to shift his own compensation risk to middle managers. In order

to shift his risk, he could provide middle managers with excessively higher-powered incentives

than desired by investors, to the extent that a marginal decrease in the net aggregate profit to

investors from middle managerial effort exceeds a marginal increase in the net gain from the

top managerial effort. Thus, in choosing B, investors try to strike a delicate balance between

the two profit sources.

Let d∗ > 0 be the unique positive solution to

K0(KM )2d3 − (1 + q)2[(KM )2d2 + 2KMd + 1] = 0. (19)
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As can be seen Theorem 1, d∗ sometimes becomes an important quantity for investors to

determine priorities between the two profit sources. In particular, d∗ is positively related to

q, the top managerial maximal marginal influence on the aggregate middle managerial effort

outcome.16 Here is one of the two main theorems of the paper.17

Theorem 1. Assume quadratic cost functions as in (15), and let B∗
N ∈ arg maxB Φ(B; N).

I. Limits of B∗
N are as follows.

i. If δi > 0 for i = 0,M , and K0RM (σM )2 − q2 > 0(< 0, resp.), then the optimal top

managerial sensitivity approaches zero (the first best, resp.), i.e., B∗
N → 0( 1, resp.),

as N →∞.

ii. If δi = 0 for i = 0, M , and RM (σM )2 − d∗ > 0(< 0, resp.), then the optimal top

managerial sensitivity approaches zero (the first best, resp.).

iii. If δi < 0 for i = 0,M , then the optimal top managerial sensitivity approaches the

first best.

II. As the firm size grows, the optimal middle managerial sensitivity is always higher than,

but approaches that of the directing contracting case.

Part II of Theorem 1 results from comparing constraint (13) for optimal hierarchical con-

tracts with (6) for optimal direct contracts. The simple intuition is that the top manager would

like to minimize the aggregate middle managerial risk-sharing premium by designing middle

managerial contract sensitivities such that the portion of the top managerial compensation

risk shifted to each middle manager is diversified away in the limit. Because of this diversifica-

tion effect, individual middle managers under hierarchical contracts demand zero risk-sharing

premia and their effort levels in the limit converge to that of direct contracts.

As one may have expected, Part I-iii is consistent with the intuition that when produc-

tion functions exhibit increasing returns to scale in labor, the optimal sensitivity of the top

managerial contract approaches the first best as the firm size grows. With increasing returns

to scale, the profit from aggregate middle managerial production can be more than doubled

whenever the number of middle managers doubles. However, one may imagine that, in the

real world, technologies of most firms may be realistically characterized by decreasing returns

to scale, although those of some fast growing small firms may temporarily exhibit constant or
16More precisely, one can show d∗ is increasing in q and decreasing in K0 and KM .
17Both Theorems 1 and 2 are about managerial contract sensitivities in the limit as the firm size grows,

proofs of the two are somewhat different from each other, because in Theorem 2, common uncertainty creates
important terms in risk-premium parts that can affect investors’ contract decisions significantly even in the
limit.
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even increasing returns to scale. In their model setting that is somewhat different from ours,

Baker and Hall [2004, JLE] empirically show that the elasticity of managerial effort produc-

tivity with respect to firm size is 0.4, which can be approximately interpreted as our δi being

0.6, i.e., decreasing returns to scale.

It is striking that Parts I-i and I-ii suggest when a very large firm has production technolo-

gies with nonincreasing returns to scale, the top managerial sensitivity can be either very low

or very high, depending upon magnitudes of parameters such as RM (σM )2, K0 and KM . The

sensitivity in the limit can be as low as zero if either of the following two conditions holds:

(1) decreasing returns to scale and K0RM (σM )2 > q2; or (2) constant returns to scale and

RM (σM )2 > d∗. Let us call these two conditions the top managerial zero-sensitivity condi-

tions. On the other hand, the sensitivity in the limit can be as high as the first best if either

of the following two conditions holds: (1) decreasing returns to scale and K0RM (σM )2 < q2;

or (2) constant returns to scale and RM (σM )2 < d∗. We call these two the top managerial

first-best-sensitivity conditions.

It turns out that the inequalities in the above conditions are mainly from comparing sizes of

two quantities: rates of increase over N in aggregate middle managerial risk-sharing premium

(recall from (9) the definition of the middle managerial risk-sharing premium), and in total top

managerial effort contribution to all managerial effort outcomes including his own. Theorem

1 suggests that, in the limit, the former quantity is greater (less) than the latter if the top

managerial zero-sensitivity (first-best-sensitivity) conditions hold. Thus, roughly speaking,

Parts I-i and I-ii tell us that if the managerial production functions exhibit nonincreasing returns

to scale and if the top managerial effort contribution to all managerial effort outcomes including

his own is less (more) important than the aggregate middle managerial risk-sharing premium,

the top managerial sensitivity approaches zero (the first best) as the firm size increases.18

Let us look at more closely how the tradeoff between aggregate middle managerial risk-

sharing premium and top managerial effort contribution can arise in explaining the above two

extreme limits of the top managerial sensitivity. As compared with the case of direct contract-

ing, our hierarchical contracting problem calls for several additional factors in determining the

top managerial contract, such as marginal changes in effort incentives and compensation-risk

premia for both the top and middle managers, as the top manager tries to shift his compensa-

tion risk to middle managers.

Recall from (9) that each middle managerial compensation risk premium consists of two

parts: effort-performance risk, and risk-sharing premium. The effort performance-risk premium
18If the managerial production functions exhibit increasing returns to scale, then the total top managerial

contribution can easily more than offset the middle managerial aggregate risk-sharing premium, and thus the
top managerial sensitivity approaches the first best as the firm size increases.
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is a component which also appears in the case of direct contracting. It is true that as the firm

size increases, each middle managerial risk-sharing premium can become less and less important

because of the diversification effect, and as a result, middle managerial effort incentives converge

to those of direct contracting. However, although individual risk-sharing premia approach

zero, the aggregate middle managerial risk-sharing premium, for sufficiently large N , may

not always decrease to zero.19 Furthermore, it can be shown that marginal aggregate middle

managerial risk-sharing premium dominates in the limit marginal decreases in top managerial

risk premium due to risk-sharing. Thus, this aggregate premium could still be an important

cost for hierarchical contracting.

On the other hand, as mentioned before, a positive side of the aggregate middle managerial

risk-sharing is that it can improve top managerial effort incentives, as it reduces the top

managerial compensation risk. Furthermore, it can be shown that the marginal gain from this

positive side dominates in the limit marginal aggregate middle managerial effort efficiency losses

due to excessively high powered incentives. Consequently, as N increases sufficiently large,

investors’ decision on B boils down to a tradeoff between marginal aggregate middle managerial

risk-sharing premium, and marginal total top managerial effort contribution. This tradeoff

is also consistent with Rosen’s (1982) intuition: top managerial effort makes an important

contribution to the total output of the firm and hence the top managerial effort/decision

contribution is expected to play a role in investors’ decisions.

In the following subsection, we shall see that perhaps even more strikingly, when common

uncertainty is present in all managerial outcomes, the middle managerial risk-sharing premium

could grow far faster in the limit than the top managerial effort contribution, it is much more

likely that optimal top managerial contract sensitivity approaches zero than it is in the case

of independent outcomes.

4.2 Correlated Outcomes with Common Uncertainty

In this subsection, we consider the case where σc > 0. The fundamental difference between

this common uncertainty case from the independent outcome case is that compensation risk

caused by common uncertainty cannot be diversified away through risk-sharing within the

firm.20 Because of this common-uncertainty risk, the aggregate middle managerial risk-sharing
19It can be shown that under optimal hierarchical contracts, the aggregate risk-sharing premium approaches

a positive amount as N → ∞, either if δi > 0, i = 0, M , and KM (σM )2 < q2 or if δi = 0, i = 0, M , and
KM (σM )2 < d∗.

20The common uncertainty risk in this paper still is a part of firm-specific risk. Although it is non-diversifiable
within the firm, the common uncertainty risk may be diversifiable in capital markets. The common uncertainty
may be viewed as company-wide firm-specific shocks. For example, operations of the whole firm can be affected
by changes in market demand for products of the firm as a consequence of market competition against other
competing firms, when the size of the market segment for similar products is more or less fixed. As a result, each
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premium can explode as the firm size grows.

Let us introduce the following new notation:

η :=
(σc)2

(σc)2 + (σ0)2
, and ϕ := η(σ0)2.

Then, η is the slope of regression of Y i on Y 0, for i = 1, ..., N . Moreover, we redefine β, γ0

and γM as follows.

β = N δM
cM
µ (µM ), (20)

γ0 =
R0B −RMη

NR0B + RM
+ η

(
1− β − (N − 1)γM

)
, (21)

γM =

{
R0B

(
Nϕ + (σM )2

)
+ RMϕ

}(
1− β

)−RMϕ

(N − 1)R0B
(
Nϕ + (σM )2

)
+ RM

(
(N − 1)ϕ + (σM )2

) . (22)

Proposition 4. Suppose that the top managerial contract S0(X) = A + BX is given. Under

optimal middle managerial contracts, all middle managers exert the same levels of effort such

that µi = µj = µM , for i, j = 1, ..., N , and each optimal middle managerial contract is given

in the following form: For i = 1, ..., N ,

Si(Y ) = WM
0 − (βi)>e + cM (µM ) + (βi)>Y

+
RM

2







N∑

j=0

βij




2

(σc)2 + (βi0)2(σ0)2 +
N∑

j=1

(βij)2(σM )2


 , (23)

where βii = β; βi0 = γ0; and βij = γM , for j = 1, ..., N and j 6= i.

In Proposition 4, the way the middle managerial performance measure is constructed is of

particular interest. Note that if R0 = 0, i.e., the top manager is risk neutral, then γ0 = γ̄0 and

γ0 = γ̄M , where

γ̄0 := ηβ
(
− 1 + (N − 1)

ϕ(
(N − 1)ϕ + (σM )2

)
)
,

γ̄M := − ϕβ(
(N − 1)ϕ + (σM )2

) .

In this case, we have

(βi)>Y = β

{
Y i − −1

β

(
γ̄0, γ̄M1>N−1

)
Y−i

}
.

managerial effort productivity can be affected by not only his/her own productivity shock but company-wide
firm-specific shocks.
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Also, note that −1
β

(
γ̄0, γ̄M1>N−1

)
is a vector of slopes of multiple regression of Y i on Y−i,

which is also equal to (p−1)>(Q−i)−1, as seen in Section 3. Recall that when the top manager

is risk-neutral, he is not concerned with risk-sharing, but he is only interested in middle

managerial effort incentives. Thus, Y i−−1
β

(
γ̄0, γ̄M1>N−1

)
Y−i can be interpreted as the optimal

performance measure for middle manager i’s effort incentives, or as a sufficient statistic for

manager i’s (optimal) effort level.

Thus, when R0 > 0, in general the performance-related part of each middle managerial

contract can be decomposed into two parts as follows.

(βi)>Y = β

{
Y i − −1

β

(
γ̄0, γ̄M1>N−1

)
Y−i

}
+

(
γ0 − γ̄0, (γM − γ̄M )1>N−1

)
Y−i,

where

γ0 − γ̄0 =
R0B + NR0Bη

NR0B + RM
− η(N − 1)(γM − γ̄M ),

γM − γ̄M =
R0B

(
Nϕ + (σM )2

) {
(N − 1)ϕ + (σM )2(1− β)

}
{
(N − 1)R0B

(
Nϕ + (σM )2

)
+ RM

(
(N − 1)ϕ + (σM )2

)} (
(N − 1)ϕ + (σM )2

) .

Unlike the case of independent outcomes where they are used only for risk-sharing purposes,

γ0 and γM are used for both incentives and risk-sharing. In particular, parts γ̄0 and γ̄M

estimate the common noise from Y−i, a vector of other managerial performance outcomes, and

the top manager uses the estimates, i.e., γ̄0 and γ̄M , to filter out common noise from Y i in

order to improve middle manager i’s effort incentives. The remaining parts, i.e., γ0 − γ̄0 and

(γM − γ̄M )1N , are for risk sharing, and are middle managerial shares of non-performance-

related risks of Y 0 and Y−i, respectively. In fact,
(
γ0 − γ̄0, (γM − γ̄M )1N

)
Y−i is statistically

orthogonal to the aforementioned sufficient statistic for middle manager i’s effort level.

As a special case, if σc = 0, then γ̄0 = γ̄M = 0, i.e., the effort-performance measure reduces

to Y i; and γ0 and γM are solely used for risk-sharing purposes only. Thus, γ0 and γM in (21)

and (22) with σc = 0 become identical to those of the previous subsection for the independent

outcome case.

Next, we examine the top managerial contract. First, let us define τ as follows.

τ = Nϕ + (σM )2.

Proposition 5. The optimal top managerial contract under hierarchical contracting is given

in the following form.

S0(X) = W0
0 + c0(µ0)−BE[X] +

R0

2
B2V ar(X) + BX,
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where

B =
1

N−δ0 + κ(N)N1−δM c0
µ(µ0), (24)

E[X] = (N−δ0
+ κ(N)N1−δM

)µ0 + N

[
N−δM

µM −WM
0 − cM (µM )

−RM

2

{(
γ0 + (N − 1)γM + β

)2
(σc)2

+(γ0)2(σ0)2 +
(
β2 + (N − 1)(γM )2

)
(σM )2

}]
, (25)

V ar(X) =
{

1 + N −N
(
γ0 + (N − 1)γM + β

) }2
(σc)2

+
{

1−Nγ0
}2

(σ0)2 + N
{

1− (
β + (N − 1)γM

) }2
(σM )2, (26)

and µ0 and µM satisfy

0 = 1− β −RMβN2δM
cM
µµ(µM )

τ

τ − ϕ
(σM )2

+R0B

(
τ

τ − ϕ

) (
RM

{
(N − 1)ϕ + (σM )2(1− β)

}
N2δM

cM
µµ(µM )(σM )2

(N − 1)R0Bτ + RM (τ − ϕ)

)
. (27)

The first three terms of the LHS of condition (27) are familiar terms that appear when

investors directly contract each middle manager.21 Condition (27) immediately implies that

0 < β < 1. Furthermore, by comparing (27) with (6), one can see that each middle manager

works harder under hierarchical contracting than he/she does under direct contracting. This

implication is parallel to that of Proposition 3.

Using Proposition 5, we now restate the investors’ problem. Choose µ0 and µM to maximize

21For the three terms under direct contracting, see Eq.(6). Multiplying both sides by NδM

, we have the LHS
of Eq.(6) equal to the three terms.
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the following expected net profit subject to (27):

E[X − S0(X)]

= N

[
N−δM

µM −WM
0 − cM (µM )− RM

2
β2 τ

τ − ϕ
(σM )2

−RM

2

{(
γ0 + (N − 1)γM + β

)2
(σc)2

+(γ0)2(σ0)2 + (N − 1)(γM )2(σM )2 − β2
( τ

τ − ϕ
− 1

)
(σM )2

}]

+(N−δ0
+ κ(N)N1−δM

)µ0 −W0
0 − c0(µ0)

−R0

2
B2

[{
1 + N −N

(
γ0 + (N − 1)γM + β

) }2
(σc)2

+
{

1−Nγ0
}2

(σ0)2 + N
{

1− (
β + (N − 1)γM

)}2
(σM )2

]
, (28)

where B, β, γ0 and γM are given in (24), (20), (21), and (22), respectively.

The above problem is clearly a lot more complex than that for the case of independent out-

comes. However, limiting behaviors of the top managerial sensitivity with correlated outcomes

are much simpler than those with independent outcomes.

Theorem 2. Assume quadratic cost functions as in (15).

I. Limits of the top managerial sensitivity are as follows.

i. If δ0 > −1
2 , then the top managerial sensitivity approaches zero.

ii. If δ0 = −1
2 and if K0RM (σc)2 > ( < resp.)1, then the top managerial sensitivity

approaches zero (the first best, resp.).

iii. If δ0 < −1
2 , then the top managerial sensitivity approaches the first best.

II. As the firm size grows, the optimal middle managerial sensitivity is always higher than,

but approaches the second best sensitivity of the directing contracting case.

Unlike those of Theorem 1, conditions of Theorem 2 for approaching either of zero or the

first best in the limit are independent of q or d∗. Recall in Theorem 1 that both q and d∗

are related to the bound of the marginal top managerial productivity, and that the limit of

the top managerial sensitivity depends on a tradeoff between the two main economic factors,

the marginal productivity of the top managerial effort and the aggregate middle managerial

risk-sharing premium. The marginal productivity is affected by both q and the returns to scale

of the top managerial effort production function.
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In Theorem 2, the limit of the top managerial sensitivity still depends on the same tradeoff.

In Part I of the theorem, the fact that the top managerial sensitivity is independent of q or

d∗ means that in the tradeoff, as long as q is bounded, the aggregate middle managerial risk-

sharing premium is the dominant factor in determining the top managerial sensitivity in the

limit.22

The reason is as follows. In the presence of σc, the common risk σcξc cannot be diver-

sified away through risk-sharing among managers. As a consequence, the aggregate middle-

managerial risk-sharing premium for the common risk could explode as the firm size increases.

Thus, when δ0 > −1/2, or when the firm does not have a sufficiently increasing returns to

scale technology, the top managerial effort contribution can grow at a much slower speed than

the aggregate common risk premium can, and thus decreasing the premium can become much

more important than improving top managerial effort production. Consequently, the top man-

agerial sensitivity approaches zero as the firm size grows. On the other hand, when δ0 < −1/2,

the top managerial effort contribution can be exceptionally high such that it can explode even

at a faster speed than the aggregate common risk premium can, and thus the top managerial

sensitivity approaches the first best as the firm size grows.

5 Comparing Top Managerial Sensitivities of Direct and Hier-
archical Contracts

In this section, we assume quadratic cost functions as in (15) and compare top managerial

sensitivities under direct and hierarchical contracting arrangements. Recall that X is the

net profit before top managerial compensation, and Y is a vector of all individual outcomes.

In order to avoid confusion, in this section, we differentiate (X, Y )’s for the two different

contracting regimes, by using new notation (XD, YD) for direct contracting, and just (X,Y ) for

hierarchical contracting. Also recall that the top managerial sensitivities are computed based

on YD for direct contracting and X for hierarchical contracting. Thus, direct comparison of

the sensitivities for the two different contracting regimes may not be meaningful.

Nevertheless, in order to compare the two different sensitivities on an equal basis and to

be consistent with frequent practices in the empirical literature on executive compensation, we

convert the optimal vector of top managerial sensitivities to YD under direct contracting into

another sensitivity to XD which we define as a regression slope coefficient when the optimal

top managerial compensation under direct contracting is regressed on XD. Let BD be the

regression slope coefficient. In this section, we call BD the top managerial sensitivity under
22The ratio of the sum of common risks in the total output to q or d∗ diverges to infinity as N tends to

infinity, and therefore, q or d∗ does not influence the tradeoff.
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direct contracting. Then we can compare the redefined direct-contracting sensitivity BD with

the hierarchical-contracting sensitivity B. We also write (βD, γ0
D, γM

D ) and (β, γ0, γM ) for

direct and hierarchical contracting, respectively, to denote middle managerial sensitivities to

each middle manager’s own outcome, the top managerial outcome, and other middle managerial

outcomes.

For ease of exposition, we only focus on cases with nonincreasing returns to scale, which

are more consistent with real life. To start the comparison of contract sensitivities for the two

different contracting regimes, we first look at limiting behaviors of BD.

Proposition 6. If δi ≥ 0, i = 0,M , then limN→∞BD = 0.

When the firm has a nonincreasing returns to scale technology, the top managerial sensi-

tivity under direct contracting approaches zero as the firm size increases. For intuition, one

may imagine a special case where all outcomes are independent. Then S0
D depends on Y 0

D

only, where S0
D and Y 0

D are, respectively, the top managerial salary and effort outcome under

direct contracting, and intuitively, V ar(XD) → ∞ and Cov(Y 0
D, XD) → 0, as N → ∞. Thus

BD = Cov(β00
D Y 0

D, XD)/V ar(XD) → 0.

In the next subsection, we assume that all managerial effort outcomes are independent of

each other. Then in the subsection following the next, we assume there is common uncertainty

across all outcomes.

5.1 Independent Outcomes

With BD properly defined as above, now we are ready to compare B and BD.

Proposition 7. Assume quadratic cost functions as in (15). Let B∗ be the optimal top man-

agerial sensitivity under hierarchical contracting.

I. If δi > 0, for i = 0,M , and K0RM (σM )2 − q2 > 0( < 0, resp.), then B∗ < (>, resp.)BD

for large N .

II. If δi = 0 for i = 0,M , and RM (σM )2 − d∗ > 0(< 0, resp.), then B∗ < (>, resp.)BD for

large N .

Proposition 7 tells us that if RM (σM )2 is sufficiently high (low), then the top managerial

sensitivity for a hierarchical contract is lower (higher) than that of its direct-contracting coun-

terpart. We illustrate differences of the two contracting regimes in sensitivities using four tables

and four figures. These tables and figures highlight differences in top managerial sensitivities

as mainly described in Theorem 1 and Proposition 7, and the tables also provide numerical

values of middle managerial sensitivities mainly based on Corollary 1 and Proposition 2.
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N BD βD B β γ0 γM

1 0.189189 0.285714 0.179600 0.366928 0.152255 N.A.
5 0.088548 0.054805 0.023200 0.073398 0.020789 0.019672
10 0.046754 0.024617 0.005300 0.029406 0.005033 0.004910
15 0.031247 0.015278 0.002300 0.017434 0.002223 0.002189
20 0.023309 0.010866 0.001200 0.012013 0.001172 0.001159
25 0.018521 0.008335 0.000800 0.009106 0.000784 0.000778
30 0.015332 0.006708 0.000500 0.007194 0.000493 0.000489
N.A.: not applicable.

Table 1: Sensitivities with R0 = RM = 1, K0 = KM = 0.001, σ0 = σM = 50, δ0 = δM = 0.6,
and κ(N)N1−δM

= 1− 1
N .
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Figure 1: Top managerial sensitivity with R0 = RM = 1, K0 = KM = 0.001, σ0 = σM = 50,
δ0 = δM = 0.6, and κ(N)N1−δM

= 1− 1
N .

Based on Theorem 1-I-i and Proposition 7-I with K0RM (σM )2−q2 > 0, Table 1 throws light

on how top managerial sensitivities change as the number of middle managers increases. For

this table, we assume that R0 = RM = 1, K0 = KM = 0.001, σ0 = σM = 50, δ0 = δM = 0.6,

and κ(N)N1−δM
= 1− 1

N . The assumption δ0 = δM = 0.6 is to be consistent with an empirical

finding by Baker and Hall [2004]. Note that as the number of middle managers increases from

1 to 30, top managerial sensitivities for direct contracts decrease from 0.189198 to 0.015332 as

suggested by Proposition 6, whereas those for hierarchical contracting decrease from 0.1796 to

0.0005, which is consistent with Theorem 1-I-i. These two sets of numbers are consistent with

Proposition 7-I. Note that the speed of decrease in the top managerial sensitivity is far faster

under hierarchical contracting than it is under direct contracting. As repeatedly discussed
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in previous sections, this dramatic decrease under hierarchical contracting occurs as investors

try to discourage the top managerial risk-sharing behavior. In particular, the sensitivity for

hierarchical contracting with N = 15 is 0.0023, which is lower than Jensen and Murphy’s [1990]

$3.25 for every $1,000 change in the shareholders’ wealth of large firms.23

Note also from the same table that sensitivities of middle managerial hierarchical contracts

are always higher than those of their direct contracts, which is also a consequence of the

top managerial risk-sharing behavior, as predicted by Theorem 1-II. However, the difference

between hierarchical and direct contracts in middle managerial sensitivities narrows as the firm

size grows, demonstrating the diversification effect in hierarchical risk sharing, as we noted in

previous sections.

N BD βD B β γ0 γM

1 0.504505 0.285714 0.709100 0.525864 0.414897 N.A.
5 0.252213 0.054805 0.906300 0.202508 0.163843 0.156267
10 0.147252 0.024617 0.948400 0.110872 0.090462 0.088432
15 0.103258 0.015278 0.964200 0.075800 0.062355 0.061461
20 0.079282 0.010866 0.972500 0.057417 0.047555 0.047063
25 0.064246 0.008335 0.977700 0.046137 0.038428 0.038120
30 0.053954 0.006708 0.981200 0.038522 0.032238 0.032029

Table 2: Sensitivities with R0 = RM = 1, K0 = KM = 0.001, σ0 = σM = 50, δ0 = δM = 0.6,
and κ(N)N1−δM

= 2− 1
N .

Table 2 is still related to Theorem 1-I-i and Proposition 7-I but with K0RM (σM )2−q2 < 0,

and demonstrates a case where the sensitivity of the top managerial hierarchical contract

approaches the first best, whereas that of the direct contract approaches zero at a relatively

slow speed. Assumptions for Table 2 are the same as those for Table 1, except that in Table 2,

the aggregate top managerial influence on middle managerial outcomes κ(N)N1−δM
is increased

to 2− 1
N , i.e., κ(N)N1−δM

= 2− 1
N satisfying K0RM (σM )2 − q2 < 0.

Comparing γ0 and γM in Tables 1 and 2, one can see that as the sensitivity increases,

the top manager in Table 2 has stronger incentives to shift his compensation risk to middle

managers than he does in Table 1. For example, when N = 1, the top manager in Table 2

shifts about 41% of his own performance risk to the middle manager, whereas he does only

about 15% in Table 1. When N = 30, he has even stronger incentives for risk-sharing and

shifts about 97% (≈ 0.032238×30) to 30 middle managers, whereas he does only 1.5% in Table

1.
23Later articles such as Hall and Leibman [1998] and Baker and Hall [2004] argue that Jensen-Murphy statistic

tends to underestimate true sensitivities. In this paper, our numbers are just intended to illustrate the effect of
hierarchical contracting on managerial contract sensitivities of firms of different sizes.
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Figure 2: Top managerial sensitivity with R0 = RM = 1, K0 = KM = 0.001, σ0 = σM = 50,
δ0 = δM = 0.6, and κ(N)N1−δM

= 2− 1
N .

N BD βD B β γ0 γM

1 0.077309 0.135135 0.050200 0.171122 0.047800 N.A.
2 0.114398 0.135135 0.063900 0.177843 0.056659 0.049380
5 0.085348 0.135135 0.025000 0.151807 0.022222 0.019277
10 0.053263 0.135135 0.007500 0.140359 0.006977 0.006040
15 0.038337 0.135135 0.003500 0.137624 0.003325 0.002877
20 0.029895 0.135135 0.002000 0.136574 0.001923 0.001664
25 0.024486 0.135135 0.001300 0.136077 0.001259 0.001089
30 0.020730 0.135135 0.000900 0.135791 0.000876 0.000758

Table 3: Sensitivities with R0 = RM = 1, K0 = KM = 0.001, σ0 = σM = 80, δ0 = δM = 0,
and κ(N)N1−δM

= 1− 1
N .

Table 3 presents a numerical case of constant returns to scale when the outcome volatility

is sufficiently high and the aggregate top managerial influence on middle managerial outcomes

is sufficiently low. In particular, Table 3 is related to Theorem 1-I-ii and Proposition 7-II

with K0RM (σM )2 − q2 < 0. Since constant returns to scale imply that the middle managerial

productivity is unaffected by the number of middle managers, or the firm size, βD (for direct

contracting) stays the same over N . Under hierarchical contracting, however, because of the

top managerial motivation for risk-sharing, the middle managerial sensitivity is always larger

than that of the direct contract, and decreases as N increases. Again, the decrease is a result

of the previously-mentioned diversification effect on risk sharing.

The top managerial sensitivities in Table 3 change in the same fashion in the limit as do
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Figure 3: Top managerial sensitivity with R0 = RM = 1, K0 = KM = 0.001, σ0 = σM = 80,
δ0 = δM = 0, and κ(N)N1−δM

= 1− 1
N .

those in Table 1. However, since managers in Table 3 are more productive than those in

Table 1, sensitivities in Table 3 are higher in general than those in Table 1. One exceptional

behavior of B is noted at N = 2: that is, B temporarily increases when N increases from

1 to 2, and then decreases monotonically. This spike in Figure 3 occurs because the top

managerial productivity temporarily dominates the aggregate middle managerial risk-sharing

premium. The temporary domination is partly due to a temporary surge in the top managerial

productivity in κ(N)N1−δM
from 0 to 1/2 as N increases from 1 to 2. After N greater than

2, the productivity grows at a much slower rate than the risk-sharing premium does.

N BD βD B β γ0 γM

1 0.189189 0.285714 0.179600 0.366928 0.152255 N.A.
5 0.219557 0.285714 0.905500 0.373399 0.163817 0.122758
10 0.142848 0.285714 0.960900 0.333153 0.090574 0.066414
15 0.104658 0.285714 0.975600 0.318130 0.062402 0.045382
20 0.082407 0.285714 0.982300 0.310323 0.047578 0.034453
25 0.067914 0.285714 0.986100 0.305545 0.038441 0.027763
30 0.057740 0.285714 0.988600 0.302319 0.032246 0.023247

Table 4: Sensitivities with R0 = RM = 1, K0 = KM = 0.001, σ0 = σM = 50, δ0 = δM = 0,
and κ(N)N1−δM

= 1− 1
N .

Table 4 is also for a case of constant returns to scale when the outcome volatility is suffi-

ciently low such that the overall top managerial productivity dominates the aggregate middle
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Figure 4: Top managerial sensitivity with R0 = RM = 1, K0 = KM = 0.001, σ0 = σM = 50,
δ0 = δM = 0, and κ(N)N1−δM

= 1− 1
N .

managerial risk-sharing premium. In particular, Table 2 is related to Theorem 1-I-ii and

Proposition 7-II but with K0RM (σM )2 − q2 > 0.

Note that B quickly jumps from 0.1796 to 0.9055 as N changes from 1 to 5. The size of

the jump is noticeable when compared with the effect on B in Table 2 for the same change

in N . The reason is that when the production technology generates constant returns to scale

across managers, increasing the top managerial sensitivities becomes less costly in terms of risk-

sharing premia than it does when the technology is decreasing returns to scale. Furthermore,

in the case of Table 4, the top manager also aggressively shifts his compensation risks to middle

managers, as can be inferred from much higher values of β, γ0 and γM than their counterparts

in Table 3.

5.2 Correlated Outcomes with Common Uncertainty

Let us now assume σc > 0 and the firm has a nonincreasing returns to scale technology. The

top managerial sensitivity under hierarchical contracting B can be compared with that under

direct contracting BD as follows.

Proposition 8. Assume quadratic cost functions as in (15). Suppose that δi ≥ 0, i = 0,M .

If [q > 0] or [q = 0 and 1 > δM ≥ δ0 > 0], then B∗ < BD for large N .

Proposition 8 tells us that, when production functions exhibit nonincreasing returns to

scale, regardless of values in q and d, the top managerial sensitivity under hierarchical con-
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tracting is less than that under direct contracting as the firm size increases sufficiently large.

Next, we try to illustrate main points of Proposition 8 and Theorem 2, using Tables 5 and 6.

N BD βD γ0
D γM

D B β γ0 γM

1 0.1351 0.3149 -0.1134 N.A. 0.1171 0.3657 0.0109 N.A.
5 0.0323 0.0732 -0.0108 -0.0108 0.0062 0.0786 -0.0044 -0.0049
10 0.0103 0.0351 -0.0030 -0.0030 0.0010 0.0360 -0.0020 -0.0020
15 0.0049 0.0224 -0.0013 -0.0013 0.0003 0.0227 -0.0010 -0.0010
20 0.0029 0.0161 -0.0007 -0.0007 0.0001 0.0162 -0.0006 -0.0006
25 0.0019 0.0125 -0.0005 -0.0005 0.0001 0.0126 -0.0004 -0.0004
30 0.0013 0.0101 -0.0003 -0.0003 0.0001 0.0102 -0.0002 -0.0002

Table 5: Sensitivities with R0 = RM = 1, K0 = KM = 0.001, σc = 30, σ0 = σM = 40,
δ0 = δM = 0.6, and κ(N)N1−δM

= 1− 1
N .

N BD βD γ0
D γM

D B β γ0 γM

1 0.1351 0.3149 -0.1134 N.A. 0.1171 0.3657 0.0109 N.A.
5 0.0673 0.3526 -0.0520 -0.0520 0.0198 0.3626 -0.0286 -0.0358
10 0.0236 0.3655 -0.0310 -0.0310 0.0032 0.3673 -0.0269 -0.0281
15 0.0117 0.3710 -0.0221 -0.0221 0.0010 0.3716 -0.0208 -0.0212
20 0.0070 0.3740 -0.0172 -0.0172 0.0005 0.3743 -0.0165 -0.0167
25 0.0046 0.3760 -0.0140 -0.0140 0.0002 0.3761 -0.0138 -0.0138
30 0.0033 0.3773 -0.0119 -0.0119 0.0001 0.3774 -0.0117 -0.0118

Table 6: Sensitivities with R0 = RM = 1, K0 = KM = 0.001, σc = 30, σ0 = σM = 40,
δ0 = δM = 0, and κ(N)N1−δM

= 1− 1
N .

Table 5 shows a case of decreasing returns to scale in the presence of common uncertainty,

and Table 6 a case of constant returns to scale. In both cases, the top managerial sensitivities

under hierarchical contracts approach zero at faster speeds than do those under direct con-

tracts, which is consistent with Theorem 2 and Proposition 7. Moreover, the top managerial

sensitivities under both direct and hierarchical contracts in Table 6 decrease at slower speeds

than do those in Table 5, because the top managerial effort productivity is higher under a

constant-return-to-scale technology than it is under a decreasing-return-to-scale technology.

Theorem 2 suggests that the same patterns of limiting behavior of sensitivities persist until δ0

hits −1/2.

Moreover, in Table 5, γ0
D and γM

D are negative, as regression slopes on Y−i are used to

improve middle managerial incentives. In the same table, γ0 and γM are still mostly negative,

although they are less negative than γ0
D and γM

D . Under hierarchical contracting, when γ0

and γM are negative, it means that adjustment of each middle managerial performance for
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common noise dominates the top managerial risk-sharing concern, and as a result, each middle

managerial performance will be explicitly discounted based on other managerial performances.

Unless the top managerial risk aversion is sufficiently high enough, γ0 and γM can stay negative.

Both Tables 5 and 6 show similar patterns in various sensitivities over N , except that in

Table 6, both βD and β are in general increasing. The reason is that as N increases, the common

noise is more and more filtered out and thus the volatility of the performance measure for each

middle managerial performance decreases, and thus βD increase. Even when βD increases, β

may not increase when N is small, because with a small N , additional risk imposed on each

middle manager (for top manager’s risk-sharing) may not be sufficiently diversified away and

thus the volatility of the performance measure may temporarily increase, as can be noted from

β decreasing from 0.3657 to 0.3626 in Table 6, while βD is increasing from 0.3149 to 0.3526,

as N changes from 1 to 5.

6 Conclusion

We have examined the structure of optimal contracts of both the top and middle managers

under a hierarchical contracting environment where investors contract the top manager and

the top manager is given discretion to subcontract middle managers. As well-recognized in

the literature, such discretion to the top manager may be given when he has a technology to

monitor outcomes of other managers.

We have compared the optimal structure of hierarchical contracts with that of direct con-

tracts under which investors directly contract each middle manager. We have argued that un-

der hierarchical contracting where investors are risk neutral and all managers are risk averse,

each optimal contract between the top and middle managers is based on three performance

measures: individual middle managerial effort outcome, top managerial effort outcome, and

the aggregate outcome of the firm. Note that the first measure is a sufficient statistic for

the individual middle manager, if all outcomes are independent of each other. The last two

performance measures are included as the top manager tries to share his own compensation

risks with middle managers, even when these two measures have almost nothing to do with

individual managerial effort performance. This observation may provide a rationale to justify

common managerial compensation practices such as company-wide bonus programs including

stock option plans for nonexecutive employees.

We also have compared the sensitivities of both top and middle managerial contracts under

the direct and hierarchical contracting environments. We have argued that under hierarchical

contracting, the top managerial sensitivity approaches either as high as the first best or as

low as zero, as the firm size grows. In particular, under some reasonable conditions such as
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nonincreasing returns to scale in labor and correlated managerial effort outcomes, sensitivities

of top managerial hierarchical contracts of sufficiently large firms can be far lower than that

of the direct contract can.

We have also shown that under hierarchical contracting, middle managerial contract sensi-

tivities are higher than, but approach, those of direct middle managerial contracts, as the firm

size grows. The reason is that under hierarchical contracting, middle managerial contracts are

determined based on both incentives and risk-sharing as the risk averse top manager tries to

shift his own compensation risk to middle managers, whereas under direct contracting, middle

managerial contracts are determined solely based on incentives.

Finally, a remark on promising future research avenues is in order. In this paper, we have

focused on optimal contracts under the assumption that the firm is hierarchically organized,

and the top manager can costlessly monitor middle managerial outcomes. It should be clear

even without relying on mathematics that when it is too costly for the principal to monitor

individual managerial outcomes, hiring a monitor as top manager can improve the principal’s

wealth, and thus the hierarchical organizational form of the firm can naturally arise. It is also

clear that in our model setting, there can exist the optimal size of the firm when the production

function exhibits sufficiently decreasing returns to scale in the number of middle managers.

Nevertheless, issues of optimal hierarchical organizational form, and optimal monitoring policy

in the presence of monitoring costs can still arise. We believe this paper can serve as a

benchmark for these important issues, and we leave them for future research.
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Appendix

A Proof of Proposition 1

Note that manager i’s expected utility is

E[− exp {−Ri(Si − ci(µi))}] = − exp {−Ri
(
αi + (βi)>e− ci(µi)− Ri

2
(βi)>DD>βi

)}, i = 0, 1, ..., N.

Thus, the first order conditions (FOCs) of all agents are

β00 = N δ0
(
c0
µ(µ0)− (β−0)>θ

)
,

βii = N δi
ci
µ(µi), i = 1, ..., N

and their participation constraints are

αi + (βi)>e− ci(µi)− Ri

2
(βi)>DD>βi = W i

0, i = 0, 1, ..., N.

Using the FOCs, we have

(β0)>DD>β0 = (β−0)>Q−0β−0 + 2β00(p−0)>β−0 + [(σc)2 + (σ0)2](β00)2

= (β−0)>F>β−0 + 2N δ0
c0
µ(µ0)G>β−0 + [(σc)2 + (σ0)2]N2δ0(

c0
µ(µ0)

)2
,

and for i = 1, ..., N ,

(βi)>DD>βi = (β−i)>Q−iβ−i + 2N δi
ci
µ(µi)(p−i)>β−i + [(σc)2 + (σi)2]

(
N δi

ci
µ(µi)

)2
.

Hence, the investors’ problem is to choose β−i and µi, i = 0, 1, ..., N , to maximize

E

[
1>N+1Y −

N∑

i=0

Si

]

=
[
N−δ0

+
N∑

i=1

κi(N)N−δi]
µ0 − c0(µ0)− R0

2

[
(β−0)>F>β−0

+2N δ0
c0
µ(µ0)G>β−0 + [(σc)2 + (σ0)2]N2δ0(

c0
µ(µ0)

)2
]

+
N∑

i=1

[
N−δi

µi − ci(µi)

−Ri

2

[
(β−i)>Q−iβ−i + 2N δi

ci
µ(µi)(p−i)>β−i + [(σc)2 + (σi)2]

(
N δi

ci
µ(µi)

)2
]]

.
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Note that the above problem is concave in β−i since F is positive definite. To see this, Let

x = (x1, ..., xN )> be an arbitrary N -dimensional vector. Then,

x>Fx = (σc)2
( N∑

i=1

(1− κi(N)N δ0−δi
)xi

)2
+ (σ0)2

( N∑

i=1

κi(N)N δ0−δi
xi

)2

+
N∑

i=1

(σi)2x2
i + (σc)2

∑

i6=j=1,...,N

(κj(N)N δ0−δj − κi(N)N δ0−δi
)xixj .

Since the last term of the right hand side (RHS) of the above equality is zero, x>Fx ≥ 0 and

the equality holds if and only if x is a zero vector. Thus, F is positive definite.

Also note that the FOCs with respect to β−i’s are

β−0 = −N δ0
c0
µ(µ0)F−1G,

and

β−i = −N δi
ci
µ(µi)(Q−i)−1p−i, i = 1, ....., N.

Substituting these back into the investors’ problem, it becomes to choose µi, i = 0, 1, ..., N

to maximize

E

[
1>N+1Y −

N∑

i=0

Si

]

=
[
N−δ0

+
N∑

i=1

κi(N)N−δi]
µ0 − c0(µ0)− R0

2
(
N δ0

c0
µ(µ0)

)2
[
(σc)2 + (σ0)2 −G>F−1G

]

+
N∑

i=1

[
N−δi

µi − ci(µi)

−Ri

2
(
N δi

ci
µ(µi)

)2
[
(σc)2 + (σi)2 − (p−i)>(Q−i)−1p−i

]]
.

The FOCs for this maximization problem are Eq’s (1) and (2). Then the assertion of the

proposition immediately follows from these FOCs and the FOCs with respect to β−i, i =

0, 1, ..., N , together with the middle managerial participation constraints. ¤

B Proof of Corollary 1

Note that under the assumption of identical middle managers, the N ×N matrix F becomes

F =




s t ... ... t
t s t ... t

....... ... ... ... ...
t ... ... ... s


 ,
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where

s = (σc)2 + (σM )2 − 2(σc)2κ(N)N δ0−δM
+ [(σc)2 + (σ0)2]

(
κ(N)N δ0−δM )2

t = (σc)2 − 2(σc)2κ(N)N δ0−δM
+ [(σc)2 + (σ0)2]

(
κ(N)N δ0−δM )2

.

Then, it can be shown (by mathematical induction) that

F−1 =




x y ... ... y
y x y ... y

....... ... ... ... ...
y ... ... ... x


 ,

where

x =
s + (N − 2)t

(s− t)
(
s + (N − 1)t

) ,

y =
−t

(s− t)
(
s + (N − 1)t

) .

Moreover, the N dimensional vector G becomes

G =
(
(σc)2 − [(σc)2 + (σ0)2]κ(N)N δ0−δM

)
1N .

Hence we have

F−1G =
(
(σc)2 − [(σc)2 + (σ0)2]κ(N)N δ0−δM

)(
x + (N − 1)y

)
1N

=
(σc)2 − [(σc)2 + (σ0)2]κ(N)N δ0−δM

(σM )2 + N
[
(σc)2(1− κ(N)N δ0−δM )2 + (σ0)2(κ(N)N δ0−δM )2

]1N ,

and

G>F−1G =
N

(
(σc)2 − [(σc)2 + (σ0)2]κ(N)N δ0−δM

)2

(σM )2 + N
[
(σc)2(1− κ(N)N δ0−δM )2 + (σ0)2(κ(N)N δ0−δM )2

] .

By using the same method as above, one can show, for i = 1, ..., N ,

(Q−i)−1p−i =
(σc)2

(σM )2[(σc)2 + (σ0)2] + (N − 1)(σc)2(σ0)2
[

(σM )2 (σ0)2 ... (σ0)2
]>

.

and

(σc)2 + (σM )2 − (p−i)>(Q−i)−1p−i =
(σM )2

(
(σM )2[(σc)2 + (σ0)2] + N(σc)2(σ0)2

)

(σM )2[(σc)2 + (σ0)2] + (N − 1)(σc)2(σ0)2
.

Substituting the above equations for F−1G, G>F−1G, (Q−i)−1p−i, and (p−i)>(Q−i)−1p−i into

relevant equations in Proposition 1, we obtain the Corollary. ¤
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C Proof of Corollary 2

Let us rewrite Eq.(13) as follows.

1− β − aβ +

(
aB

(
1− β

)

(N − 1)B + r

)
= 0,

where

a := RMN2δM
KM (σM )2, b := a + 1, and r :=

RM

R0
.

Then, we have

1− β =
a
(
(N − 1)B + r

)

(bN − 1)B + rb
, or β =

(N − 1 + a)B + r

(bN − 1)B + rb
.

• By differentiating the above equation for β,

∂β

∂B
=

ra2

[
(bN − 1)B + rb

]2 > 0.

• ∂γM

∂B > 0 follows from

γM =
B(1− β)

(N − 1)B + r
=

aB

(bN − 1)B + rb
.

• ∂γ0

∂B > 0 trivially holds.

• V ar(X) can be rewritten as

V ar(X) =
( r

NB + r

)2
(σ0)2 + N

( ar

(bN − 1)B + rb

)2
(σM )2,

which implies ∂V ar(X)
∂B < 0.

D Proof of Lemma 1

Let Φ′(B;N) be the derivative of Φ(B; N) with respect to B. Calculation shows

Φ′(B; N) =
(N−δ0

+ κ(N)N1−δM
)2

K0

(
1−B

)

−RMr(N + r)B
(NB + r)3

(σ0)2 − ra3N
{
bN − 1 + rb

}
B

N2δM KM
{
(bN − 1)B + rb

}3 . (A.1)

If B ≥ 1, then Φ′(B; N) < 0 which implies Φ(B;N) < Φ(1;N) for B > 1. On the other hand,

condition (10) implies an optimal B must be nonnegative. Therefore, investors maximize
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Φ(B; N) only over the interval [0, 1]. Since the interval [0, 1] is compact and Φ(B;N) is con-

tinuous on it, a maximum of Φ(B; N) exists in [0, 1]. Since Φ′(0;N) = (N−δ0+κ(N)N1−δM
)2

K0 > 0,

Φ′(1;N) = − RMr
(N+r)2

(σ0)2− ra3N

N2δM KM
{

bN−1+rb
}2 < 0, and Φ(B; N) is continuously differentiable

over [0, 1], a maximum can occur in (0, 1). ¤

E Proof of Theorem 1

Let us start with the following lemma which helps identify the approximate location of the

global maximum when the firm size is sufficiently large.

Lemma A.1. Suppose that the contract sensitivity B is set to either zero or one, and that the

top manager optimally contracts middle managerial contracts. Then investors’ expected wealth

levels evaluated at B equal to zero and one are compared with each other in the limit as follows:

i. (Decreasing returns to scale.) Suppose that δi > 0, i = 0,M . Then, limN→∞
[
Φ(0;N)−

Φ(1;N)
]

> 0(=, < 0, resp.) iff K0RM (σM )2 − q2 > 0(=, < 0, resp.).

ii. (Constant returns to scale.) Suppose that δi = 0, i = 0,M . Then, limN→∞
[
Φ(0;N) −

Φ(1;N)
]

> 0(=, < 0, resp.) iff RM (σM )2 − d∗ > 0(=, < 0, resp.).

iii. (Increasing returns to scale.) If δi < 0, i = 0,M , then limN→∞
[
Φ(0;N) − Φ(1;N)

]
=

−∞.

Proof: Note that investors’ maximand (18) can be rewritten as follows:

Φ(B; N) =
N

2bN2δM KM
+

(N−δ0
+ κ(N)N1−δM

)2

K0

(
B − B2

2

)

−RM

2
(N + r)

(
B

NB + r

)2

(σ0)2 − aN(bN − 1 + rb)
2bN2δM KM

(
aB

(bN − 1)B + rb

)2

.(A.2)

Thus,

Φ(0;N)− Φ(1;N) = −(N−δ0
+ κ(N)N1−δM

)2

2K0

+
RM

2

(
1

N + r

)
(σ0)2 +

a2

2bN2δM KM

(
aN

bN − 1 + rb

)
. (A.3)

Recall that a = RMN2δM
KM (σM )2, and b = a + 1, and let d := RM (σM )2. Then, one can
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show,

if δ0, δM > 0, limN→∞
[
Φ(0;N)− Φ(1;N)

]
= K0RM (σM )2−q2

2K0 ,

if δi = δM = 0, limN→∞
[
Φ(0;N)− Φ(1;N)

]
=

K0(KM )2d3−(1+q)2
{

(KM )2d2+2KMd+1

}

2K0

(
1+KMd

) ,

if δi, δM < 0, limN→∞
[
Φ(0;N)− Φ(1;N)

]
= −∞.

Clearly, the equation, K0(KM )2d3−(1+q)2
{

(KM )2d2+2KMd+1
}

= 0, has a unique solution

d∗, and K0(KM )2d3−(1+q)2
{

(KM )2d2+2KMd+1
}

> 0(= , < 0, resp.) if d > (= , <, resp.) d∗.

Hence the lemma is proved. ¤

Now, we are ready to prove the theorem. We prove Part II first.

Part II: Middle managerial contract sensitivity.

Let βD and βH be middle managerial contracting sensitivities for the direct and hierarchical

contracting cases, respectively. Then by (6), βD satisfies 1 − βD − aβD = 0, i.e., βD = 1
b ,

whereas, by (17), βH = (N−1+a)B+r
(bN−1)B+rb . Hence, we have βH −βD = a2B

b
{

(bN−1)B+rb
} > 0. However,

regardless of values of δi, i = 0,M, we have

0 <
a2B

b
{
(bN − 1)B + rb

} <
a2

b(bN − 1 + rb)
→ 0 as N →∞.

Therefore, βH − βD → 0, as N →∞. ¤

Part I: The top managerial contract sensitivity. As stated in the Theorem, we have three cases,

i, ii and iii.

Case i: δi > 0, i = 0,M . For this case, we have two subcases: subcase i-a with q = 0 and

subcase i-b with q > 0. The proof of Case i is different across these two subcases, because

when q = 0, the top managerial production function is fixed, whereas when q > 0, the top

managerial productivity grows with N .
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Subcase i-a: We assume q = 0. Let L := N−δ0
. If B ∈ [ 1

N

√
L, 1], then (A.2) implies

1
L2

[
Φ(0;N)− Φ(B; N)

]

= −
(

N−δ0

L + κ(N)N1−δM

L

)2

K0

(
B − B2

2

)
+

RM

2
1
L2

(N + r)
(

B

NB + r

)2

(σ0)2

+
1
L2

aN(bN − 1 + rb)
2bN2δM KM

(
aB

(bN − 1)B + rb

)2

> −
(

N−δ0

L + κ(N)N1−δM

L

)2

2K0
+

1
L2

aN(bN − 1 + rb)
2bN2δM KM

(
a 1

N

√
L

(bN − 1) 1
N

√
L + rb

)2

.

Note that the RHS of the inequality is positive for a large N , because the first term of the RHS

is bounded and its second term diverges to ∞. Thus, Φ(0;N) > Φ(B; N) for all B ∈ [ 1
N

√
L, 1]

for large N . Therefore, by Lemma 1, we must have

B∗
N ∈ (0,

1
N

√
L), (A.4)

which immediately implies B∗
N → 0 as N →∞. Hence subcase i-a is proved.

Subcase i-b: Now, we assume q > 0. In this subcase, the principal’s objective function becomes

much more complex than it is in subcase i-a. We need Lemma A.2 and Corollary A.1 for some

insight into the shape of the principal’s objective function.

Lemma A.2. Let z1, z2, z3, z4, z5 be positive constants such that 2 > z1 > 1 > z2 > z3 > z4,
2
3 < z2 < 4z3 − 1, 3z3 < 1 + z4, and 3z4 + z5 < 1.24 Suppose either that δi > 0, i = 0,M , and

q > 0, or that that δi = 0, i = 0, M , and q ≥ 0. Then, there exists J such that for all N ≥ J ,

Φ(B, N) satisfies the following properties: (1) Φ′′(B, N) < 0 on [0, 1
Nz1 ], (2) Φ′(B, N) < 0

on [ 1
Nz1 , 1

Nz2 ], (3) Φ′′(B,N) > 0 on [ 1
Nz2 , 1

Nz3 ], (4) Φ′(B,N) > 0 on [ 1
Nz3 , 1 − 1

Nz5 ], (5)

Φ′′(B, N) < 0 on [1− 1
Nz5 , 1], and (6) Φ′(B, N) < 0 on [1,∞], where Φ′(B; N) and Φ′′(B; N)

are, respectively, the first and second derivatives of Φ(B; N) with respect to B.

Proof: Since the proof of property (6) is given in the proof of Lemma 1, we only prove

properties (1) to (5). Calculation shows

Φ′′(B; N) = −

(
N−δ0

+ κ(N)N1−δM
)2

K0
+

RMr(N + r)(2NB − r)
(NB + r)4

(σ0)2

+
ra3N(bN − 1 + rb)

{
2(bN − 1)B − rb

}

N2δM KM
{
(bN − 1)B + rb

}4 .

24The existence of such constants can be easily verified.
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(1) Note that since z1 > 1, for B ∈ [0, 1
Nz1 ] and for a large N , we have 2NB−r < 2N 1

Nz1 −r < 0

and 2(bN − 1)B − rb < 2(bN − 1) 1
Nz1 − rb < b(2N 1

Nz1 − r) < 0. Hence, Φ′′(B,N) < 0 on

[0, 1
Nz1 ] for a large N .

(2) For B ∈ [ 1
Nz1 , 1

N ], (A.1) implies

Φ′(B; N) <
(N−δ0

+ κ(N)N1−δM
)2

K0

−RMr(N + r) 1
Nz1

(N 1
N + r)3

(σ0)2 − ra3N
{
bN − 1 + rb

}
1

Nz1

N2δM KM
{
(bN − 1) 1

N + rb
}3 .

Since z1 < 2, the RHS of this inequality diverges to −∞. Thus, Φ′(B, N) < 0 on [ 1
Nz1 , 1

N ] for

a large N . On the other hand, for B ∈ [ 1
N , 1

Nz2 ], again (A.1) implies

Φ′(B; N) <
(N−δ0

+ κ(N)N1−δM
)2

K0

−RMr(N + r) 1
N

(N 1
Nz2 + r)3

(σ0)2 − ra3N
{
bN − 1 + rb

}
1
N

N2δM KM
{
(bN − 1) 1

Nz2 + rb
}3 .

Since z2 > 2
3 , the RHS of this inequality diverges to −∞. Thus, Φ′(B, N) < 0 on [ 1

N , 1
Nz2 ] for

a large N . Therefore, Φ′(B, N) < 0 on [ 1
Nz1 , 1

Nz2 ] for a large N .

(3) For B ∈ [ 1
Nz2 , 1

Nz3 ], (A.1) implies

Φ′′(B; N) > −

(
N−δ0

+ κ(N)N1−δM
)2

K0
+

RMr(N + r)(2N 1
Nz2 − r)

(N 1
Nz3 + r)4

(σ0)2

+
ra3N(bN − 1 + rb)

{
2(bN − 1) 1

Nz2 − rb
}

N2δM KM
{
(bN − 1) 1

Nz3 + rb
}4 .

Since z3 > 1+z2
4 , the RHS of this inequality diverges to ∞. Thus Φ′′(B;N) > 0 on [ 1

Nz2 , 1
Nz3 ]

for a large N .

(4) For B ∈ [ 1
Nz3 , 1

Nz4 ],

Φ′(B; N) >
(N−δ0

+ κ(N)N1−δM
)2

K0

(
1− 1

N z4

)

−RMr(N + r) 1
Nz4

(N 1
Nz3 + r)3

(σ0)2 − ra3N
{
bN − 1 + rb

}
1

Nz4

N2δM KM
{
(bN − 1) 1

Nz3 + rb
}3 .

Since 3z3 < 1 + z4, the RHS converges to a positive number. Thus Φ′(B; N) > 0 on [ 1
Nz3 , 1

Nz4 ]

for a large N . On the other hand, for B ∈ [ 1
Nz4 , 1− 1

Nz5 ],

Φ′(B;N) >
(N−δ0

+ κ(N)N1−δM
)2

K0

1
N z5

−RMr(N + r)(1− 1
Nz5 )

(N 1
Nz4 + r)3

(σ0)2 − ra3N
{
bN − 1 + rb

}
(1− 1

Nz5 )

N2δM KM
{
(bN − 1) 1

Nz4 + rb
}3 .
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Thus,

N z5Φ′(B; N) >
(N−δ0

+ κ(N)N1−δM
)2

K0

−RMr(N + r)(N z5 − 1)
(N 1

Nz4 + r)3
(σ0)2 − ra3N

{
bN − 1 + rb

}
(N z5 − 1)

N2δM KM
{
(bN − 1) 1

Nz4 + rb
}3 .

Since 3z4 + z5 < 1, the RHS approaches a positive number as N →∞. Thus Φ′(B; N) > 0 on

[ 1
Nz4 , 1− 1

Nz5 ] for a large N . Therefore, Φ′(B;N) > 0 on [ 1
Nz3 , 1− 1

Nz5 ] for a large N .

(5) Finally, for B ∈ [1− 1
Nz5 , 1],

Φ′′(B; N) < −

(
N−δ0

+ κ(N)N1−δM
)2

K0
+

RMr(N + r)(2N − r)(
N(1− 1

Nz5 ) + r
)4 (σ0)2

+
ra3N(bN − 1 + rb)

{
2(bN − 1)− rb

}

N2δM KM
{
(bN − 1)(1− 1

Nz5 ) + rb
}4 .

The RHS approaches a negative number. Thus, Φ′′(B; N) < 0 on [1− 1
Nz5 , 1]. ¤

The next corollary immediately follows from Lemmas 1 and A.2.

Corollary A.1. Suppose either that δi > 0, i = 0,M and q > 0, or that δi = 0, i = 0,M and

q = 0. Then, N ≥ J implies

B∗
N ∈

(
0,

1
N z1

)
∪

(
1− 1

N z5
, 1

)
,

where z1, z5 and J are as in Lemma A.2.

Now we are ready to prove the subcase i-b. If N ≥ J and B ∈ [1 − 1
Nz5 , 1], then, by

concavity (see Lemma A.2), we have

Φ(B; N) ≤ Φ(1;N) + Φ′(1; N)
(
B − 1

) ≤ Φ(1;N)− Φ′(1;N)
1

N z5

= Φ(1;N) +
[ RMr

(N + r)2
(σ0)2 +

ra3N

N2δM KM
{
bN − 1 + rb

}2

] 1
N z5

.

Therefore,

Φ(0;N)− Φ(B;N) ≥ Φ(0;N)− Φ(1;N)

−
[ RMr

(N + r)2
(σ0)2 +

ra3N

N2δM KM
{
bN − 1 + rb

}2

] 1
N z5

. (A.5)
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If N ≥ J and B ∈ [0, 1
Nz5 ], then, by concavity (see Lemma A.2),

Φ(B; N) ≤ Φ(0;N) + Φ′(0; N)B ≤ Φ(0;N) + Φ′(0;N)
1

N z1

= Φ(0;N) +
(N−δ0

+ κ(N)N1−δM
)2

K0

1
N z1

.

Therefore,

Φ(1;N)− Φ(B; N) ≥ Φ(1;N)− Φ(0;N)− (N−δ0
+ κ(N)N1−δM

)2

K0

1
N z1

. (A.6)

Suppose that δi > 0, i = 0,M , and q > 0. If N ≥ J and B ∈ [1− 1
Nz5 , 1], then, (A.4) implies

that the RHS of (A.5) tends to K0RM (σM )2−q2

2K0 as N → ∞. Hence, if K0RM (σM )2 − q2 > 0,

then there exists J ′ ≥ J such that N ≥ J ′ implies Φ(0;N) > Φ(B;N) for all B ∈ [1− 1
Nz5 , 1].

Thus, by Corollary A.1, for a large N ,

B∗
N ∈

(
0,

1
N z1

)
, (A.7)

which implies B∗
N → 0 as N →∞ if K0RM (σM )2 − q2 > 0. On the other hand, if N ≥ J and

B ∈ [0, 1
Nz5 ], then (A.4) implies the RHS of (A.6) tends to −K0RM (σM )2−q2

2K0 as N → ∞. An

argument similar to the above shows that B∗
N ∈ (1− 1

Nz5 , 1) for a large N . That is, B∗
N → 1

as N →∞ if K0RM (σM )2 − q2 < 0. This completes the proof of subcase i-b.

Case ii. Suppose δi = 0, i = 0,M and q ≥ 0. Then, by the essentially same arguments

as in the above subcase i-b, (A.4) together with (A.5), and (A.6) imply that if RM (σM )2 > d∗,

B∗
N ∈

(
0, 1

Nz1

)
for a large N , and that if RM (σM )2 < d∗, B∗

N ∈ (1 − 1
Nz5 , 1) for a large N .

Hence B∗
N → 0 if RM (σM )2 > d∗, and B∗

N → 1 if RM (σM )2 < d∗.

Case iii. Finally, we consider the case where δi < 0, i = 0,M , and q > 0. Using (A.2),

we have

Φ(1;N)− Φ(B; N) =
(N−δ0

+ κ(N)N1−δM
)2

2K0
(1−B)2

−RM

2
(N + r)

[(
1

N + r

)2

−
(

B

NB + r

)2
]

(σ0)2

−aN(bN − 1 + rb)
2bN2δM KM

[(
a

bN − 1 + rb

)2

−
(

aB

(bN − 1)B + rb

)2]
.
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Thus, if B ∈ [0, 1−N δ0
], then, we have

Φ(1;N)− Φ(B; N)

>
(N−δ0

+ κ(N)N1−δM
)2

2K0
(1−B)2 − RM

2
1

N + r
(σ0)2 − a3N

2bN2δM KM (bN − 1 + rb)

>
(N−δ0

+ κ(N)N1−δM
)2

2K0
N2δ0 − RM

2
1

N + r
(σ0)2 − a3N

2bN2δM KM (bN − 1 + rb)
.

The last two terms in the RHS of the second inequality approach zero, because δi < 0, a =

RMN2δM
KM (σM )2, and b = a + 1. Since the first term in the RHS of the second inequality

converges to 1
2K0 , we have Φ(1;N) > Φ(B; N) for all B ∈ [0, 1−N δ0

] if N is large. Thus, by

Lemma 1, B∗
N ∈ (1−N δ0

, 1) for a large N . Therefore B∗
N → 1 as N →∞. ¤

F Proof of Propositions 4 and 5

By symmetry, we may assume that αi, βi0, βij and βii are respectively identical for i, j =

1, ..., N and i 6= j. In particular, for i, j = 1, ..., N and i 6= j, let αi ≡ α, βi0 ≡ γ0, βij ≡ γM ,

βii ≡ β. Then, we obtain

V ar
(
(βi)>Y

)
=

( N∑

j=0

βij
)2(σc)2 + (βi0)2(σ0)2 +

N∑

j=1

(βij)2(σM )2

=
(
γ0 + (N − 1)γM + β

)2
(σc)2

+(γ0)2(σ0)2 + (N − 1)(γM )2(σM )2 + β2(σM )2, i = 1, ..., N.

For i = 1, ..., N , middle manager i’s problem is as follows: given Si = α + (βi)>Y , choose µi

to maximize

E[− exp {−RM (αi + (βi)>Y − cM (µi))}]

= − exp
{
−RM

(
αi + (βi)>e− cM (µi)− RM

2
V ar

(
(βi)>Y

))}
.

The first order condition is βii = N δM
cM
µ (µi). Since βii ≡ β, we have µi ≡ µM and

β = N δM
cM
µ (µM ), which is the same as (20). On the other hand, the middle managerial

participation constraint implies that, for i = 1, ..., N ,

Si(Y ) = WM
0 − (βi)>e + cM (µM ) +

RM

2
V ar

(
(βi)>Y

)
+ (βi)>Y.

By substituting Si into X, we have

X = 1>N+1Y −
N∑

i=1

(
WM

0 − (βi)>e + cM (µM ) +
RM

2
V ar

(
(βi)>Y

)
+ (βi)>Y

)
.
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Thus, E[X] and V ar(X) are as shown in (25) and (26), respectively. Given S0 = A+BX, the

top manager’s problem is to choose µ0, γ0, γM , and µM to maximize

E
[
− exp

{
−R0

{
A + BX − c0(µ0)

}}]

= E

[
− exp

{
−R0

(
A− c0(µ0) + BE[X]− R0

2
B2V ar(X)

)}]
.

The first order condition with respect to µ0 is given by (24). Solving the first order conditions

with respect to γ0 and γM simultaneously, yields (21) and (22). Substituting (20), (21), and

(22), some calculation shows that the first order condition with respect to µM is (27). Finally,

by applying the participation constraint of the top manager to S0 = A+BX, we have the top

managerial optimal contract as stated in Proposition 5. ¤

G An Outline of the Proof of Theorem 2

The proof of Theorem 2 requires much more complex and tedious algebraic manipulations than

that of Theorem 1 does. Here we provide only an outline of the proof.25

With quadratic cost functions as in (15), condition (27) implies

β =
τ(N − 1 + a)B + (τ − ϕ)r
τ(bN − 1)B + (τb− ϕ)r

, (A.8)

where a := RMN2δM
KM (σM )2, b := 1 + a, and r := RM

R0 . Substituting (A.8) into (28), we

reduce the investor’s expected profit to Φ(B; N), a function of a single decision variable B.

Part 1. Consider limits of the top managerial sensitivity. We first show that for a large

N , Φ′(B;N) < 0 for all B ≥ 1. Thus, if N is large enough, the maximizer B∗
N of Φ(B; N)

must lie in [0, 1).

The proof that B∗
N approaches zero is done by finding a positive constant z, under the

conditions stated in the thorem, such that Φ(0;N) > Φ(B;N) for all B ∈ [ 1
Nz , 1] when N is

25A detailed proof is available upon request.
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sufficiently large. Namely, we have

Φ(0;N)− Φ(B;N) (A.9)

> −RM (σM )2ϕN

2(τ − ϕ)

(
N − 1 + a

bN − 1

)2

− (N−δ0
+ κ(N)N1−δM

)2

2K0

−RM

2
N

((1− η)(σM )2

bτ − ϕ

)2
(σc)2

+
RM

2
N

[
1

Nz

N 1
Nz + r

+ η
N 1

Nz

N 1
Nz + r

+ (1− η)
τ(bN − 1) 1

Nz + r(σM )2

τ(bN − 1) 1
Nz + (bτ − ϕ)r

]2

(σc)2

−RM

2
N

(
η(σM )2

bτ − ϕ

)2

(σ0)2 − RM

2
N(N − 1)

(
ϕ

bτ − ϕ

)2

(σM )2. (A.10)

The second and fourth terms of the right-hand side of inequality (A.10) stand out as N →∞.

The second term is the top managerial productivity (equal to effort productivity minus his

cost of effort), and the fourth term is the effect of the common risk on the investors’ profit.

Since, under the stated assumptions, the fourth term dominates the second term as well as the

other terms and approaches zero, B∗
N converges to 0 as N →∞.

The proof that B∗
N approaches 1 is done as follows. First, we show that there exists a

positive constant ε such that if N is large enough, then for all B ∈ [0, ε],

Φ(1;N) > Φ(B; N).

Then, we show that there exists a positive constant z1 such that Φ′(B; N) > 0 on [ε, 1− 1
nz1 ]

if N is large enough.

Part 2. Consider the middle managerial sensitivity. Note that by (6), middle managerial

contract sensitivity βD in the direct contracting case satisfies

1− βD − aβD
τ

τ − ϕ
= 0,

so that βD = τ−ϕ
bτ−ϕ , whereas by (A.8), in the hierarchical contracting case, βH , is

βH =
τ(N − 1 + a)B + (τ − ϕ)r
τ(bN − 1)B + (τb− ϕ)r

.

Hence, we have

βH − βD =
aτ

(
aτ + ϕ(N − 1)

)
B

(bτ − ϕ)
{
τ(bN − 1)B + (τb− ϕ)r

} > 0.
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However, we have

0 <
aτ

(
aτ + ϕ(N − 1)

)
B

(bτ − ϕ)
{
τ(bN − 1)B + (τb− ϕ)r

} <
aτ

(
aτ + ϕ(N − 1)

)

(bτ − ϕ)
{
τ(bN − 1) + (τb− ϕ)r

} → 0 as N →∞,

so that

βH − βD → 0 as N →∞.

Therefore, the assertions of the theorem follow. ¤

The following corollary is an outcome from the detailed proof of Theorem 2, and turns out

to be useful in proving propositions appearing in the rest of the paper.

Corollary A.2. 1. If δM ≥ δ0 > 0 and q = 0, then we have for a large N ,

B∗
N ∈ [0,

1
N z0

), for any z0 such that

z0 < 2 + min
[
2δM , 1 + 2δ0,

5
2

+ min (δ0, 2δM )
]

(A.11)

2. If δM ≥ δ0 > 0 and q > 0, then, we have for a large N ,

B∗
N ∈ [0,

1
N z0

), for any z0 such that
3
2

< z0 < 2 + min (2δM , 1). (A.12)

3. If δM = δ0 = 0, then we have for a large N ,

B∗
N ∈ [0,

1
N z0

), for any z0 such that
3
2

< z0 < 2. (A.13)

Proof: The proof of each case is done by finding a constant z0 such that Φ′(B; N) < 0 for all

B ∈ [ 1
Nz0 , 1

Nz ] if N is large.

H Proof of Proposition 6

By definition, we have

BD =
Cov(S0

D(Y ), XD)
V ar(XD)

.

However,

Cov(S0
D(Y ), XD) = (β00

D + Nβ0M
D )

{
1 + N −N

(1− η)(σM )2

bτ − ϕ

}
(σc)2 + β00

D (1 +
Nη(σM )2

bτ − ϕ
)(σ0)2

+Nβ0M
D

(
1− (σM )2

bτ − ϕ

)
(σM )2,

V ar(XD) =
{

1 + N −N
(1− η)(σM )2

bτ − ϕ

}2
(σc)2 + (1 +

Nη(σM )2

bτ − ϕ
)2(σ0)2

+N
(
1− (σM )2

bτ − ϕ

)2
(σM )2,
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where

β00
D =

1 + N δ0
κ(N)N1−δM

DEN
×

[
(σM )2 + N(σc)2

(
1− κ(N)N δ0−δM

)]
,

Nβ0M
D = −1 + N δ0

κ(N)N1−δM

DEN
×

[
N(σc)2 −N

(
(σc)2 + (σ0)2

)
κ(N)N δ0−δM

]
,

DEN = (σM )2 + N
[
(σc)2

(
1− κ(N)N δ0−δM

)2
+ (σ0)2

(
κ(N)N δ0−δM

)2]

+R0N2δ0
K0

[(
(σc)2 + (σ0)2

)
(σM )2 + N(σc)2(σ0)2

]
,

and thus

β00 + Nβ0M =
1 + N δ0

κ(N)N1−δM

DEN
×

[
(σM )2 + (σ0)2N δ0

κ(N)N1−δM
]
.

We have the following four cases depending on σc and q.

1. Assume σc > 0.

(a) Suppose q = 0. Then, we have

β00
D =

(σM )2 + N(σc)2

DEN
,

Nβ0M
D = −N(σc)2

DEN
,

DEN = (σM )2 + N(σc)2 + R0N2δ0
K0

[(
(σc)2 + (σ0)2

)
(σM )2 + N(σc)2(σ0)2

]
.

Hence, we have

β00 + Nβ0M =
(σM )2

DEN
.

It is straightforward to show that

N2+2δ0
BD approaches a positive constant. (A.14)

Thus BD → 0 as N →∞.

(b) Suppose q > 0. It is also straightforward to show that

N2BD approaches a positive constant. (A.15)

Thus BD → 0 as N →∞.
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2. Assume σc = 0. Then, we have

β00
D =

1 + N δ0
κ(N)N1−δM

DEN
(σM )2,

Nβ0M
D =

1 + N δ0
κ(N)N1−δM

DEN
N(σ0)2κ(N)N δ0−δM

,

DEN = (σM )2 + N(σ0)2
(
κ(N)N δ0−δM

)2

+R0N2δ0
K0(σ0)2(σM )2,

and that

β00 + Nβ0M =
1 + N δ0

κ(N)N1−δM

DEN
×

[
(σM )2 + (σ0)2N δ0

κ(N)N1−δM
]
.

(a) Suppose that q = 0. Then one can easily see that

N1+2δ0
BD approaches a positive constant. (A.16)

Thus, BD → 0 as N →∞.

(b) Suppose that q > 0. Then it can be easily checked that

NBD approaches a positive constant. (A.17)

Thus BD → 0 as N →∞.

Therefore, the assertion follows. ¤

I Proof of Proposition 7

I. Consider the case where δi > 0, for i = 0,M .

(a) If K0RM (σM )2 − q2 < 0, then it is clear that B∗ > BD for a large N , because B∗

approaches the first best while BD approaches 0.

(b) Consider the case where K0RM (σM )2 − q2 > 0.

i. Suppose that q = 0. Then by (A.4), we have

B∗ ∈
(
0,

1

N1+ δ0

2

)
.

However, by (A.1), for B ∈
[

1
Nz , 1

N1+ δ0
2

]
where z is any positive constant such

that 1 + δ0

2 < z < 3 + 2δ0, we have

Φ′(B; N) ≤ N−2δ0

K0
− ra3N

{
bN − 1 + rb

}
1

Nz

N2δM KM
{
(bN − 1) 1

N1+ δ0
2

+ rb
}3 .
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The RHS of this inequality diverges to −∞. Thus, Φ(B; N) decreases on the

interval
[

1
Nz , 1

N1+ δ0
2

]
, which implies, for a large N ,

B∗ ∈ (0,
1

N z
),

where z is any positive constant such that 1 + δ0

2 < z < 3 + 2δ0. Hence, by

(A.16), we get B∗ < BD for a large N .

ii. Suppose that q > 0. Recall that z1 > 1 in (A.7). Thus, the assertion follows by

(A.7) and (A.17).

II. The proof of the assertion for the case where δi = 0 for i = 0,M is similar to that of part

I. ¤

J Proof of Proposition 8

1. Consider the case where q > 0. If δi > 0, i = 0,M , then, by (A.12) and (A.15), it is clear

that B∗ < BD for a large N .

Suppose that δi = 0, i = 0,M . Let z0 be given as in (A.13). Also let the positive constant

in (A.15) which N2BD approaches be λ. Then one can write

BD =
λ

N2
+

εN

N2
,

where limN→∞ εN = 0. For B ∈ [BD, 1
Nz0 ], it can be shown that Φ′(B;N)

N is less than or

equal to a negative constant for a large N so that Φ′(B; N) < 0 on [BD, 1
Nz0 ] if N is

large. Hence, we have B∗ < BD for a large N .

2. Consider the case where q = 0 and 1 > δM ≥ δ0 > 0. Note that in (A.11),

min
[
2δM , 1 + 2δ0,

5
2

+ min (δ0, 2δM )
]

= min
[
2δM , 1 + 2δ0

]
.

(a) If min
[
2δM , 1 + 2δ0

]
> 2δ0, (or equivalently, δM > δ0), then we can choose z0 in

(A.11) so that z0 > 2 + 2δ0. Hence by (A.14), for a large N , B∗ < BD.

(b) If min
[
2δM , 1 + 2δ0

]
= 2δ0, (or equivalently, δ0 = δM ), then it is straightforward to

show that the positive constant in (A.14) which N2+2δ0
BD approaches is equal to

1
R0K0(σc)2

. Thus, we can write

BD =
1

R0K0(σc)2N2+2δ0 +
εN

N2+2δ0 ,
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where limN→∞ εN = 0. For B ∈ [BD, 1
Nz0 ], where 2 ≤ z0 < 2+2δ0, it can be shown

that N2δ0−1 × Φ′(B; N) is less than or equal to a negative constant for a large N .

Hence, B∗ < BD for a large N . ¤

K Agency problem under hierarchial contracting in continuous
time

In the text of the paper, all results are based on the assumption that all contracts are linear

in outcomes. In fact, this assumption is just for the sake of simplicity and without loss of

generality. We provide a brief explanation of a continuous-time version of our hierarchical

contracting model under which all linear optimal contracts derived in the text are optimal

indeed. The proof of the linearity result is similar to Koo, Shim, and Sung (2005), and thus it

is omitted.26

We take the unit-interval [0, 1] as a time horizon. The production of the team output can

be described as follows: The effort of manager i, for i = 0, 1, ..., N , results in outcome Y i
t at

time t ∈ [0, 1], dynamics of which are given by

dY i
t =

(
µi

t + κi(N)µ0
t

)
N−δi

dt + σcdBc
t + σidBi

t,

where κ0 = 0, κi ≥ 0 for i = 1, ..., N ; σc, and σi for i = 0, 1, . . . , N are constant diffusion

coefficients; and Bt = (Bc
t , B

0
t , B1

t , · · · , BN
t )> is an N + 2-vector of independent standard

Brownian motions defined on a probability space (Ω,F , (Ft), P ). We assume that the filtration

(Ft) is the completion of the filtration generated by the Brownian motion Bt.

Let us use the following notation:

Yt = (Y 0
t , · · · , Y N

t )> µt = (µ0
t , · · · , µN

t )>, ft = (f0
t , · · · , fN

t )>,

We assume that middle managerial salary functions Ft-measurable random variables of the

following class:27 for i = 1, ..., N ,

Si(Y ) = F i(Y ) +
∫ 1

0
αi(t, Y )dt +

∫ 1

0
(βi(t, Y ))>dYt, (A.18)

where both αi and βi(t, Y ) ≡ (βi0(t, Y ), · · · , βiN (t, Y ))> for i = 0, 1, ...., N are bounded Ft-

predictable, and F i is bounded and F1-measurable. On the other hand, the top managerial

salary S0 is based on the profit process X1 ≡
∑

i∈A Y i
1 −

∑
i∈AM Si(Y ). That is, S0 is X1-

measurable and S0(X1).
26A detailed proof is available upon request.
27See Schättler and Sung (1993) for a detailed explanation of admissible salary functions.
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The principal is risk neutral and managers’ preferences can be characterized by exponential

utility functions with the coefficient of absolute risk aversion is equal to Ri for i ∈ A. We assume

that the diffusion rates σc, σa for a ∈ A are common knowledge to the principal and managers.

The principal’s problem for hierarchical contracting is stated as follows:

Problem 1. Choose {(µi, Si); i = 0, ..., N} to maximize

E
[
X1 − S0(X)

]
subject to

(1) X1 =
N∑

i=0

Y i
1 −

N∑

i=1

Si(Y )

(2) {µ0, (µi, Si; i = 1, ...., N)}

∈ arg max
{µ̂0,(µ̂i,Ŝi;i=1,...,N)}

E

[
− exp

{
−R0

{
S0(X1)−

∫ 1

0
c0(µ̂0

t )dt

}}]

s.t. (i) dY i
t =

(
µ̂i

t + κi(N)µ̂0
t

)
N−δi

dt + σcdBc
t + σidBi

t, ∀i,

X1 =
N∑

i=0

Y i
1 −

N∑

i=1

Si(Y ),

(ii) ∀i = 1, ...., N,

µ̂i ∈ arg max
{µ̄i

t}
E

[
− exp

{
−Ri

{
Ŝi(Y )−

∫ 1

0
ci(µ̄i

t)dt

}}]

s.t. dY i
t =

(
µ̄i

t + κi(N)µ̄0
t

)
N−δi

dt + σcdBc
t + σidBi

t,

dY j
t =

(
µ̂j

t + κj(N)µ̂0
t

)
N−δj

dt + σcdBc
t + σjdBj

t , ∀j 6= i

(iii) ∀i = 1, ...., N,

E

[
− exp

{
−Ri

{
Ŝi −

∫ 1

0
ci(µ̂i

t)dt

}}]
≥ − exp

{−RiW i
0

}

(3) E

[
− exp

{
−R0

{
S0(X)−

∫ 1

0
c0(µ0

t )dt

}}]
≥ − exp

{−R0W0
0

}
.

For the problem stated above, one can show that all contracts for both the top and all middle

managers are linear in X1 and Y1, respectively, by modifying proofs given in our companion

paper, Koo, Shim and Sung [2006]. Furthermore, optimal contracts for the above problem are

identical to those in the text.
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