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Endogenous Labor/Leisure/Investment Choice
with Time Constraint and Asset Returns

Abstract

We posit the time cost required for managing risky asset investment including conducting

research and monitoring its performance. An economic agent, who should allocate a limited

amount of time to labor, leisure and risky investment, is subject to the opportunity time cost,

which is forgone labor or leisure. Our model investigates the change of the equity premium

and volatility in the presence of such a time constraint. In particular, we derive the closed-

form solutions for the risky asset returns, volatility, and risk-free rate in a simple equilibrium

framework wherein agents have log utility. Our model is shown to yield the excess return and

the volatility consistent with historical values observed in U.S. stock market even with a small

amount of the time cost. In addition, we separate the impact of endogenous labor/leisure choice

from the total changes on return dynamics by comparing with exogenous labor income case.

JEL classification: G11; G12; J22

Keywords: Time cost; Full income approach; Equity premium puzzle; Time allocation; Leisure-

labor choice



1 Introduction

Since the seminal work of Mehra and Prescott (1985), many studies have been devoted to resolve

the asset pricing puzzles. In spite of numerous endeavors, little could achieve to explain the em-

pirical behaviors of the U.S. stock market such as the equity premium puzzle, volatility puzzle, and

predictability puzzle successfully. The core of the equity premium puzzle is that with assuming rea-

sonable risk aversion, the volatility of consumption growth rate as well as its covariance with stock

returns is too low to explain the high equity premium and volatility [See, e.g., Hansen and Single-

ton (1982), Hansen and Jagannathan (1991), and Campbell and Cochrane (1999)]. The volatility

puzzle and the predictability puzzle, on the other hand, can be comprehended through the direct

application of the present value formula.

Rt+1 =
1 + Pt+1/Dt+1

Pt/Dt

Dt+1

Dt

Since the volatility of dividend growth is low, the only way for a model to generate a high return

volatility is to introduce a variation in P/D ratio. To see this, P/D ratio has a predictive power in

the future dividend growth or the future return (dividend discount rate).1 Empirically, P/D ratio

is not a forecaster of dividend growth, thus it has to predict future returns. Therefore a resolution

of the volatility puzzle is simultaneously a resolution of the predictability puzzle [Campbell and

Shiller (1988), Shiller (1990), and Barberis et al. (2001)].

The object of this paper is to show the importance of endogenous labor-leisure choice and the

opportunity cost related to risky investment for explaining the above asset pricing puzzles. Most

of modern financial theories have passed over such binding constraints, and hence may mislead the

importance of opportunity cost and of human capital.

To prove our argument, we posit the time cost required for managing investment in a risky asset.

Time is an unequivocally valuable but scarce resource, thereby being one of the most important

binding constraints inherent in economic decision making. Since economic agents are endowed

with a limited amount of time, they should allocate this scarce resource to several activities for

their benefit. For example, some may want to spend more time in labor for increasing future

consumption, whereas others may enhance their utility by going after more leisure. Anyone cannot
1When both the dividend growth rate and the discount rate are constant, the price-dividend ratio is also constant.
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simultaneously achieve both of them, and should choose the optimal behaviors by taking into

account the opportunity cost as well as the trade-off between risk and return. Given the importance

of time allocation, it is surprising that little has been studied its impact on the return dynamics.

We thereby investigate the impact of the time allocation in the presence of time cost for risky

investment.

The model presented in this paper is based on a simplified assumption that an economic agent

allocates a limited amount of time into three activities: labor, leisure, and risky investment. With

the first two activities which are standard [Becker (1965), Gronau (1977), Prescott (1986), Bodie,

Merton, and Samuelson (1992)], we introduce the third alternative usage of time, which is associated

with risky investment. Typically risky asset investment requires an in-depth analysis on alterna-

tives and the market environment for stock picking and market timing, i.e. for instance, brokerage

time and research time such as reading newspapers, web surfing and consulting with brokerage

agents. In addition, after implementing an investment, she should keep track of the performance

of her portfolio and decide whether to rebalance her portfolio given the revelation of information

over time. These efforts require a significant amount of time, which is coined as “monitoring cost.”

Furthermore, any adverse performance of one’s risky investment can elicit psychological turbulence,

which in turn induces negative impact on labor productivity or time measured in net working hours,

not in a perfunctory sense.

Overall we can summarize that risky asset investment is likely to result in decreasing either

labor time or productivity, which can potentially reduce the worker’s total labor income. Herein

one thing to clarify is which component of labor income is more fragile to the effect of risky asset

investment. Denote her labor income at time t by w(t) and time spent on risky asset management at

time t by m(t). The primary prediction implied by the above argument is dw(t)/dm(t) < 0. When

F (t) and j(t) represent labor productivity and time respectively, the labor income is a product of

labor productivity and time, i.e., w(t) = F (t) · j(t) under the assumption of constant return to

scale labor production. The ill-effect of risky asset management on labor could be an outcome of

dF (t)/dm(t) < 0 and/or dj(t)/dm(t) < 0. In this paper we assume that dF (t)/dm(t) = 0 and

dj(t)/dm(t) < 0 for simplicity.2

2This assumption is not as critical as it appears to be. Suppose that the labor productivity is the only component

ill-affected by risky asset investment, i.e., dF (t)/dm(t) < 0 and dj(t)/dm(t) = 0. This occurs when the firm prohibits
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To simply implement the property, dj(t)/dm(t) < 0, we assume that the sum of labor, leisure and

risky asset management is fixed to a unit time. This time constraint is a natural way to induce the

opportunity cost of risky asset management: increasing the time spent on risky asset management

dictates a decrease in either leisure or labor. This structure is equivalent to Becker (1965)’s ‘full

income approach.’ To measure the opportunity time cost, he used the term ‘full income’, which is

the income level received when consuming all available time in labor.

In addition, our model is on the series of consumption asset pricing models such as Lucas (1978),

Barberis, Huang, and Santos (2001), Santos and Veronesi (2006), and Cochrane, Longstaff, and

Santa-Clara (2007). We consider a general equilibrium framework where there is a representative

agent and a market is cleared such that the perishable consumption is identical to the sum of

dividend and endogenous labor income at time t.3 Thus our economy is associated with two kinds

of approaches for resurrecting consumption asset pricing models. One approach is to to investigate

the quality of consumption. For instance, it is possible that if some investors are away from the

stock market, their consumption processes contaminate the aggregate consumption data [Mankiw

and Zeldes (1981) and Vissing-Jorgensen (2002a)]. Given the frictions that drive investors away

from the stock market as in Basak and Couco (1998), the participants’ consumption processes are

less correlated with aggregate consumption. Hence it could lead to false rejection of consumption-

based asset pricing models. As such, Vissing-Jorgensen (2002a) shows that only the consumption

on stockholders fares better to explain the observed equity returns and volatilities. Our study

tries to answer the fundamental reason to such consumption contamination by introducing the

opportunity cost such as time cost.

The second type of research is related to the source of consumption. Many researchers have de-

veloped equilibrium models with multiple securities [Menzly, Santos, and Veronesi (2004), Longstaff

and Piazzesi (2004), and Cochrane, Longstaff, and Santa-Clara (2007)], and found that multiple

income sources can generate more complex return dynamics of risky assets.4 In particular, human

access to internet surfing. In such a case, the worker could potentially kill time due to worrying about the performance

of her stocks. If we measure the actual time of labor, this could mean a decrease in the amount of actual labor time.

As such, dF (t)/dm(t) < 0 and dj(t)/dm(t) = 0 could be consistent with dF (t)/dm(t) = 0 and dj(t)/dm(t) < 0 by

changing the operational definition of m(t).
3Labor income is a decision variable given the exogenous labor efficiency and the level of dividend.
4Menzly et al. (2004) focus on the linkage between the time-varying risk preference and the fluctuations of dividend
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capital above all is the most important income source in the real economy. A majority of house-

holds work everyday and receive the wage as a reward.5 Labor income accounts for 75% of total

consumption [Campbell (1999), and Santos and Veronesi (2006)], consequently being a primary

factor in decision makings. Since Mayers (1972), many studies have explored the role of human

capital in asset pricing.6 For instance, Santos and Veronesi (2006) introduce the economy with

two income sources, i.e., dividend and wage. Pivotal intuitions behind their model are such that

the correlation between the consumption (the sum of dividend and labor income) growth and the

dividend growth depends on wage-to-consumption ratio, which is thereby connected to the rate of

return on a risky asset. This mechanism generates a considerable return predictability over time

series and cross section. Gomes and Michaelides (2005) prove numerically that the incomplete risk

sharing by labor income in incomplete market increases an equity premium and volatility. In ad-

dition, Lettau and Ludvigson (2001a, 2001b) show that only a deviation of consumption from the

stable state of wealth, including human capital, has a remarkable information about stock returns,

and Lettau and Ludvigson (2004) emphasis the importance of information contained in labor in-

come and consumption. Our study, in contrast, permits an endogenous labor/leisure choice and

opportunity costs in decision makings, and gives the importance of labor income by the different

ways from above extant literatures.

The main results of our paper can be summarized as follows. First, we have derived the standard

asset pricing formula in the presence of a time constraint. The difference of this formula with the

traditional asset pricing formula without a time constraint illustrates the impact of opportunity time

cost on the asset returns subject to a time constraint. Second, we have found out the closed-form

solutions for the risky asset price, the risky return, and the riskfree rate. The closed-form solutions

are restricted by the assumption about agent’s log utility in our economy, but such an assumption

does not mitigate the importance of opportunity cost, in fact, our results are conserved even if we

growth, and compare their results with the empirical valuation ratios observed in U.S. stock market. Cochrane et

al. (2007) elicit the novel features such as serial correlation and time series/cross-sectional predictability when market

is cleared by two financial assets giving a stream of perishable dividends.
5Human capital can be conceived of as another asset that gives a labor income as a dividend.
6Besides, many researches have investigated the importance of a labor income in a portfolio choice setup. [Mer-

ton(1971), Bodie, Merton, and Samuelson (1992), Carroll (1997), Viceira (1999), and Cocco, Gomes, and Man-

hout(2005)]. They focus on a labor income as a substitute for long-term risk-free asset holdings and/or on the

background risk implied on a labor income, which can affect the investment choices of households [Viceira (1999)].
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increase the relative risk aversion more than one. That is, the time cost induces the substitution

effect with labor income or leisure, which thereby influences the equity premium and volatility.

In a equilibrium, only a small amount of time for risky investment elicits a significant increase in

equity premium and volatility, which can be a possible resolution of asset pricing puzzles. Third,

we investigate the impact of endogenous labor/leisure choice by comparing with exogenous labor

income case given no time cost required for risky investment. Most extant literatures focus on the

background risk implied on labor income and/or the role constituting an implicit riskfree holding by

assuming that labor income is exogenous. Such studies cannot reflect an endogenous labor/leisure

choice which apparently exists in reality, and make it hard to bring out an exact implication from

the consideration of human capital. Hence we consider both the economies with and without the

endogenous labor income choice, and separate the effect of endogenous labor/leisure choice from

total change of return dynamics. Under the same dividend-consumption ratio, an endogenous

labor/leisure choice has a slightly negative impact on the equity premium and volatility, which

is consistent to Bodie, Merton, and Samuelson (1992). They have shown that endogenous choice

makes investors more aggressive in investing a risky asset under the portfolio choice setup, since

the flexibility in choosing labor/leisure creates a kind of insurance against adverse performance

of portfolio. Such an insurance effect decreases the risky premium. Totally, despite a negative

effect of endogenous choice, the opportunity cost effect by a reasonable amount of time for risky

investment dominates the effect by an endogenous choice, thereby increasing total equity premium.

The remainder of the paper is organized as follows. Section 2 explains how to represent the

time constraint confronted to investors, and describes the economic framework we will explore. We

introduce the endowment economy with endogenous labor/leisure/investment choice in continuous-

time framework. In Section 3, we derive a standard asset pricing formula in the general economy,

and bring out the closed-form solution to the asset return dynamics when an economic agent

has a log utility. Section 4 investigates the impact of time cost required for risky investment on

equity return and volatility by comparing with several benchmark models. Section 5 documents

the results for sensitivity tests with varying some economic parameters. Lastly, Section 6 concludes

and discusses future research issues and a limitation of our model.
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2 The Model

In this section, we make a formal definition of time cost associated with risky investment cou-

pled with its corresponding time constraint and investors’ preference systems. Such a time cost is

measured as a percent of total available time and related with shares of stock held.

2.1 The Time Cost and the Time Constraint

We impose a constraint that an investor is endowed with a limited amount of time at each period

t, which is normalized to one unit without loss of generality. The unit time will be allocated to

labor activity, jt, leisure, lt, or risky investment mt, and therefore

lt + jt + mt = 1.

This representation is standard in the real business cycle model, as laid out by Prescott (1986).

Given the constraint on the time available, the investor is inherently subject to two budget con-

straints: the typical wealth constraint and the time constraint. The extant literatures on transac-

tion cost models such as Constantinides (1986) and Davis and Norman (1990) incorporate monetary

transaction costs incurred by rebalancing the risky portfolio, which affects the wealth constraint.

These costs come from ‘changing’ the portfolio rather than holding the portfolio. Additionally,

Vissing-Jorgensen (2002) considers fixed participation costs, depending on whether or not holding

a risky portfolio as well as the amount of transaction, which also affects the wealth contraint. In

contrast, we consider the time opportunity cost required for risky investment, which directly affects

the time constraint rather than the wealth constraint. Ultimately this time constraint is binding

the choice of labor, leisure and risky investment activities, thereby changing the wealth constraint,

but only indirectly through the concatenation between two constraints. The time cost herein is

also a portfolio holding cost, not a transaction cost.

Next we set the time cost structure. For simplicity, the time cost is represented as a function

of only stock holding shares as follows.

mt(Nt) = m∗ · |Nt|ζ ,

where mt is time costs associated with risky investment; Nt is shares of stock; m∗ is the amount

of time required when stock market clears, Nt = 1. As the invested shares increase, the economic
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agent might require more time in research, brokerage implementation, and monitoring. Following

the above argument, ∂mt/∂|Nt| > 0, which results in ζ > 0. Besides, there are a variety of possible

specifications on time cost structure. However, it is not important because the risky asset price is

affected by only a marginal cost of time required at the equilibrium, Nt = 1. The marginal time

cost required at the equilibrium is equal to the product of m∗ and ζ. Even though the time cost

required when market clears, m∗, is large, an increase in the opportunity cost can be negligible if

ζ is very small. In contrast, although m∗ is small, the opportunity cost can be large with large ζ.

Under the above assumptions, we can summarize the time constraint:

lt + jt + mt = 1

where mt = m∗ · |Nt|ζ

2.2 The Economic Framework and the Preference

Our starting point is the traditional consumption-based asset pricing model, isomorphic to Mer-

ton (1971, 1973) and Lucas (1978), but we introduce the labor/leisure/investment choice under the

time constraint. In particular, labor activity provides an alternative source of increasing wealth.

There is a continuum of identical and infinitely lived agents in the economy, with total mass of

one, whose preference is characterized by the modified CRRA utility function incorporating the

Cobb-Douglas property among the numeraire good consumption and leisure consumption:

U(Ct, lt) =





1
1−δ

(
Cγ

t · h(lt)1−γ
)1−δ if δ 6= 1

γ log(Ct) + (1− γ) log h(lt) if δ = 1
, (1)

where h(lt) = B · lt,

where lt is the amount of leisure time consumed at time t; h(lt) is leisure consumption measured at

time t; B is the appropriate constant parameter for transforming the amount of leisure time to the

leisure consumption; Ct represents leisure-unrelated consumption at time t. The properties of con-

sumption and leisure in preference (1) satisfy the standard regular conditions such as the decreasing

marginal rate of substitution, and intertemporal and intratemporal substitutability between them.

δ (> 0) is RRA parameter and γ (0 < γ < 1) is the Cobb-Douglas parameter governing the relative
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importance of non-leisure consumption.7

The size of the investor’s monetary budget constraint is determined by portfolio performance

and labor income. Portfolio performance is related to the risky asset returns, whereas labor income

is related to labor time and the ‘full labor income’. The full labor income is the amount of income

received when allocating total available time (the unit time in our model) into labor, forgoing other

activities such as leisure and risky asset investment.8 The full labor income, Ft, is represented as

follows:

dFt/Ft = µF dt + σF dZ1 (2)

where µF is the expected growth rate of the full labor income; σF is the volatility of the full labor

income, both of which are assumed to be constant over time for simplicity.

Her labor income, w(jt) is the product of the full labor income, Ft, and the labor time consumed,

jt at time t:9

w(jt) = Ft · jt, (3)

Regarding the investment opportunity set, we consider two financial assets in the economy: a

risk-free asset in zero net supply, paying a interest rate of rf,t between time t and time t + dt; one

unit of a risky asset, i.e., a stock, paying a return of rt between time t and time t − dt. Usually

the risky asset is a claim to a stream of perishable output represented by the dividend sequence

Dt, whose process is given by

dDt/Dt = µDdt + σDdZ2, (4)

where < Z1, Z2 >= ρ; µD is the expected growth rate of the dividend; σD is the standard deviation

of dividend.

At time t, an investor knows the stock price, Pt, her wealth, Wt, and full labor income, Ft. She

then chooses how much to consume, Ct, leisure time, lt, labor time, jt, risky investment time, mt,
7Over the postwar period, wages have risen substantially, but hours worked have not declined much. This implies

that the budget share of a good does not vary despite the fact that price has gone up sharply. A Cobb-Douglas utility

function is a utility function consistent with the lack of trend in hours worked per worker. See Prescott (1986).
8See, for example, Becker (1965) and Prescott (1986).
9Therefore we implicitly posit a constant wage scheme under the assumption of a constant-return-to-scale labor

production function.

8



the amount of risk-free investment, Bt, and the invested shares of risky asset, Nt subject to the

following constraint

Wt = NtPt + Bt. (5)

Thus the wealth process at time t is as follows.

dWt = Nt(dPt + Dtdt) + rf,tBtdt + Ftjtdt− Ctdt (6)

Under the above assumptions, the investor’s intertemporal optimum scheme can be represented

as:

max
{Ct,lt,jt,Nt}

E

[∫ ∞

0
βtU(Ct, lt)ds

]
, (7)

subject to

dWt = Nt(dPt + Dtdt) + rf,tBtdt + Ftjtdt− Ctdt

dFt/Ft = µF dt + σF dZ1

dDt/Dt = µDdt + σDdZ2

lt + jt + mt = 1,

w(jt) = Ft · jt,

mt = m∗|Nt|ξ

Additionally, there is an ad-hoc but crucial assumption in our model. Although the sum of

the time allocated into three activities is fixed to the unit one, it does not guarantee the time

consumed on each activity as non-negative. This means that an agent is allowed to leverage in

a particular activity, i.e., a leisure time (lt ≥ 1 − m∗), but not a labor time.10 When an agent

wants to increase her leisure time more than an endowed amount of time (for instance, improve

the quality of leisure activity), then she pays for the money as much as the full labor income per

unit time. This assumption makes our pricing equation to avoid from corner solutions, thereby

helping us bring out the closed-form solutions. Such an assumption, however, does not mitigate

the importance of time cost required for managing risky investment. Moreover, if we get rid of a
10Since a leisure directly affects the utility function, a leisure time is always positive. Whereas, the time consumed

in labor can be negative corresponding to the economic condition, for instance, with extremely low full labor income

(labor efficiency) and high dividend income.
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leisure among activities that the agent can allocate her limited time, their optimal decisions would

not bind the constraint: the time consumed into each activity is always positive.

3 Equilibrium Prices

3.1 Standard Asset Pricing Formula (Euler Equation)

To resolve the asset pricing formula in the presence of the time cost required for risky investment,

we conjecture the equity process as follows:

dPt = (µPt −Dt)dt + h1PtdZ1 + h2PtdZ2 (8)

Given the risky asset process and state variables, we also define the indirect utility function.

J(Wt, Dt, Ft, t) = max
αt,Ct,lt

Et

[∫ t′

t
U(Ct, lt)ds

]
, (9)

where αt = NtPt
Wt

. Then we can derive the optimality condition from the well-known Bellman

equation.

0 = max
αt,Ct,lt

[U(Ct, lt) + DJ(·, t)] ≡ Ψt (10)

From maxαt,Ct,lt Ψ, the first order conditions(FOCs) with respect to the risky investment weight,

consumption, and leisure time are given by

ΨC = Uc − JW ≤ 0 and CΨC = 0, (11)

Ψl = Ul − JW Ft = 0, (12)

Ψα = JW

[
Wt(µ− r)− Ft

∂mt

∂αt

]
+ JWW W 2

t (h2
1 + h2

2 + 2ρh1h2) (13)

+JWDWtDtσD(h1 + ρh2) + JWF WtFtσF (ρh1 + h2) = 0

where
∂mt

∂αt
=

∂Nt

∂αt

∂mt

∂Nt
=

Wt

Pt

∂mt

∂Nt
. (14)

At an interior solution, the FOCs satisfy the following relationship between leisure lt and con-

sumption Ct,

lt =
1− γ

γ

Ct

Ft
. (15)
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Definition: A Rational Expectation Equilibrium is a price function P (t), a dividend process

D(t), an allocation process N(t), a full labor income F (t), and consumption C(t) such that investors

maximize their utility and markets clear, that is

N(t) = 1,

C(t) = D(t) + w(t),

where w(t) = F (t) · j(t) = F (t)(1− lt −m∗(Nt = 1)).

Proposition 1: Under the above conditions, the standard asset pricing formula for a risky asset

is given by 11

Pt = Et

[∫ ∞

0
βs

(
Ct+s

Ct

)−δ (
Ft

Ft+s

)(1−γ)(1−δ) (
Dt+s − Ft+s

∂mt+s

∂Nt+s
|Nt+s=1

)
ds

]
. (16)

Proof: See the Appendix A.

Generally, it is hard to resolve the standard asset pricing equation (16). Once restricted to the

economy wherein agents have log utility, however, we can derive the closed-form solutions for the

rate of return and volatility, which will be included in later section.

Let φt be dividend to consumption ratio Dt/Ct. The introduction of term φt changes the state

variables Ft and Dt to Ct and φt. That is, the full labor income to consumption ratio can be

rewritten as using the first order condition (15),

Ft

Ct
=

1− γφt

γ(1−mt)
.

The amount of the time allocated into leisure and labor are shown as respectively,

lt =
1− γ

1− γφt
(1−mt),

jt =
γ(1− φt)
1− γφt

(1−mt).

11Whereas, this standard asset pricing formula in discrete-time framework is modified to

Pt = Et

[ ∞∑
s=1

βs
(

Ct+s

Ct

)−δ
(

Ft

Ft+s

)(1−γ)(1−δ) (
Dt+s − Ft+s

∂mt+s

∂Nt+s
|Nt+s=1

)]
− Ft

∂mt

∂Nt
|Nt=1.

The proof is trivial by using Bellman equation.
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Using the above equations, the consumption process, dCt, and its corresponding dividend to con-

sumption process, dφt, can be simplified as follows

dCt

Ct
= [µDγφt + µF (1− γφt)] dt + σF (1− γφt)dZ1 + σDγφtdZ2, (17)

dφt = φt(1− γφt)
[
µD − µF − γφtσ

2
D + (1− γφt)σ2

F + (2γφt − 1)ρσDσF

]
dt

−φt(1− γφt) [σF dZ1 − σDdZ2] . (18)

3.2 The Special Case: Log Utility Case

Recently assuming multiple income sources coupled with the log utility of a representative agent is

popular in asset pricing literatures [Menzly et al. (2004), Santos and Veronesi (2006), and Cochrane

et al. (2007)]. Multiple income sources reflect the real economic environment, whereas log utility

helps deriving analytical solutions under multiple income sources. Such literatures have shown

that dividend to consumption ratio is important in pricing the risky asset and predicting future

returns. In line with those, we have shown that dividend to consumption ratio can influence the

return dynamics through another mechanism in the presence of time required for risky investment

coupled with time constraint.

The technique to solve the equilibrium price is aided by Cochrane et al. (2007). If one financial

asset is assumed as human capital which gives a labor income as a dividend in Cochran et al. (2007),

our economy is similar with theirs. Our economy, however, is more general in that ours includes

the time cost required for managing a risky asset as well as the endogenous labor/leisure choice,

thereby embracing Cochrane et al. (2007). Such an economic framework gives a nice and simple

implication for the existence of multiple assets, despite some drawbacks.12

In particular, specifying two assets as one financial asset and a human capital makes an in-

depth analysis on endogenous labor/leisure choice possible, and adding the time cost coupled with

a time constraint helps investigating how the risky asset return is linked to the efficiency of other

activities. We find out a couple of additional mechanisms for labor opportunity to influence a
12First, as pointed in Santos and Veronesi (2006), the assumption that both assets follow geometric Brownian

motion as in our model and Cochrane et al. (2007)’s implies that in the long run, one of income sources would

dominate the economy with probability one. Next, as mentioned in conclusion of Cochrane et al. (2007), the novel

features of return dynamics induced by two assets are diluted by introducing many financial assets.
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risky asset return. One is the effect of endogenous labor choice, and the other is the effect of

opportunity cost, which is forgone labor/leisure activities. These two impacts of labor opportunity

are distinguishable features of our model, compared with most extant literatures which explore

labor income. They consider labor income as only a implicit risk-free asset or as another asset

with a background risk.

Proposition 2: In equilibrium, the price of a risky asset wherein an investor has log utility is

given by

Pt = Ct

[(
1 +

1
1−m∗

∂m

∂N

)
M(t) +

1
lnβ

∂m

∂N

1
γ(1−m∗)

]
(19)

where

M(t) =
1

ψγ(1− ξ)

(
γφt

1− γφt

)
F

(
1, 1− ξ; 2− ξ;− γφt

1− γφt

)
+

1
ψγθ

F

(
1, θ; 1 + θ;−1− γφt

γφt

)
.

and

ψ =
√

ν2 − 2 ln βη2, ξ =
ν − ψ

η2
, θ =

ν + ψ

η2

ν = µF − µD − 1
2

(
σ2

F − σ2
D

)
, η2 = σ2

F + σ2
D − 2ρσF σD.

Proof: See the Appendix B.

Let rt and rf,t denote the instantaneous return on the risky asset and the riskless asset, re-

spectively. Given the explicit processes of price, Pt, consumption, Ct, and dividend-consumption

share, φ, the risky asset return, r, is expressed by a direct application of Ito’s lemma.

r =
dPt + Dtdt

Pt
=

dCt

Ct
+

d(Pt/Ct)
Pt/Ct

+
dCt

Ct

d(Pt/Ct)
Pt/Ct

+
Dt

Pt
dt (20)

From equation (70),

E(r) = rf + Cov

(
dC

C
, r

)
+

Ft

Pt

∂m

∂N

= rf + V ar

(
dCt

Ct

)
+ Cov

(
dCt

Ct
,
dPt/Ct

Pt/Ct

)
+

Ct

Pt

1− γφt

γ(1−m∗)
∂m

∂N
(21)
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Proposition 3: In equilibrium, the rate of return on the risky asset and the riskless asset wherein

an investor has log utility is given by

rt =
[
− lnβ + µDγφt + µF (1− γφt) +

(
ρσDσF − σ2

F + η2γφ
) A(φt)

B(φt)
(22)

+
1− γφt

γ(1−m)
∂m

∂N

1
B(φt)

]
dt + σF

(
1− γφ− A(φt)

B(φt)

)
dZ1 + σD

(
γφt +

A(φt)
B(φt)

)
dZ2 (23)

where

A(φ) =
(

1 +
1

1−m∗
∂m

∂N

) [
1

ψ(1− ξ)
φt

1− γφt
F

(
1, 1− ξ; 2− ξ;− γφt

1− γφt

)

− 1
ψ(2− ξ)

γφ2
t

(1− γφt)2
F

(
2, 2− ξ; 3− ξ;− γφt

1− γφt

)

+
1

ψ(1 + θ)
1− γφ

γ2φ
F

(
2, 1 + θ; 2 + θ;−1− γφt

γφt

)]
(24)

B(φ) =
(

1 +
1

1−m∗
∂m

∂N

)
M(t) +

1
lnβ

∂m

∂N

1
γ(1−m∗)

(25)

rf,t = − ln β + µDγφt + µF (1− γφt)− σ2
Dγ2φ2

t − σ2
F (1− γφt)2 − 2ρσDσF γφt(1− γφt) (26)

Proof: The direct application of Proposition 2.

3.3 The Benchmark Models

The results of our model above are mixed with the impact by the time required for risky investment

and the impact by endogenous labor/leisure choice. To separate each impact, we introduce several

benchmark models. The Benchmark I does not include the time for risky investment, but an

endogenous labor/leisure choice still. The Benchmark II does not include the time cost, and has

an exogenous labor income. Benchmark III is only a financial income case wherein consumption

is composed of only a dividend. The difference between our model and Benchmark I indicates the

impact of the time required for risky investment, whereas the difference between Benchmark I and

Benchmark II indicates the impact of endogenous labor/leisure choice.

Benchmark I : No Time cost case with Labor/Leisure Choice

Benchmark I is identical to our model except setting the time required for managing the risky asset

investment as zero, m(t) = 0.
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Proposition 4: In Benchmark I where there is no time cost required for risky investment, the

price of a risky asset is given by

Pt = Ct

[
1

ψγ(1− ξ)

(
γφt

1− γφt

)
F

(
1, 1− ξ; 2− ξ;− γφt

1− γφt

)
+

1
ψγθ

F

(
1, θ; 1 + θ;−1− γφt

γφt

)]
. (27)

Proof: See the Appendix C.

Proposition 5: In Benchmark I, the rate of returns on the risky asset and the riskless asset are

as follows. The rate of return on risky asset is given by

rt =
[
− ln β + µDγφt + µF (1− γφt) +

(
ρσDσF − σ2

F + η2γφ
) A(φt)

B(φt)

]
dt

+σF

(
1− γφ− A(φt)

B(φt)

)
dZ1 + σD

(
γφt +

A(φt)
B(φt)

)
dZ2, (28)

where

A(φ) =
1

ψ(1− ξ)
φt

1− γφt
F

(
1, 1− ξ; 2− ξ;− γφt

1− γφt

)

− 1
ψ(2− ξ)

γφ2
t

(1− γφt)2
F

(
2, 2− ξ; 3− ξ;− γφt

1− γφt

)

+
1

ψ(1 + θ)
1− γφ

γ2φ
F

(
2, 1 + θ; 2 + θ;−1− γφt

γφt

)
(29)

B(φ) = M(t). (30)

The rate of return on the riskfree asset is given by (same to our model)

rf,t = − lnβ + µDγφt + µF (1− γφt)− σ2
Dγ2φ2

t − σ2
F (1− γφt)2 − 2ρσDσF γφt(1− γφt). (31)

Proof: Similar to Proposition 3.

Benchmark II: No Time Cost case with Exogenous Labor Income (No Leisure, γ = 1)

Benchmark II modifies Benchmark I by omitting the chance to allocate her endowed time into

several activities. Labor income is exogenous, thereby same to the model of Cochrane et al. (2007)

with conceiving labor income as another financial asset.

Proposition 6: In Benchmark II where there is no time cost required for risky investment and

no labor/leisure choice, the price of a risky asset is given by

Pt = Ct

[
1

ψ(1− ξ)

(
φt

1− φt

)
F

(
1, 1− ξ; 2− ξ;− φt

1− φt

)
+

1
ψθ

F

(
1, θ; 1 + θ;−1− φt

φt

)]
. (32)
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Proof: See the Cochrane et al. (2007).

Proposition 7: In Benchmark II where there is no time cost required for risky investment and

no labor/leisure choice, the rate of returns on a risky asset is given by

rt =
[
− ln β + µDφt + µF (1− φt) +

(
ρσDσF − σ2

F + η2φt

) A(φt)
B(φt)

]
dt

+σF

(
1− φt − A(φt)

B(φt)

)
dZ1 + σD

(
φt +

A(φt)
B(φt)

)
dZ2, (33)

where

A(φt) =
1

1− ξ

(
φt

1− φt

)
F

(
1, 1− ξ; 2− ξ;

φt

φt − 1

)
− 1

2− ξ

(
φt

1− φt

)2

F

(
2, 2− ξ; 3− ξ;

φt

φt − 1

)

+
1

1 + θ

(
1− φt

φt

)
F

(
2, 1 + θ; 2 + θ;

φt − 1
φt

)
,

B(φt) =
1

1− ξ

(
φt

1− φt

)
F

(
1, 1− ξ; 2− ξ;− φt

1− φt

)
+

1
θ
F

(
1, θ; 1 + θ;−1− φt

φt

)
.

And the rate of return on the riskfree asset is

rf,t = − lnβ + µDφt + µF (1− φt)− σ2
Dφ2

t − σ2
F (1− φt)2 − 2ρσDσF φt(1− φt). (34)

Benchmark III: Only Financial Income, Ct = Dt

Benchmark III represents the single tree model of Lucas (1978) with risk aversion of one, i.e., log

utility, which keeps the pivotal features underpinning the traditional asset pricing model. The only

income stream is a dividend endowment. This model is known to suffer from an inveterate problem

in explaining the observed magnitude of equity premium and volatility.

Proposition 8: In Benchmark III where there is no time allocation and no labor income, hence

consumption is composed of only a dividend stream, the price of a risky asset is given by

Pt = − Ct

lnβ
. (35)

Proof: Straightforward.
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Proposition 9: In Benchmark III where there is no time allocation and no labor income, the

rate of return on a risky asset is given by

r = (− lnβ + µD) dt + σDdZ2. (36)

The rate of return on a riskless asset is given by

rf = − lnβ + µD − σ2
D. (37)

Proof: Straightforward.

4 Interpretations

There are a lot of novel features when a market clears by two income source. Most of them are

touched in Cochrane et al. (2007), the economy of which is identical except the existence of the

optimal time allocation coupled with the time required for risky investment. For instance, we can

find a serial correlation of returns and a predictability of price-dividend ratio in the time-series as

well as in the cross-section in both papers. However, they are not our main focus in this paper.

We focus exclusively on the opportunity cost induced by the time required for risky investment and

on the endogenous labor/leisure choice, which are distinct properties of our model.13 We could

divide these two effects by comparing our model to benchmark models. As we mentioned, the

comparison between our model and Benchmark I brings out the impact of time required for risky

investment, whereas the comparison between benchmark I and benchmark II brings out the impact

of endogenous labor/leisure choice.

4.1 Equity Premium and Its Volatility

Despite the closed-form solutions for return dynamics as shown in Equation (23), it is hard to

analyze the properties of our solutions due to the hypergeometric function. We thereby assume

the specific parameter values, and investigate the return dynamics in detail.
13In addition, Cochrane et al. (2007) is not a quantitative model, thus their results cannot be comparable to the

observable market data. On the other hand, the results from our model are comparable, since the opportunity time

cost can generate the high equity premium and volatility consistent with the observed data.
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The based parameters are assumed as Table 1, which are consistent with demographic data.

Discount factor (β) is 0.96; the preference for non-leisure consumption (Cobb-Douglas parameter,

γ) is set to 0.5714; both the expected dividend growth rate (µD) and full labor income (µF ) are 1.5%;

the volatilities of dividend and full labor income (σD, σF ) are set to 10% and 3%, respectively15;

the correlation between dividend sequence and full labor income (ρ) is 0. Finally, the time cost

structure for risky investment is as follows

m(t) = m∗ ·N ζ
t = 0.035 ·N2

t .

m∗ = 0.035 is the time consumed for risky investment in equilibrium which means Nt = 1. The time

cost set at 0.035 corresponds to 5.8 hours per week, or 12.5 days per year, the values of which are

sufficiently small. Moreover, the fixed-labor-productivity assumption (constant full labor income)

that we adopt in our model is likely to overestimate the time required for risky investment.16 ζ = 2

means the convexly increasing time cost with respect to the shares invested.

The time cost of risky investment subject to a limited amount of time has a critical impact on

the rate of return and volatility. As shown in Equation (16), the time required for risky investment

induces an opportunity cost for forgoing labor/leisure activities, and this opportunity cost reduces

the net future payoff at time t, equal to Dt − Ft∂mt/∂Nt. The demand for a risky asset falls off

and induces a decrease in price level. Thus investors require a higher equity premium for holding

a risky asset. In contrast, the risk-free rate is not influenced by the time cost required for risky

investment.

Table 2 illustrates the labor/leisure time, dividend consumption ratio, consumption dynam-
14This parameter value is selected for matching a labor-leisure time with the demographic data shown in ATUS

(2005). According to ATUS (2005), labor time and leisure time are almost same.
15Previous researches have reported that the volatility of dividend is from 10% to 12%. [See Barberis, Huang,

and Santos (2001), Campbell (1999), Campbell and Cochrane (1999) and others]. We adopt a lower bounded value,

since we want to derive higher excess return and volatility even with the low variation of dividend. In contrast, the

volatility of full labor income is not clear. So we assume this value as 3%, which generates the equity premium and

volatility consistent with the demographic values.
16If we introduce the assumption that labor productivity is negatively correlated with risky investment ∂F

∂N
< 0

rather than fixed labor productivity ∂F
∂N

= 0, the opportunity cost by the time required for risky investment becomes

higher. Thus the amount of the time for matching the return and volatility observed in the stock market will become

smaller.
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ics, and return dynamics according to the level of dividend-full labor income ratio. As expected,

our model generates a high return and volatility of the risky asset, compared with traditional

consumption-based asset pricing models with log utility and one financial asset, isomorphic to

Lucas (1975) and Benchmark III. In particular, the dividend-full labor income of 1/8 elicits the

dividend-consumption ratio, the consumption dynamics, and the return dynamics consistent with

the demographic data. In particular, such a dividend-full income ratio results in the dividend-

consumption ratio about 20%. Only a price-dividend ratio is lower than the value observed in the

demographic data.

Figure 1 also show the risk-free rate, excess return of the risky asset, and volatility corresponding

to dividend-full labor income ratio. A decrease in dividend-full labor income ratio dramatically

increases the excess return and volatility of risky asset, since the low dividend-full labor income

ratio (or the high full labor income) induces the relatively high opportunity cost, given a fixed time

cost. Contrary to the risky asset return, the risk-free rate is nearly constant over the entire range

of dividend-full income ratio. We assume that the growth rates of both income sources are same,

and thus only a difference in volatility between dividend and full income is able to make a change

in the risk-free rate.17

In addition, the composition of consumption can influence the return dynamics of the risky

asset.18 The risky asset, a stock, is a claim to a stream of perishable output represented by the

dividend sequence. In consumption-based asset pricing models, hence, the asset returns are affected

by the correlation between cash-flow outputs and the stochastic discount factor (consumption). If

consumption is mainly composed of dividend income, the correlation between consumption and

dividend is high, and then the return becomes high. In contrast, if consumption is mainly composed

of labor income, the return becomes low.
17If consumption growth rate and its standard deviation are intertemporally invariant in the consumption-based

model, the risk-free rate is invariant. In our economy, however, the composition of consumption, consisting of

dividend and labor income, changes intertemporally, thereby the expected consumption growth rate and its standard

deviation variate with respect to dividend-full labor income ratio. Thus the risk-free rate can be intertemporally

changed.
18Santos and Veronesi (2006) investigate the importance of the composition of consumption to the asset returns.

They focus not on the return and volatility of the risky asset but the return predictability which is determined by

the composition of dividend and labor income in consumption.
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Therefore, full labor income affects equity returns through two mechanisms. One is the effect

by the time required for risky investment. In equation (16), Ft
∂mt
∂Nt

|Nt=1 reflects the opportunity

cost. The opportunity effect is directly associated with the product of marginal time cost, ∂mt
∂Nt

, and

full labor income, Ft. As full labor income increases, opportunity cost becomes higher and hence

the investors require higher premium for holding a risky asset. The other is the effect by the change

in consumption composition. An increase in full labor income decreases the correlation between

future cash flow and consumption (stochastic discount factor) as aforementioned. A decrease of

the correlation results in a decrease of the risky asset return. Above two contrary effects of full

labor income coexist on the risky asset price. As shown in Table 1 and Figure 1, the risky asset

return increases in the full labor income in our model, given a fixed dividend level. That is, the

first effect dominates the second effect, and a full labor income thereby has a positive relationship

with the equity premium and volatility.

4.2 The Opportunity Cost Effect of the Time required for Risky Investment

In the former Section, we have shown that our model enables to generate the considerable equity

return and volatility comparable to the demographic data. There are two candidates for eliciting

our desirable results compared to Cochrane et al. (2007). One is the existence of time required for

risky investment, and the other is the endogenous labor/leisure choice. Yet, we have not explored

the question of which is more critical to generate such desirable properties. In this Section, we

analyze each impact by comparing our model to benchmark I and benchmark I to benchmark II.

The results in Table 2 (the result of our model) and Table 3 (the result of benchmark I)

are driven under the identical economic condition except the existence of time cost required for

risky investment. Thus the comparison above makes us to extract only impact of the time cost.

Additionally, Figure 1 shows (a) the riskfree rate and excess return and (b) volatility in our model

and Benchmark I.

The excess return and volatility with the time required for risky investment are higher than those

without the time cost at the same dividend-full labor income ratio. In particular, at the row ratio

where labor income-consumption ratio is consistent with the empirical values, the excess return and

volatility increase to the level as high as the empirical values, whereas the results of Benchmark I
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still remain at the level far less than the real values. Therefore, we can infer that the opportunity

cost of time for risky investment may have a crucial explanatory power for the equity premium

puzzle. Additionally, Figure 2 shows the variation of excess return and volatility according to the

amount of time required for risky investment. The amount of time cost is correlated with excess

return and volatility as expected, more specifically, convexly. Besides, the volatility of the risky

asset is increased as the size of price fluctuation is remained same in spite of a fall in the risky asset

price. To sum up, the extent of opportunity cost is determined by two ingredients: the amount of

time cost and dividend-full labor income ratio. This is manifest as shown in equation (16).

One interesting thing is that the excess return and its volatility are positively correlated with

dividend/full labor income ratio in Table 3 (Benchmark I), contrary to Our model. This is entirely

due to the correlation with consumption which consists of dividend and wage. An increase in

dividend/full labor income results in raising the correlation between dividend and consumption,

thus it requires higher excess premium to hold a stock. In contrast, our model is dominated by

the opportunity cost effect, thereby the excess return is negatively correlated with dividend/labor

income.

4.3 The Effect of Endogenous Labor/Leisure Choice

The other candidate that might generate the sufficient excess return and volatility in our model

is the endogenous labor/leisure choice. In this section, we investigate it by comparing benchmark

I (endogenous choice) to benchmark II (exogenous). Table 4 shows the results of Benchmark II,

which matches the dividend/consumption ratio with the values in Table 3.

The endogenous choice affects the return dynamics through two ways. One is the modification

of pricing kernel, and the other is the change of consumption process. First, the pricing kernel

in equation (16), βs
(

Ct+s

Ct

)−δ (
Ft

Ft+s

)(1−γ)(1−δ)
, is different from that in traditional consumption-

based asset pricing models, βs
(

Ct+s

Ct

)−δ
. Because the difference term,

(
Ft

Ft+s

)(1−γ)(1−δ)
, tends to

move oppositely to
(

Ct+s

Ct

)−δ
given the positive drift of µF and µD, the correlation between the

pricing kernel and the dividend in our model is lower than that in traditional asset pricing models.

Thus the low correlation decreases the excess return. Only a log utility with δ = 1 brings out the

identical pricing kernel.
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Second, the endogenous choice changes the relation between dividend process and consumption

process.19 As shown in Table 3 and Table 4, the excess return and its volatility with the endogenous

labor/leisure choice are slightly lower than those with the exogenous labor income. On the other

hand, the risk free rate is opposite. These return dynamics are consistent with the results in Bodie,

Merton and Samuelson (1992). They prove that the ability to vary labor supply ex post tends to

induce the individual to assume greater risks in her investment portfolio ex ante. The flexibility

of labor supply creates a kind of insurance against adverse investment outcomes. Consistently, in

our general equilibrium setup, such a flexibility in labor/leisure choice decreases the excess return

and volatility through smoothing a future consumption stream. The consumption processes of

Benchmark I and Benchmark II is as follows.

• Endogenous Labor/Leisure Choice (Benchmark I)

Ct = γ[Dt + Ft] (38)
dCt

Ct
= [µDγφt + µF (1− γφt)] dt + σF (1− γφt)dZ1 + σDγφtdZ2 (39)

• Exogenous Labor Income (Benchmark II)

Ct = [Dt + F̂t] (40)
dCt

Ct
= [µDφt + µF (1− φt)] dt + σF (1− φt)dZ1 + σDφtdZ2 (41)

where F̂t is the exogenous labor income which elicits the same dividend/consumption ratio φt with

the endogenous choice case. The disparity between (39) and (41) is totally due to the endogenous

labor income w(jt) which is affected by the amount of dividend income, Dt, in the equilibrium.

w(jt) = Ftγ −Dt(1− γ) (42)

dw(jt) = (γµF Ft − (1− γ)µDDt) dt + γσF FtdZ1 − (1− γ)σDDtdZ2 (43)

In the presence of endogenous labor/leisure choice, the bad portfolio performance (low dividend)

can be hedged by increasing an agent’s labor input, and thus the consumption process is affected
19Log utility indicates that an agent is myopic. Thus stochastic discount factor is not related to the endogenous

choice. However, the endogenous choice has an indirect effect on return dynamics through the modification of

consumption process
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by γφt rather than φt. As a result, total consumption process is more stable and less correlated

with a dividend stream if labor supply is sufficiently stable, σF < σD.20

The correlations between dividend and consumption in Benchmark I and II are as follows.

• Endogenous Labor/Leisure Choice (Benchmark I)

Cov

(
dCt

Ct
,
dDt

Dt

)
= γφσ2

D + ρσDσF (1− γφ) (44)

• Exogenous Labor Income (Benchmark II)

Cov

(
dCt

Ct
,
dDt

Dt

)
= φσ2

D + ρσDσF (1− φ) (45)

The correlation is lower at Benchmark I than at Benchmark II because 0 ≤ γ ≤ 1.21 This low

correlation in Benchmark I is transferred to the low risk premium and volatility.

Overall, we have investigated two novel features implied on our model in Section 4.2 and 4.3:

the time cost required for risky investment and the endogenous labor/leisure choice. As shown,

two features influence the return dynamics oppositely. Even with a small amount of time cost, the

first effect dominates the second effect under the range of reasonable dividend-full income ratio,

and the total equity premium and volatility in our model are comparable with the observed return

values.

5 Sensitivity Test corresponding to Parameters

All results above are based on the fixed parameters in Table 1 in order to generate the equity

premium and volatility comparable with the empirical values. However, it is also important to

analyze the role of other parameters such as the volatility of full labor income (σF ), the preference

to non-leisure consumption (γ), and the correlation between dividend and full labor income (ρ). In

this Section, we investigate how the change of these parameter values influence the return dynamics.
20A wage as a proxy for a full labor income has a higher priority than a dividend in sharing a firm’s profit, and

thereby more stable than a dividend stream. Moreover, a majority of people think labor income is safer than financial

income. Thus we assume σF < σD.
21More exactly, under σ2

D − ρσDσF > 0.
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5.1 The Volatility of Full Labor Income: σF

In previous Sections, we set the value of parameter σF at 3%, which is a little smaller than the

value of labor income used in portfolio choice problem such as Cocco, Gomes and Maenhout (2005),

Viceira (2001), and Yao and Zhang (2004). This relatively low volatility can be justified by two

facts. First, the full labor income is not the real labor income, and the connection with a volatile

dividend sequence makes the realized labor income more volatile as in equation (43). For σF =

0.03, σD = 0.10, γ = 0.57, ρ = 0, and Dt : Ft = 1 : 8, the standard deviation of the labor income

growth rate is approximately 7%. Second, the estimate of Cocco et al. (2005) and Viceira (2001)

is based on age-dependent data surveyed by PSID. If the labor income growth rate is estimated

using the time-series data of total households’ average labor income regardless of age, the standard

deviation of labor income growth rate may be more stable than the age-dependent estimate.

Nevertheless, clarifying the exact specification of full labor income is very difficult. The full

labor income is non-observable, and its process can be measured only indirectly through the con-

catenation to real labor income. Hence there might be mis-specification for σF . We thereby try to

get out of the problem by investigating over the wide range of σF . According to Figure 3, we have

found that the volatility of full labor income has critical impacts on return dynamics. Figure 3-(a)

shows the rate of return on the assets according to σF . An incline to the full income’s volatility

results in a decline to the risky asset return both in our model and in Benchmark I, but an extent

of the decline is different in each model. The difference is totally due to the time required for

risky management existing only in our model. A rise in the volatility of full income reduces the

opportunity cost on the risky asset return, which is presented on the return’s gap between in our

model and in Benchmark I.

Besides, the change of opportunity cost according to the volatility level is translated to the

complex pattern for excess returns. In our model, the excess return decreases until at 18%, for

then it rebounds as shown in Figure 3-(b). On the other hand, the excess return in Benchmark

I is monotonically increasing. Unless the risky investment requires the time as in Benchmark I,

the excess return increases in the volatility of full labor income because the riskfree return is more

sensitive to the volatility than the risky return. Hence, the opportunity cost effect dominates at

the lower volatility, whereas the effect on the difference of the sensitivity presented in Benchmark I
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dominates at the higher volatility. The line in Figure 3-(b) reflects such a relationship. In addition,

Figure 3-(c) illustrates the return volatility according to the volatility of full labor income.

5.2 The Correlation b/w Dividend and Full Labor Income: ρ

In previous Sections, we set the value of parameter ρ, meaning the correlation between dividend

growth and full labor income growth, at 0 for simplicity. But the value of zero has not been justified

by empirical data. Campbell (1999) estimates the correlation between the dividend growth and

the consumption growth as 0.15 in a time series of U.S. data spanning the past century; the correla-

tion between dividend growth and excess return as almost 0; the correlation between consumption

growth and excess return as 0.33. In addition, the correlation between labor income growth and

excess return is also 0 at the occupational level, as documented in Cocco et al. (2005), Davis

and Willen (2002), and Heaton and Lucas (1997). Under this circumstance, the pure endowment

economy with only two income sources like in our model is hard to satisfy such relations simulta-

neously. For example, the value of ρ = −0.2 satisfies the correlation between dividend growth and

consumption growth as about 0.15, but it cannot satisfy other relationships.

In this Section, we investigate the change of return dynamics according to ρ. Figure 4-(a)

shows that the expected excess return increases in the level of correlation both in our model and

in benchmark I whereas the riskfree return decreases but very slightly in both models as shown in

Equation (26). A change of correlation ρ affects the consumption process, and alters the correlation

between the dividend and the consumption as Equation (44). The low level of ρ results in the low

correlation between dividend and consumption, and hence an economic agent is willing to hold a

risky asset even with a low risk premium.

According to Figure 4-(b), the return volatility is negatively correlated with ρ in our model,

whereas it is positively correlated in Benchmark I. In Benchmark I, an increase in ρ makes the

consumption growth rate more volatile, thereby resulting in the high return volatility. In our

model, in contrast, an increase in ρ makes the net payoff, Dt+s − Ft+s∂m/∂N , more stable, which

decreases the volatility of excess return.
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5.3 The Preference to Non-Leisure Consumption: γ

We set the value of γ governing the preference to non-leisure consumption as 0.57 in previous

sections. According to ATUS (2005), the amount of time allocated into leisure and labor time

is almost half and half. The value of γ = 0.57 generates the consistent time allocation with the

empirical data documented in ATUS (2005).

Then how does the parameter γ influence the return dynamics subject to the time constraint ?

Figure 5 which presents the return dynamics according to γ demonstrates the irrelevance of γ with

the return dynamics. Since the labor productivity (utility) is fixed as Ft at time t, the marginal

utilities of other activities should follow up to the labor’s in the equilibrium. Even if γ varies, the

productivity for risky investment, which requires a time cost, should be identical to Ft. γ governs

only the time allocated to leisure. But if we adopt ∂Ft/∂Nt < 0 rather than ∂Ft/∂Nt = 0, the

value of γ will be linked to the return dynamics as well as the time consumed to leisure.

6 Conclusion

We have investigated the equity premium and its volatility in the presence of time required for

risky investment subject to the time constraint. An economic agent, who should allocate a limited

amount of time to labor, leisure, and risky investment, suffers from the opportunity cost, which is

forgone labor or leisure. Our model has two major differences with the traditional consumption-

based asset pricing models. One is the existence of a time cost, and the other is the endogenous

labor/leisure choice. Such differences highlight our model compared with other asset pricing mod-

els.

The main results of our paper can be summarized as follows. First, we have derived the standard

asset pricing formula in the presence of time costs. Second, we have found out the closed form

solution to the return dynamics in our economy wherein the representative agent has a log utility.

The time cost induces the substitution effect with labor income or leisure, and thus only a small

amount of the time can induce a significant increase in equity premium and volatility. Third, we

have investigated the impact of endogenous labor/leisure choice by comparing with exogenous labor

income case. An endogenous labor choice has a slightly negative impact on equity premium and
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volatility, which is consistent to Bodie, Merton, and Samuelson (1992). Despite the presence of two

opposite effects on return dynamics, the opportunity cost by the time required for risky investment

dominates the other effect, thereby increasing the total equity premium and volatility.

In particular, we could find out the other mechanisms that the labor opportunity influences the

return dynamics. Most extant literatures have focused on the background risk implied on labor

income and/or the role constituting an implicit riskfree holding by assuming the exogenous labor

income. In reality, besides, labor opportunity affects the asset return dynamics through several

mechanisms. The first is the impact by the opportunity time cost required for risky investment,

the second is that by the endogenous labor choice, as we discussed. Finally, the constitution of

labor income in consumption can significantly influence the return dynamics. The consideration of

such properties in the studies about the human capital helps understanding the exact role of labor

income on financial decision makings confronted to the economic agents in reality.

Additionally, our model can be extended to more general frameworks. The closed-form solution

in our model is restricted by the assumption of log utility, and our analysis is focused on log utility

case. But the solution for non-log utility is likely to enrich our model to explain the observed

return dynamics. Furthermore, another possible modification of our model is to specify the relation

between a dividend stream and a full labor income process in other ways. As pointed in Santos and

Veronesi (2006), the assumption that both assets follow geometric Brownian motion implies that in

the long run one of income source would dominate the economy with probability one. To avoid such

a problem, it is possible to specify two income sources in a different way as in Santos and Veronesi

(2006), in which they assume that the dividend-consumption ratio follows a mean-reverting process.

Therefore any one income source cannot dominate the total consumption process in equilibrium.
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Appendix A : The Proof of Proposition 1

The wealth process is given by

dWt = Nt(dPt + Dtdt) + rBtdt + Ft(1− lt −mt)dt− Ctdt

= NtPt(µdt + h1dZ1 + h2dZ2) + (r(Wt −NtPt) + Ft(1− lt −mt)− Ct)dt. (46)

Let αt = NtPt

Wt
. Then wealth process can be expressed in terms of αt and Wt.

dWt = [rWt + (µ− r)NtPt + Ft(1− lt −mt)− Ct]dt + NtPt(h1dZ1 + h2dZ2)

= [Wt[(µ− r)αt + r] + Ft(1− lt −mt)− Ct] dt + αtWt(h1dZ1 + h2dZ2). (47)

The optimization problem of a representative agent is as follows.

max
αt,lt,Ct

Et

[∫ t′

t

U(Cs, ls)ds

]
, (48)

subject to

dWt = [Wt[(µ− r)αt + r] + Ft(1− lt −mt)− Ct] dt + αtWt(h1dZ1 + h2dZ2), (49)

dFt = µF Ftdt + σF FtdZ1, (50)

dDt = µDDtdt + σDDtdZ2. (51)

Let’s specify the following indirect utility function. From the Bellman’s principle of optimality,

J(Wt, Dt, Ft, t) = max
αt,Ct,lt

Et

[∫ t′

t

U(Cs, ls)ds

]
(52)

= max
αt,Ct,lt

Et

[∫ t+h

t

U(Cs, ls)ds + J(Wt+h, Dt+h, Ft+h, t + h)

]
. (53)

Applying Ito’s lemma,

J(Wt+h, Dt+h, Ft+h, t + h) = J(Wt, Dt, Ft, t) +
∫ t+h

t

DJ(·, s)ds (54)

+
∫ t+h

t

JW Wαt(h1dZ1 + h2dZ2) +
∫ t+h

t

JF σF FdZ1 +
∫ t+h

t

JDσDDdZ2,

where DJ is a Dynkin’s operator,

DJ (·, t) = Jt + JW [Wt(αt(µ− r) + r) + Ft(1− lt −mt)− Ct] + JDµDDt + JF µF Ft

+
1
2
JWW W 2

t (h2
1 + h2

2 + 2ρh1h2)α2
t +

1
2
JDDσ2

DD2
t +

1
2
JFF σ2

F F 2
t

+JWDWtDtσD(ρh1 + h2)αt + JWF WtFtσF (h1 + ρh2)αt + JDF ρσDσF DtFt. (55)
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Substituting (54) into (53),

J(Wt, Dt, Ft, t) = max
αt,Ct,lt

Et

[∫ t+h

t

U(Cs, ls)ds + J(Wt, Dt, Ft, t) +
∫ t+h

t

DJ(·, s)ds (56)

+
∫ t+h

t

JW Wαt(h1dZ1 + h2dZ2) +
∫ t+h

t

JF σF FdZ1 +
∫ t+h

t

JDσDDdZ2

]

Since Et [dZ1, dZ2|Wt, Dt, Ft] = 0,

0 = max
αt,Ct,lt

Et

[∫ t+h

t

U(Cs, ls)ds +
∫ t+h

t

DJ(·, s)ds

]
(57)

Dividing by h and taking limits to zero,

0 = max
αt,Ct,lt

lim
h→0

Et

[
1
h

∫ t+h

t

U(Ct, lt)ds +
1
h

∫ t+h

t

DJ(·, s)ds

]
. (58)

Hence

0 = max
αt,Ct,lt

[U(Ct, lt) + DJ(·, t)] ≡ Ψt, (59)

which is equivalent to the well-known Bellman equation in the discrete time framework.

From maxαt,Ct,lt Ψ, we get FOCs.

ΨC = Uc − JW ≤ 0 and CΨC = 0 (60)

Ψs = Ul − JW Ft = 0 (61)

Ψα = JW

[
Wt(µ− r)− Ft

∂mt

∂αt

]
+ JWW W 2

t (h2
1 + h2

2 + 2ρh1h2)

+JWDWtDtσD(ρh1 + h2) + JWF WtFtσF (h1 + ρh2) = 0 (62)

where
∂mt

∂αt
=

∂Nt

∂αt

∂mt

∂Nt
=

Wt

Pt

∂mt

∂Nt

In equilibrium, risky asset has net positive supply, normalized to one. And consumption is the sum of

dividend and labor income.

αt = Nt = 1

Wt = Pt

Ct = Dt + Ft(1− lt −mt)

By imposing these equilibrium condition, the rate of return on the riskfree asset is given by

r = µ− Ft

Pt

∂mt

∂Nt
|Nt=1 +

JWW Wt

JW

(
h2

1 + h2
2 + 2ρh1h2

)
+

JWDDt

JW
σD(ρh1 + h2) +

JWF Ft

JW
σF (h1 + ρh2). (63)
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Examining the locally riskyless interest rate more carefully,

∂D(J)
∂W

= JtW + JWW [µWt + Ft(1− lt −mt)− Ct] + JW

[
µ− Ft

∂mt

∂Wt
|αt=1

]

+
1
2
JWWW W 2

t (h2
1 + h2

2 + 2ρh1h2) + JWW Wt(h2
1 + h2

2 + 2ρh1h2) + JWDµDDt + JWF µF Ft

+
1
2
JWDDσ2

DD2
t +

1
2
JWFF σ2

F F 2
t + JWWDWtDtσD(ρh1 + h2) + JWWF WtFtσF (h1 + ρh2)

+JWDF ρσDσF DtFt + JWDDtσD(ρh1 + h2) + JWF FtσF (h1 + ρh2)

= 0, (64)

where

∂mt

∂Wt
|αt=1 =

1
Pt

∂mt

∂Nt
|Nt=1. (65)

It’s zero since ∂Ψ
∂W = ∂D(J)

∂W = 0, which is called as an envelope condition. By Ito’s Lemma,

dJW = D(JW )dt + JWW W (h1dZ1 + h2dZ2) + JWF σF FtdZ1 + JWDσDDtdZ2, (66)

where

D(JW ) = JtW + JWW [µWt + Ft(1− lt −mt)− Ct] +
1
2
JWWW W 2

t (h2
1 + h2

2 + 2ρh1h2)

+JWDµDDt + JWF µF Ft +
1
2
JWDDσ2

DD2
t +

1
2
JWFF σ2

F F 2
t + JWWDWtDtσD(ρh1 + h2)

+JWWF WtFtσF (h1 + ρh2) + JWDF ρσDσF DtFt. (67)

From Equations (63), and (64),

∂D(J )
∂W

= rJW + D(JW ) = 0. (68)

Thus

dJW

JW
= −rdt +

JWW W

JW
(h1dZ1 + h2dZ2) +

JWF

JW
σF FtdZ1 +

JWD

JW
σDDtdZ2 (69)

Further, Equation (63) and (69) give the following relationship.

µ− rf = Cov

(
dPt

Pt
,−dJW

JW

)
+

Ft

Pt

∂mt

∂Nt
|Nt=1 (70)

Equation (70) can be expressed as follows,

µPt − rPt + Cov

(
dP,

dJW

JW

)
− Ft

∂mt

∂Nt
|Nt=1 = 0

µPt −Dt − rPt + Cov

(
dP,

dJW

JW

)
+ Dt − Ft

∂mt

∂Nt
|Nt=1 = 0
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Et

[
d(JW Pt)

JW

]
/dt + Dt − Ft

∂mt

∂Nt
|Nt=1 = 0

Et [d(JW Pt)] + JW

(
Dt − Ft

∂mt

∂Nt
|Nt=1

)
dt = 0

Et

[∫ h

0

d(JW (·, t + s)Pt+s)

]
+

∫ h

0

JW (·, t + s)
(

Dt+s − Ft+s
∂mt+s

∂Nt+s
|Nt+s=1

)
ds = 0

−JW (·, t)Pt + Et

[∫ ∞

0

JW (·, t + s)
(

Dt+s − Ft+s
∂mt+s

∂Nt+s
|Nt+s=1

)
ds

]
= 0

Therefore

Pt = Et

[∫ ∞

0

JW (·, t + s)
JW (·, t)

(
Dt+s − Ft+s

∂mt+s

∂Nt+s
|Nt+s=1

)
ds

]
(71)

From the first order conditions (FOCs) in equilibrium,

JW = UC

Therefore, the risky asset price is

Pt = Et

[∫ ∞

0

UC(Ct+s, lt+s)
UC(Ct, lt)

(
Dt+s − Ft+s

∂mt+s

∂Nt+s
|Nt+s=1

)
ds

]
(72)

Substituting an investor’s utility into above pricing equation, UC and Ul is as follows.

UC(Ct, lt) = βt−t0B′γC
γ(1−δ)−1
t l

(1−γ)(1−δ)
t , (73)

Ul(Ct, lt) = βt−t0B′(1− γ)Cγ(1−δ)
t l

(1−γ)(1−δ)−1
t . (74)

At optimal condition, the following relation between leisure lt and consumption Ct is always satisfied.

UC(Ct, lt)
Ul(Ct, lt)

=
1
Ft

,

lt =
1− γ

γ

Ct

Ft
. (75)

Marginal rate of substitution of consumption between time t and time t + s

UC(t + s)
UC(t)

= βs

(
Ct+s

Ct

)γ(1−δ)−1 (
lt+s

lt

)(1−γ)(1−δ)

= βs

(
Ct+s

Ct

)−δ (
Ft

Ft+s

)(1−γ)(1−δ)

(76)

Therefore, Standard Asset Pricing Formula (Euler Equation) is given by

Pt = Et

[∫ ∞

0

βs−t

(
Ct+s

Ct

)−δ (
Ft

Ft+s

)(1−γ)(1−δ) (
Dt+s − Ft+s

∂mt+s

∂Nt+s
|Nt+s=1

)
ds

]
. (77)
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Appendix B : The Proof of Proposition 2

From Proposition 1, the price of the risky asset is given by

Pt = CtEt

[∫ ∞

0

βs

[(
1 +

∂m

∂N

1
1−m∗

)
φt+s − ∂m

∂N

1
γ(1−m∗)

]
ds

]
(78)

= Ct

[
1 +

∂m

∂N

1
1−m∗

]
Et

[∫ ∞

0

βsφt+sds

]
+ Ct · 1

ln β
· ∂m

∂N
· 1
γ(1−m∗)

, (79)

where the representative agent has a log utility.

Let Λt = Ft

Dt
. Then the process of full labor income to dividend ratio is given by

dΛt/Λt =
(
µF − µD + σ2

D − ρσF σD

)
dt + σF dZ1 − σDdZ2, (80)

d ln(Λt) =
(

µF − µD − 1
2

(
σ2

F − σ2
D

))
dt + σF dZ1 − σDdZ2. (81)

Since

Ct = Dt + Ft(1− lt −m∗),

lt =
1− γ

γ

Ct

Ft
(from FOC),

then

Ct = γ (Dt + Ft(1−m∗)) .

The expectation term in the price function is given by

Et

[∫ ∞

0

βsφt+sds

]
= Et

[∫ ∞

0

βs 1
γ (1 + Λt exp(u)(1−m∗))

ds

]
(82)

where Λt is the initial full labor income to dividend ratio; u is a normally distributed random variable with

mean ντ and variance η2τ , where

ν = µF − µD − 1
2

(
σ2

F − σ2
D

)
(83)

η = σ2
F + σ2

D − 2ρσF σD. (84)

Note that νdt = Et[d lnΛt] and η2dt = Var[d lnΛt]. Introducing the density for u into the last integral

gives

Et

[∫ ∞

0

βsφt+sds

]
(85)

=
∫ ∞

−∞

1√
2πη2

1
γ(1 + Λt exp(u)(1−m∗))

exp
(

νu

η2

) ∫ ∞

0

s−
1
2 exp

(
− u2

2η2s
− ν2 − 2 ln βη2

2η2
s

)
dsdu. (86)

From Equation (3.471.9) of Gradshteyn and Ryzhik (2000), this expression becomes,

=
∫ ∞

−∞

1√
2πη2

1
γ(1 + Λt exp(u)(1−m∗))

exp
(

νu

η2

)(
u2

ν2 − 2 lnβη2

)1/4

K1/2

(
2

√
u2(ν2 − 2 ln βη2)

4η4

)
du (87)
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where K1/2(·) is the modified Bessel function of order 1/2 (see Abramowitz and Stegum (1970) Chapter 9).

From the identity relations for Bessel functions of order equal to an integer plus one half given in Gradshteyn

and Ryzhik Equation (8.469.3) (K±1/2(z) =
√

π
2z exp(−z)), however, the above expression can be expressed

as,

Et

[∫ ∞

0

βsφt+sds

]
=

1
ψγ

∫ ∞

−∞

1
1 + Λt exp(u)(1−m∗)

exp
(

νu

η2

)
exp

(
− ψ

η2
|u|

)
du (88)

where ψ =
√

ν2 − 2 ln βη2.

In turn, above expression can be written

Et

[∫ ∞

0

βsφt+sds

]
=

1
ψγ

∫ ∞

0

1
1 + Λt exp(u)(1−m∗)

exp (ξu) du

+
1

ψγ

∫ 0

−∞

1
1 + Λt exp(u)(1−m∗)

exp (θu) du (89)

where

ξ =
ν − ψ

η2
and θ =

ν + ψ

η2
.

Define ω1 = exp(−u) and ω2 = exp(u) respectively. By a change of variables, Equation can be written

Et

[∫ ∞

0

βsφt+sds

]
=

1
ψγΛt(1−m∗)

∫ 1

0

1
1 + ω1/(Λt(1−m∗))

ω−ξ
1 dω1

+
1

ψγ

∫ 1

0

1
1 + Λt(1−m∗)ω2

ωθ−1
2 dω2, (90)

From Abramowitz and Stegum Equation (15.3.1), this expression becomes

Et

[∫ ∞

0

βsφt+sds

]
=

1
ψγΛt(1−m∗)(1− ξ)

F

(
1, 1− ξ; 2− ξ;− 1

Λt(1−m∗)

)

+
1

ψγθ
F (1, θ; 1 + θ;−Λt(1−m∗)) (91)

F (α, β; γ; z) is the standard hypergeometric function (see Abramowitz and Stegum (1970) Chapter 15). The

hypergeometric function has an integral representation, which can be used for numerical evaluation and as

an analytic continuation beyond ‖z‖ < 1,

F (α, β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

wβ−1(1− w)γ−β−1(1− wz)−αdw; Re(γ) > Re(β) > 0. (92)

The derivative of the hypergeometric function, needed for Ito’s lemma calculation, has the simple form

d

dz
F (α, β; γ; z) =

αβ

γ
F (α + 1, β + 1; γ + 1; z). (93)

Since φ = 1
γ[1+Λ(1−m∗)] , then Λ = 1

1−m∗

(
1

γφ − 1
)
. Therefore,

Et

[∫ ∞

0

βsφt+sds

]
=

1
ψγ(1− ξ)

(
γφt

1− γφt

)
F

(
1, 1− ξ; 2− ξ;− γφt

1− γφt

)

+
1

ψγθ
F

(
1, θ; 1 + θ;−1− γφt

γφt

)
(94)
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where

φt = Dt/Ct

Define Et

[∫∞
0

βsφt+sds
]

as M(t). Finally, then, asset price is as follows.

Pt = Ct

(
1 +

1
1−m∗

∂m

∂N

)
M(t) + Ct

1
ln β

∂m

∂N

1
γ(1−m∗)

= Ct

[(
1 +

1
1−m∗

∂m

∂N

)
M(t) +

1
ln β

∂m

∂N

1
γ(1−m∗)

]
(95)

where

M(t) =
1

ψγ(1− ξ)

(
γφt

1− γφt

)
F

(
1, 1− ξ; 2− ξ;− γφt

1− γφt

)
+

1
ψγθ

F

(
1, θ; 1 + θ;−1− γφt

γφt

)

Appendix C : The proof of Proposition 3

The price of the risky asset with the time required for risky investment is given by

Pt = CtEt

[∫ ∞

0

βsφt+sds

]
(96)

= Ct
1

ψγ

∫ ∞

−∞

1
1 + Λt exp(u)

exp
(

νu

η2

)
exp

(
− ψ

η2
|u|

)
du (97)

where ψ =
√

ν2 − 2 ln βη2.

Similar with time costs (the opportunity cost) case, this expression becomes

Pt = CtEt

[∫ ∞

0

βsφt+sds

]
(98)

= Ct

[
1

ψγΛt(1− ξ)
F

(
1, 1− ξ; 2− ξ;− 1

Λt

)
+

1
ψγθ

F (1, θ; 1 + θ;−Λt)
]

(99)

Since φ = 1
γ[1+Λ] , then Λ = 1

γφ − 1. Therefore,

Pt = Ct

[
1

ψγ(1− ξ)

(
γφt

1− γφt

)
F

(
1, 1− ξ; 2− ξ;− γφt

1− γφt

)
+

1
ψγθ

F

(
1, θ; 1 + θ;−1− γφt

γφt

)]
(100)
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Table 1: Parameter Values

Common Parameters Value

Discount factor: β 0.96

Constant Relative Risk Aversion (CRRA) parameter: δ 1 (log utility)

Cobb-Douglas parameter: γ 0.57

Expected Dividend Growth Rate: µD 1.5%

Dividend Volatility: σD 10%

Expected Full Labor Income Growth Rate: µF 1.5%

Full Labor Income Volatility: σF 3%

Correlation b/w Dividend and Full Labor Income: ρ 0

Time Required for Risky Investment in Equilibrium : m∗ 0.035

Index of Time Cost Structure: ξ 2

Table 1 presents the values of parameters adopted for comparing to empirical data in the stock market.
Most parameter values are consistent with those set at Barberis, Huang, and Santos (2001) except the values
related to full labor income. The parameters about full labor income, in particular the volatility of full labor
income, will be later investigated.

39



T
ab

le
2:

O
ur

M
od

el
:

R
es

ul
ts

w
it

h
re

sp
ec

t
to

D
iv

id
en

d/
Fu

ll
L
ab

or
In

co
m

e,
D

t/
F

t
W

it
h

T
im

e
C

os
ts

of
R

is
k
y

In
ve

st
m

en
t

D
iv

id
en

d
/
F
u
ll

L
a
b
o
r

In
co

m
e,

1
/
9

1
/
8

1
/
7

1
/
5

1
/
3

1
E

m
p
ir

ic
a
l

D
t
/
F

t
V

a
lu

e

L
ei

su
re

T
im

e,
l t

4
6
.2

7
%

4
6
.8

7
%

4
7
.6

4
%

5
0
.1

0
%

5
5
.8

3
%

8
4
.4

9
%

5
0
%

L
a
b
o
r

T
im

e,
 t

5
0
.2

3
%

4
9
.6

3
%

4
8
.8

6
%

4
6
.4

0
%

4
0
.6

7
%

1
2
.0

0
%

5
0
%

D
iv

id
en

d
to

C
o
n
su

m
p
ti

o
n

ra
te

,
D

t
/
C

t
0
.1

8
1
1

0
.2

0
1
2

0
.2

2
6
2

0
.3

0
1
2

0
.4

5
0
4

0
.8

9
2
8

fr
o
m

0
.2

to
0
.2

5

E
x
p
ec

te
d

C
o
n
su

m
p
ti

o
n

G
ro

w
th

R
a
te

,
µ

C
1
.5

0
%

1
.5

0
%

1
.5

0
%

1
.5

0
%

1
.5

0
%

1
.5

0
%

1
.8

4
%

C
o
n
su

m
p
ti

o
n

G
ro

w
th

R
a
te

V
o
la

ti
li
ty

,
σ

C
2
.8

8
%

2
.8

9
%

2
.9

1
%

3
.0

2
%

3
.4

0
%

5
.3

0
%

3
.7

9
%

R
is

k
-f
re

e
R

a
te

,
r f

,t
5
.5

0
%

5
.5

0
%

5
.5

0
%

5
.4

9
%

5
.4

7
%

5
.3

0
%

fr
o
m

2
to

6
%

E
x
ce

ss
R

et
u
rn

M
ea

n
,
E

[r
t
−

r f
,t
]

7
.2

7
%

5
.5

0
%

4
.4

2
%

2
.5

0
%

1
.4

4
%

0
.8

7
%

6
.0

3
%

E
x
ce

ss
R

et
u
rn

S
td

.,
st

d
[r

t
−

r f
,t
]

2
7
.3

1
%

2
2
.8

5
%

1
9
.6

1
%

1
5
.2

5
%

1
2
.4

9
%

1
0
.7

6
%

2
0
.2

%

P
ri

ce
-D

iv
id

en
d

R
a
ti

o
M

ea
n
,
E

[P
t
/
D

t
]

8
.8

3
6
1

1
0
.4

8
4
3

1
2
.1

2
0
5

1
5
.3

4
1
4

1
8
.4

5
1
8

2
1
.4

6
5
8

2
5
.5

w
he

re
m

t
=

m
∗
·N

ξ t
,
m
∗

=
0.

03
5,

ξ
=

2,
β

=
0.

96
,
δ(

C
R

R
A

)
=

1,
γ
(C

ob
b-

D
ou

gl
as

)
=

0.
57

,
µ

D
=

0.
01

5,
σ

D
=

0.
10

,
µ

F
=

0.
01

5,
σ

F
=

0,
ρ

D
,F

=
0

40



T
ab

le
3:

B
en

ch
m

ar
k

I:
R

es
ul

ts
w

it
h

re
sp

ec
t

to
D

iv
id

en
d/

Fu
ll

L
ab

or
In

co
m

e,
D

t/
F

t
W

it
h
O

u
t

T
im

e
C

os
ts

of
R

is
k
y

In
ve

st
-

m
en

t

D
iv

id
en

d
/
F
u
ll

L
a
b
o
r

In
co

m
e,

1
/
9

1
/
8

1
/
7

1
/
5

1
/
3

1
E

m
p
ir

ic
a
l

D
t
/
F

t
V

a
lu

e

L
ei

su
re

T
im

e,
l t

4
7
.7

8
%

4
8
.3

8
%

4
9
.1

4
%

5
1
.6

0
%

5
7
.3

3
%

8
6
.0

0
%

5
0
%

L
a
b
o
r

T
im

e,
 t

5
2
.2

2
%

5
1
.6

2
%

5
0
.8

6
%

4
8
.4

0
%

4
2
.6

7
%

1
4
.0

%
5
0
%

D
iv

id
en

d
to

C
o
n
su

m
p
ti

o
n

ra
te

,
D

t
/
C

t
0
.1

7
5
4

0
.1

9
4
9

0
.2

1
9
3

0
.2

9
2
4

0
.4

3
8
6

0
.8

7
7
2

fr
o
m

0
.2

to
0
.2

5

E
x
p
ec

te
d

C
o
n
su

m
p
ti

o
n

G
ro

w
th

R
a
te

,
µ

C
1
.5

0
%

1
.5

0
%

1
.5

0
%

1
.5

0
%

1
.5

0
%

1
.5

0
%

1
.8

4
%

C
o
n
su

m
p
ti

o
n

G
ro

w
th

R
a
te

V
o
la

ti
li
ty

,
σ

C
2
.8

8
%

2
.8

9
%

2
.9

1
%

3
.0

0
%

3
.3

6
%

5
.2

2
%

3
.7

9
%

R
is

k
-f
re

e
R

a
te

,
r f

,t
5
.5

0
%

5
.5

0
%

5
.5

0
%

5
.4

9
%

5
.4

7
%

5
.3

1
%

fr
o
m

2
to

6
%

E
x
ce

ss
R

et
u
rn

M
ea

n
,
E

[r
t
−

r f
,t
]

0
.1

0
%

0
.1

1
%

0
.1

2
%

0
.1

6
%

0
.2

5
%

0
.5

0
%

6
.0

3
%

E
x
ce

ss
R

et
u
rn

S
td

.,
st

d
[r

t
−

r f
,t
]

9
.7

9
%

9
.7

8
%

9
.7

7
%

9
.7

5
%

9
.7

6
%

9
.9

6
%

2
0
.2

%

P
ri

ce
-D

iv
id

en
d

R
a
ti

o
M

ea
n
,
E

[P
t
/
D

t
]

2
4
.3

0
2
6

2
4
.2

4
1
3

2
4
.1

6
8
8

2
3
.9

7
5
5

2
3
.6

7
6
8

2
3
.2

7
2
8

2
5
.5

w
he

re
m

t
=

0,
β

=
0.

96
,
δ(

C
R

R
A

)
=

1,
γ
(C

ob
b-

D
ou

gl
as

)
=

0.
57

,
µ

D
=

0.
01

5,
σ

D
=

0.
10

,
µ

F
=

0.
01

5,
σ

F
=

0.
03

,
ρ

D
,F

=
0

41



T
ab

le
4:

B
en

ch
m

ar
k

II
(w

he
n

la
bo

r
in

co
m

e
is

ex
og

en
ou

s)
:

R
es

ul
ts

w
it

h
re

sp
ec

t
to

D
iv

id
en

d/
E

xo
ge

no
us

L
ab

or
In

co
m

e,
D

t/
F

t

D
iv

id
en

d
/
E

x
o
g
en

o
u
s

L
a
b
o
r

In
co

m
e,

1
/
4
.7

0
1
/
4
.1

3
1
/
3
.5

6
1
/
2
.4

2
1
/
1
.2

8
1
/
0
.1

4
E

m
p
ir

ic
a
l

D
t
/
F

t
V

a
lu

e

L
ei

su
re

T
im

e,
l t

·
·

·
·

·
·

5
0
%

L
a
b
o
r

T
im

e,
 t

·
·

·
·

·
·

5
0
%

D
iv

id
en

d
to

C
o
n
su

m
p
ti

o
n

ra
te

,
D

t
/
C

t
0
.1

7
5
4

0
.1

9
4
9

0
.2

1
9
3

0
.2

9
2
4

0
.4

3
8
6

0
.8

7
7
2

fr
o
m

0
.2

to
0
.2

5

E
x
p
ec

te
d

C
o
n
su

m
p
ti

o
n

G
ro

w
th

R
a
te

,
µ

C
1
.5

0
%

1
.5

0
%

1
.5

0
%

1
.5

0
%

1
.5

0
%

1
.5

0
%

1
.8

4
%

C
o
n
su

m
p
ti

o
n

G
ro

w
th

R
a
te

V
o
la

ti
li
ty

,
σ

C
2
.8

8
%

2
.8

9
%

2
.9

1
%

3
.0

0
%

3
.3

6
%

5
.2

2
%

3
.7

9
%

R
is

k
-f
re

e
R

a
te

,
r f

,t
5
.4

9
%

5
.4

9
%

5
.4

8
%

5
.4

5
%

5
.3

6
%

4
.8

1
%

fr
o
m

2
to

6
%

E
x
ce

ss
R

et
u
rn

M
ea

n
,
E

[r
t
−

r f
,t
]

0
.1

7
%

0
.1

9
%

0
.2

2
%

0
.2

9
%

0
.4

3
%

0
.8

9
%

6
.0

3
%

E
x
ce

ss
R

et
u
rn

S
td

.,
st

d
[r

t
−

r f
,t
]

9
.7

5
%

9
.7

5
%

9
.7

5
%

9
.7

8
%

9
.9

0
%

1
0
.1

7
%

2
0
.2

%

P
ri

ce
-D

iv
id

en
d

R
a
ti

o
M

ea
n
,
E

[P
t
/
D

t
]

2
3
.9

3
9
0

2
3
.8

6
2
3

2
3
.7

7
4
9

2
3
.5

6
1
4

2
3
.3

1
4
7

2
3
.8

2
9
7

2
5
.5

w
he

re
m

t
=

0,
β

=
0.

96
,
δ(

C
R

R
A

)
=

1,
µ

D
=

0.
01

5,
σ

D
=

0.
10

,
µ

F
=

0.
01

5,
σ

F
=

0.
03

,
ρ

D
,F

=
0

42



Figure 1: The Relation b/w Dividend to Full-Labor-Income ratio and Return Dynamics
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(a) The Relation b/w Dividend − Full LaborIncome Ratio and Returns

Risk−free Rate (Benchmark I)
Risk−free Rate (Our model)
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(b) The Relation b/w Dividend − Full Labor Income Ratio and Volatility

Excess Return Volatility (Benchmark I)
Excess Return Volatility (Our model)

Figure 1 illustrates the relationship between dividend to full-labor-income ratio and return dynamics. Figure
1-(a) shows the impact on expected return whereas Figure 1-(b) shows volatility impacts. In Our model,
an increase in Dt/Ft decreases the excess return and the volatility of risky asset, whereas in Benchmark
I, an increase in Dt/Ft increases them. This difference reflects the coexistence of two contrary effects: (i)
the opportunity cost effect (ii) the consumption composition effect. Given a fixed amount of time m∗, the
opportunity cost increases (decreases) in the level of Ft (1/Ft), thereby increasing the risky return and
volatility. In contrast, as Ft increases relatively, consumption (or pricing kernel) are less correlated with a
dividend stream and less volatile under σF < σD, thereby decreasing the risky return and volatility. In Our
model, both effects coexist but the first effect dominates, whereas in Benchmark I, only second effect exists.
In addition, the risk-free rates in our model and Benchmark I are nearly constant over entire range of Dt/Ft,
and are same regardless of time cost m∗. The used parameters are as follows: m∗ = 0.035, ξ = 2, β = 0.96,
δ(CRRA) = 1, γ(Cobb-Douglas) = 0.57, µD = 0.015, σD = 0.12, µF = 0.015, σF = 0.03, ρD,F = 0.
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Figure 2: The Relation b/w Time Costs of Risky Investment and Return Dynamics
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(a) The Relation b/w Time Costs and Returns
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(b) The Relation b/w Time Costs and Volatility

Excess Return Volatility

Figure 2 illustrates the relationship between the amount of time costs required for investing in a risky asset
and return dynamics. Figure 2-(a) shows the impact on expected return whereas Figure 2-(b) shows volatility
impacts. The opportunity cost which dominates in our model are positively related with the amount of time
required for risky investment, m∗. Figure 2 (a) and (b) show such effects on the risky return and volatility.
On the other hand, the risk-free return is not affected by the level of time cost. The used parameters are
as follows: ξ = 2, β = 0.96, δ(CRRA) = 1, γ(Cobb-Douglas) = 0.57, µD = 0.015, σD = 0.12, µF = 0.015,
σF = 0.03, ρD,F = 0, Dt : Ft = 1 : 8.
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Figure 3: The Relation b/w Full-Labor-Income Volatility and Excess Return Dynamics
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(a) The Relation b/w the Volatility of Full−Labor−Income and Returns
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(b) The Relation b/w the Volatility of Full−Labor−Income and the Expected Excess Returns

Expected Excess Return (Benchmark I)
Expected Excess Return (Our model)
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(c) The Relation b/w the Volatility of Full−Labor−Income and the Return Volatility

Excess Return Volatility (Benchmark I)
Excess Return Volatility (Our model)

Figure 3 illustrates the relationship between the volatility of full labor income and return dynamics. Figure 3-(a)

shows the change on expected return, Figure 3-(b) shows the change of excess return, and figure 3-(c) shows the

change of volatility. Since an increase of σF results in an increase of σC , the risk-free rate decreases in the level of

σF regardless of the presence of time cost. An increase of σF weakens the opportunity cost effect, and thus increases

the demand for a risky asset. Additionally, a change of σF results in the change of correlation between consumption

and the process of the risky asset price, as shown on the line of Benchmark I in Figure 3-(a). Since the opportunity

cost effect influences only Our model whereas the correlation effect influences both Our model and Benchmark I, the

difference of excess returns between Our model and Benchmark I in figure 3-(b) reflects the opportunity cost effect,

whereas the excess return of Benchmark I reflects the correlation effect with consumption. Similarly, the volatility

change in Figure 3-(c) reflects the effect of opportunity cost and correlation effect. In particular, at the high level of

σF the high volatility in Our model is induced by a fall in the risky asset price. The used parameters are as follows:

m∗ = 0.035, ξ = 2, β = 0.96, δ(CRRA) = 1, γ(Cobb-Douglas) = 0.57, µD = 0.015, σD = 0.10, µF = 0.015, ρD,F = 0,

Dt : Ft = 1 : 8.

45



Figure 4: The Correlation b/w Dividend and Full-Labor-Income, and Its Effect on Return Dynam-
ics
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(a) The Relation b/w Correlation and Returns
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(b) The Relation b/w Correlation and Volatility

Excess Return Volatility (Benchmark I)
Excess Return Volatility (Our model)

Figure 4 illustrates the relationship between the correlation among dividend process and full labor income
process, and volatility of full labor income and return dynamics. Figure 4-(a) shows the impact on expected
return whereas figure 4-(b) shows volatility impacts. In Our model, the expected return increases in the
level of ρ both in Our model and Benchmark I. The high ρ induces not only the change of pseudo payoff,
D − F∂m/∂N , as well as a high correlation between a dividend stream and consumption, and thus makes
changes on risky asset returns. Particularly shown in our model, as ρ increases, the volatility of pseudo
payoff decreases, which results in an decrease on the volatility of the risky asset. In contrast, in Benchmark
I, an increment of ρ increases the volatilities of consumption (pricing kernel) and risky asset return. The
used parameters are as follows: m∗ = 0.035, ξ = 2, β = 0.96, δ(CRRA) = 1, γ(Cobb-Douglas) = 0.57,
µD = 0.015, σD = 0.10, µF = 0.015, σF = 0.03, Dt : Ft = 1 : 8.
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Figure 5: The Relation b/w Preference to Consumption, γ, and Return Dynamics
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(a) The Relation b/w Relative Preference to Consumption and Returns
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(b) The Relation b/w Relative Preference to Consumption and Volatility

Excess Return Volatility (Benchmark I)
Excess Return Volatility (Our model)

Figure 5 illustrates the relationship between preference to consumption γ and return dynamics. Figure 5-(a)
shows the impact on expected return whereas figure 5-(b) shows volatility impacts. Figure 5 demonstrates
the irrelevance of γ with the return dynamics. Since the labor productivity is fixed as Ft at time t, the
marginal utility of other activities should follow up to the labor’s in equilibrium. The change of γ gov-
erns only time allocated to leisure. The used parameters are as follows: m∗ = 0.035, ξ = 2, β = 0.96,
δ(CRRA) = 1, µD = 0.015, σD = 0.10, µF = 0.015, σF = 0.03, ρD,F = 0, Dt : Ft = 1 : 8.
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