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Dynamic Factors and Asset Pricing

ABSTRACT

In this study, we develop a dynamic factor model that incorporates features

of price dynamics across assets as well as through time. With the dynamic fac-

tors extracted via the Kalman filter, we formulate two testable asset-pricing

models: the risk-adjusted pricing model (RAPM) and the bias-adjusted pric-

ing model (BAPM). We then conduct asset-pricing tests in the in-sample

context. In addition, we perform out-of-sample tests for competing models,

presenting pair-wise comparisons of the accuracy in one-step-ahead forecasts.

We provide evidence that the ex post dynamic factors alone do a better job

than the Fama-French (FF, 1993) three factors both in-sample and out-of-

sample. Our analyses also demonstrate that the ex ante factors are a key

component in asset pricing and forecasting. By employing the ex ante factors

together with ex post ones, the BAPM further improves upon the explana-

tory and predictive power achieved by the naive benchmark, the FF 3-factor

model, and the RAPM. In particular, the BAPM can even explain and better

forecast the momentum portfolio returns, which are mostly missed by the FF

3-factor model.



Since the preeminence of the capital asset pricing model (CAPM) was challenged by

many studies, conditional versions of the CAPM with time-varying parameters or the

arbitrage pricing theory (APT) were proposed as alternative models.1 Given the fact

that the explanatory power of these models was not satisfactory, yet another series of

alternative models was proposed, and the most prominent of them is Fama and French’s

(1993, hereafter “FF”) three-factor model. After the publication of their study, there has

been enduring controversy over the effectiveness of this model. For example, Ferson and

Harvey (1999) test its empirical performance, concluding that the FF 3-factor model is

rejected as a pricing model. Other recent studies (Stambaugh, 1999; Ferson, Sarkissian

and Simin, 2003) also find that the forecasting ability of some macroeconomic variables

(especially dividend yield) may be spurious. Moreover, Simin (2006) shows that existing

conditional and unconditional asset-pricing models produce very poor one-step-ahead

forecasts compared to a simple benchmark. His result is intriguing because it implies

that existing asset-pricing models provide little guidance to investment practitioners, to

whom acquiring more accurate forecasts in future asset returns is of primary concern.

Recognizing the issues mentioned above, in this study we propose a new approach to

identifying factors that can incorporate features of price dynamics across assets as well

as through time. The controversy notwithstanding, we cannot deny the fact that the

FF 3-factor model has been the most popular benchmark in the modern empirical asset

pricing literature. Therefore, we start with the same data sets as the FF 3-factor model

uses, attempting to develop an econometric method that can extract more informative

risk factors, which in turn produce better in-sample pricing performance as well as more

accurate step-ahead forecasts than the FF 3 factors. Specifically, in the spirit of Stock

and Watson (1989, 1991), we employ the Kalman filter to estimate unobservable state

variables: i.e., the ex ante factors that capture the time-varying expected factor premia,

and the ex post factors that are formed as a linear combination of a predictable component

and an unpredictable forecast error. Given that as an adaptive process the Kalman filter

repeats a sequence of forecasting and updating as the information set develops, we refer

to our model as a “dynamic” factor model.

The dynamic factor model has both cross-sectional and time-series features that dis-

tinguish this model from the FF 3-factor model or other statistical factor models. Cross-

1For example, see Ross (1976), Harvey (1989), Ferson and Harvey (1991), Ferson and Korajczyk
(1995), Jagannathan and Wang (1996), and Brennan et al. (2004).
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sectionally, the dynamic factors are identified through a prespecified factor-loading ma-

trix, where parameter restrictions are imposed across assets. Through time, the dynamic

factors are formed as linear combinations of both contemporaneous and past returns so

that they can capture the entire history of the information set. These features of our

dynamic factors appear to play an important role in enhancing the performance in in-

sample pricing and out-of-sample forecasting. Especially, our finding suggests that the

ex ante size factor is a good proxy for information uncertainty, effectively capturing the

momentum effect missed by the FF 3 factors.

For empirical tests, we formulate two asset-pricing models after extracting the dy-

namic factors via the Kalman filter. One is a restricted model hypothesizing that the

three ex ante dynamic factors are irrelevant for asset pricing. Thus, this model uses the

three ex post factors only and is termed as the risk-adjusted pricing model (RAPM).

The other is an unrestricted model, termed as the bias-adjusted pricing model (BAPM),

which employs the three ex ante dynamic factors as well as the three ex post dynamic

factors. We then conduct asset-pricing tests in the in-sample context for the two models

(RAPM, BAPM) through the two-pass regression procedure as in Cochrane (2005) and

Brennan et al. (2004) using the size and book-to-market sorted portfolios as well as the

momentum portfolios over the past 600 months (50 years: 1955:01-2004:12), and compare

the performance of the two models with that of the FF 3-factor model. More importantly,

we perform out-of-sample tests for several competing models, presenting pair-wise com-

parisons of the accuracy in one-step-ahead forecasts using the 35 extended portfolios as

test assets.

Our in-sample test results show that the model which uses the ex post dynamic factors

only (RAPM) tends to do a better job than the FF 3-factor model in explaining the return

variation over time and across assets. For example, the RAPM presents on average higher

adjusted R20s and lower standard errors of residuals than the FF 3-factor model in the

time-series regressions. In the cross-sectional regressions, the RAPM exhibits large pricing

errors in the extreme portfolios such as smallest growth, smallest value, largest growth, or

largest value portfolios, confirming the general tendency that the extreme size and book-

to-market portfolios are most mispriced by any pricing models.2 However, the absolute

2It is well known that the FF 3 factors can explain most portfolios well, but for the smallest growth
portfolio, the FF factors systematically misprice its excess returns by over 4% per year. Fama (1998)
describes this as a “bad model” problem.
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error levels of the RAPM are lower in general than those of the FF 3-factor model in

these extreme portfolios.

We also test the relevance of the ex ante factors and find that the ex ante factors,

especially book-to-market and size factors, are a key component in asset pricing. The high

explanatory power of the residual loadings on the ex ante book-to-market factor results in

a strong rejection of the RAPM in favor of the unrestricted model that additionally uses

the ex ante factors (BAPM). Our asset-pricing tests suggest that the strong incremental

power of the BAPM stems from the fact that the loadings on the ex post factors alone do

not fully incorporate all the past and current information. With the residual explanatory

power of the ex ante factors, the BAPM can better explain returns than the RAPM as

well as the FF 3-factor model.

To alleviate the possible data-snooping biases described in Lo and MacKinlay (1990),

we extend the scope of test assets by adding 10 momentum portfolios formed on past

returns to the 25 portfolios. The two-pass procedure with the augmented 35 portfolios

exhibits that the RAPM again performs quite well, providing more evidence that even the

ex post factors alone do a better job than the FF 3 factors in explaining time variation in

the momentum portfolio returns. Together with the ex ante factors, the BAPM further

improves upon the performance achieved by the RAPM and the FF 3-factor model. In

particular, the cross-sectional regressions with the 35 portfolios show that, owing to the

role of the ex ante size factor, the BAPM well explains the momentum portfolio returns:

None of the pricing errors is statistically significant, and none has a pricing error greater

than 0.20% per month. This presents a sharp contrast to the large pricing errors and

their high significance levels in the RAPM and the FF 3-factor model. Considering that

the FF 3-factor model cannot explain the returns on portfolios formed on short-term past

returns (Fama and French, 1996), our results are quite encouraging.

In addition, the out-of-sample tests reassure that the ex post factors alone (RAPM)

outperform the FF 3 factors in the one-step-ahead forecasts as well, in the sense that

the RAPM by and large generates a lower level of forecast errors than the FF 3-factor

model. Moreover, when the ex ante factors are jointly used, the BAPM provides more

accurate forecasts than the naive benchmark (9.35%), the FF 3-factor model, and the

RAPM. Again, the better predictive power of the BAPM over the FF 3-factor model

occurs mainly in the extreme portfolios such as the loser/winner deciles and the small

stock portfolios, which are exactly the ones for which traditional asset-pricing models
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have difficulties in pricing or forecasting.

Our motivation for using the Kalman filter is to demonstrate that the FF 3 factors

miss some important intertemporal information which is vital to explain the momentum

effect, and to utilize an econometric technique that can help extract more efficient factors.

While the momentum effect remains as a puzzle for the FF 3 factors, the effect can be

well explained by our ex ante dynamic factors. We attempt to find a reason from the

fact that the FF 3 factors are correlated with each other but not serially correlated. In

contrast, our dynamic factors are weakly correlated with each other but highly serially

correlated. Given that the FF 3 factors, like any factors, are subject to some noise in

their measurement, our study shows that the Kalman filter provides us with a recursive

process in extracting more efficient unobserved factors.

The remainder of this paper is organized as follows. Section I presents model specifi-

cation, factor identification, and properties of the dynamic factors. Section II discusses

estimation of model parameters, specification tests, descriptive statistics of the factors,

and their relations to other variables. Section III formulates the null and alternative

hypotheses associated with the models. In Sections IV and V, we conduct in-sample

performance tests of the null and alternative models, comparing the results with those of

the FF 3-factor model. In Section VI, we discuss the robustness of the above results. In

Section VII, we conduct out-of-sample tests, comparing the accuracy of one-step-ahead

forecasts among competing models. Section VIII concludes.

I. The Dynamic Factor Model

Stock and Watson (1989, 1991) form a composite index of coincident economic indicators

based on the notion that co-movements in observed macroeconomic time series have a

common component that can be captured by a single time-varying latent variable. Along

the lines of Stock and Watson (1989, 1991), we develop a dynamic multifactor model

of stock returns, with each of the dynamic factors being identified within a prespecified

factor structure.

Our dynamic factor model may be viewed as a conditional APT with time-varying

expected factor premia but with constant factor variances. Stambaugh (1983), Gibbons

and Ferson (1985), and Connor and Korajczyk (1989) follow a similar approach of time-
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varying factor premia and constant betas. A different approach is considered by Harvey

and Kirby (1996), Ferson and Harvey (1999), and others in order to express the betas as

linear functions of conditioning variables. Ferson and Harvey (1991), Evans (1994), and

Ferson and Korajczyk (1995) argue that predictability is primarily driven by changes in

risk premia through time, whereas the impact of variation in conditional betas is marginal.

Moreover, researchers have raised a concern that conditional beta models are subject to

model misspecification (Ghysels, 1998) and variable selection biases (Wang, 2004). Our

model can largely circumvent these empirical difficulties, because a model specification

test is conducted to ensure that the estimated dynamic factors are unbiased.

Following Fama and French (1993), we begin our discussion on the model specification

by looking at the returns of the six portfolios formed on size and book-to-market equity

(BTM). Given the fact that most commonly used risk factors in the finance literature

are Fama and French’s three factors (MKT , SMB, and HML)3 and these factors are

originated from the six size and book-to-market sorted portfolios, we conjecture that

presumably useful latent variables may be extracted from the six portfolios formed in

this way. Our goal in this study is to develop an econometric method that enables us to

extract risk factors more efficiently using the same data sets as the FF 3-factor model

employs. That is why we use the six size- and BTM-sorted portfolios as our starting

point.

We notate the six size- and BTM-sorted portfolios as SL, SM, SH, BL, BM, and BH.4

Now let Rt ≡ [RSL,t RSM,t RSH,t RBL,t RBM,t RBH,t]´ denote a vector of demeaned excess

returns on the six portfolios at month t.5 Also let Dt ≡ [Dmkt,t Dsize,t Dbtm,t]´ denote

a vector of zero-mean unobserved state variables (termed as dynamic factors: market

factor, size factor, and BTM factor, respectively) at month t. The dynamic factor model

is then specified as follows. The six observation or measurement equations are given (in

3MKT is the excess return on the market portfolio, SMB is the return on a zero net investment
portfolio which is long in small firms and short in large firms, and HML is the return on a zero net
investment portfolio which is long in high book-to-market firms and short in low book-to-market firms.

4As usual, S and B denote ‘small’ and ‘big’ in firm size, respectively. Similarly, L, M, and H denote
‘low’ ‘medium’ and ‘high’ in the book-to-market ratio, respectively.

5Throughout the paper, we denote Ri,t as the excess return (over the one-month T-bill rate) on asset
i at time t, Ri as the sample mean of Ri,t, and Ri,t ≡ Ri,t −Ri as the demeaned excess return.
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the form of deviations from the means) by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RSL,t

RSM,t

RSH,t

RBL,t

RBM,t

RBH,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1,1 β1,2 β1,3

β2,1 β2,2 β2,3

β3,1 β3,2 β3,3

β4,1 β4,2 β4,3

β5,1 β5,2 β5,3

β6,1 β6,2 β6,3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
Dmkt,t

Dsize,t

Dbtm,t

⎤⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wSL,t

wSM,t

wSH,t

wBL,t

wBM,t

wBH,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

and the three transition or state equations are expressed as

⎡⎢⎢⎣
Dmkt,t

Dsize,t

Dbtm,t

⎤⎥⎥⎦ =
⎡⎢⎢⎣

φmkt 0 0

0 φsize 0

0 0 φbtm

⎤⎥⎥⎦
⎡⎢⎢⎣

Dmkt,t−1

Dsize,t−1

Dbtm,t−1

⎤⎥⎥⎦+
⎡⎢⎢⎣

vmkt,t

vsize,t

vbtm,t

⎤⎥⎥⎦ , (2)

where β0s in Eq.(1) are the loadings on the state variables and φ0s in Eq.(2) are the AR(1)

coefficients of the factors. The state-space representation of the dynamics of Dt is also

given in a matrix form by the following system of equations:

Rt = BDt + wt, (3)

Dt = ΦDt−1 + vt, (4)

where B is a prespecified constant factor-loading matrix whose columns have identifying

restrictions on the market, size, and BTM factors, wt is a vector of idiosyncratic returns

on the six portfolios, Φ is a constant matrix whose diagonal elements consist of the

AR(1) coefficients that capture the time-series predictability of the three factors, and vt

is a vector of factor disturbances. The factor model is dynamic in a sense that the state

vector Dt follows a stationary vector autoregressive process of order 1, VAR(1). That

is, the three equations in Eq.(2) or Eq.(4) describe the dynamics of the state variables,

Dt ≡ [Dmkt,t Dsize,t Dbtm,t]´.

We make the following conventional assumptions for Eq.(3) and Eq.(4): wt and vt
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follow joint normal distributions, with their covariance matrices given by

E[wtw
0
τ ] =

(
∆ for t = τ

0 for t 6= τ
(5)

E[vtv
0
τ ] =

(
Ω for t = τ

0 for t 6= τ
(6)

E[wtv
0
τ ] = 0 for all t and τ (7)

where ∆ ≡ diag[σ2SL, σ
2
SM , σ2SH , σ

2
BL, σ

2
BM , σ2BH ] is a (6× 6) diagonal covariance matrix

of idiosyncratic risk for the six portfolios, and Ω ≡ diag[σ2mkt, σ
2
size, σ

2
btm] is a (3 × 3)

diagonal covariance matrix of factor disturbances.

The dynamic factor model has both cross-sectional and time-series features that dis-

tinguish this model from the FF 3-factor model or other statistical factor models such as

Roll and Ross (1980), Lehmann and Modest (1988), and Connor and Korajczyk (1988).

Cross-sectionally, the three dynamic factors are identified through a prespecified factor-

loading matrix, in which parameter restrictions are imposed across assets (see the next

subsection for details about the parameter restrictions). As a result, the three factors

are not only readily interpretable, but they also preserve some desirable properties (e.g.,

mutually uncorrelated, minimum variances) of purely statistical factors. Through time,

the three factors are formed as linear combinations of both contemporaneous and past

returns, thereby incorporating the entire history of the information set.

A. Factor Identification

The first factor, Dmkt, in Eq.(1) is identified from the first column of the coefficient

matrix, B, with no restrictions on the six factor loadings. Using the firm characteristic

notations employed above for the six portfolios, we can denote the parameters in the first

column of B as follows:

β1,1 = βSL

β2,1 = βSM

β3,1 = βSH
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β4,1 = βBL

β5,1 = βBM

β6,1 = βBH . (8)

Given that the six portfolios consist of market-wide assets, this factor (Dmkt) can cap-

ture price dynamics common across the six types of assets or portfolios formed on firm

characteristics. That is why we term this dynamic factor as the market factor. In this

sense, the market factor may be interpreted as a composite index.

The size factor, Dsize, is identified from the second column of matrix B by imposing

the restrictions that β’s should be the same within each of the small- and big-stock groups.

That is, the first set of parameter restrictions are:

β1,2 = β2,2 = β3,2 = βS

β4,2 = β5,2 = β6,2 = βB. (9)

These restrictions are reasonable, because assets within the same size group must have

the same sensitivity, while assets belonging to different size groups should have different

sensitivities to the size-related factor. The restriction ensures that if there exists any

systematic variation in returns beyond that captured by the market factor, this factor

will pick up the size-related variation.

Similarly, the book-to-market factor, Dbtm, is identified from the third column of B

by imposing another set of restrictions that β’s should be the same within each of the

low, medium, and high book-to-market groups. That is,

β1,3 = β4,3 = βL

β2,3 = β5,3 = βM

β3,3 = β6,3 = βH . (10)

These restrictions ensure that Dbtm captures the variation that is related to the book-to-

market effect beyond that captured by the market factor.

Finally, we normalize the variances so that each of the factors has a unit variance

8



(i.e., σ2mkt = σ2size = σ2btm = 1).
6 In addition, because the three factors are, by construc-

tion, mutually uncorrelated (i.e., diagonal Φ and Ω), the dynamic factor model uniquely

identifies the three common factors with zero means and unit residual variances.7 Our

dynamic factors may be viewed as the ICAPM state variables (Merton, 1973) that con-

temporaneously span investors’ investment opportunity sets, or as the coincident financial

indicators (Chauvet and Potter, 2000) that capture investors’ contemporaneous beliefs

about the cycles of financial markets.

B. The Kalman Filter as a Model of Conditional Expectations

Under the assumptions in Eq.(5)-Eq.(7), the Kalman filter is a statistically optimal pro-

cedure to extract the unobserved factors from a finite set of observed returns. Using the

Kalman filter, we first estimate the parameters in matrices B, ∆, and Φ specified by

Eq.(1) to Eq.(4), with the state vector being initialized by the unconditional means and

variances.8 The Kalman filter is then iterated for t = 1, . . . , T to recursively extract

conditional expectations of the dynamic factors, Dt|t−1 and Dt|t, as well as their mean

squared error (MSE) matrices, Pt|t−1, and Pt|t.

At the beginning of month t, investors make prior assessments about the conditional

means and variances of the unobserved factors (Dt) based on the information set It−1,

which have the following characteristics:

Property 1 (Producing a Forecast of Dt Based on It−1): In a conditional

distribution Dt | It−1 ∼ N(Dt|t−1, Pt|t−1) and from Eq.(4),

1) A vector of the ex ante (prior) expectations of the unobserved true factors (Dt) is

given by Dt|t−1 = ΦDt−1|t−1.

2) Pt|t−1 = ΦPt−1|t−1Φ
0+Ω is a function of the population parameters (hence a constant

6This choice of normalization is standard in state-space models, as is also adopted by Stock and
Watson (1991).

7The restrictions on the factor-loading matrix B are both necessary and sufficient to identify the three
factors. If no restriction is imposed, then the total number of free parameters (18 factor loadings + 6
variances) exceeds the number of independent variance-covariance terms of returns (21). In addition,
the factor-loading restrictions make the three factors free from arbitrary rotations, thereby keeping the
factor identities unique. To see this, consider a (3× 3) orthogonal transformation matrix M (MM´= I),
so that Eq. (3) becomes Rt = (BM)(ḾDt) + wt. Any non-zero off-diagonal elements in the second or
third row ofM destroy the factor-loading pattern and violate the definition of the size or book-to-market
factor.

8For details, see Kim and Nelson (1999) and Hamilton (1994), for instance.
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matrix).

3) Dt|t−1 is the minimum mean squared error (MMSE) estimator of Dt with respect

to Pt|t−1.

Dt|t−1 defines a vector of time-varying expected factors, which we term as the ex

ante factors. The MMSE property of Dt|t−1 is a well-established result of the Kalman

filter.9 Constant Pt|t−1 follows from the stationary joint normal distributions of Rt and

Dt. This characterizes the conditional structure of the dynamic factor model as having

time-varying expected factors (Dt|t−1), constant conditional factor variances (Pt|t−1), and

constant factor loadings (B), as in Stambaugh (1983). The constant and MMSE features

of Pt|t−1 imply that we can define a time-varying maximum ex ante squared Sharpe ratio

(SSR) as

SSRt|t−1 ≡ D0
t|t−1P

−1
t|t−1Dt|t−1, (11)

which reflects investors’ optimal forecast of the anticipated reward-risk tradeoff in the

factors. Due to the constant property of Pt|t−1, any intertemporal variation in SSRt|t−1

is solely driven by the ex ante forecasts, Dt|t−1, that describe anticipated shifts in the

investment opportunity set.

At the end of month t, investors make contemporaneous (real-time) assessments about

the conditional means and variances of the unobserved factors as the data (Rt) are ob-

served, leading to the following characteristics:

Property 2 (Updating the Inference about Dt Based on It): In a conditional

distribution Dt | It ∼ N(Dt|t, Pt|t),

1) A vector of the ex post (posterior) expectations of the true factors (Dt) is given by

Dt|t = Dt|t−1 +Ktet|t−1, (12)

where Kt ≡ Pt|t−1B
0Σ−1t|t−1 is the Kalman gain matrix (which is a function of the popula-

tion parameters). In the Kalman gain matrix, Σt|t−1 ≡ (BPt|t−1B
0 +∆) is the variance-

covariance matrix of the forecast error, et|t−1 ≡ Rt− Rt|t−1.

2) Pt|t = Pt|t−1 −KtBPt|t−1 is a function of the population parameters (hence a con-

stant matrix).

9Harvey (1989) and Hamilton (1994) provide details on the MMSE estimators obtained from the
Kalman filter.
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3) Dt|t is the MMSE estimator of Dt with respect to Pt|t.

Dt|t defines a set of ex post factors that capture investors’ contemporaneous beliefs

about the state of financial markets, and Pt|t measures the constant real-time uncertainty

when making new inferences about the unobserved factors, Dt. As we see in Eq.(12)

above, the ex post factors (Dt|t) are formed as a linear combination of the factors predicted

at time t−1 (Dt|t−1) and contemporaneous information surprises contained in the forecast

error (et|t−1), with the weight being the constant (3× 6) Kalman gain matrix, Kt. The

MMSE property means that Dt|t is extracted in a way that the variance of tracking error

(Dt −Dt|t) is minimized. Thus, Dt|t is said to mimic Dt in the MMSE sense, so that the

ex post factors can replace the unobserved true factors within a finite sample of assets

for exact arbitrage pricing.10

It is worth mentioning some advantages of our approach (that estimates the latent

factors using the Kalman filter) relative to other statistical methods such as principal

component analysis. For example, principal components are essentially of contemporane-

ity, and so they do not have dynamic features. Moreover, they are purely statistical

factors that cannot be intuitively understood or named. With the cross-sectional restric-

tions on the factor loading matrix [i.e., Eq.(9) and Eq.(10)], however, our dynamic factors

are intuitive and reasonably interpretable, which in turn enables us to call them (Dmkt,

Dsize, Dbtm) market, size and BTM factors. On balance, our employing the Kalman filter

is justified, especially because the filter is a useful vehicle as an adaptive process with

which a sequence of updating and forecasting becomes available in order to form rational

expectations as the information set evolves over time.11

Rational expectations carry two testable implications on the relations between Dt|t−1

and Dt|t. First, by invoking the law of iterated expectations, we obtain E[Dt|t | It−1] =
Dt|t−1, which reveals an essential feature of time-varying expected premia of the ex post

factors. Whether or not this factor predictability is empirically important depends on the

significance of the AR(1) coefficients in Φ. Second, rational expectations imply that Dt|t

is predictable only to the extent that conditioning information is used to formDt|t−1. This

entails a testable hypothesis that the difference ηt ≡ Dt|t −Dt|t−1 = Ktet|t−1, or equiva-

10Dt|t is in the spirit of returns on a set of factor-mimicking portfolios analyzed by Grinblatt and
Titman (1987) and further characterized by Huberman, Kandel, and Stambaugh (1987). Recently,
Sentana (2004) formally discusses and evaluates the mimicking property of Kalman filter portfolios in
the MMSE sense.
11Engle and Watson (1987) use the Kalman filter to formulate rational-expectations models.
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lently the forecast errors et|t−1,12 should be unpredictable using the existing information

set, It−1. These empirical implications are examined in the next section.

II. Estimation of the Dynamic FactorModel and Spec-
ification Tests

A. Data and Estimation Methods

We obtain monthly returns on the six portfolios formed on size and book-to-market

equity from Kenneth French’s website. To compute excess returns on the six portfolios,

we subtract the one-month T-bill rate. The sample used in this study ranges from January

1955 to December 2004, covering the past 600 months (50 years: 1955:01-2004:12) of the

U.S. stock market.

With the excess returns on the six portfolios, we first estimate the 20 model parameters

in matrices B, ∆, and Φ with the maximum likelihood method. For this purpose, we

run the Kalman filter as described in Kim and Nelson (1999) with iterations until all the

parameters converge to a high precision.13 Given these parameter estimates, we run the

Kalman filter again to recursively extract the ex ante (forecast at month t − 1) factors
Dt|t−1 ≡ (Dmkt,t|t−1 Dsize,t|t−1 Dbtm,t|t−1)

0 as well as the ex post (updated at month t)

factors Dt|t ≡ (Dmkt,t|t Dsize,t|t Dbtm,t|t)
0 for t = 1955:01 to 2004:12.

B. Descriptive Statistics and Estimated Parameters

Means and variances of excess returns (over the 1-month T-bill rate) for the six size- and

BTM-sorted portfolios are contained in Panel A of Table I. It shows that mean returns

increase monotonically with book-to-market equity within each of the two size groups

[small (S), and big (B)], while volatilities of returns are highest for growth stocks (L)

within each of the two size groups. The former fact is consistent with the well known

book-to-market effect. Considering that growth portfolios are likely to consist of small,

tech-oriented stocks, the latter is also a reasonable feature.

12Note that Kt is constant.
13The maximum likelihood estimates converge quickly to a preset 10−5 convergence criterion and are

robust to different sets of reasonably chosen starting values of parameters.
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Panel B of Table I presents the maximum-likelihood parameter estimates and their

standard errors of the model specified in Eq.(1) to Eq.(7).14 The parameter estimates are

all statistically significant at the 5% level: β0s are larger than 1.96 standard errors from

zero, and mostly are larger by the factor of 10-30; φ0s are larger than 2.8-4.5 standard

errors from zero; and σ20s are larger than 5 standard errors. These results, including

the highly significant factor loadings, suggest that excess returns on the six portfolios

conform to our three-dimensional factor structure.15

Specifically, the loadings on the market factor (Dmkt) in the small-stock group (βSL,

βSM , βSH) are significantly larger than those in the big-stock group (βBL, βBM , βBH).

This suggests that the market factor captures well the notion that small stocks are rela-

tively riskier than big stocks. As for the loadings on the size factor (Dsize), the magnitude

of loadings in the big-stock group (βB) is more than twice as large as that in the small-

stock group (βS), indicating that returns are more sensitive to the size factor in the

big-stock group. We also find that low book-to-market (L) stocks have a significantly

negative loading (-1.09) on the book-to-market factor (Dbtm), while high book-to-market

(H) stocks have a significantly positive loading (1.21), providing evidence of the growth

and value effects. The loading on the factor in the medium BTM group (βM) is small and

marginally significant. This is a desirable feature because it implies that in a portfolio

with a medium level of book-to-market equity, stock returns are not very sensitive to the

BTM factor.

For the predictability of our dynamic factors, we find in Panel B that the AR(1)

coefficients on the three factors specified in Eq.(2) are all statistically significant at any

conventional level. A change in the factor realizations by one standard deviation in the

current month will affect the unobserved factor realizations by 14-21% in the following

month. To visualize the level of time variation in investors’ optimal forecasts about

the risk/reward ratio, we draw a graph of the maximum ex ante squared Sharpe ratio

(SSRt|t−1) based on Eq.(11) over the sample period (1955:01-2004:12). Figure 1 shows

that there exists substantial variation in investors’ forecasts about their risk-return trade-

off. The average value of the ex ante squared Sharpe ratio is 0.09, which is comparable

14The magnitude of factor loadings in B is with respect to the normalization of unit factor residual
variances (σ2mkt = σ2size = σ2btm = 1 ).
15We also perform a number of likelihood ratio tests for the hypotheses that the returns on the six

portfolios can be explained by any one or two of the three factors. These tests strongly reject one- or
two-factor structure at any significance level.
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to that of the FF 3 factors (0.06). The ratio is highest (1.76) in March 2000, when the

S&P 500 index reached its peak in our sample period.

C. Specification Tests of the Model

A specification test is necessary to ensure that our dynamic factors are unbiased. The key

testable hypothesis of the model specification is that forecast errors of portfolio returns,

et|t−1, shown in Eq.(12) should be unpredictable based on the available information set,

It−1. Following Stock and Watson (1989, 1991), we test the predictability by regressing

one-step-ahead forecast errors of portfolio returns on six lagged returns and forecast errors

as in the equation,

ei,t = a+
6X

s=1

γi,t−sRi,t−s +
6X

s=1

θi,t−sei,t−s + ς i,t, (13)

where ei,t = Ri,t − Ri,t|t−1denotes forecast errors obtained from the Kalman filter, and

Ri,t−s denotes lagged returns on portfolio i (i = SL, SM, SH, BL, BM, BH). The null

hypothesis of the test is that the six coefficients (γ0s) of Ri,t−s (s = 1,..., 6), or the six

coefficients (θ0s) of ei,t−s (s = 1,..., 6) for each portfolio i are jointly zero.

The p-values of the joint F -test are reported in Table II. Considering that the null

hypothesis is rejected at the 5% significance level only for four cases out of the total 72

tests, it is likely that our dynamic factor model is reasonably well specified.16

D. Descriptive Statistics and Correlations of the Dynamic Fac-
tors

As we have examined above that our dynamic factor model is appropriately specified, we

now report in Table III the descriptive statistics and correlations of the three dynamic

factors after estimating the ex post factors (Dmkt,t|t, Dsize,t|t, and Dbtm,t|t) as well as

the ex ante factors (Dmkt,t|t−1, Dsize,t|t−1, and Dbtm,t|t−1) using the Kalman filter. For

notational simplicity, we denote (D1
mkt, D

1
size, D

1
btm) and (D

0
mkt, D

0
size, D

0
btm) as the time

series collection of Dt|t and Dt|t−1, respectively. In general, we let superscript ‘1’ denote

16We also estimate several more parameterized models. For example, we test other models, where wt

in Eq.(3) follows an AR(1) process, and/or Dt in Eq.(4) follows a VAR(2) process, and so on. These
additional specifications do not significantly improve upon the current parsimonious specification.

14



ex post and ‘0’ ex ante. For comparison purposes, we also report the statistics about

the FF 3 factors (MKT , SMB, and HML) and the excess return on the equal-weighted

market index (EWM).

The first part of Table III shows that the means of the ex post and ex ante estimates

of the three dynamic factors are all zero by construction. The volatility of the ex ante

factor estimates is about 14-22% of the ex post factor volatility. The middle part of the

table presents the correlations between the two types of dynamic factors and the FF 3

factors. Most notable is that the FF 3 factors are highly correlated with each other: The

absolute values of the correlation coefficients are as high as 27%-39%. However, both the

ex post and the ex ante factors are very weakly correlated with each other within each

of the two groups: The absolute values of the correlation coefficients are only 1%-3%.17

This implies that each of Dmkt, Dsize, and Dbtm independently captures specific aspects

in return variations, whereas MKT , SMB, and HML tend to jointly explain return

variations.

Looking at the cross-correlations between the dynamic factors and the FF 3 factors,

the ex post BTM factor (D1
btm) is strongly correlated with HML (92%). The ex post

market factor (D1
mkt) is also highly correlated with MKT (77%), and especially with

SMB (82%). It is interesting to see that the ex post size factor (D1
size) is negatively

correlated with SMB (−55%), while it is positively correlated with MKT (64%). The

ex ante factors are relatively weakly correlated with the FF 3 factors in general, but

there are some statistically significant relations: positive correlation of D0
mkt with SMB,

negative correlation of D0
size with SMB, and positive correlation of D0

btm with HML.

Another noteworthy aspect is that the correlations of the equal-weighted market index

(EWM) with D1
mkt and D0

mkt are 95% and 24%, respectively.

Lastly, both ex post and ex ante factors are highly autocorrelated, compared to the

FF 3 factors. For example, the 1st- and 2nd-order autocorrelation coefficients of D0
btm

are 21% and 10%, respectively. This indicates that our two types of the dynamic factors

are more predictable than the FF 3 factors. Particularly interesting is that D0
size has a

negative and statistically significant 1st-order autocorrelation (−14%), while SMB has

a small positive serial correlation (6%). These features may have some implications for

the better performance of our dynamic factors, as we will see later.

17A formal test does not reject the null hypothesis that the dynamic factors are uncorrelated with each
other. However, the test strongly rejects the null that the FF factors are uncorrelated with each other.
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III. Formulating the Asset-Pricing Tests

Assume that the excess return on a given asset or portfolio, Ri (i = 1, . . . , N), follows

a conditional factor structure with the true factors identified as Dt ≡ (Dmkt,t Dsize,t

Dbtm,t)́ whose prior (ex ante) expectations are extracted as Dt|t−1 ≡ (Dmkt,t|t−1 Dsize,t|t−1

Dbtm,t|t−1)́, and posterior (ex post) expectations are extracted as Dt|t ≡ (Dmkt,t|t Dsize,t|t

Dbtm,t|t)́ using the Kalman filter. Both Dt|t−1 and Dt|t have zero unconditional means.

Also assume that the information set (It−1) contains only the excess returns on the six

portfolios formed on size and BTM up to time t− 1.

Now consider the following return-generating process for asset i conditional on It−1:

Ri,t = Ri,t|t−1 +B1
i (Dt −Dt|t−1) + �i,t, (14)

where Ri,t|t−1 ≡ E[Ri,t | It−1], Dt|t−1 ≡ E[Dt | It−1], and B1
i ≡ [β1i,mkt β

1
i,size β

1
i,btm] is a

(1 × 3) row vector of constant factor loadings on the factor innovations for asset i. Let
the error term �i,t be E[�i,t | It−1] = 0 and E[�i,tDt | It−1] = 0. Furthermore, conditional
asset pricing assumes that Ri,t|t−1 is linearly related to Dt|t−1 so that

Ri,t|t−1 = Ri +B0
iDt|t−1, (15)

where Ri is the unconditional mean of Ri,t, and B0
i ≡ [β0i,mkt β

0
i,size β

0
i,btm] is a (1× 3) row

vector of constant factor loadings on Dt|t−1. For convenience, Eq.(15) can be expressed

in a demeaned form as Ri,t|t−1 ≡ Ri,t|t−1 −Ri = B0
iDt|t−1.

Combining Eq.(14) and Eq.(15), we have the following asset-pricing test equation:

Ri,t = Ri +B∗iDt|t−1 +B1
iDt + εi,t, (16)

where B∗i ≡ B0
i − B1

i = [(β0i,mkt − β1i,mkt) (β0i,size − β1i,size) (β0i,btm − β1i,btm)] ≡ [β∗i,mkt

β∗i,size β∗i,btm] denotes a (1 × 3) row vector of the differences between the loadings on
Dt|t−1 and those on Dt for asset i. What B∗i captures is the portion of factor loadings

B0
i that is left over by B1

i . Henceforth, B
∗
i is referred to as the residual factor loadings,

and B∗iDt|t−1 is referred to as asset i’s residual predictability that reflects a bias in the ex

post risk adjustment. Missing out B∗iDt|t−1 leads to a bias because it is the portion of
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the predictable return but is not incorporated into the asset’s ex post expected value.18

Thus, we call Eq.(16) the bias-adjusted pricing model (BAPM), because this equation

explicitly adjusts for the bias.

Now, Eq.(16) involves a testable restriction that distinguishes between the null and

alternative hypotheses. If we set the null hypothesis as H0: B∗i = 0, this in turn implies:

Ri,t = Ri +B1
iDt + εi,t, (17)

which is referred to as the risk-adjusted pricing model (RAPM) in our study. Given that

the vector of true factors (Dt) is not observable to an econometrician in a finite sample

of assets, Dt in Eq.(16) and Eq.(17) is proxied by its factor-mimicking estimate, Dt|t,

for our empirical testing purposes [e.g., see Eq.(20) and Eq.(22) later]. Under the null

hypothesis (B∗i = 0), Eq.(16) reduces to Eq.(17) as B1
i fully incorporates all the past

and present information, thereby making Dt|t−1 irrelevant in pricing asset i. Under the

alternative hypothesis of Ha: B∗i 6= 0, however, Dt (and hence Dt|t) alone does not fully

explain conditional expected returns, and thusDt|t−1 has explanatory power beyond what

Dt|t captures in Eq.(16). Accordingly, the essence of testing the alternative hypothesis

(BAPM) is to detect any incremental explanatory power over and above what is explained

by the null hypothesis model (RAPM).

For Eq.(16), asset pricing imposes the following restriction on the unconditional mean

of excess returns:

Ri = B∗i λ
0 +B1

i λ
1, (18)

where λ0 ≡ [λ0mkt λ
0
size λ0btm]

0 is a three-vector of ex ante factor risk premia (corresponding

to Dt|t−1); and λ1 ≡ [λ1mkt λ1size λ1btm]
0 is a three-vector of ex post factor risk premia

(corresponding to Dt and hence Dt|t).

Eq.(18) decomposes the mean excess return into a risk-adjusted return attributed to

risk factors, B1
i λ

1, plus a portion of predictable return that is missed by risk adjustments,

18Formally, the conditional expectation of Ri,t|t, i.e., E[Ri,t|t | It−1] = B1
iDt|t−1, is a biased estimate

of Ri,t|t−1 = B0
iDt|t−1 unless B0

i = B1
i . Allowing the bias in risk adjustment addresses Elton’s (1999)

concern that the ex post (realized or expected) returns may not be an unbiased estimate of the ex ante
returns.
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B∗i λ
0. Under the null hypothesis (B∗i = 0), Eq.(18) reduces to:

Ri = B1
i λ

1. (19)

Thus, testing Eq.(18) is essentially to gauge the economic significance of B∗i λ
0 over and

above B1
i λ

1.

In the next sections, we test whether B∗iDt|t−1 in Eq.(16) and B∗i λ
0 in Eq.(18) have

any incremental explanatory and predictive power (RAPM vs. BAPM), investigating how

the two models compare to the FF 3-factor model. We impose on Eq.(16) the restriction

of B∗i =0, which results in the risk-adjusted pricing model (RAPM) specified in Eq.(17).

We relax the restriction later, in which case the model is the BAPM. For expositional

convenience, we first present the in-sample test results in the next three sections and then

perform the out-of-sample tests in the following section making pair-wise comparisons of

the accuracy in one-step-ahead forecasts.

IV. Testing the Risk-Adjusted PricingModel (RAPM)

A. Time-Series Regressions

Following Cochrane (2005, Chapter 12) and Brennan, Wang, and Xia (2004), we run the

two-pass regressions in order to test the risk-adjusted pricing model (RAPM). As a first

step, we estimate the loadings on our three ex post dynamic factors by regressing the

excess return on the three ex post dynamic factors for the 25 portfolios over the sample

period (600 months: 1955:01-2004:12) as in the equation,

Ri,t = αi +
3X

j=1

β1i,jDj,t|t + ui,t, (20)

where Ri,t is the excess return on portfolio i (i = 1, . . . , 25), and Dj,t|t is ex post factor j

(j = mkt, size, btm) extracted from the Kalman filter. We report in Table IV the factor

loadings (β10s), their t-values [t(β1)0s], adjusted R2, and standard errors of the regressions

[s(u)0s] for each of the 25 portfolios. For brevity, we do not report all the corresponding

results with FF 3 factors, but some parts or averaged values only are reported.
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As can be seen in Panel A of Table IV, the loadings on factor D1
mkt (i.e., β

1
mkt)

are relatively large, and their statistical significance is remarkably strong across all 25

portfolios. Also notable is that the magnitude of its loadings is decreasing with the book-

to-market ratio within a given size group and decreasing with size within a given BTM

group. Returns are most sensitive to D1
mkt in the portfolio with the smallest size and

the lowest BTM, while they tend to be least sensitive to the factor in the portfolios with

the biggest size and the highest BTM. This suggests that small, growth stocks are riskier

and vice versa. On the contrary, although the pattern is not so salient within a given

size group, the loadings on D1
size become larger as asset size increases within a given

BTM group, presenting that returns are more sensitive to the ex post size factor in the

larger stock groups.19 The statistical significance of the loadings is also pronounced. The

coefficients of D1
btm are mostly negative in the two lowest BTM groups, and they turn

larger and positive as BTM rises within a given size group. But the pattern is not so

salient in the other direction. The coefficients are all statistically significant at the 1%

level except for one portfolio.20

In terms of explanatory power, the adjusted R2 values are higher than 90% for 21

cases out of the total 25 portfolios, with the average across the portfolios being 92%.

This is 2% higher than that from the regressions using the FF 3 factors (see Panel B).

The standard error of residuals, s(u), is 1.51% on average, which is 10 basis points lower

than the average s(u) computed from the regressions with the FF factors. These results

exhibit that our ex post dynamic factors (even without the ex ante factors) are likely to

do a better job than the FF 3 factors in explaining the time variation in stock returns.

19We note that this observation is consistent with the pattern of the loadings on the dynamic factors
reported in Table I as well as that of the cross-correlation coefficients between the ex post factors and the
FF 3 factors reported in Table III. For instance, the loading on the size factor (Dsize) in the big-stock
portfolio (i.e., βB = 2.86) is substantially larger than that in the small-stock portfolio (i.e., βS = 1.32) in
Panel B of Table I. Also, the correlation coefficient between D1

size and SMB is negative and large (−55%)
in Table III. Another notable aspect in Table III is that the correlation coefficient between the equal-
weighted market index return (EWM) and D1

size is relatively small (23%) but the coefficient between
EWM and D1

mkt is as high as 95%. However, D
1
size and D1

mkt are uncorrelated with each other. Given
that EWM places greater weights on small firms, this finding suggests that D1

mkt effectively captures
the return behavior of small stocks while D1

size is more likely to capture that of large stocks. Thus, the
pattern shown in Table IV reflects how the model parameters are estimated and the latent factors are
extracted via the Kalman filter.
20In Panel B of Table I, we also observe that low book-to-market stocks have a negative loading

(βL = −1.09) on the book-to-market factor (Dbtm), while high book-to-market stocks have a positive
loading (βH = 1.21). These provide evidence of the growth and value effects. The loading on the factor
in the medium BTM group (βM = 0.47) is small and marginally significant. These loading patterns are
again reflected in β1btm reported in Table IV.
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B. Cross-Sectional Regressions

In the second step, based on Eq.(19) we cross-sectionally regress the sample mean of

monthly excess returns on the factor loadings (estimated in the first-step above) as in the

equation,

Ri =
3X

j=1

λ1j
bβ1i,j + ei, (21)

where Ri is the mean excess return on portfolio i,(i = 1, . . . , 25), bβ1i,j is an estimated
loading on ex post factor j (j = mkt, size, btm), λ1j denotes the coefficient to be estimated

as a factor risk premium for ex post factor j, and ei is the residual term that measures

the pricing error in portfolio i. From the regression above, we report the estimated factor

risk premia and pricing errors together with their test statistics. The t-statistics and the

covariance matrix of pricing errors, Σ ≡ Cov(e), are computed with Shanken’s (1992)

correction. For comparison purposes, we also report the results from the FF 3-factor

model.

First, we check the risk premia (λ1j , j = mkt, size, btm) for our ex post dynamic

factors. Panel A of Table V shows that the levels of the risk premia for the dynamic factors

are 0.06%-0.20%, with the premia for the market and BTM factors being statistically

significant at any conventional level. But the premium for the size factor is not significant.

The monthly risk premia for the FF 3 factors are of a similar pattern (see Panel B), but

the significance levels of λMKT and λHML are lower than the corresponding premia for

the RAPM factors.21

Next, we examine the pricing errors (e0is) of the RAPM. It is discernible that large

pricing errors tend to fall on the “corner” portfolios such as smallest growth, smallest

value, largest growth, or largest value portfolios. For example, the pricing error in the

portfolio with the smallest size and the lowest BTM amounts to−0.34%monthly (−4.08%
annually). This shows that it is the extreme size and book-to-market portfolios that are

most mispriced by the ex post dynamic factors. As we see in Panel B, the pricing errors

of the FF 3-factor model also show a qualitatively similar pattern, but the absolute levels

21Because our ex post dynamic factors and the FF factors are different in the scale of variances, the
level of risk premiums is not directly comparable. To compare the two sets of factors, one can rescale the
ex post factors to have the same pair-wise standard deviation as that of the FF factors. For example,
λ
0

mkt ≡ [λ
1

mkt/σ(D
1
mkt)]×σ(MKT ), and so on. The rescaled premiums are λ

0

mkt = 0.56%, λ
0

size = 0.19%

and λ
0

btm = 0.60%, which are comparable to but higher than the premiums for the FF 3 factors.
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of the errors in the corner portfolios are likely to be higher than those of the RAPM in

general. The average absolute error (AAE) of the RAPM (0.099%) is lower by 7.2 basis

points annually, and the sum of squared errors (SSE) of the model (0.408) is also smaller

than that from the FF 3-factor model. When the null hypothesis of a zero pricing error is

formally tested using the quadratic statistic, e0Σ−1e, which is distributed as χ2(22) under

the null hypothesis, the hypothesis is strongly rejected for both models, however.

Based on the two-pass test results above, we find that the RAPM appears to per-

form better than the FF 3-factor model in explaining asset returns. However, the simple

approach of Fama and French (1993) also produces comparable results. Given that ex-

tracting the dynamic factors is more involved than using the simple FF 3 factors, more

questions still remain to be answered: 1) Can the ex ante dynamic factors, together with

the ex post factors, achieve beyond what the RAPM (and hence the FF 3 factors) can do

in the in-sample context?; 2) More importantly, can the ex post dynamic factors alone (or

jointly with the ex ante factors) generate more accurate one-step-ahead forecasts than

the FF 3 factors? We examine these issues in the next three sections.

V. Testing the Bias-Adjusted PricingModel (BAPM)

The role of the ex ante dynamic factors seems to largely hinge upon the extent to which

pricing errors in the corner portfolios are reduced. We first investigate if the ex ante

factors play an incremental role beyond what the FF 3-factor model and the RAPM do.

A. Time-Series Regressions

We test our alternative, bias-adjusted pricing model (BAPM) specified in Eq.(16). In the

first step, we estimate the factor loadings by regressing the excess return on the ex ante

dynamic factors as well as the ex post dynamic factors as in the equation,

Ri,t = αi +
3X

j=1

β1i,jDj,t|t +
3X

j=1

β∗i,jDj,t|t−1 + ui,t, (22)

where Ri,t is the excess return on portfolio i (i = 1, . . . , 25), Dj,t|t and Dj,t|t−1 are ex post

and ex ante factors j (j = mkt, size, btm), respectively.
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Panel A of Table VI contains the estimates of the residual factor loadings (β∗0i,js)

(i = 1, . . . , 25) and their t-values from the time-series regressions for the 25 portfolios.

We do not report the estimates and their t-values of the loadings on the ex post factors

(β10i,js) to save space, because they are similar to those in Table V. Note that many of the

residual loadings are statistically significant at the 10% level, especially in the extreme

size or BTM groups. Given the statistical significance levels of the loadings on the ex post

and ex ante factors, it is not likely that our second-step results in the next subsection

are subject to the “useless” factor problem described in Kan and Zhang (1999).22 In

particular, the magnitude of the residual loadings and their statistical significance are

often much higher in the corner portfolios. For instance, the loadings on the market and

the BTM factors in the portfolio with the smallest size and the lowest BTM are 2.14 and

-1.45, and their t-values are 3.42 and −2.64, respectively. This suggests that the ex post
dynamic factors alone (and hence the RAPM) cannot fully explain the return variation

over time, especially in the extreme portfolios, and it is the ex ante dynamic factors that

capture additional explanatory power in those portfolios.

B. Cross-Sectional Regressions

Based on Eq.(18), we cross-sectionally regress the sample mean of monthly excess returns

on the residual and ex post factor loadings (estimated in the first-step above) as in the

equation,

Ri =
3X

j=1

λ1j
bβ1i,j + 3X

j=1

λ0j
bβ∗i,j + ei, (23)

where Ri is the mean excess return on portfolio i,(i = 1, . . . , 25), bβ1i,j is the loading on ex
post factor j (j = mkt, size, btm), bβ∗i,j is the residual factor loading on ex ante factor
j, λ1j and λ0j denote the coefficients to be estimated as factor risk premia, and ei is the

residual term that measures the pricing error of the BAPM for portfolio i.

Panel B of Table VI reports the estimated factor risk premia and pricing errors with

their test statistics.23 The size of the factor premia for the ex post factors (λ10s) and their

22Kan and Zhang (1999) suggest testing the significance of factor loadings as a diagnostic tool to detect
useless factors. To formally test the null hypothesis of jointly zero coefficients on the dynamic factors,
we conduct the F -test in a seemingly unrelated regression (SUR) system for the 25 portfolios. The test
strongly rejects the null hypothesis.
23Again, the t-statistics and the covariance matrix of pricing errors, Σ ≡ Cov(e), are computed with
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statistical significance are similar to those of the RAPM reported in Table V. Notice

here that the premium for the ex ante BTM factor, λ0btm, is positive and statistically

significant at the 1 % level: i.e., the beta risk of the ex ante BTM factor is priced. The

strong residual predictability of the ex ante BTM factor (Dbtm,t|t−1) is consistent with

Lewellen (1999), who documents significant predictability of the book-to-market ratio for

time-varying expected returns.

Panel B also shows that in general the pricing errors (e0s) of the BAPM become much

lower (especially in the extreme portfolios), compared to those of the RAPM reported in

Panel A of Table V. It follows that the average absolute error (AAE) is down by 24%

from 10 basis points (bps) to 7.6 bps per month, and the sum of squared errors (SSE)

decreases from 0.41 to 0.26. In particular, the decreases in pricing errors mainly occur in

the corner portfolios: For instance, the pricing error in the smallest growth portfolio for

the BAPM is only −0.14% per month, while its counterparts are −0.34% in the RAPM

and −0.37% in the FF 3-factor model. The decreases are mainly because of the residual

power of the loading on the ex ante BTM factor. As mentioned in the previous section,

the RAPM is likely to perform better than the FF 3-factor model. Given the incremental

role of the ex ante factors, it is obvious that the BAPM in turn performs better than

the FF 3-factor model. As we can compare the results, the pricing errors of the BAPM

are substantially reduced (with a few exceptions in the non-corner portfolios), relative to

those of the FF 3-factor model reported in Panel B of Table V.

Next, we examine the joint test statistics e0Σ−1e. This quadratic term follows a χ2(19)

distribution under the null hypothesis. For the BAPM, e0Σ−1e is 39.68, which is much

smaller than that for the RAPM. However, the null hypothesis of a jointly zero pricing

error is still rejected at the 5% level for this model, as the p-value indicates. However,

as Fama and French (1993, 1996) suggest, the rejection of the BAPM appears to reflect

the high explanatory power of the test. The time series regressions for the 25 portfolios

produce an average R2 of 92%, leading to a small covariance matrix, Σ. Thus, even

small pricing errors suffice to generate rejectable test statistics. In the same context, the

reason that some recent ICAPM studies cannot reject the null hypothesis may be that

the explanatory power of their tests is low (Daniel and Titman; 2005).24 As Fama and

Shanken’s (1992) correction.
24For example, The ICAPM of Brennan, Wang and Xia (2004) produces comparable pricing errors to

those of the FF 3-factor model, but the ICAPM cannot be rejected due to a larger residual covariance
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French (1993, 1996) suggest, therefore, it may be more meaningful to assess the economic

significance of pricing errors. Judging by this criterion, we see that the BAPM performs

better than the RAPM as well as the FF 3-factor model, particularly in the extreme size

or BTM quintiles. For the BAPM, only two portfolios have pricing errors larger than 2%

per year, and the largest error is about 3% per year.

Overall, our analyses demonstrate that the ex ante factors are a key component in

asset pricing. The high explanatory power of the residual loadings on the ex ante BTM

factor results in a strong rejection of the RAPM. Ferson and Harvey (1999) conduct asset-

pricing tests of the FF 3-factor model. They find that loadings on lagged macroeconomic

variables have significant premia that explain variation in expected returns not captured

by the FF model. However, Ferson and Harvey (1999) do not propose an alternative

model that can explain expected returns better than the FF 3-factor model. Our asset-

pricing tests present that the residual power of the BAPM stems from the fact that

loadings on the ex post factors alone do not fully incorporate all the past and current

information. Once the bias is adjusted by adding the ex ante factors, the BAPM can

better explain expected returns than the RAPM as well as the FF 3-factor model.

VI. Robustness Checks

A. Analysis with an Extended Set of Portfolios

Lo and MacKinlay (1990) raise an issue of possible data-snooping biases when drawing

inferences from samples of characteristic-sorted data. To reduce the potential problem,

we now extend the scope of test assets by adding 10 momentum portfolios formed on

past returns to the 25 size and book-to-market sorted portfolios (total 35 portfolios).

Following Fama and French (1996), we form 10 momentum portfolios by splitting NYSE

common stocks into deciles based on continuously compounded returns over the past 11

months (from month t− 1 to t− 11) in an ascending order, and then computing equal-
weighted excess returns (in excess of the one-month T-bill rate) for each decile over the

matrix (p. 1764). In addition, Petkova (2006) cannot reject an ICAPM for a similar size of pricing errors
because the model leaves a large portion of portfolio variance unexplained (compare the R2 values in
Tables III and IV of her paper).
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sample period (1955:01-2004:12).25 We then apply the two-pass regression procedure in

the same way as described in the previous sections. As shown in Panel A of Table VII,

the 10 portfolio monthly returns, by construction, monotonically increase from 0.11%

(decile 1) to 1.38% (decile 10). Note also that the portfolios show U-shaped volatility,

with the returns of extreme portfolios (e.g., decile 1 and decile 10) being more volatile.

We first apply the two-pass procedure to the RAPM and the FF 3-factor model with

the augmented set of portfolios. For brevity, we report the results for the 10 momentum

portfolios only in Panels B-C in Table VII. Comparing the R2 values and standard errors

[s(u)0s] from the time-series regressions for the RAPM (Panel B) with those for the FF

3-factor model (Panel C), we find that with no exception the RAPM has higher R20s and

lower standard errors than the FF 3-factor model. The average R2 is three percentage

points higher, and the average s(u) is 17 basis points lower. This provides further evidence

that even the ex post dynamic factors do a better job than the FF 3 factors in explaining

time variation in returns.

Next, we relax the restriction of B∗i = 0 in Eq.(16) and Eq.(18), which results in

the BAPM. With the same procedure, we check whether the BAPM has incremental

explanatory power beyond what the RAPM or the FF 3-factor model can capture in

pricing assets. Panel A of Table VIII presents the first-step results for the 10 momentum

portfolios. The loading on the ex post market factor, β1mkt, shows a U-shaped pattern,

while the loadings on the ex post size and BTM factors exhibit little variation across the

deciles. The statistical significance of the loadings on the three ex post factors is very

strong. The features of the loadings on the ex ante factors, β∗0s, may be of more interest,

however. While β∗mkt shows a U-shaped pattern, this and β∗btm are both statistically

insignificant. On the contrary, the residual loading on the ex ante size factor, β∗size,

increases monotonically with momentum, and it is significant at the 5% level in 8 cases

out of the 10 portfolios. This indicates that the ex ante size factor plays an important

role in describing momentum portfolio returns.

Panel B of Table VIII contains the results from the cross-sectional regressions using

the 35 portfolios. The risk premia for the ex post factors, λ10s, are comparable to those

reported in Table VI. The size and statistical significance of the premium for the ex ante

BTM factor (λ0btm) are also similar to those in Table VI. However, the premium for the

25Thus, decile 1 (10) is the portfolio with the lowest (highest) continuously compounded past returns.
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ex ante size factor, λ0size, is 0.16% and statistically significant at the 1% level, which

contrasts with its counterpart in Table VI. This significant premium, coupled with the

increasing pattern of the loadings described above, suggests that the ex ante size factor

(Dsize,t|t−1) plays a key role in explaining the momentum portfolio returns. To gauge the

incremental impact of this factor, we see that monthly excess returns for the extreme

loser (decile 1) and winner (decile 10) portfolios are −0.57% (= −3.58 x 0.16%) and
0.32% (=1.99 x 0.16%), respectively. This means that such a large portion of explainable

returns is missed by the RAPM and the FF 3-factor model.

Panel B also reports the pricing errors of the BAPM for the 10 momentum portfolios

and the 25 size and book-to-market sorted portfolios. We find that once biases are ad-

justed with the ex ante factors, the BAPM completely describes the momentum portfolio

returns: None of the pricing errors is statistically significant, and economically, none has

a pricing error greater than 0.20% per month. This presents a sharp contrast to the large

pricing errors and their high significance levels in the RAPM and the FF 3-factor model

reported in Panel B of Table VII. For instance, compare -0.16% of decile 1 in Table VIII

with -0.92% (both RAPM and FF 3) in Table VII, and 0.20% of decile 10 in Table VIII

with 0.60% (RAPM) or 0.61% (FF 3) in Table VII. For the 25 size and book-to-market

portfolios, the largest pricing error is 0.27% per month. Moreover, the average absolute

error (AAE) of the 35 portfolios is less than 0.11% in Table VIII, but its counterpart of

the FF 3-factor model in Table VII is 0.17%. Finally, given the magnitude of the p-value,

we cannot reject the null hypothesis that pricing errors in the 35 portfolios are jointly

zero.26

Grundy and Martin (2001) and Jegadeesh and Titman (2002) document that risk

adjustments have little to do with the momentum effect. The RAPM is more or less

in line with their findings. With bias adjustments, however, the BAPM explains the

momentum portfolio returns quite well. This result is very encouraging given that the

FF 3-factor model misses the continuation of returns for portfolios formed on short-term

past returns (Fama and French, 1996). What captures this effect is the residual loading

on the ex ante size factor. To our knowledge, this is the first study that documents this

26However, we do not place much significance upon the non-rejection of the joint test. The joint test
with the 35 portfolios may not have the same power as that with the 25 portfolios because of the different
residual covariance matrices between the two sets of portfolios. A more meaningful criterion would be
the economic significance of the pricing errors and the relative performance between the different models.
See Cochrane (2001, Chapter 11) for similar discussion.
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feature in the asset-pricing literature.27

To further assess the incremental role of the ex ante factors, we directly examine

to what extent our dynamic factors can explain this anomaly (the momentum effect) in

asset pricing. For this purpose, we obtain the time series of the momentum factor, UMD,

from the website of Kenneth French. Because our goal is to investigate the incremental

explanatory power of the dynamic factors after accounting for the effects of the FF 3

factors, we first estimate the risk-adjusted (against FF 3 factors) momentum factor.

Then we test if the dynamic factors can explain the risk-adjusted momentum factor by

running a time-series regression,

UMD∗
t = a+

X
j

δ1jD
1
j,t +

X
j

δ0jD
0
j,t + ζt, (24)

where j = mkt, size, btm and UMD∗ is the residual from the regression of UMD on the

Fama-French (1993) three factors. As we see in specification 1 of Table IX, none of the

ex post factors can explain the momentum effect. However, D0
size has strong explanatory

power as shown in specification 2 in the table. When we include both groups in Eq.(24),

the result is again similar: The ex ante size factor plays an important role in describing

the momentum effect.

Previous studies find that information uncertainty plays an important role in explain-

ing the momentum effect, and firm size is often used as a reasonable proxy for infor-

mation uncertainty. For example, Daniel, Hirshleifer, and Subrahmanyam (1998, 2001)

argue that return predictability should be stronger for firms with greater uncertainty be-

cause investors tend to be more overconfident when firms’ businesses are hard to value.

Recently, Zhang (2006) extends their idea and uses firm size as a proxy for information

uncertainty, providing evidence that greater information uncertainty produces higher re-

turn momentum. In the same context, our finding suggests that the ex ante size factor

(D0
size) is a good proxy for information uncertainty. What distinguishes D

0
size from the

27Avramov and Chordia (2006) show that the conditional FF 3-factor model provides the best result.
In their study, it is ‘best’ in a sense that the conditional FF 3-factor model captures the impact of
size and BTM on stock returns. However, the model cannot capture the predictive ability of past
returns (momentum variables) even when the momentum factor is included in the first-pass regressions.
Moreover, they use returns of individual stocks instead of portfolios as test assets. Although our dynamic
factor model is within the conditional framework, it is hard to directly compare our model with the
conditional FF 3 factor model tested in Avramov and Chordia (2006), given the differences in the
approach.

27



FF 3 factors (especially SMB) is that D0
size is essentially dynamic and more efficient in

exploiting available information through the Kalman filter. Therefore, D0
size appears to

effectively capture the momentum effect while the FF 3 factors cannot.

B. Further Robustness Checks

In addition to the above robustness checks, we conduct a number of other tests. First,

we again extend the scope of assets by forming 10 reversal portfolios based on the contin-

uously compounded returns for the past 13 to 60 months. We then follow the two-pass

procedure with the new augmented set of the 35 portfolios to test both the RAPM and the

FF 3-factor model over the sample period. Not surprisingly, our ex post dynamic factors

(RAPM) perform better than the FF 3 factors. Furthermore, we conduct a more compre-

hensive test with the 45 portfolios after pooling the 25 size and book-to-market sorted,

10 momentum, and 10 reversal portfolios all together. As before, the RAPM exhibits

significant pricing errors in the 10 momentum portfolios. Once the ex ante factors are

added, however, the BAPM has substantial incremental explanatory power. This model

explains both momentum and reversal portfolios, with the largest (absolute) pricing error

across the 45 portfolios being below 0.30%, and the average absolute error (AAE) below

0.11% per month.

Second, we re-estimate the model specified in Eq.(3) to Eq.(4) to extract another set

of ex ante and ex post dynamic factors over the period from July 1963 to December 1993,

which is the same sample range studied by Fama and French (1996). The parameter

estimation shows that the magnitude of the AR(1) coefficients is larger for this sample

period.28 The BAPM test results with the new set of factors using the 35 portfolios (the

25 size and book-to-market and 10 momentum portfolios) again confirm the additional

explanatory power left out by the RAPM or the FF 3-factor model.29 The BAPM ex-

plains momentum in all the deciles, except for decile 1 whose pricing error is —0.45% per

month. Although this level is still economically significant, it is a substantial improve-

28In this case, the maximum-likelihood estimates of the AR(1) coefficients and their t-values for the
three factors are as follows: φmkt = 0.23 (t = 4.37), φsize = −0.18 (t = −2.90) and φbtm = 0.26
(t = 4.26). The statistical significance levels of the coefficients are similar to the results reported in
Table I, but the magnitude of the coefficients is much higher.
29The residual premium for the ex ante size factor (λ0size) is similar (0.15%) to that reported in Table

VIII for our whole sample period, and statistically significant.
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ment upon the corresponding error of −1.15% reported in Fama and French (1996).30

The BAPM also explains excess returns on the 25 size and book-to-market sorted port-

folios, generating the largest pricing error of 0.33% in the smallest growth portfolio. This

is again much lower than that of −0.45% reported in Fama and French (1996).31

VII. Out-of-Sample Tests

In the previous sections, we have shown that the RAPM generally outperforms the FF

3-factor model, and that the ex ante dynamic factors play key roles in explaining returns.

However, these results are in the context of in-sample tests. Simin (2007) argues that

while conditional asset pricing models outperform unconditional models in the in-sample

tests, they perform poorly in the out-of-sample tests. He also documents that simply us-

ing the historical average return (6% annually, or 0.5% monthly) gives the best result in

the one-step-ahead forecasts for most of his test assets, compared to other sophisticated

models (regardless of conditional or unconditional).32 From the perspective of practition-

ers, being able to obtain more accurate forecasts is particularly important in a variety of

settings. In this section, therefore, we focus on the performance of our dynamic factors in

the out-of-sample context. Specifically, we make pair-wise comparisons of the accuracy

in one-step-ahead forecasts.

In comparing the accuracy of the forecasts, we use the following five competing models:

1) CAPM: the capital asset pricing model; 2) 9.35%: a simple benchmark that uses a fixed

annual rate of 9.35% (monthly 0.78%), which is the time-series average of the CRSP value-

weighted index returns over our 300-month training period (1955:01-1979:12); 3) FF3: the

Fama-French (1993) 3-factor model; 4) RAPM; and 5) BAPM. To see how our results

compare to those of Simin (2007), we include the low cost forecast (historical average

return of 9.35%) and the CAPM in the analysis. We use the 35 portfolios (10 momentum

portfolios and 25 size and book-to-market sorted portfolios) as test assets. For this

purpose, the first 300 months (1955:01-1979:12) of our whole sample period (600 months:

1955:01-2004:12) are used as a training period in order to estimate the first set of model

parameters. The first one-step-ahead forecast is then computed for January 1980 using

30See Table VII in Fama and French (1996).
31See Table I in Fama and French (1996).
32See Table 8a in Simin (2007), for instance.
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the estimated model parameters. The one-step-ahead forecasts for the remaining 299

months (1980:02-2004:12) are also computed based on the model parameters estimated

using the relevant data from the 300-month rolling windows, resulting in the total 300

forecasts (from 1980:01 to 2004:12) for each model.33

For pair-wise comparisons between the competing models, the average of differentials

in the mean squared forecast errors (MSFEs), d, is computed as d = 1
T

TP
t=1

[u21,t − u22,t],

where ui,t is the time t forecast error of model i (i.e., ui,t = Ri,t − bRi,t|t−1, where bRi,t|t−1

is the forecast of excess return Ri,t at time t) and T is the total number of the forecasts

(300). In a comparison pair, BAPM vs. FF3, for instance, u1,t is the forecast error of

the BAPM and u2,t is the forecast error of the FF3. Following Simin (2007), we compute

DM-stat based on Diebold and Mariano (1995) to test the null hypothesis of H0: d = 0.

This test statistic is defined as

DM-stat =
dq

2π fd(0)
T

,

where bfd(0) is a consistent estimator of the spectral density of [u21,t− u22,t] at frequency 0

and 2π/T is the length of time required for the process to repeat a full cycle. To examine

if the average of d’s are zero, we also conduct the overall t-test for each of the eight pairs

using d’s obtained from the 35 portfolios.

The results are contained in Table X. Given the best performance of the simple bench-

mark (6%) in Simin (2007), we first compare the predictive ability of our fixed benchmark

(9.35%) with that of the other four models. As Panels A and B show, the average MSFE

differentials (d’s) of the first two pairs (CAPM vs. 9.35% and FF3 vs. 9.35%) are mostly

positive (in both the 10 momentum portfolios and the 25 size- and BTM-sorted portfo-

lios) and many of them are statistically significant at 10% (12 cases for the first pair and

8 cases for the second). The overall t-test results in Panel C exhibit that d’s are positive

on average and statistically significant at 1% for both pairs. This indicates that indeed

the naive low cost forecast (9.35%) does a better job than the CAPM or the FF 3-factor

model, which is consistent with Simin (2007). In the next pair (RAPM vs. 9.35%), the

33Note that, unlike our study, Simin (2008) uses the first 60 months (1926:01-1930:12) as the training
period for estimating the first set of model parameters and repeats the estimation using the subsequent
60-month rolling windows. In his study, the 6% benchmark is the average of the CRSP value-weighted
index returns during the initial 60-month training period (1926:01-1930:12).
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results are mixed. Some of d’s are negative, while others are positive. Though the overall

mean of d’s are negative, it is not significant (Panel C), suggesting that the levels of

forecast errors in the RAPM and the historical average are about the same.

However, the last comparison pair (BAPM vs. 9.35%) shows that d’s in many port-

folios are negative (22 cases out of the 35 portfolios) and statistically significant at 5%

in the extreme portfolios such as the loser and winner deciles as well as the small (MV1)

stock portfolios. The overall t-test presents that d’s are negative on average and statis-

tically different from zero at the 1% level in this pair. This clearly demonstrates that

the BAPM generally performs better than the naive benchmark in the one-step-ahead

forecasts.34

Next, we turn to the comparisons among the four models (CAPM, FF3, RAPM,

and BAPM) in Panels D-F. As we see the average MSFE differentials and the t-test

for the first pair (FF3 vs. CAPM), the FF3 outperforms the CAPM, especially in the

winner portfolios (deciles 6-10) and the high book-to-market (BTM3-BTM5) assets. It

is interesting to see that our result is not consistent with Simin (2007). Comparing the

RAPM and the FF3 in the second pair, we find that d’s are negative in 22 cases out of the

total 35 portfolios and significant at 10% in eight portfolios. The overall t-test in Panel

F shows that d’s are negative and statistically significant at 5%, confirming again that

our ex post factors alone (RAPM) tend to perform better than the Fama-French (1993)

3-factor model in the one-step-ahead forecasts as well.

Now we examine if the BAPM performs better than the FF3 or the RAPM. As the

third comparison pair (BAPM vs. FF3) exhibits, the average MSFE differentials are

negative with no exception in the 10 momentum portfolios (in Panel D) and significant

at 10% in three cases. Panel E also shows that the vast majority of d’s are negative except

for some larger portfolios (MV4-MV5) and six cases are statistically significant at 5%.

The overall t-test presents that d’s are negative on average and statistically significant

at the 1% level, demonstrating that the BAPM provides more accurate forecasts than

the FF3. Noteworthy is that the better predictive ability of the BAPM over the FF3

occurs mainly in the extreme portfolios such as the loser/winner deciles (deciles 1-2,

and 10) and the small stock portfolios (MV1-MV2). Theses portfolios or assets are

exactly the ones for which traditional asset-pricing models have difficulties in pricing

34The performance of the BAPM is much better if we use other benchmarks, such as 6% used in Simin
(2007).
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or forecasting. Qualitatively similar results are observed in the last comparison pair

(BAPM vs. RAPM), which suggests that the BAPM has lower forecast errors than

the RAPM. On balance, the out-of-sample tests reassure that the ex post factors alone

(RAPM) outperform the FF 3 factors in that the RAPM by and large generates a lower

level of forecast errors. Furthermore, if the ex ante factors are jointly used, there is solid

evidence that the BAPM outperforms the naive benchmark (9.35%), the FF3, and the

RAPM in the one-step-ahead forecasts.

To summarize, our analyses in Sections IV-VII uncover that our dynamic factors (the

ex post factors alone and jointly together with the ex ante factors) generally perform

better than the FF 3 factors out-of-sample as well as in-sample. In addition, the ex ante

dynamic factors, especially BTM and size factors (Dbtm,t|t−1 andDsize,t|t−1), play key roles

in describing and forecasting asset returns. We conjecture that the better explanatory

and predictive power of our factors is related to their lower correlations within each

group but higher serial correlations, which may stem from the dynamic features of the

Kalman filter. As we have seen in Table III, the FF 3 factors are highly correlated

with each other, while the ex ante and ex post factors are weakly correlated with each

other within each of the two groups. However, the 1st-order autocorrelations of the ex

post and ex ante factors are much higher than those of the FF 3 factors. In particular,

the 2nd-order autocorrelation of the ex ante BTM factor is quite high (10%), compared

with that of HML (4%). Moreover, the ex post and ex ante size factors have negative

and substantially high 1st-order autocorrelations (−14%), while SMB has positive and

low autocorrelations (6%). These differences may induce the higher explanatory and

predictive power of the dynamic factors relative to the FF 3 factors. This is an interesting

issue that deserves further investigation in future research.

VIII. Conclusion

The FF 3-factor model has been subject to controversy because its empirical performance

in describing stock returns is not unambiguously successful. Researchers also recognize

that the forecast ability of some macroeconomic variables may be spurious, while predic-

tive variables are not empirically observable but instead their predictable elements may

be reflected on some latent variables. In consideration of this situation, we develop a

dynamic factor model that incorporates features of price dynamics across assets as well
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as through time. These aspects of our factors extracted via the Kalman filter make the

model distinctive from the FF 3-factor model or other statistical factor models.

With the extracted dynamic factors, we formulate the two testable asset-pricing mod-

els. The first is the risk-adjusted pricing model (RAPM) which uses the three ex post

factors only. The second is the bias-adjusted pricing model (BAPM) that employs both

the ex ante factors and the ex post factors at the same time. We then conduct in-sample

asset-pricing tests for the two models through the two-pass regression procedure using

the 25 size and book-to-market sorted portfolios or the more extensive sets of assets. In

addition, we perform out-of-sample tests, thereby presenting pair-wise comparisons of the

accuracy in one-step-ahead forecasts using the 35 extended portfolios as test assets.

We provide evidence that the ex post dynamic factors alone do a better job than the

FF 3 factors in describing the return variation over time and across assets, as well as in

forecasting one-step-ahead asset returns. Our analyses also demonstrate that the ex ante

factors, especially book-to-market and size factors, are a key component in asset pricing

and prediction. The high explanatory and predictive power of the residual loadings on

the ex ante book-to-market and size factors leads to the dominance of the BAPM over the

other competing models. Together with the ex ante factors, the BAPM further improves

upon the performance achieved by the naive benchmark, the FF 3-factor model, or the

RAPM, especially in forecasting the extreme portfolio returns. In particular, owing to

the role of the ex ante size factor, the BAPM can even explain and better forecast

the momentum portfolio returns, which are mostly missed by other competing models

including the FF 3-factor model.

Our results suggest that there is an interesting economic story behind the latent

state variables. They are common factors related to the market, firm size, and book-to-

market equity that capture stock returns. The results carry implications for performance

measurement, risk analysis, and other applications, although many aspects still remain

to be explored. We hope future research will continue to address the issues not resolved

in this study.
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Table I 

Maximum Likelihood Estimates of the Parameters for the Dynamic Factor Model 
Panel A reports the means and variances of excess returns (over the one month T-bill rate, in %) on the six size and 
book-to-market sorted portfolios over the past 600 months (50 years: 1955:01-2004:12). Panel B reports the maximum-
likelihood estimates (Est) of the parameters (Para) and their standard errors (SE) of the dynamic factor model obtained 
using the Kalman filter. The six size and book-to-market sorted portfolios are notated as SL, SM, SH, BL, BM, and 
BH, where S and B denote 'small' and 'big' in firm size, respectively, and L, M, and H denote 'low,' 'medium,' and 'high' 
in the book-to-market ratio, respectively. Rt ≡ [RSL,t   RSM,t   RSH,t   RBL,t   RBM,t   RBH,t]′ is a (6×1) vector of demeaned 
excess returns on the six portfolios at month t; and Dt ≡ [Dmkt,t   Dsize,t   Dbtm,t]′ is a (3×1) vector of zero-mean 
unobserved state vector at month t. The dynamic factor model is specified as 1) an observation equation: 
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and 2) a state equation:  
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where ],,,,,[]'[ 222222
BHBMBLSHSMSLtt diagwwE σσσσσσ=≡Δ , ],,[]'[ 222

btmsizemkttt diagvvE σσσ=≡Ω  with σ2
mkt = 

σ2
size = σ2

btm = 1, and { }T
ttt vw 1, =

follows multivariate normal distributions, with wt and vt uncorrelated at all leads and 
lags. Other notations are defined as follows: Para: the parameters in the above specifications; Est: the estimated value 
for each of the parameters; and SE: standard error. Using the firm characteristic notations employed above for the six 
portfolios, we can denote β ’s in the first column of the parameter matrix in the observation equation as follows: 

SLββ =1,1
, 

SMββ =1,2
, 

SHββ =1,3
, 

BLββ =1,4
, 

BMββ =1,5
, and 

BHββ =1,6
. In the same context, the restrictions 

that β ’s should be the same within each of the small- and big-stock groups can be expressed as: 

Sββββ === 2,32,22,1
 and 

Bββββ === 2,62,52,4
. The restrictions that β ’s should be the same within each of the 

low, medium, and high book-to-market groups can be expressed as: 
Lβββ == 3,43,1

, 
Mβββ == 3,53,2

, and 

Hβββ == 3,63,3
. 

                          

Panel A: Descriptive Statistics about the Six Portfolios Formed on Size and BTM 
 SL   SM   SH   BL   BM   BH 
Mean 0.52  0.88  1.06   0.49  0.60  0.74 
Var 45.02   26.22   26.95     21.55   16.93   19.41 

PanelB: Parameter Estimates and Standard Errors of the Dynamic Factor Model 
Para Est SE   Para Est SE   Para Est SE 

SLβ  6.26 0.22   Sβ  1.32 0.28   
2
SLσ   1.51 0.25 

SMβ  
4.79 0.16   Bβ  2.86 0.18   

2
SMσ  0.38 0.06 

SHβ  
4.72 0.17        

2
SHσ  0.60 0.11 

BLβ  3.14 0.23   Lβ  -1.09 0.27   
2
BLσ  1.91 0.24 

BMβ  2.59 0.20   Mβ  0.47 0.24   
2
BMσ  1.42 0.14 

BHβ  2.81 0.20   Hβ  1.21 0.24   
2
BHσ  1.62 0.17 

             

mktφ  0.18 0.04     sizeφ  -0.14 0.05     btmφ  0.21 0.05 
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Table II 

Specification Tests of the Dynamic Factor Model 
This table reports the specification test results for the dynamic factor model: p-values from the joint F-test. The null 
hypothesis of the test is that the six coefficients (γ′s) of Ri,t-s (s = 1,..., 6), or the six coefficients (θ ′s) of ei,t-s (s = 1,..., 
6) for each portfolio i are jointly zero in the regression equation, 
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where ei,t ≡ Ri,t – Ri,t|t-1 denotes forecast errors obtained from the Kalman filter, and Ri,t-s denotes lagged returns on 
portfolio i (i= SL, SM, SH, BL, BM, BH: here S stands for small, B for big, L for low, M for medium, and H for high). 
In the table below, 16,tSLγ stands for six coefficients from 1, −tSLγ to 6, −tSLγ , and 16,tSLθ is also similarly defined. The 

sample period ranges over the past 600 months (50 years: 1955:01-2004:12) of the U.S. stock market. 
                              

   16,tSLγ  
16,tSMγ  

16,tSHγ  
16,tBLγ 16,tBMγ 16,tBHγ

  16,tSLθ  
16,tSMθ 16,tSHθ 16,tBLθ  

16,tBMθ  
16,tBHθ

eSL,t  0.69 0.73 0.41 0.63 0.43 0.70  0.72 0.80 0.47 0.76 0.57 0.80 

eSM,t   0.65 0.65 0.45 0.21 0.12 0.37  0.67 0.72 0.53 0.32 0.20 0.49 

eSH,t   0.72 0.66 0.52 0.06 0.04 0.16  0.75 0.76 0.64 0.12 0.08 0.25 

eBL,t  0.51 0.31 0.17 0.35 0.07 0.50  0.56 0.40 0.24 0.47 0.11 0.63 

eBM,t   0.46 0.16 0.08 0.09 0.01 0.09  0.53 0.26 0.14 0.17 0.01 0.19 

eBH,t   0.54 0.25 0.18 0.13 0.03 0.29   0.59 0.35 0.26 0.20 0.05 0.38 
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Table III 

Descriptive Statistics and Correlations of the Estimated Dynamic Factors and Other Related Variables 
This table reports the descriptive statistics and correlations of the estimates of the three dynamic factors and other related variables over the past 600 months (50 years: 1955:01-
2004:12). The variables are defined as follows: Mean: the mean of the variable in %; STD: the standard deviation of the variable; Dt|t = (D 1

mkt   D 1
size   D 1

btm)’: a vector of the ex 
post (updated at month t) dynamic factors; Dt|t-1 = (D0

mkt  D 0
size  D 0

btm)’: a vector of ex ante (forecast at month t-1) dynamic factors; (MKT   SMB   HML)’: a vector of the FF 3 
factors; EWM: the excess return on the equal-weighted market index; and ρk: an autocorrelation coefficient of order k. 

                                            

  Mean STD  Cross Correlations  Autocorrelations 

        D1
mkt D1

size D1
btm   D0

mkt D0
size D0

btm   MKT SMB HML   EWM  1ρ  2ρ  6ρ  
D1

mkt  0.00 1.01  1              0.18 0.00 0.04 

D1
size  0.00 0.95  0.03 1             -0.14 0.02 -0.03 

D1
btm  0.00 0.93  0.02 -0.01 1            0.21 0.10 0.08 

                      

D0
mkt  0.00 0.18  0.18 -0.07 0.08  1          0.18 0.00 0.04 

D0
size  0.00 0.13  -0.12 0.14 -0.08  -0.03 1         -0.14 0.02 -0.03 

D0
btm  0.00 0.20  -0.01 -0.04 0.21  0.02 0.01 1        0.21 0.10 0.08 

                      

MKT  0.52 4.33  0.77 0.64 -0.12  0.09 0.00 -0.04  1      0.07 -0.04 -0.03 

SMB  0.21 3.05  0.82 -0.55 0.02  0.18 -0.16 0.02  0.27 1     0.06 0.04 0.06 

HML  0.40 2.79  -0.33 -0.02 0.92  0.00 -0.03 0.14  -0.39 -0.27 1    0.13 0.04 0.06 
                      

EWM   0.80 5.48   0.95 0.23 0.05   0.24 -0.08 -0.03   0.85 0.66 -0.29   1   0.21 -0.01 0.00 
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Table IV 

Time-Series Regression Results with the Ex Post Dynamic Factors to Test the Risk-Adjusted Pricing  
Model (RAPM) 

This table (in Panel A) reports the first-step results (time-series regressions) in the two-pass procedure for the risk-
adjusted pricing model (RAPM), 
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where Ri,t is the excess return on portfolio i (i = 1,…, 25) formed on size and book-to-market equity, and Dj,t|t is ex post 
(updated at month t) dynamic factor j (j = mkt, size, btm) extracted from the Kalman filter. Other statistics are defined as 
follows: 1

, jiβ : the factor loading on ex post factor j for portfolio i; )( 1
jt β : the t-value for the factor loading 1

, jiβ ; R²: 

adjusted R-squared; s(u): the standard error of residuals in the regression; Avg R2: the average of R2’s across the 25 
portfolios; and Avg s(u): the average of standard errors across the 25 portfolios. The values in Panel B [Avg R2, Avg s(u)] 
are the average R2 and standard error from the time-series regressions with the Fama-French (1993) three factor model 
(FF3). The sample range is over the past 600 months (50 years: 1955:01-2004:12) in the US stock market. 

                          

Panel A: Time-Series Regression Results for RAPM 
  Book-to-Market  Book-to-Market 

Size  1 low 2 3 4 5 high  1 low 2 3 4 5 high 

   
1
mktβ   )( 1

mktt β  

1 small  7.22 6.40 5.47 5.06 5.22  63.64 80.28 92.53 96.22 92.34 
2  6.55 5.40 4.70 4.44 4.90  109.86 101.98 102.73 98.22 90.93 
3  5.82 4.51 3.93 3.69 4.10  100.50 76.87 72.73 71.04 62.37 
4  4.80 3.81 3.44 3.32 3.67  81.36 63.66 59.80 56.38 46.61 
5 big   2.88 2.66 2.28 2.14 2.50   51.29 51.50 36.69 39.50 29.09 

   
1
sizeβ   )( 1

sizet β  

1 small  0.52 0.37 0.55 0.63 0.71  4.36 4.35 8.78 11.40 11.92 
2  1.40 1.36 1.35 1.45 1.47  22.17 24.20 27.93 30.23 25.78 
3  1.73 2.00 2.08 2.11 2.10  28.11 32.26 36.33 38.37 30.12 
4  2.31 2.72 2.72 2.54 2.78  36.92 42.88 44.66 40.72 33.31 
5 big   3.19 3.37 3.20 3.26 3.25   53.67 61.59 48.76 57.03 35.66 

   
1
btmβ   )( 1

btmt β  

1 small  -1.52 -0.46 0.32 0.77 1.38  -12.37 -5.27 5.03 13.56 22.55 
2  -1.86 -0.18 0.55 1.09 1.56  -28.79 -3.17 11.10 22.29 26.66 
3  -1.97 -0.02 0.79 1.26 1.72  -31.34 -0.38 13.45 22.39 24.16 
4  -1.88 0.05 0.74 1.12 1.60  -29.38 0.80 11.93 17.45 18.77 
5 big   -1.56 -0.18 0.29 1.13 1.47   -25.65 -3.12 4.30 19.25 15.73 
   R2  s(u) 
1 small  0.88 0.92 0.94 0.94 0.94  2.80 1.96 1.46 1.30 1.39 
2  0.96 0.95 0.95 0.95 0.94  1.47 1.31 1.13 1.11 1.33 
3  0.95 0.92 0.92 0.92 0.90  1.43 1.45 1.33 1.28 1.62 
4  0.94 0.91 0.91 0.90 0.86  1.45 1.47 1.42 1.45 1.94 
5 big  0.91 0.92 0.87 0.90 0.80  1.38 1.27 1.53 1.33 2.12 
             
    Avg R2: 0.92   Avg s(u): 1.51 

Panel B: Summary of Time-Series Regression Results for FF3 
    Avg R2: 0.90   Avg s(u): 1.61 
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Table V 

Cross-Sectional Regression Results to Test the Risk-Adjusted Pricing Model (RAPM) 
This table reports the second-step results in the two-pass procedure from cross-sectional regressions to test risk-adjusted 
pricing model (RAPM). For this, the sample mean of monthly excess returns is regressed on the estimated factor loadings 
as in the equation, 
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where iR is the sample mean of monthly excess returns on portfolio i (i = 1,…,25), 1
,

ˆ
jiβ is the estimated loading on factor j 

(j = mkt, size, btm), 1
jλ denotes the coefficient to be estimated as a factor premium, and ei is the residual term that 

measures the pricing error for portfolio i. From the regression, the estimated factor risk premiums and pricing errors (e) 
are reported in Panel A, together with their test statistics. The t-statistics and covariance matrix of pricing errors, Σ ≡ 
Cov(e), are computed with Shanken's (1992) correction. AAE stands for the average absolute error, and SSE = e’e is the 
sum of squared errors. ee 1' −Σ is the quadratic test statistic, which is distributed as χ2(22) under the null hypothesis that 
pricing errors are zero. For comparison purposes, similar results from the FF 3-factor (MKT, SMB, HML) model are also 
reported in Panel B. 

                          

Panel A: for RAPM 

  
1
mktλ    

1
sizeλ    

1
btmλ    )( 1

mktt λ    )( 1
sizet λ    )( 1

btmt λ  

Premium   0.13%   0.06%   0.20%   3.18   1.46   5.27 
  Book-to-Market  Book-to-Market 

Size  1 low 2 3 4 5 high  1 low 2 3 4 5 high 
   e (in %)  t(e) 

1 small  -0.34 0.05 0.03 0.22 0.16  -3.88 0.68 0.62 4.56 3.02 
2  -0.15 -0.04 0.07 0.06 0.06  -2.58 -0.71 1.44 1.16 0.89 
3  0.03 0.04 -0.06 0.03 -0.03  0.58 0.72 -1.13 0.55 -0.46 
4  0.18 -0.10 0.03 0.04 -0.13  3.56 -1.84 0.54 0.62 -1.74 
5 big  0.22 0.02 0.06 -0.12 -0.20  3.32 0.39 0.87 -1.97 -2.09 
  AAE: 0.099  SSE: 0.408 

    ee 1' −∑ : 70.08   p-value: 0.000 

Panel B: for FF 3-factor Model 

  MKTλ    SMBλ    HMLλ    )( MKTt λ    )( SMBt λ    )( HMLt λ  

Premium   0.48%   0.21%   0.44%   2.68   1.61   3.76 
  Book-to-Market  Book-to-Market 

Size  1 low 2 3 4 5 high  1 low 2 3 4 5 high 
   e (in %)  t(e) 

1 small  -0.37 0.04 0.04 0.23 0.17  -4.17 0.57 0.80 4.78 3.26 
2  -0.17 -0.03 0.09 0.08 0.06  -2.80 -0.57 1.74 1.50 1.08 
3  0.02 0.06 -0.05 0.04 -0.02  0.33 0.92 -0.84 0.76 -0.37 
4  0.16 -0.09 0.04 0.03 -0.14  3.28 -1.67 0.73 0.60 -1.89 
5 big  0.22 0.02 0.06 -0.14 -0.24  3.27 0.44 0.89 -2.21 -2.53 
  AAE: 0.105  SSE: 0.463 

    ee 1' −∑ : 74.52   p-value: 0.000 
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Table VI 

Two-Pass Regression Results to Test the Bias-Adjusted Pricing Model (BAPM)  
This table reports the two-pass regression results to test the bias-adjusted pricing model (BAPM). Panel A contains the 
first step results that include the estimates of the residual factor loadings (β*′s), their t-values [t(β*)′s] for each of the 25 
portfolios, and the averaged values of adjusted R² (Avg R2) and standard errors [Avg s(u)] after running the time-series 
regression, 
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where Ri,t is the excess return on portfolio i (i = 1,…, 25) formed on size and book-to-market equity, Dj,t|t and Dj,t|t-1 are 
ex post and ex ante dynamic factors j (j = mkt, size, btm) extracted from the Kalman filter. Panel B contains the results 
from the second step which involves cross-sectionally regressing the sample mean of monthly excess returns on the 
estimated factor loadings as in the equation, 
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where iR is the sample mean of monthly excess returns on portfolio i (i = 1,…,25), 1
,

ˆ
jiβ is the estimated loading on ex 

post factor j (j = mkt, size, btm), *
,

ˆ
jiβ is the estimated loading on ex ante factor j, 1

jλ and 0
jλ denotes the coefficient to be 

estimated as factor premiums, and ei is the residual term that measures the pricing error of the BAPM in portfolio i. 
From the regression, we report the estimated residual factor premiums, pricing errors (e), together with their test 
statistics [t(e)]. The t-statistics and covariance matrix of pricing errors, Σ ≡ Cov(e), are computed with Shanken's 
(1992) correction. AAE stands for the average absolute error, and SSE = e’e is the sum of squared errors. ee 1' −Σ is the 
quadratic test statistic, which is distributed as χ2(19) under the null hypothesis that pricing errors are jointly zero. 

                          

Panel A: Time-Series Regression Results for BAPM 
  Book-to-Market  Book-to-Market 

Size  1 low 2 3 4 5 high  1 low 2 3 4 5 high 
   β*

mkt  t(β*
mkt) 

1 small  2.14 1.02 0.91 1.29 2.24  3.42 2.32 2.79 4.51 7.41 
2  -0.34 -0.10 -0.65 -0.67 -0.91  -1.02 -0.34 -2.56 -2.67 -3.04 
3  -2.09 -0.56 -0.05 -0.80 -0.23  -6.77 -1.70 -0.17 -2.79 -0.62 
4  -0.91 0.31 -0.23 -1.25 -0.56  -2.78 0.93 -0.70 -3.84 -1.28 
5 big  0.79 0.55 -0.39 -0.50 0.51  2.56 1.94 -1.12 -1.68 1.07 
   β*

size  t(β*
size) 

1 small  0.92 1.69 1.20 0.83 0.47  1.06 2.76 2.65 2.09 1.12 
2  0.26 0.43 -0.74 -0.12 -0.58  0.57 1.04 -2.10 -0.33 -1.39 
3  -1.17 -0.87 -0.08 -0.84 0.48  -2.73 -1.92 -0.19 -2.10 0.94 
4  0.15 0.02 0.17 0.04 0.46  0.33 0.04 0.38 0.10 0.75 
5 big  -0.73 -0.86 -0.36 0.37 -1.40  -1.70 -2.16 -0.75 0.88 -2.13 
   β*

btm   t(β*
btm) 

1 small  -1.45 -0.09 -0.10 -0.69 -0.14  -2.64 -0.20 -0.32 -2.55 -0.49 
2  0.18 0.55 -0.05 0.25 0.29  0.57 1.96 -0.20 1.04 1.04 
3  1.01 0.10 0.01 0.01 -0.40  3.49 0.32 0.05 0.03 -1.14 
4  0.45 0.30 -0.10 -0.54 -0.35  1.44 0.97 -0.32 -1.77 -0.86 
5 big  0.79 0.68 0.39 -0.54 -1.52  2.70 2.51 1.19 -1.90 -3.39 
    Avg R2  : 0.92   Avg s(u): 1.50 

 
 
 
 
 
 
 
 
 



 44

 
(Table VI continued: Panel B) 

Panel B: Cross-Sectional Regression Results for BAPM 
   λ1

mkt   λ1
size   λ1

btm  λ0
mkt   λ0

size   λ0
btm 

Premiums  0.14%  0.05%  0.24%  0.04%  0.00%  0.17% 
t   3.27   1.24   5.77   1.30   0.35   3.27 

  Book-to-Market  Book-to-Market 
Size  1 low 2 3 4 5 high  1 low 2 3 4 5 high 

   e (in %)  t(e) 
1 small  -0.14 0.04 0.00 0.26 0.06  -2.12 0.46 0.05 4.32 1.11 
2  -0.12 -0.13 0.07 0.00 -0.04  -1.63 -1.77 1.16 -0.07 -0.51 
3  -0.02 0.04 -0.09 0.00 -0.01  -0.30 0.54 -1.27 0.06 -0.17 
4  0.20 -0.15 0.04 0.13 -0.10  3.30 -2.15 0.55 1.94 -1.08 
5 big  0.14 -0.08 0.02 -0.04 -0.01  1.91 -1.35 0.20 -0.55 -0.12 
  AAE: 0.076     SSE: 0.255 
    e′Σ-1e: 39.68   p-value: 0.004 
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Table VII 

Two-Pass Regression Results to Test the RAPM and the FF 3-factor Model with an Augmented Set of Portfolios Using the 10  More Portfolios Formed on Past Returns 
This table reports the two-pass regression results to test the RAPM and the FF 3-factor model using the 25 size and book-to-market sorted portfolios augmented by 10 momentum 
portfolios (total 35 portfolios). The 10 momentum portfolios are formed by splitting NYSE common stocks into deciles after sorting in ascending order by the continuously 
compounded return over the past 11 months (from month t-1 to t-11), and then the equal-weighted excess return (in excess of the one-month T-bill rate) is computed for each 
decile over the sample period (1955:01-2004:12). Decile 1 (10) is a portfolio with the lowest (highest) continuously compounded past returns. Panel A contains the means (Mean) 
and standard deviations (STD) of the excess returns for each decile. The two-pass regressions are performed with the 35 portfolios in the same way as described in Table VI. The 
adjusted R2’s (R2 ) and residual standard errors [s(u)] from the time-series regressions for the 10 momentum portfolios are reported in the upper parts of Panels B and C. The 
pricing errors (e) and associated statistics [t(e)] from the cross-sectional regressions across the 35 portfolios are reported (for the 10 momentum portfolios only) in the middle parts 
of Panels B and C. In the lower parts in Panels B-C, we report other statistics from the cross-sectional regressions with the 35 portfolios. The t-statistics [t(e)] and covariance 
matrix of pricing errors, Σ ≡ Cov(e), are computed with Shanken's (1992) correction. AAE stands for the average absolute error, and SSE = e’e is the sum of squared errors. 

ee 1' −Σ is the quadratic test statistic, which is distributed as χ2(29) under the null hypothesis that pricing errors are jointly zero. 
                            

  Decile   
   1 loser 2 3 4 5 6 7 8 9 10 winner  Avg(abs) 

Panel A:  Descriptive Statistics for the 10 Momentum Portfolios 
Mean  0.11 0.53 0.55 0.64 0.74 0.77 0.89 0.97 1.08 1.38  0.77 
STD   7.64 5.65 5.15 4.84 4.68 4.57 4.60 4.80 5.07 6.03   5.30 

Panel B: Two-Pass Regression Results for RAPM 
Time-Series Regressions:           
R2  0.72 0.83 0.87 0.91 0.93 0.93 0.93 0.92 0.90 0.83  0.88 
s(e)  4.05 2.32 1.85 1.48 1.26 1.19 1.22 1.33 1.64 2.49  1.88 
Cross-Sectional Regressions:           
e(in %)  -0.92 -0.34 -0.28 -0.15 -0.03 0.01 0.15 0.22 0.33 0.60  0.30 
t(e)  -6.22 -4.05 -4.42 -2.92 -0.75 0.21 3.25 4.24 4.86 5.87   
AAE: 0.17 SSE: 2.10   

ee 1' −Σ : 107.96 p-value: 0.00     
Panel C: Two-Pass Regression Results for FF 3-Factor Model 

Time-Series Regressions:           
R2  0.71 0.81 0.84 0.87 0.90 0.90 0.90 0.90 0.88 0.82  0.85 
s(e)  4.12 2.46 2.06 1.72 1.49 1.44 1.42 1.51 1.78 2.55  2.05 
Cross-Sectional Regressions:           
e(in %)  -0.92 -0.33 -0.27 -0.13 -0.02 0.02 0.16 0.23 0.33 0.61  0.30 
t(e)  -6.23 -3.96 -4.22 -2.65 -0.50 0.44 3.43 4.40 4.96 5.92   
AAE: 0.17 SSE: 2.15   

ee 1' −Σ : 112.13 p-value: 0.00     
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Table VIII 
Two-Pass Regression Results to Test the BAPM with an Augmented Set of Portfolios Using the 10 More Portfolios Formed on Past Returns  

This table reports the two-pass regression results to test the BAPM using the 25 size and book-to-market sorted portfolios augmented by 10 momentum portfolios (total 35 
portfolios). The 10 momentum portfolios are formed by splitting NYSE common stocks into deciles after sorting in ascending order by the continuously compounded return over 
the past 11 months (from month t-1 to t-11), and then the equal-weighted excess return (in excess of the one-month T-bill rate) is computed for each decile over the sample period 
(1955:01-2004:12). Decile 1 (10) is a portfolio with the lowest (highest) continuously compounded past returns. The two-pass regressions are performed in the same way as 
described in Table VI with the 35 portfolios. Panel A contains the time-series regression results for the 10 momentum portfolios (factor loadings and associated t-statistics). Panel 
B contains the cross-sectional regression results across the 35 portfolios (factor premiums and associated t-statistics for the ex post and ex ante dynamic factors, and pricing errors 
(e) and associated statistics t(e)). AAE stands for average absolute error of the 35 portfolios, and SSE = e′e stands for the sum of squared errors of the 35 portfolios, ee 1' −Σ is the 
quadratic test statistic, which is distributed as χ2(29) under the null hypothesis of jointly zero pricing errors. The t-statistics for the factor premiums, the t-statistics for the pricing 
errors, and the covariance-matrix of pricing errors (Σ) are computed with Shanken’s (1992) correction. 

                          

Panel A: Time-Series Regression Results for BAPM 
  Decile 

   1 loser 2 3 4 5   6 7 8 9 10 winner 
1
mktβ   5.94 4.50 4.05 3.90 3.78   3.68 3.71 3.93 4.16 5.03 
t  35.57 46.71 52.99 63.90 72.44  74.07 73.04 71.11 61.09 48.74 
1
sizeβ   1.93 2.11 2.25 2.17 2.21  2.22 2.25 2.27 2.26 2.07 
t  11.02 20.92 28.06 33.94 40.36  42.74 42.35 39.16 31.72 19.18 
1
btmβ   1.01 0.95 1.04 0.91 0.89    0.87 0.72 0.61 0.50 0.08 
t  5.58 9.04 12.55 13.73 15.63  16.22 13.05 10.18 6.76 0.74 
*
mktβ   1.19 0.76 0.33 0.14 0.15   -0.16 -0.04 0.05 0.06 0.27 
t  1.31 1.45 0.80 0.42 0.52  -0.60 -0.15 0.17 0.17 0.48 
*
sizeβ   -3.58 -1.64 -1.83 -1.74 -0.93  -0.74 -0.06 0.58 1.24 1.99 
t  -2.83 -2.26 -3.17 -3.77 -2.37  -1.97 -0.17 1.39 2.42 2.55 
*
btmβ   -1.16 -0.11 -0.27 0.28 0.14    0.12 0.04 0.04 0.04 0.24 
t  -1.35 -0.22 -0.68 0.90 0.51  0.46 0.14 0.15 0.13 0.46 

Panel B: Cross-Sectional Regression Results for BAPM 
   

1
mktλ    

1
sizeλ    

1
btmλ   

0
mktλ    

0
sizeλ    

0
btmλ  

Premium  0.12%  0.09%  0.23%  -0.01%  0.16%  0.21% 
t  2.78   2.20   4.98   -1.15   3.18   2.86 

e (in %)  -0.16 -0.12 -0.02 0.00 0.01    0.02 0.08 0.05 0.05 0.20 
t(e)  -1.28 -1.18 -0.19 -0.02 0.16  0.25 0.96 0.62 0.56 1.43 
  e (in %) for the 25 Portfolios  t(e) for the 25 Portfolios 

   1 low 2 3 4 5 high  1 low 2 3 4 5 high 
1 small  -0.05 -0.12 -0.08 0.27 0.15  -0.50 -0.91 -0.86 3.02 1.72 
2  -0.14 -0.19 0.20 0.00 0.05  -1.40 -1.81 2.10 0.05 0.48 
3  0.06 0.15 -0.09 0.10 -0.09  0.80 1.46 -0.91 1.09 -0.76 
4  0.09 -0.21 -0.05 0.05 -0.22  0.96 -2.04 -0.49 0.52 -1.61 
5 big  0.16 -0.04 -0.05 -0.19 0.24  1.44 -0.46 -0.38 -1.63 1.64 
AAE: 0.108  SSE: 0.599 

ee 1' −∑ : 36.02   p-value: 0.173 
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Table IX 

Regression Results for FF3-adj Momentum Portfolio Returns (UMD*) Using the Dynamic Factors 
This table reports the time-series regression results using the risk-adjusted momentum portfolio return over the past 600 
months (50 years: 1955:01-2004:12) from the equation, 

                                            , , , ,
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where the dependent variable, UMD*, is the residual from the regression of the momentum portfolio return (UMD) on 
the Fama-French’s (1993) three factors; UMD is the winner portfolio (decile 10) return less the loser portfolio (decile 
1) return (after the CSRP stocks are sorted into deciles based on the past returns (from month t-2 to month t-12)), which 
is obtained from the Kenneth French’s website; D 1

j = (D 1
mkt   D 1

size   D 1
btm)’ is a vector of the ex post (updated at 

month t) dynamic factors; D0
j = (D0

mkt  D 0
size  D 0

btm)’ is a vector of ex ante (forecast at month t-1) dynamic factors. The 
values in the first row for each explanatory variable are the coefficients of the variable and those in the second row are 
their t-statistics. adj-R² is the adjusted R-squared in the regressions, and N is the number of observations in the 
regressions. Coefficients significantly different from zero at the significance levels of 1% and 5% are indicated by ** 
and *, respectively. 

                

Explanatory  Dep Var = UMD* 

Var  1   2   3   

Intercept  1.032  1.032  1.032  

  6.69  6.75  6.74  
1
mktD   -0.035    0.018  

  -0.23    0.12  
1
sizeD   -0.061    -0.138  

  -0.37    -0.84  
1
btmD   0.032    0.083  

  0.19    0.49  
0
mktD     0.434  0.338  

    0.52  0.40  
0
sizeD     3.834 ** 4.033 ** 

    3.32  3.42  
0
btmD     -0.177  -0.284  

    -0.23  -0.35  
        

adj-R2  -0.003  0.015  0.012  

N   600   600   600   
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Table X 

Out-of-Sample Tests: Comparison of Accuracy in One-Step-Ahead Forecasts 
This table presents the pair-wise comparison of the accuracy in one-step-ahead forecasts from the competing 
models using the 35 portfolios (10 momentum portfolios and 25 size and book-to-market sorted portfolios). As in 
Fama and French (1996), the 10 momentum portfolios in Panels A and D are formed by splitting NYSE common 
stocks into deciles after sorting in ascending order by the continuously compounded return over the past 11 
months (from month t-1 to t-11). Thus, decile 1 in Panels A and D is the ‘loser’ portfolio, while decile 10 is the 
‘winner’ portfolio. Similarly, the 25 portfolios in Panels B and E are formed by first splitting the component 
stocks into 5 portfolios based on firm size (market capitalization, MV), and then by splitting each of the 5 
portfolios again into 5 portfolios based on book-to-market equity (BTM) in ascending order. Thus, MV1BM5 in 
Panels B and E denotes the portfolio that includes stocks of size (MV) group 1 (smallest) and book-to-market 
(BTM) group 5 (highest). The five competing models are as follows: 1) CAPM: the capital asset pricing model; 2) 
9.35%: a simple benchmark that uses a fixed annual rate of 9.35% (monthly 0.78%), which is the time-series 
average of the CRSP value-weighted index returns over the 300-month training period (1955:01-1979:12); 3) FF3: 
the Fama-French (1993) 3-factor model; 4) RAPM: the model defined in Section III; and 5) BAPM: the model 
defined in Section III. The first 300 months (1955:01-1979:12) of our whole sample period (600 months: 1955:01-
2004:12) are used as a training period in order to estimate the first set of model parameters. The first one-step-
ahead forecast is then computed for January 1980 using the estimated model parameters. The one-step-ahead 
forecasts for the remaining 299 months (1980:02-2004:12) are also computed based on the model parameters 
estimated using the relevant data from the 300-month rolling windows, resulting in the total 300 forecasts (from 
1980:01 to 2004:12) for each model. For pair-wise comparison between the competing models, the average of 

differentials in the mean squared forecast errors (MSFEs), d , is computed as ∑
−

−=
T

t
tt uu

T
d

1

2
,2

2
,1 ][1 , where tiu ,  

is the time t forecast error of model i (i.e., 1|,,,
ˆ

−−= ttititi RRu , where 
1|,

ˆ
−ttiR  is the forecast of excess return tiR ,  at 

time t) and T is the total number of the forecasts (300). In the comparison pair of BAPM vs. FF3 in the table 
below, for instance, tu ,1  is the forecast error of BAPM and  tu ,2  is the forecast error of FF3. DM-stat is the test 

statistic computed based on Diebold and Mariano (1995) to test the null hypothesis of H0: d = 0. The test statistic 

is defined as DM-stat = 

T
f

d

d )0(ˆ 2π
, where )0(ˆ

df  is a consistent estimator of the spectral density of 

][ 2
,2

2
,1 tt uu −  at frequency 0 and T/2π  is the length of time required for the process to repeat a full cycle. Panels 

C and F contain the overall t-test results for each of the 8 pairs using d ’s obtained from the 35 portfolios. 

Average MSFE differentials ( d ) in Panels A-B and D-E or overall averages of d ’s in Panels C and F that are 
statistically different from zero at the significance levels of 1%, 5%, and 10% are indicated by ***, **, and *, 
respectively. 
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(Table X continued: Panels A-C) 

                                          

  CAPM vs. 9.35%  FF3 vs. 9.35%  RAPM vs. 9.35%  BAPM vs. 9.35% 
     DM-     DM-     DM-     DM- 

Portfolio     stat     stat     stat     stat 
                                          

Panel A: 10 Portfolios Formed on Past Return (Momentum) 
1 Loser  -0.361 **  -2.12  0.529 ***  2.66  -0.799   -1.52  -2.391 ***  -3.32 
2  0.019   0.10  0.078   1.00  0.068   0.43  -0.477   -1.48 
3  0.036   0.22  0.051   0.79  0.060   0.43  -0.208   -0.65 
4  0.155   0.97  0.042   0.79  0.086   0.87  -0.194   -0.88 
5  0.209   1.58  0.086   1.36  0.084 *  1.68  0.000   0.00 
6  0.215   1.62  0.080   1.26  0.075 *  1.81  0.053   0.23 
7  0.278 **  2.06  0.089 *  1.68  -0.002   -0.04  -0.056   -0.23 
8  0.337 ***  2.74  0.134 **  2.08  -0.064   -0.82  -0.147   -0.44 
9  0.356 **  2.52  0.126 *  1.78  -0.177   -1.37  -0.302   -0.66 
10 Winner    0.316  **    1.96   0.142     1.26   -0.442     -1.47   -1.123 **   -2.00 

Panel B: 25 Portfolios Formed on Size (MV) and Book-to-Market Equity (BTM) 
MV1BTM1  -0.250   -1.13  -0.069   -0.63  -0.363   -0.95  -4.608 ***  -4.17 
MV1BTM2  0.035   0.22  0.084   1.46  0.086   1.35  -2.462 ***  -4.01 
MV1BTM3  0.194   1.19  0.049   0.84  0.024   0.31  -1.627 ***  -3.31 
MV1BTM4  0.350 **  2.30  0.010   0.22  -0.140   -1.20  -1.959 ***  -4.53 
MV1BTM5  0.381 *  1.95  -0.136   -1.08  -0.239   -1.22  -2.494 ***  -3.85 
MV2BTM1  -0.035   -0.20  0.032   0.18  0.017   0.06  -1.288   -1.62 
MV2BTM2  0.122   0.78  0.113 **  1.98  0.095   1.46  -0.474   -1.13 
MV2BTM3  0.331 **  2.29  0.087 *  1.88  0.007   0.13  -0.337   -1.32 
MV2BTM4  0.421 ***  2.88  0.025   0.54  -0.090   -0.97  -0.343   -1.26 
MV2BTM5  0.358 **  2.47  -0.115   -0.92  -0.145   -1.00  -0.726 **  -2.09 
MV3BTM1  0.088   0.51  0.121   0.58  0.102   0.42  -0.181   -0.37 
MV3BTM2  0.216   1.44  0.156 *  1.69  0.133 **  2.01  0.145   0.57 
MV3BTM3  0.214   1.38  0.099 *  1.76  0.101 *  1.87  -0.020   -0.09 
MV3BTM4  0.302 *  1.84  0.067   1.28  0.023   0.63  0.026   0.11 
MV3BTM5  0.442 ***  3.10  -0.164 *  -1.92  -0.175 **  -2.05  -0.244   -0.72 
MV4BTM1  0.074   0.42  0.184   0.71  0.162   0.72  0.087   0.22 
MV4BTM2  0.068   0.47  0.054   0.47  0.143   0.80  0.381   1.04 
MV4BTM3  0.194   1.17  0.068   0.74  0.063   1.45  -0.006   -0.03 
MV4BTM4  0.220   1.41  0.017   0.43  0.016   0.62  0.180   1.01 
MV4BTM5  0.324 **  2.19  -0.041   -0.55  0.002   0.04  0.126   0.45 
MV5BTM1  0.114   0.62  0.317   0.88  0.209   0.87  0.151   0.40 
MV5BTM2  0.165   0.99  0.185   1.06  0.151   0.96  0.423   1.38 
MV5BTM3  0.093   0.46  0.041   0.28  0.088   0.62  0.404   1.43 
MV5BTM4  0.142   0.79  0.049   0.64  0.054   0.51  0.278   0.91 
MV5BTM5    0.255      1.44   0.056     0.80   0.132 *   1.70   0.328     1.27 

Panel C: Overall t-Test 
Mean  0.182***  0.076***  -0.019  -0.545*** 
t-value   6.21   3.69   -0.55   -2.96 
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(Table X continued: Panels D-F) 

                                          

  FF3 vs. CAPM  RAPM vs. FF3  BAPM vs. FF3  BAPM vs. RAPM 
     DM-     DM-     DM-     DM- 

Portfolio  d    stat  d    stat  d    stat  d    stat 
                                          

Panel D: 10 Portfolios Formed on Past Return (Momentum) 
1 Loser  0.791 **  2.13  -1.364 *  -1.79  -3.045 ***  -3.31  -1.653 ***  -3.40 
2  -0.043   -0.21  0.011   0.06  -0.643 *  -1.92  -0.522 *  -1.69 
3  -0.076   -0.44  0.026   0.17  -0.300   -1.20  -0.288   -0.95 
4  -0.201   -1.40  0.067   0.69  -0.296   -1.26  -0.318   -1.32 
5  -0.196   -1.58  -0.005   -0.17  -0.111   -0.48  -0.097   -0.41 
6  -0.213 **  -2.15  -0.007   -0.47  -0.051   -0.20  -0.041   -0.16 
7  -0.252 **  -2.42  -0.085   -1.40  -0.121   -0.47  -0.066   -0.28 
8  -0.270 ***  -2.64  -0.180 *  -1.83  -0.253   -0.75  -0.067   -0.21 
9  -0.295 ***  -2.97  -0.297 *  -1.93  -0.401   -0.87  -0.077   -0.16 
10 Winner   -0.248 **   -2.56   -0.556 *   -1.64   -1.198 **   -1.98   -0.719 **   -1.96 

Panel E: 25 Portfolios Formed on Size (MV) and Book-to-Market Equity (BTM) 
MV1BTM1  0.166   1.01  -0.385   -1.06  -4.477 ***  -4.46  -4.488 ***  -4.32 
MV1BTM2  -0.029   -0.18  0.018   0.33  -2.574 ***  -4.22  -2.575 ***  -4.17 
MV1BTM3  -0.231   -1.15  -0.025   -0.36  -1.708 ***  -3.53  -1.683 ***  -3.56 
MV1BTM4  -0.424 **  -2.15  -0.130 *  -1.81  -1.971 ***  -4.53  -1.821 ***  -4.21 
MV1BTM5  -0.608 **  -2.09  -0.082   -1.36  -2.437 ***  -4.02  -2.381 ***  -4.40 
MV2BTM1  0.064   0.64  -0.025   -0.24  -1.295   -1.53  -1.353 *  -1.80 
MV2BTM2  -0.076   -0.68  0.003   0.14  -0.592   -1.27  -0.606   -1.29 
MV2BTM3  -0.321 **  -2.24  -0.078 ***  -2.94  -0.415   -1.62  -0.351   -1.36 
MV2BTM4  -0.464 ***  -2.81  -0.110 **  -2.08  -0.379   -1.53  -0.304   -1.29 
MV2BTM5  -0.560 **  -2.10  -0.014   -0.29  -0.656 **  -2.06  -0.644 **  -2.22 
MV3BTM1  0.052   0.48  -0.010   -0.27  -0.376   -0.79  -0.377   -0.78 
MV3BTM2  -0.100   -1.17  -0.066 *  -1.74  -0.029   -0.09  0.012   0.04 
MV3BTM3  -0.200   -1.60  0.005   0.26  -0.132   -0.53  -0.145   -0.66 
MV3BTM4  -0.312 **  -2.01  -0.028   -0.71  -0.054   -0.22  -0.025   -0.11 
MV3BTM5  -0.677 ***  -3.25  0.003   0.10  -0.137   -0.45  -0.136   -0.43 
MV4BTM1  0.148   1.63  -0.070   -1.32  -0.211   -0.48  -0.158   -0.38 
MV4BTM2  -0.054   -1.35  0.090   1.33  0.247   0.70  0.173   0.46 
MV4BTM3  -0.209 *  -1.82  -0.005   -0.12  -0.095   -0.40  -0.112   -0.52 
MV4BTM4  -0.288 **  -2.10  0.001   0.05  0.134   0.77  0.140   0.83 
MV4BTM5  -0.432 **  -2.16  0.039   1.21  0.113   0.45  0.084   0.32 
MV5BTM1  0.229   1.43  -0.155   -1.53  -0.259   -0.73  -0.135   -0.41 
MV5BTM2  0.020   1.20  -0.040   -1.33  0.111   0.38  0.174   0.61 
MV5BTM3  -0.072 **  -2.38  0.012   0.59  0.239   1.05  0.213   0.98 
MV5BTM4  -0.154   -1.21  0.016   0.37  0.214   0.63  0.170   0.54 
MV5BTM5   -0.281     -1.42   0.080     1.22   0.255     0.88   0.159     0.55 

Panel F: Overall t-Test 
Mean  -0.166***  -0.096**  -0.654***  -0.572*** 
t-value   -3.66   -2.21   -3.60   -3.38 
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Figure 1. Maximum Ex Ante Squared Sharpe Ratio over the Past 50 Years  
This figure plots the maximum ex ante squared Sharpe ratio (SSRt|t-1) over the past 600 months (50 years: 1955:01-
2004:12). The maximum ex ante squared Sharpe ratio (SSRt|t-1) is defined as 

1|
1
1|1|1| ' −

−
−−− ≡ tttttttt DPDSSR , where Dt|t-1 ≡ 

[Dmkt,t|t-1   Dsize,t|t-1   Dbtm,t|t-1]’ is a vector of the ex ante expectations of the three dynamic factors estimated using the 
Kalman filter. Pt|t-1 is a (3 × 3) matrix of the mean squared error (MSE) of the ex ante expected factors, Dt|t-1.  
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