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Intertemporal Behavior of Expected Market Returns: 

Time-Varying and Asymmetry Properties 
 
 

Abstract 

 

The intertemporal behavior of expected market returns is not only driven by predictable market 

volatility, but also by unexpected volatility changes.  Most of the empirical literature ignores the 

effects of unexpected volatility changes on the intertemporal relation; consequently, the previous 

empirical results suffer from the omitted variable bias.  With the effects of a volatility shock 

incorporated in the estimation, we find a strong positive intertemporal relation.  We also find that 

the quicker reversion of a negative return is attributable to a negative intertemporal relation.  We 

interpret this negative intertemporal relation under a negative return shock as a reflection of 

strong optimistic expectations by investors on the future performance of stock prices. 
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Intertemporal Behavior of Expected Market Returns: 
Time-Varying and Asymmetry Properties 

 

The tradeoff between risk and return is a core tenet in financial economics.  In particular, 

the intertemporal risk-return relation is a key assumption used to explain the predictable 

variation of expected asset returns. 1  Despite its importance in asset pricing, there has been a 

longstanding debate on the empirical sign of the intertemporal relation, with findings that are 

mixed and inconclusive.   

Criticisms of the mixed results refer to a lack of conditional information and/or a heavy 

dependence on parametric models.  We believe that the conflicting findings are attributable to an 

omitting variable bias.  If the predetermined conditional information set does not contain an 

important variable that affects the risk-return tradeoff, the econometric modeling of market 

expectations suffers from the model misspecification problem, which leads to a wrong 

conclusion on the empirical nature of the relationship.  In this paper, we suggest that a prior 

unanticipated volatility change (or an unexpected volatility shock) is one of the important factors 

that induce the intertemporal relation of the expected market returns.  With the effects of prior 

volatility shocks incorporated in the estimation, we find a statistically strong positive 

intertemporal relation between the expected market returns and their predictable volatility for the 

US stock market.  

Conventional belief about the intertemporal risk-return tradeoff is that a positive 

relationship is consistent with the time-varying rational expectation hypothesis in the sense that 
                                                 

1 Fama and French (1989) argue that systematic patterns in the predictable variations of expected returns 

are consistent with the intertemporal asset pricing model by Lucas (1978) and Breeden (1979) and the consumption 

smoothing idea by Modigliani and Brumberg (1955) and Friedman (1957).  Ferson and Harvey (1991) and Evans 

(1994) also document the relative importance of the time-varying risk premia to the conditional betas to explain 

predictable variations in expected returns. 
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the predictable variation of the expected risk premium is induced by the risk-averse investors’ 

revision of their expectations in responding to changing volatility.  For example, Pindyck (1984) 

empirically shows that much of the decline in stock prices during the 1970s in the US stock 

market is attributable to the upward shift in risk premium arising from high stock market 

volatility.  He suggested that a substantial portion of time variation in the expected risk premium 

is associated with time-varying risk factors in investment opportunities. 2  French, Schwert and 

Stambaugh (1987) also found evidence of a positive relation between expected market returns 

and predictable market volatility. 3  Studies that support a positive relation include Fama and 

French (1988), Ball and Kothari (1989), Tuner, Startz and Nelson (1989), Harvey (1989), 

Cecchehtti, Lam and Mark (1990), Haugen, Talmor and Torous (1991), Campbell and Hentschel 

(1992), Scruggs (1998), Kim, Morley and Nelson (2001), Ghysel, Santa-Clara and Valkanov 

(2005), and Ludvigson and Ng (2006).   

Although a positive intertemporal relation is also consistent with Merton’s (1980) 

dynamic CAPM, there is another side to the argument, which is that the equilibrium asset pricing 

does not necessarily imply a positive intertemporal relation.  Abel (1988) suggests that a positive 

relation between the conditional risk and the risk premium is consistent with the general 

equilibrium model only when the coefficient of relative risk aversion is less than one.  Barky 

(1989) suggests that the directional effect of an increase in riskiness on stock prices depends on 

the curvature of the utility function.  Showing evidence of a strong negative relation for their 

                                                 
2 Poterba and Summers (1986) suggested the volatility irrelevance argument that, due to the low level of 

volatility persistence, the volatility effect on the expected risk premium dissipates so quickly that it cannot have a 

major effect on stock price movements. 

3 They also found a strong negative relation between unexpected returns and unexpected changes (or 

volatility shock) in ex post volatility, and interpreted it as evidence supporting a positive intertemporal relation as 

well.   
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sample period (51:04–89:12), Glosten, Jagannathan and Runkle (hereinafter GJR) (1993) suggest 

that both positive and negative intertemporal relations are consistent with the equilibrium asset 

pricing theory.  They argue that investors may not require a large premium for bearing risk, but 

rather may reduce the risk premium when they perceive exceptionally optimistic expectations on 

the future performance of stock prices.  Among others, Gennotte and Marsh (1987), Campbell 

(1987), Pagan and Hong (1989), Backus and Gregory (1989), Breen, Glosten and Jagannathan 

(1989), Nelson (1991), Harvey (2001), and Brandt and Kang (2004) support a negative 

intertemporal relation. 4  

This paper considers the effects of an unexpected volatility shock on the intertemporal 

relation.  A price shock causes two sources of forecasting errors, a return forecasting error and a 

volatility forecasting error.  While a return forecasting error is widely used to generate the 

conditional variance process utilizing various GARCH family models, the volatility forecasting 

error (or an unanticipated volatility shock) has not been paid much attention by the literature.  An 

unexpected volatility shock is indeed an important factor in investors’ pricing behavior in the 

sense that rational risk-averse investors revise their expectations in responding not only to the 

stock market volatility, but also to its unexpected volatility shock.  Consequently, the 

intertemporal behavior of the expected market returns should be driven not only by the 

underlying market volatility but also by the effect of a volatility shock.  

Thus, considering the effect of an unexpected volatility shock on the intertemporal 

relation, we suggest that there are two important channels to induce the intertemporal behavior of 

the expected market returns.  The first channel allows rational investors to revise their 

expectation in response to the underlying stock market volatility.  With this channel, a risk-

                                                 
4 There are some studies that report weak evidence of the intertemporal relation.  See Baillie and 

DeGennaro (1990), Whitelaw (1994, 2000), and Boudoukh, Richardson and Whitelaw (1997). 
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averse investor requires a higher risk premium to compensate for the perception of a high level 

of market volatility.  Although it is reasonable to expect that the first channel induces a positive 

intertemporal relation, previous empirical studies of this channel show mixed results.  The 

second channel considers the effects of prior volatility shocks on the rational investors’ 

expectations, resulting in increases in market volatility for the subsequent period, for which a 

risk-averse investor requires a higher risk premium.  Under the conventional belief of risk-return 

tradeoff, the second channel is also reasonably expected to induce a positive intertemporal 

relation. 

The first channel has been widely investigated in many studies which examine the sign of 

the covariance between the expected market risk premium and its predicted volatility.  However, 

the second channel has been ignored in the aforementioned literature, which focuses only on the 

first channel of the relation.  Ignoring the effect of an unexpected volatility change in the 

estimation causes the model misspecification problem, which yields an omitted variable bias.  

Unfortunately, almost all of the previous empirical studies on this topic ignore the second 

channel in their estimations, consequently their empirical results reflect only a partial 

intertemporal risk return trade-off.   

This paper presents empirical models capable of incorporating both channels in the 

estimation and reexamines the sign of the intertemporal relation.  Specifically, we consider the 

asymmetrical effects of a positive and negative volatility shock on the relation.  A positive 

(negative) volatility shock is defined as the case where a conditional volatility is higher (lower) 

than expected.  Our empirical results show that, compared to a negative volatility shock, a 

positive volatility shock substantially increases the market volatility for the following period, 

thereby yielding a stronger impact on the intertemporal relation.  It should be noted that the 

effect of a volatility shock as considered by this paper is different from the so-called “volatility 
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feedback effect.”  While the volatility feedback effect focuses on the contemporaneous effect of 

concurrent volatility shocks on the expected returns, our volatility feedback effect implies the 

consequence of a prior unexpected volatility shock on the intertemporal relation. 5   

Another important factor considered in this paper is the asymmetric reverting behavior of 

expected market returns.  Nam et al. (2001, 2002) document that the monthly excess return series 

of market indexes exhibit a strong reverting behavior under a prior negative return shock, while 

showing a significant persistence under a prior positive return shock. 6  This implies that 

negative returns on average revert more quickly to positive returns than positive returns reverting 

to negative returns.  

Interestingly, while the persistence of positive returns is consistent with a positive 

intertemporal relation, a quicker reversion of negative returns is not explained under a positive 
                                                 

5 There are several studies examining the contemporaneous volatility feedback effect on the expected 

returns.  For instance, French, Schwert and Stambaugh (1987) examine the volatility feedback effect on the relation, 

using the ex post unanticipated volatility change.  They argue that a negative ex post relation between the excess 

market returns and the unpredictable changes in market volatility is consistent with a positive ex ante relation 

between expected risk premium and predictable volatility.  Specifying a Markov-switching process to capture 

uncertain volatility states, Tuner, Startz and Nelson (1989) show that an unanticipated volatility shock raises 

expected returns.  Campbell and Hentschel (1992) also show that the volatility feedback effect is a critical factor in 

explaining the non-normality property of stock returns during periods of high volatility.  Recently, Kim, Morley and 

Nelson (2001) document that the volatility feedback effect is attributable to the mean-reverting components of stock 

prices, incorporating a positive correlation between market volatility and expected returns. 

6 For the excess returns of the value-weighted index over the period of 1926:01 - 1999:12, there were 146 

four-consecutive-month rises as compared to only 28 four-consecutive-month declines; 219 three-consecutive-

month rises as opposed to only 68 three-consecutive-month declines; and 339 two-month rises against 153 two-

month declines.  Nam et al. suggest that the asymmetric reverting property of stock returns is attributable to the 

relative profitability of “loser” stocks, and that contrarian profit is a consequence of the buying-selling trading rule 

exploiting the asymmetry property of stock returns. 
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relation.  A negative return shock is known to cause excess future volatility, which should 

increase the risk premium under a positive intertemporal relation.  An increase in the risk 

premium in turn reduces the current stock price.  This reduction in stock price yields another 

realization of negative returns.  In other words, under a positive intertemporal relation, a negative 

return should be accompanied by another negative return in the following period.  However, the 

raw data show an opposite pattern of reversion in that a negative return is more likely to be 

accompanied by a positive return.   

We suggest that the quicker reversion of negative returns is attributable to the negative 

intertemporal relation.  We argue that for a negative return shock, investors would have 

optimistic expectations of the future performance of the stock price, and consequently do not 

necessarily raise the risk premium.  Even with excessive future volatility, rational investors 

would be more likely to reduce the risk premium if their optimistic expectations dominate the 

effects of the excessive volatility.  In this case, a reduction in risk premium in turn raises the 

current stock price, causing a quicker reversion of negative returns.  Thus, we investigate the 

possibility that a negative return shock reduces the expected market risk premium.  We also 

examine whether the quicker reversion of a negative return can be attributed to a reduction in the 

expected market risk premium.  

Some of our findings are notable.  First, with the effect of an unexpected volatility shock 

incorporated in the estimation, the intertemporal relation is strongly positive and highly 

significant. Second, the relation can be time-varying, as rational investors may reduce the risk 

premium for a certain period. 7  Third, the negative intertemporal relation reported by Glosten et 

                                                 
7 Glosten, Jagannathan and Runkle (1993) suggest that rational risk-averse investors may not require larger 

premiums when they have optimistic expectations.  Also, see Abel (1988) and Backus and Gregory (1993) for a 

similar argument. 
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al. (1993) for their sample period (hereafter the GJR sample period) could be attributed to the 

omitted variable bias, as they ignore the effect of an unexpected volatility shock on the relation.  

We find that when the effect of a prior volatility shock is incorporated in the estimation, the GJR 

period is indeed characterized by a strong positive intertemporal relation.  Fourth, the expected 

returns exhibit strong asymmetrical intertemporal behavior under prior positive and negative 

return shocks.  The intertemporal relation is negative (positive) under a prior negative (positive) 

return shock.  The asymmetrical intertemporal behavior of the expected market returns is 

attributable to the observed asymmetric reverting pattern that negative returns on average revert 

more quickly to positive returns than positive returns reverting to negative returns.  Fifth, the 

quicker reversion of negative returns is attributed to the negative intertemporal relation.  We 

interpret this negative intertemporal relation under a prior negative return shock as reflective of 

strong optimistic expectations as perceived by investors, of the future performance of a stock 

experiencing a recent price drop. 

 The remainder of the paper proceeds as follows.  Section 2 discusses a theoretical model 

of the intertemporal risk return relation, and presents empirical models to be estimated.  Section 

3 presents estimation results and interpretations, and section 4 presents empirical models and 

estimation results of the asymmetric reverting behavior of the expected returns.  Section 5 

concludes the paper with a brief summary. 

I.  Models 

A. Intertemporal Relation  

Merton (1973) suggests the intertemporal risk-return tradeoff as a function of stock 

market volatility, which can be specified in the following general form: 

)()( p
mttmtt frfRE σ=− ,              (1) ,2 ,1=p
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where  is the expectation operator.  )(⋅tE )( tmtt rfRE −  is time-varying expected market risk 

premium, where  is the return on a stock market index portfolio, and  is the risk-free 

interest rate.  The stock market volatility is represented by either 

mtR trf

mtσ  (portfolio standard 

deviation) or  (portfolio variance).  Although  is consistent with the equilibrium asset 

pricing theory, there has been a longstanding controversy in the empirical sign of the relation.   

2
mtσ 0' >f

Since the intertemporal behavior of the expected market returns is controlled not only by 

the predictable volatility but also an unexpected volatility shock, '  should consist of p
mt

tE
σ̂

)(
∂

⋅∂
 f  

and 
)ˆ(

)(

11
p
mt

p
mt

tE

−− −∂
⋅∂
σσ

, where  represents the unexpected market volatility shock.  

While the first term measures the underlying risk-return relationship, the second term captures 

the effects of a volatility shock on the relation.  Most of the previous empirical studies ignore the 

second term and focus only on the first term, thereby causing an omitting variable problem.  In 

this paper, we examine the intertemporal risk-return relation by considering both the predictable 

volatility and an unexpected volatility shock.  In particular, we specify a model which captures 

the asymmetrical effects of a positive and negative volatility shock on the intertemporal relation 

in the linear form of expected returns: 

p
mt

p
mt 11 ˆ −− −σσ

ttmtmtttmt drfRE εστσδα +⋅++=Ω− − ˆˆ)|( 1 ,            (2) 

where  is the expected market return (or risk premium) conditional on the 

information set , 

)|( 1−Ω− ttmt rfRE

mtσ̂  is the conditional standard deviation of market portfolio returns, 1−Ω t tε  is 

a series of white noise innovations. 8  is the dummy variable representing the effect of a td

                                                 
8 We use mtσ̂  instead of  to represent the conditional forecasts of stock market volatility.  The use of 2ˆmtσ

mtσ̂  is suggested as the slope of the capital market line in Merton (1980), and is expected to yield an improvement in 
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volatility shock, taking the value 1 with a prior unexpected positive volatility shock, i.e., 

, and 0 otherwise.  The intertemporal relation is thus measured by 0ˆ 2
1

2
1 >− −− tt σε τδ +  under a 

prior positive unexpected volatility shock (with δ1=td ) or by  otherwise (with ).  The 

condition 

0=td

0≠τ  confirms that there is an asymmetrical effect of a positive and negative volatility 

shock on the intertemporal relation.  In particular, 0>τ  indicates that rational risk-averse 

investors increase risk premium in responding to a positive volatility shock, i.e., . 90ˆ 2
1

2
1 >− −− tt σε   

B. Empirical Models 

B.1. ANST-GARCH Model for the Time-Varying Conditional Volatility 

We employ the asymmetric GARCH-M model with various extensions to examine the 

nature of the relationship between the two conditional moments of the expected returns.  In 

particular, our empirical focus is to capture asymmetry in the predictable volatility and/or in the 

expected returns with a nonlinear specification.  For the conditional variance process, we present 

the asymmetric nonlinear smooth transition ANST-GARCH model to capture the different 

volatility response to a positive and negative return shock.  We use the estimated conditional 

variance from the ANST-GARCH model as the best conditional forecast of market volatility.  

For monthly excess return series , the ANST-GARCH (1,1) model is specified as follows: tr

 

                                                                                                                                                             
2ˆmtσthe statistical efficiency of the estimates than those for , due to a reduction in the mean square error of the 

regression.   

9 There are other empirical model specifications to examine the intertemporal relation.  For example, 

Campbell (1987), French et al. (1987), Pagan and Hong (1989), and Glosten et al. (1993) investigate the relation in a 

simple linear relation of , while Merton (1980), Harvey (1989), and Scruggs (1998) 

employs a simple proportional relation of  to examine the relation. 

2
1 ˆ)|( mtttmt rfRE σδα +=Ω− −

2
1 ˆ)|( mtttmt rfRE σδ=Ω− −
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)(][][ 112
2

11012
2

110 −−−−− +++++= tttttt Fhbbbhaaah εεε ,            (3) 

ttt hv ⋅=ε)|( 1−Ω−= tttt rErεwhere  and 1
11 )]}(exp[1{)( −
−− −+= ttF εγε .   By definition,  with 

),0(~| 1 ttt hN−Ωε , such that .  The key feature of the ANST-GARCH model is its 

regime-shift mechanism that allows a smooth, flexible transition of volatility between different 

states of volatility persistence. 

)1,0(~ Nv
iid

t

10 )( 1−tF ε   The logistic transition function  is a smooth and 

continuous function of 5.0)(0 1 << −tF ε, and takes a value between 0 and 1:  for 01 <−tε , 1−tε

1)(5.0 1 << −tF ε 5.0)( 1 =−tF ε for 01 >−tε , and  for 01 =−tε .  The volatility persistence is 

measured by , and the condition Fbbaa )()( 2121 +++ 021 <+ bb  captures the excess volatility of 

a negative return shock.  For any negative return shock causing 5.0)(0 1 << −tF ε , the current 

volatility is described as a “high-persistence-in-volatility regime.”  In contrast, for any positive 

return shock causing 1)(5.0 1 << −tF ε , the current volatility is described as a “low-persistence-

in-volatility regime.”  When 01 =−tε , )( 1−tF ε = 0.5, which implies that the current volatility  is 

halfway between the upper and lower volatility regimes.  The parameter 

th

γ  governs the speed of 

transition between volatility regimes.  When the value of γ  approaches ∞, the ANST-GARCH 

(1,1) with  degenerates into the modified GARCH (1,1) model suggested by Glosten 

et al.(1993).  

020 == bb

B.2. Empirical Models for the Intertemporal Relation 

                                                 
10 The volatility transition mechanism has been applied in the several models, such as the modified 

GARCH model by Glosten et al. (1993), and the Smooth Transition GARCH model by Gonzalez-Rivera (1998), the 

SVSARCH (Sign- and Volatility-Switching ARCH) model by Fornari and Mele (1997), and the MSVARCH 

(Markov switching volatility ARCH model by Turner, et al. (1989) and Hamilton and Susmel (1994). 
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A simple linear form of the intertemporal relation has been widely examined by many 

studies. We examine the linear relation in the following ANST-GARCH-M (1,1) model for 

monthly excess return series . tr

Model 1: 

tttt hrr εδφμ +++= −1     

)(][][ 112
2

11012
2

110 −−−−− +++++= tttttt Fhbbbhaaah εεε ,            (4) 

where .  We include the first order autoregressive term to capture 

the serial dependence in return dynamics.  We focus on the sign of δ.   

1
11 )]}(exp[1{)( −
−− −+= ttF εγε

We also evaluate the same linear relation for the GJR sample period (51:04–89:12) by 

using a dummy variable to represent the GJR sample period.  The model to examine the relation 

for the GJR sample period is specified as follow:  

Model 1 for GJR Period: 

ttt
G

tt hGrr εδδφμ ++++= − )(1  

)(][][ 112
2

11012
2

110 −−−−− ++++++= ttttttt Fhbbbrfhaaah εεθε ,            (5) 

where  is a time dummy variable that takes a value 1 for the GJR period or 0 otherwise.  The 

coefficient  captures the effect of the GJR period on the relation, while 

tG

δGδ  measures the 

relation for the full period.  The negative intertemporal relation reported by Glosten et al. (1993) 

can be confirmed by  in equation (5).  One of the important features of equation (5) is 

that it makes it possible to efficiently distinguish the intertemporal relation for the GJR sample 

period from that for the entire sample period.  We also estimate the same model for the GJR 

0<+ Gδδ
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sample period with or without the one-month T-bill returns  included in the conditional 

variance equation. 

trf

11

As mentioned earlier, the intertemporal relation is induced not only from the underlying 

volatility but also from an unexpected volatility shock.  However, ignoring the effect of an 

unexpected volatility shock on the relation, Model 1 is subject to the omitting variable problem.  

The estimate of δ  in Model 1 thus measures only a partial intertemporal relation.  To measure 

the full intertemporal relation we present Model 2:  

Model 2: 

ttttt hMrr ετδφμ ++++= − )][ 111   

)(][][ 112
2

11012
2

110 −−−−− +++++= tttttt Fhbbbhaaah εεε ,            (6) 

where  is a dummy variable that captures the asymmetric effect of an unexpected volatility 

shock on the intertemporal relation.  It takes a value 1 if  (a prior positive volatility 

shock) or 0 otherwise.  The sign of the intertemporal relation is measured by 

tM

1
2

1 −− > tt hε

11 τδ +  under 

 or by 1δ1
2

1 −− > tt hε  otherwise.  1τ  measures the differential in the effect of a positive and 

negative volatility shock on the intertemporal relation.  Positive value of 1τ  implies that the 

expected risk premium increase in responding to a prior positive volatility shock. 12  We also 

evaluate the full intertemporal relation for the GJR sample period with the following model: 

 Model 2 for GJR Period: 

tttt
GG

ttt hGMMrr ετδτδφμ ++++++= − ])()[( 11111  

                                                 
11 Several studies show that the estimation results are sensitive to the inclusion of one-month T-bill return 

in the conditional variance equation.  See Campbell (1987), Glosten et al. (1993), and Scruggs (1998). 

12 Note that  supports the volatility irrelevance argument by Poterba and Summers (1986). 01 =τ
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)(][][ 112
2

11012
2

110 −−−−− ++++++= ttttttt Fhbbbrfhaaah εεθε ,            (7) 

where  is a time dummy variable that takes the value 1 for the GJR period or 0 otherwise.  The 

intertemporal relation for the GJR period is measured by  under a prior positive 

volatility shock or by  otherwise, such that the differential effect of the GJR period on the 

relation is captured by .  We also estimate the model for the GJR sample period with or 

without the one-month T-bill returns  included in the conditional variance equation. 

tG

GG
1111 ττδδ +++

G
11 δδ +

GG
1τδ +

trf

 Model 3 is specified to capture the asymmetric effect of a prior positive and negative 

volatility shock on the conditional volatility.   

Model 3: 

ttttt hMrr ετδφμ ++++= − )( 111  

)(][][ 112
2

11012
2

110 −−−−− ++++++= ttttttt FhbbbMhaaah εεπε .            (8) 

tMπThe only difference between Model 3 and Model 2 is the term  in the conditional variance 

equation, which captures the asymmetric effect of a prior positive and negative volatility shock 

on the conditional volatility.  The level of the conditional volatility process shifts up (or down) 

by π  under a prior positive (negative) volatility shock.  Our empirical results confirm the 

positive effect ( 0>π ) of a positive volatility shock on the conditional volatility.  

We also evaluate Model 3 for the GJR sample period with the following model: 

 Model 3 for GJR Period: 

tttt
GG

ttt hGMMrr ετδτδφμ ++++++= − ])()[( 11111  

)(][)(][ 112
2

110112
2

110 −−−−−− +++++++= tttttttt FhbbbdMrfhaaah εεπθε ,          (9) 
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where  is a time dummy variable that takes the value 1 for the GJR period or 0 otherwise.  

The coefficients  and  capture the differential effect of the GJR period on the relation.  

The intertemporal relation for the GJR period is measured G
1τ+  under a prior 

positive volatility shoc  G
11 δδ +  otherwise.  We also estimate the model for the GJR 

sample period with or without the one-month T-bill returns trf  included in the conditional 

tG

G
1τ

Gδ

 by G
111 τδδ ++

k or by

variance equation.  

II.  Empirical Results 

A. The 

te 

 

e 

d in 

e first-order autocorrelation, 

k returns.   

------ 

   ----------------------------------------------- 

 

Data 

We employ the excess market returns as the expected market risk premiums.  To genera

the excess returns, we use the monthly nominal returns of the value-weighted market portfolio 

index of the NYSE, AMEX and NASDAQ from the CRSP data files from 1926:01 to 1999:12.  

The monthly excess return series is constructed by subtracting the one-month US Treasury bill

returns reported by Ibbotson Associates from the monthly nominal index returns.  The excess 

return series is computed as percentage returns.  The analysis employs three sample periods, th

full-period (26:01–99:12), the pre-87 Crash period (26:01–87:09), and the GJR period (51:04–

89:12).  We evaluate the GJR period by using a time dummy variable to represent the perio

the estimation of the full period.  Table 1 reports the summary statistics for the data.  The 

descriptive statistics indicate that both the nominal and the excess returns series of the value-

weighted market index exhibit significant excess kurtosis and positiv

characterizing the nonnormality of the short-horizon stoc

    -----------------------------------------

   [Insert Table I about here] 
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B. Estimation Results, Interpretations and Diagnostics 

 Model 1 is designed to examine the sign of the simple linear relation between the

expected risk premium and the predictable market volatility.  We employ the maximum 

likelihood method with the analytical derivatives of each parameter provided in the Gauss cod

All the statistical inferences are based on the Bollerslev-Wooldrige’s (1992) robust standard 

errors.  Note that Model 1 measures only a partial intertemporal relation as it ignores the effect of 

a volatility shock on the relation.  Estimation results for Model 1 are presented in Table 2, which 

reports a positive intertemporal relation.  Table 2 shows that for both the full period, and the pre-

87 Crash period, the estimated value of 

 

e.  

δ  is positive (0.084 and 0.099, respectively, for the two 

periods) and statistically significant at the 1% vel.  A notable finding is that for the G  sample 

period, the estimated value of the coefficien ongly negati  (–0.092 without trf  and –

0.103 with trf ) and highly significant with 0<+ Gδδ .  Note that Gδ  measures the differential 

effect of the GJR sample period on the relation, such that the partial intertemporal relation for th

GJR sample period is measured by Gδδ + .  This result is consistent with that of Glosten et al. 

(1993).  We thus confirm that the GJR sample period is characterized by a strong negative partial 

 le JR

t is str ve

e 

intertem

 Gδ  

poral relation when the effect of a volatility shock is not incorporated in the estimation.   

With regard to the conditional variance equation, the asymmetric volatility response of a 

positive and negative return shock is well captured by 021 <+ bb  with a statistical s nificance

Also, the estimation results show a high estimated value of the transition parameter 

ig .  

γ , which 

indicates that the transition between volatility-regimes occurs very quickly. The volatility regi

is divided into only two extreme regimes, the upper and lower volatility regimes.  The upper 

(lower) regime induced by a negative 

me 

(positive) return shock is the high-volatility-persistence 

(low-volatility-persistence) regime.   
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) 

s, 

sponse to a positive and negative return shock is 

ell captured by the ANST-GARCH model. 

                                                

   [Insert Table II about here] 

 ----------------------------------------------- 

Table 3 reports the summary of diagnostics for the estimation results of Model 1, such as

skewness, kurtosis, the Jarque-Bera normality test, and the Ljung-Box Q test on the normalized

and the squared normalized residuals.  The Ljung-Box Q statistics on the normalized residuals 

checks serial correlation in the residuals.  Rejection of the null hypothesis of no autocorrelation 

up to a certain lag length, indicates that either the dynamic structure of the mean equation or the 

lag structure of the conditional variance equation is not well specified, or that both equations are 

not well specified.  The Ljung-Box Q statistics on the squared normalized residuals ascertains

the serial dependence in the conditional variance is well captured by the conditional variance

equation.  We also perform the Negative Sign Bias Test (NSBT) suggested by Engle and Ng 

(1993) to examine the ability of the ANST-GARCH-M model to capture the so-called leverage 

effect of a negative return shock on the conditional variance process. 13  The Ljung-Box Q(10

test indicates that the serial dependence of the conditional mean and variance process is well 

captured by Model 1.  The negative sign bias test shows insignificant t-values for all estimation

and indicates that the asymmetric volatility re

w

 

 
13 The negative sign bias test is performed with the regression equation , 

where 

ttttt ezbSav +++= −
−
−

*`
11

2 πε

tt hhz )(
~* Ψ= Ψ=Ψ ∂∂ thh )(

~22 )( ttt hv ε= .   if 11 =
−
−tS , and  otherwise. Also, 01 =

−
−tS , where 01 <−tε  

evaluated at the values of maximum likelihood estimates of parameter Ψ .  The test statistic of the NSBT is defined 

as the t-ratio of the coefficient b in the regression.  A statistically significant t-value implies the failure of the model 

to absorb the effect of sign bias, and indicates that the volatility model considered is misspecified. 
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    ----------------------------------------------- 

 

   [Insert Table III about here] 

   ----------------------------------------------- 

Model 1 suffers from an omitted variable bias, as the estimate of the coefficient δ  in 

Model 1 measures only a partial relation.  The full intertemporal relation is measured by Model 2 

which captures the effect of the predictable volatility and a volatility shock simultaneously

relation.  Estimation results of Model 2 are reported in Table 4.  There are several notable

findings.  First, there is a significant asymmetrical effect of a prior positive and negative 

volatility shock on the intertemporal relation.  Second, the result of 040.01

 on the 

 

=τ  (0.031 for 

87 Crash period) implies that the expected risk premium increases under a prior positive 

volatility shock (a higher conditional volatility than expected, i.e., 1
2

1 −− > tt hε ).  Third, due to the 

sign t positive effect of a positive volatility shock, the full intertemporal relation measured

by 1

the pre-

ifican  

1τδ + ositive and highly significant.  For the full period and the pre-87 Crash 

perio 098.0=

 is strongly p

d, 11 +δ τ  (0.107 for the pre-87 Crash period) under a prior positive volatility shock 

and 058.01 =δ  (0.076 for the pre-87 Crash period) otherwise.  Fourth, the estimation results f

the GJR sample period provide some ation about the empirical nature of the 

relation: (a) the estimation result of 065.011 −=+ GG τδ  (–0.088 with trf ) confirms that the GJR

period is characterized by a significant reduction in risk pr s consistent w h 

result of Glosten et al. (1993); (b) the estimation result of 137.011 =+ Gττ  (0.113 with trf  

included)  implies that there is a strong positive effect of a prior positive volatility shock on the 

intertemporal relation for the GJR sample period; (c) due to the strong positive effect of a

positive volatility shock period ind d exhibits a strong positive 

intertemporal relation ( 081.01111 =+++ GG ττδδ  without trf  and 0.061 with trf ); (d) th

or 

 important inform

 

emium, it the 

rior 

e 

 which i

 p

 on the relation, the GJR ee
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estimates are all highly significant and are not sensitive to the inclusion or exclusion of trf  in the 

conditional variance equation.  The estimation results for the GJR sample period indicates 

negative intertemporal relation reported by Glosten et al. (1993) could be attributed to the 

omitted v

that a 

ariable bias resulting from ignoring the effect of an unexpected volatility shock on the 

---- 

 

it he 

relation. 

    -------------------------------------------

   [Insert Table IV about here] 

   ----------------------------------------------- 

Table 4 also reports the estimation results of Model 3, which captures the asymmetrical 

effect of a prior pos ive and negative volatility shock on the conditional volatility process.  T

estimated value of π  is positive, implying that a prior positive volatility shock amplifies the 

conditional volatility.  The estimated value of 1τ  is also positive and statistically significant at 

the 1% level, indica positive volatility shock raises the risk premium.  Thus

estimated result of 0>

ting that a prior , the 

π  and 01 >τ  clearly indicates that a prior positive volatility shock 

increases risk premium due to an increase in the conditional v   Interestingly, the results 

show that the magnitude of 1

olatility.

τ  is ater in Model 3 ( 062.01 much gre =τ  and 0.070 for the pre-87 

Crash period) than in Model 2 ( 040.01 =τ  and 0.031 for the pre-87 Crash period).  This implies 

that incorporating an asymmetrical effect of a prior positive and negative volatility shock in th

conditional volatility process yields a more profound asymmetric effect on the intertempora

relation.  In other words, a prior positive and negative volatility shock has a critical role in 

inducing an intertemporal relation.  Estimatio

e 

l 

n results for the GJR period show similar results 

with so

 

me variation in parameter estimates. 

Diagnostic tests reported in Table 5 indicate that all the estimations pass the Ljung-Box 

Q(10) test on the normalized and squared normalized residuals.  This result implies that there is
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no serial dependence remaining in the conditional mean and variance processes.  The negat

sign bias test shows insignificant t-values for all estimations, indicating that the estimated 

conditional va

ive 

riance process well captures the excess volatility response caused by a negative 

----- 

 

d 

 

e 

variable bias e relation. 

eturns 

 

 

e 

return shock. 

    ------------------------------------------

   [Insert Table V about here] 

   ----------------------------------------------- 

From the estimation results of models 1 through 3, we have come to the following three 

conclusions: (1) with an asymmetrical effect of a prior unexpected volatility shock incorporate

in the estimation, the intertemporal relation is strongly positive and highly significant; (2) the 

intertemporal relation can be time-varying, such that for a certain period, i.e., the GJR sample

period, the magnitude of the risk premium could be dramatically reduced; and (3) a negativ

intertemporal relation reported by the previous literature could be attributed to the omitted 

resulting from ignoring the effect of an unexpected volatility shock on th

III. Asymmetric Reverting Property of Expected returns 

It has been known that the expected market returns exhibit a strong asymmetric reverting 

pattern, in that negative returns are more likely to revert to positive returns than positive r

reverting to negative returns.  Also, a negative return shock is known to generate excess 

volatility.  However, although it seems plausible that a negative return shock raises risk premium

due to an excess future volatility, a positive intertemporal relation cannot explain the quicker 

reversion of negative returns.  Under a positive intertemporal relation, a negative return shock

raises the expected returns as investors require an additional premium to compensate for th

excess volatility.  An increase in risk premium reduces the current stock price, such that a 

negative return should be accompanied by another negative return.  Therefore, it is important to 
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investigate what causes such an asymmetric reverting behavior of the expected market returns.

First, we specify a model to capture the asymmetric reverting pattern of the expected returns.  

Since the asymmetric reverting pattern is not captured by a l

  

inear autoregressive specification, 

we specify the following nonlinear autoregressive model:   

Model 4:  

 ttttt rFFr εεφφεμμ ++++= −−− 1121121 )]([)]([  

) 

e 

a  serial

)(][][ 112
2

11012
2

110 −−−−− +++++= tttttt Fhbbbhaaah εεε .          (10

The main feature of Model 4 is that it captures the asymmetry in both the conditional volatility 

and the conditional mean processes caused by a prior positive and negative return shock.  The 

model allows the return serial correlation coefficient to vary with a prior positive and negativ

return shock, such that the asymmetric reverting property is captured by the ch nging  

correlation )( 121 −+ tF εφφ .  The value of the serial tion varies between 1 correla φ  and 21 φφ +  

depending on the value of the transition function ( −tF )1ε .  For an extreme negative return shock 

causing 0)( 1 =−tF ε , serial correlation d by 1is measure φ , while it is measured by 21 φφ +  for an

extreme positive r sh 1)( 1

 

ock making 14=−tF ε . eturn   Quicker reversion of a negative return is 

thus captured by 02 >φ  ( 121 φφφ >+= ).  Note that the condition 01 <φ  with 02 >φ  indicate

negative serial correlation under a prior n

s a 

egative return shock, thereby indicating a stronger 

reverting tendency of a negative return.  

Estimation results of Model 4 are reported in Table 6, which shows that the estimated 

value of 2φ  is positive and highly significant  full period and the pre-87 Crash period.  for both the

                                                 
14 , i.e.,  Stationarity condition of  is satisfied with tr 1|)(| 121 <+ −tF εφφ  for  or 1|| 1 <φ 01 <−tε 1|| 21 <+φφ  

for . 01 >−tε
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The measured serial correlation is n 091.0egative ( 1 −=φ  for both periods) under a prior negative 

return shock, while it is positive ( 059.021 =+φφ  and 0.124, respectively, for the two periods) 

under a prior positive return shock.  This result confirms the asymmetric reverting pattern of the 

expected returns that a negative re s more quickly, while a positive return tends to 

persist.

 

e following model (Model 5) to examine the possible asymmetry in the intertemporal 

relation

Model 5:  

turn revert

  

Now the important question is whether the asymmetric reverting pattern of the expected 

market returns can be explained by the intertemporal relation.  To answer the question, we allow 

an asymmetrical effect of a positive and negative return shock on the relation, such that the sign

of the intertemporal relation can be compared to prior positive and negative return shocks.  We 

specify th

. 

tε  ttttt hFrFr εδδφεμμ +++++= −−− )]([)]([ 12111121

ral relation ted va

)(][][ 112
2

11012
2

110 −−−−− +++++= tttttt Fhbbbhaaah εεε .          (11) 

The intertempo  is measured by the estima lue of 1δ  under a prior negative retur

shock ca 0)1 =−

n 

using ( tF ε , while it is measured by 21 δδ +  under a prior positive return shock 

causing 1)( 1 =−tF ε .  Specifically, 2δ  measures the differential effect of a positive and negative 

return shock on the intertemporal relation.  A positive intertemporal relation implies that, due to 

its excess future volatility,  a negative return shock should raise the risk premium, such that the 

magnitude of the relation under a prior negative return shock shoul reater than that unde

positive return shock, i.e., 211

d be g r a 

δδδ +>  or 02 <δ .  In other words, 02 <δ  is consistent with a 

positive intertemporal relation.  As mentioned earlier, however, a positive intertemporal relation 

cannot explain the observed asymmetric reverting pattern of the expected returns.  
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The estimation results of Model 5 are presented in Table 6, which shows two interesting findings.  

First, the estimated value of 2δ  is positive and statistically significant at the 1% level 

( 259.02 =δ  and 0.266 for the pre-87 Crash period).  The result indicates that the magnitude of 

the intertemporal relation under a prior positive return shock is greater than that under a prior 

negative return shock.  Thus, the result of 02 >δ  clearly indicates that a prior negative return 

shock does not induce a positive intertemporal behavior of the expected market returns.  Second, 

the intertemporal relation is indeed negative ( 175.01 −=δ 224.0− and  for the pre-87 Crash 

period) under a prior negative return shock, while it is positive ( 084.021 =+δδ  and 0.042 for t

pre-87 Crash period) under a prior positive return shock.  This result implies that while a positiv

return shock complies with the conventional positive intertemporal relation, a negative return 

shock indeed induces a negative intertemporal behavior of the expected market returns.  We 

interpret this negative intertemporal relation under a prior negative return shock as a result of an 

optimistic expectation about the future performance of stock price by rational investors who 

eventually reduce risk premium to a price drop.  

he 

e 

More importantly, the quicker reversion of a negative return can be attributed to the 

negative intertemporal relation under a prior negative return shock.  If a negative return shock 

generates an optimistic expectation on the future performance of stock price, then the quicker 

reversion of a negative return can be explained by a reduction in premium.  A reduction in risk 

premium in responding to a negative return shock raises the current stock price, thereby causing 

a quicker reversion of a negative return.  

    ----------------------------------------------- 

   [Insert Table VI about here] 

    ----------------------------------------------- 
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Model 5 ignores the effect of a prior volatility shock in estimation.  We thus specify 

Model 6 to incorporate the effect of an unexpected volatility shock on the asymmetrical 

intertemporal relation of a prior positive and negative return shock:  

Model 6:  

tttttttt hFMMrFr εετδτδφεμμ +++++++= −−− )]()()[()]([ 1221111121  

)(][][ 112
2

11012
2

110 −−−−− +++++= tttttt Fhbbbhaaah εεε .          (12) 

22 τδ +While  measures an asymmetrical effect of a prior positive and negative return shock, 

21 ττ +  measures an asymmetrical effect of a prior volatility shock on the intertemporal relation.  

When a negative return shock is realized, the intertemporal relation is measured by 11 τδ +  under 

a prior positive volatility or by 1δ  otherwise.  With a prior positive return shock, the relation is 

measured by 2121 ττδδ +++ 21 δδ + under a prior positive volatility shock or by  otherwise.  

The estimation results of Model 6 are also reported in Table 6.  It shows several notable 

findings.  (a) the estimation result of 064.021 =+ττ  (0.073 for the pre-87 Crash period) and 

236.022 =+τδ  (0.290 for the pre-87 Crash period) confirm that both the return shock and the 

volatility shock have an asymmetrical effect on the intertemporal relation; (b) The results of 

078.01 =τ  (0.062 for the pre-87 Crash period) and 064.021 =+ττ  (0.073 for the pre-87 Crash 

period) indicate a positive effect of a positive volatility shock on the intertemporal relation, 

regardless of the sign of a prior return shock.  This result is consistent with the estimation results 

of Models 2 and 3; and (c) the result of 150.011 −=+τδ  (–0.138 for the pre-87 Crash period) 

and 094.02121 =+++ ττδδ  (0.092 for the pre-87 Crash period) implies that the intertemporal 

relation is negative (positive) under a prior negative (positive) return shock.  This result is also 

consistent with the estimation result of Model 5, implying that the asymmetrical effect of a prior 
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positive and negative return shock is still persistent even under a presence of a prior positive and 

negative volatility shock.  Table 7 reports diagnostic tests.  The Ljung-Box Q(10) test on  and 

 indicates that serial dependence is well captured by the specified conditional mean and 

variance processes.  The negative sign bias test shows insignificant t-values for all estimations, 

confirming the ability of the ANST-GARCH model to capture the excess volatility response 

caused by a negative return shock.  

tv

2
tv

In sum, the estimation results of Models 4 through 6 provide the following conclusions.  

First, the expected market returns exhibit not only an asymmetric reverting pattern but also 

asymmetrical intertemporal behavior under a prior positive and negative return shock.  Second, 

there is always a positive effect of a positive volatility shock on the intertemporal relation, 

regardless of the sign of the return shock.  Lastly, a negative intertemporal relation under a prior 

negative return shock is attributable to the observed quicker reversion of a negative return.  Due 

to their strong optimistic expectations of the future performance of stock prices, rational 

investors indeed reduce risk premium with an unexpected price drop, and the reduction in risk 

premium in turn raises the current stock price.  This uplifting force on the stock price then 

induces a quicker reversion of a negative return.  

    ----------------------------------------------- 

   [Insert Table VII about here] 

    ----------------------------------------------- 

IV. Conclusions 

We suggest that the intertemporal behavior of the expected market returns is driven not 

only by the underlying market volatility but also by the effect of an unexpected volatility shock.  

Most of the previous literature on this topic ignores the effect of an unexpected volatility shock 

on the relation, hence the previous empirical results reflect only a partial intertemporal relation.  
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Allowing an asymmetrical effect of a prior positive and negative volatility shock on the relation, 

we find a strong, highly significant intertemporal relation.  We believe that the negative 

intertemporal relation reported by the previous literature could be attributed to the omitted 

variable bias resulting from ignoring the effect of an unexpected volatility shock on the relation.  

We also find that the intertemporal relation can be time-varying, such that for a certain period the 

magnitude of the risk premium could be dramatically reduced.  

We show that the expected returns exhibit asymmetrical intertemporal behavior under a 

prior positive and negative return shock.  The intertemporal relation is negative (positive) under 

a prior negative (positive) return shock.  The asymmetrical intertemporal behavior of the 

expected market returns attributable to the observed asymmetric reverting pattern indicates that a 

negative return on average reverts more quickly to a positive return than a positive return 

reverting to a negative return.  Specifically, the quicker reversion of a negative return is 

attributed to a negative intertemporal relation.  We interpret this negative intertemporal relation 

under a prior negative return shock as a reflection of a strong optimistic expectation perceived by 

investors on the future performance of a stock with a recent price drop.   
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Table I 
Summary statistics for monthly nominal and excess returns 

 
The nominal return series are the monthly value-weighted market index returns for NYSE, AMEX, and NASDAQ 
stocks, and were retrieved from the CRSP tapes for the period from 1926:01 to 1999:12.  The monthly nominal 
return series are the value-weighted market indexes retrieved from the CRSP tapes for the period from 1926:01 to 
1999:12. The monthly excess return series is computed by subtracting one-month Treasury bill returns as reported 
by Ibbotson Associates from the nominal returns.  All returns are computed as percentage value.  The analysis 
employs the full-period (26:01-99:12) and the pre-87 Crash period (26:01-87:09). The value in the parentheses is the 
p-value for the Ljung-Box Q test. 
 

Nominal  
Value-weighted Returns 

1-month  
T-Bill Rates 

Excess   
 Value-weighted Returns 
Statistics Full-period Sub-period Full-period Sub-period Full-period Sub-period 
Observations 888 741 888 741 888 741 
Mean (×100) 1.013 0.957 0.310 0.287 0.703 0.670 

Std. Dev. (×100) 5.487 5.694 0.263 0.276 5.501 5.709 

Skewness 0.192 0.353 1.054 1.261 0.230 0.390 

Kurtosis 10.970 10.779 4.410 4.624 10.989 10.766 

1st order 0.105 0.109 0.967 0.967 0.108 0.113 
Autocorrelation (0.002) (0.003) (0.000) (0.000) (0.001) (0.002) 
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Table II 
Estimation of Model 1 

 
This table presents the maximum likelihood estimates for Model 1 for monthly excess returns of the value-weighted 
index for the NYSE, AMEX, and NASDAQ stocks. The estimation employs the full period (26:01-99:12) and the 
pre 87 Crash period (26:01-87:09). For the monthly excess return series , model 1 is specified as follows: tr
 

Model 1:  

tttt hrr εδφμ +++= −1  

)(][][ 112
2

11012
2

110 −−−−− +++++= tttttt Fhbbbhaaah εεε , 
  

where . The GJR sample period (51:04 – 89:12) is evaluated by incorporating the 
period as a dummy variable in the mean equation, with the one-month T-bill rates included or excluded in the 
conditional variance equation. The model to estimate the GJR sample period is as follows: 

1
11 )]}(exp[1{)( −
−− −+= ttF εγε

 

Model 1 for GJR sample period:  
  ttt

G
tt hGrr εδδφμ ++++= − )(1

 ,  )(][][ 112
2

11012
2

110 −−−−− ++++++= ttttttt Fhbbbrfhaaah εεθε
 

where , the indicator function  is a dummy variable for the GJR sample period, 
and  is the yield on one month T-bill from Ibbotson Associates. The values in parentheses are the Bolleslev-
Wooldridge robust t-statistics, and LLV is the log-likelihood value. 

1
11 )]}(exp[1{)( −
−− −+= ttF εγε tG

trf

 
GJR Sample Period Coef. Full-period Sub-period 

(26:01 – 99:12) (26:01 – 87:09) Without rf   With rf 
 μ 0.461 0.291 0.443 0.546 

(5.620) (3.014) (9.288) (9.944) 
0.091 0.089 0.072 0.056 φ  

(29.339) (15.891) (21.909) (15.930) 
0.084 0.099 0.080 0.059  δ

(3.347) (4.389) (6.392) (5.925) 
  -0.092 -0.103  Gδ

(18.882) (-12.369) 
0.002 0.000 0.001 0.001 0a  

(0.375) (0.454) (0.581) (0.766) 
0.117 0.140 0.110 0.110 1a  

(3.354) (4.104) (3.291) (3.199) 
1.036 1.030 1.072 1.060 2a  

(29.924) (23.930) (28.727) (25.142) 
2.412 2.877 3.007 2.482 0b  

(2.460) (2.777) (3.464) (2.564) 
-0.040 -0.082 -0.042 -0.029 1b  

(-0.706) (-1.667) (-0.795) (-0.457) 
-0.350 -0.376 -0.428 -0.412 2b  

(-3.760) (-3.051) (-4.883) (-4.672) 
   0.885 θ  

(1.065) 
 γ 134.577 121.801 217.354 121.735 

(4.014) (2.302) (2.441) (3.944) 
LLV -2606.76 -2183.40 2603.45 2602.92 
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Table III 
Diagnostics of Model 1 

 
This table presents a summary of diagnostics on the normalized residuals and the squared normalized residuals from 
the estimations. The normalized residual series is defined as ttt hv ε=

2χ

ttttt ezbSav +++= −
−
−

*`
11

2 πε

. JB-Normality refers to the Jarque-Bera 

normality test statistic, which is distributed as  with two degrees of freedom under the null hypothesis of 
normally distributed residuals. Q(10) is the Ljung-Box Q(10) test statistic for checking serial dependence in the 
normalized residuals and the squared normalized residuals from the estimations. NSBT refers to the negative sign 
bias test suggested by Engle and Ng (1993). It is a diagnostic test that examines the ability of the specified model to 
capture the so-called leverage effect of a negative return shock on the conditional volatility process. The test is 
performed with the regression equation , where 22 )( ttt hv ε= 11 =

−
−tS 01.   if <−tε , 

and  otherwise. Also, 01 =
−
−tS tt hhz )(

~* Ψ= , where Ψ=Ψ ∂∂ thh )(
~

 , is evaluated at the values of the maximum 
likelihood estimates of parameter Ψ .  The test statistic of the NSBT is defined as the t-ratio of the coefficient b in 
the regression. The value in the parentheses is the p-value of the individual test statistics considered. 
 

GJR Sample Period Statistics Full-period 
(26:01 – 99:12) 

Sub-period 
(26:01 – 87:09) Without rf   With rf 

Skewness of v  t
-0.623 -0.372 -0.636 -0.623 

Kurtosis of  tv

t

2
t

5.117 3.946 5.251 5.083 

JB-Normality 224.749 
(0.000) 

44.576 
(0.000) 

246.664 
(0.000) 

217.536 
(0.000) 

Q(10) on v  9.968 
(0.443) 

18.050 
(0.054) 

10.190 
(0.424) 

10.397 
(0.406) 

Q(10) on v  7.556 
(0.672) 

12.955 
(0.226) 

10.514 
(0.397) 

10.418 
(0.405) 

NSBT on  th -1.483 
(0.139) 

-0.482 
(0.630) 

-1.198 
(0.231) 

-1.162 
(0.246) 

 
 
 



Table IV 
Estimation of Models 2&3 

 
This table presents the maximum likelihood estimates of Models 2&3 for the monthly excess returns of the value-weighted index for the NYSE, AMEX, and 
NASDAQ stocks. The estimation employs the full period (26:01-99:12) and the pre 87 Crash period (26:01-87:09). While the same conditional mean equation is 
specified for models 2&3, different conditional variance equations are specified for each model. For the monthly excess return series , the conditional mean 
and variance equations of models 2&3 are specified as follows: 

tr

 
Model 2:  

ttttt hMrr ετδφμ ++++= − )( 111  

)(][][ 112
2

11012
2

110 −−−−− +++++= tttttt Fhbbbhaaah εεε ,  
 
Model 3: 

ttttt hMrr ετδφμ ++++= − )( 111 . 

)(][][ 112
2

11012
2

110 −−−−− ++++++= ttttttt FhbbbMhaaah εεπε  
 
where .  The indicator function  is specified to capture the asymmetric effect of an unexpected volatility change on the 

intertemporal relation, such that  if  or 

1
11 )]}(exp[1{)( −
−− −+= ttF εγε tM

1
2

1 −− > tt hε1=tM 0=tM  otherwise. The intertemporal relation for the GJR sample period (51:04-89:12) is evaluated by 
using a dummy variable to represent the period in the mean equation, with the one-month T-bill rates included or excluded in the conditional variance equation. 
The models for the GJR sample period are as follows: 
 

Model 2 for GJR sample period:  
  tttt

GG
ttt hGMMrr ετδτδφμ ++++++= − ])()[( 11111

)(][][ 112
2

11012
2

110 −−−−− ++++++= ttttttt Fhbbbrfhaaah εεθε ,  
 
Model 3 for GJR sample period:  

tttt
GG

ttt hGMMrr ετδτδφμ ++++++= − ])()[( 11111 . 

)(][][ 112
2

11012
2

110 −−−−− +++++++= tttttttt FhbbbMrfhaaah εεπθε  
 
where the indicator function  is a dummy variable to represent the GJR sample period, and  is the yield on a one month T-bill from Ibbotson Associates. 
Values in parentheses are the Bolleslev-Wooldridge robust t-statistics, and LLV is the log-likelihood value.

tG trf
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 Model 2 Model 3 
Coef. Full-period Sub-period GJR Sample Period Full-period Sub-period GJR Sample Period 

      Without rf              With rf       Without rf              With rf (26:01 – 99:12) (26:01 – 87:09) (26:01 – 99:12) (26:01 – 87:09)
 μ 0.447 0.249 0.543 0.531 0.452 0.448 0.354 0.361 

(6.321) (3.588) (5.166) (12.136) (3.656) (4.367) (7.801) (12.873) 
0.070 0.091 0.051 0.051 0.067 0.068 0.079 0.079 φ  

(8.026) (18.881) (15.394) (24.143) (7.783) (5.765) (9.341) (6.508) 
0.058 0.076 0.100 0.103 0.077 0.076 0.084 0.085  1δ

(3.766) (4.519) (3.678) (7.164) (3.454) (3.141) (7.677) (7.869) 
0.040 0.031 0.046 0.046 0.062 0.070 0.100 0.096  1τ

(2.642) (2.498) (3.778) (6.312) (3.243) (2.921) (7.270) (5.491) 
  -0.156 -0.155   -0.082 -0.085 G

1δ  
(-21.720) (-20.540) (-14.079) (-10.976) 

  0.091 0.067   -0.048 -0.045 G
1τ  

(6.903) (6.560) (-3.695) (-2.716) 
0.031 0.005 0.014 0.007 0.000 0.004 0.013 0.012 0a  

(0.950) (1.570) (0.202) (0.238) (0.001) (0.089) (0.430) (0.932) 
0.109 0.140 0.102 0.104 0.095 0.110 0.111 0.109 1a  

(3.808) (4.123) (3.303) (3.359) (2.965) (3.464) (1.843) (1.410) 
1.046 1.027 1.071 1.061 1.016 1.014 1.065 1.049 2a  

(32.045) (27.185) (29.469) (26.070) (31.328) (31.790) (22.563) (22.154) 
2.639 2.835 2.689 2.270 1.980 1.988 3.084 2.462 0b  

(2.683) (3.129) (2.971) (2.538) (1.960) (2.047) (1.198) (0.758) 
-0.029 -0.083 -0.021 -0.019 -0.032 -0.069 -0.061 -0.067 1b  

(-0.543) (-1.643) (-0.399) (-0.337) (-0.742) (-1.592) (-1.350) (-1.642) 
-0.382 -0.366 -0.416 -0.404 -0.303 -0.308 -0.422 -0.387 2b  

(-4.471) (-3.658) (-4.840) (-4.420) (-3.572) (-3.783) (-2.340) (-1.818) 
   0.901    0.787 θ  

(1.128) (1.041) 
π      1.233 1.293 0.452 0.837 

(0.832) (0.951) (1.126) (1.187) 
 γ 157.897 135.437 254.235 287.546 269.837 216.735 285.726 255.579 

(1.788) (1.672) (1.963) (1.128) (2.696) (2.019) (2.712) (3.434) 
LLV -2605.09 -2182.40 -2601.15 -2600.12 -2604.25 -2181.18 -2600.51 -2600.00 
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Table V 
Diagnostics of Models 2&3 

 
This table presents a summary of the diagnostics on the normalized residuals and the squared normalized residuals from the estimations. The normalized residual 
series defined as ttt hv ε= . JB-Normality refers to the Jarque-Bera normality test statistic, which is distributed as a 2χ  with two degrees of freedom under the 
null hypothesis of normally distributed residuals. Q(10) is the Ljung-Box Q(10) test statistic for checking serial dependence in the normalized residuals and the 
squared normalized residuals from the estimations. NSBT refers to the negative sign bias test suggested by Engle and Ng (1993). It is a diagnostic test examining 
the ability of the specified model to capture the so-called leverage effect of a negative return shock on the conditional volatility process. The test is performed 
with the regression equation , where ttttt ezbSav +++= −

−
−

*`
11

2 πε 22 )( ttt hv ε= .  1  if 1 =
−
−tS 01 <−tε , and 0  otherwise. Also, 1 =

−
−tS tt hhz )(

~* Ψ= , where 

Ψ=Ψ ∂∂ thh )(
~

 , is evaluated at the values of maximum likelihood estimates of parameter Ψ .  The test statistic of the NSBT is defined as the t-ratio of the 
coefficient b in the regression. The value in the parentheses is the p-value of the individual test statistics considered. 
 

 Model 2 Model 3 

Statistics Full-period 
(26:01 – 99:12) 

Sub-period 
(26:01 – 87:09)

GJR Sample Period 
      Without rf              With rf 

Full-period 
(26:01 – 99:12)

Sub-period 
(26:01 – 87:09)

GJR Sample Period 
      Without rf              With rf 

Skewness of  tv -0.625 -0.375 -0.646 -0.626 -0.382 -0.391 -0.404 -0.406 

Kurtosis of  tv 5.192 3.926 5.216 5.018  3.844  3.913  3.961  3.967 

JB-Normality 235.09 
(0.000) 

43.743 
(0.000) 

242.89 
(0.000) 

208.29 
(0.000) 

 39.941 
(0.000) 

 44.563 
(0.000) 

 48.573 
(0.000) 

 49.130 
(0.000) 

Q(10) on  tv 10.646 
(0.386) 

18.239 
(0.051) 

10.111 
(0.431) 

10.846 
(0.370) 

10.075 
(0.434) 

17.080 
(0.073) 

10.927 
(0.363) 

11.498 
(0.320) 

Q(10) on  2
tv 7.3141 

(0.695) 
12.991 
(0.224) 

9.7167 
(0.466) 

10.122 
(0.430) 

6.550 
(0.767) 

12.178 
(0.273) 

10.007 
(0.440) 

9.812 
(0.457) 
-0.809 
(0.287) 

-0.844 
(0.279) 

-0.458 
(0.359) 

-0.327 
(0.378) 

-1.105 
(0.269) 

NSBT on  th -0.461 
(0.645) 

-1.397 
(0.163) 

-1.205 
(0.228) 
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Table VI 
Estimation of Models 4-6 

 
This table presents the maximum likelihood estimates of models 4 through 6 for the monthly excess returns of the 
value-weighted index for the NYSE, AMEX, and NASDAQ stocks over the period from 26:01 to 99:12 and the 
period from 26:01 to 87:09. For the monthly excess return series , each model is specified as follows: tr
 

ttttt rFFr εεφφεμμ ++++= −−− 1121121 )]([)]([Model 4:  

tttttt hFrFr εεδδφεμμ +++++= −−− )]([)]([ 1211121  Model 5: 

tttttttt hFMMrFr εετδτδφεμμ +++++++= −−− )]()()[()]([ 1221111121 , Model 6: 
 

where the indicator function  is specified to capture the asymmetric effect of an unanticipated volatility shock on 

the intertemporal relation, such that  if  or 
tM

1
2

1 −− > tt hε1=tM 0=tM  otherwise. The conditional variance equation 

for models 4-6 is specified as . The values in parentheses are the 
Bolleslev-Wooldridge robust t-statistics, and LLV is the log-likelihood value. 

)(][][ 112
2

11012
2

110 −−−−− +++++= tttttt Fhbbbhaaah εεε

 
Model 4 Model 5 Model 6  

 Full-period Sub-period Full-period Sub-period Full-period Sub-period Coef. 
0.493 0.485 0.946 0.702 1.039 1.1260  1μ

(6.809) (17.440) (8.520) (6.636) (9.545) (7.359) 
0.022 0.142 -0.235 0.315 -0.146 -1.172 2μ  

(0.110) (0.804) (-1.136) (0.616) (-0.847) (-4.033) 
-0.091 -0.091 

(-10.414) 
-0.049 -0.093 -0.054 -0.055 1φ  

(-12.065) (-9.482) (-2.135) (-3.178) (-3.984) 
0.150 0.215      2φ

(5.873) (8.290) 
  -0.175 -0.224 -0.220 -0.260 1δ  

(-7.681) (-4.433) (-9.017) (-17.667) 
    0.078 0.062  1τ

(5.926) (2.141) 
  0.259 0.266 0.250 0.279 2δ  

(5.926) (7.312) (5.558) (9.617) 
    -0.014 0.011  2τ

(-0.727) (0.484) 
0.000 0.000 0.000 0.000 0.008 0.008 0a  

(0.905) (1.284) (0.838) (1.698) (1.197) (1.327) 
0.107 0.137 0.115 0.130 0.127 0.143 1a  

(3.364) (3.634) (4.038) (3.871) (5.039) (3.054) 
1.027 1.013 1.063 1.094 1.073 1.072 2a  

(31.025) (30.525) (29.965) (26.509) (45.893) (19.855) 
2.689 2.855 2.386 2.287 2.566 2.338 0b  

(2.416) (2.863) (2.917) (3.986) (3.666) (3.498) 
-0.026 -0.083 -0.027 -0.058 -0.051 -0.078 1b  

(-0.406) (-1.448) (-0.510) (-1.087) (-1.436) (-0.880) 
-0.347 -0.345 -0.392 -0.432 -0.414 -0.407 2b  

(-3.823) (-3.879) (-4.488) (-5.403) (-5.709) (-4.022) 
 γ 65.914 102.821 95.967 185.127 233.069 163.326 

(2.004) (2.806) (4.002) (1.198) (2.054) (1.445) 
LLV -2610.89 -2184.32 -2603.64 -2180.03 -2598.48 -2177.24 
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Table VII 
Diagnostics of Models 4-6 

 
This table presents a summary of diagnostics on the normalized residuals and the squared normalized residuals from 
the estimations. The normalized residual series is defined as ttt hv ε= . JB-Normality refers to the Jarque-Bera 

normality test statistic, which is distributed as a  with two degrees of freedom under the null hypothesis of 
normally distributed residuals. Q(10) is the Ljung-Box Q(10) test statistic for checking serial dependence in the 
normalized residuals and the squared normalized residuals from the estimations. NSBT refers to the negative sign 
bias test suggested by Engle and Ng (1993). It is a diagnostic test for examining the ability of the specified model to 
capture the so-called leverage effect of a negative return shock on the conditional volatility process. The test is 
performed with the regression equation , where 

2χ

22 )( ttt hv ε=ttttt ezbSav +++= −
−
−

*`
11

2 πε .   if 11 =
−
−tS 01 <−tε , 

and  otherwise. Also, tt hhz )(
~* Ψ= Ψ=Ψ ∂∂ thh )(

~
01 =

−
−tS , where , is evaluated at the values of maximum 

likelihood estimates of parameter Ψ .  The test statistic of the NSBT is defined as the t-ratio of the coefficient b in 
the regression. The value in the parentheses is the p-value of the individual test statistics considered. 
 

Model 4 Model 5 Model 6  
 Full-period Sub-period Full-period Sub-period Full-period Sub-period Statistics 

-0.671 -0.394 -0.631 -0.332 -0.614 -0.341 Skewness of  tv

5.398 4.003 5.151 3.765 5.328 3.483 Kurtosis of  tv

JB-Normality 278.730 
(0.000) 

50.056 229.630 31.622 336.791 32.147 
(0.000) (0.000) (0.000) (0.000) (0.000) 

13.216 17.846 9.494 16.149 9.269 16.870 Q(10) on  tv
(0.212) (0.058) (0.486) (0.095) (0.506) (0.076) 
8.130 10.205 9.711 14.032 9.172 13.257 Q(10) on  2

tv
(0.616) (0.423) (0.466) (0.172) (0.517) (0.169) 
-1.521 -0.849 -1.164 -0.004 -1.397 -0.251 NSBT on  th
(0.129) (0.396) (0.245) (0.997) (0.163) (0.802) 
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