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Abstract 

 

In this paper, we examine whether greater option-trading activity (volume and open interest) is 

associated with greater stock market volatility using a regime-switching GARCH model. We first 

partition KOPSI 200 option volume and open interest into expected, unexpected, and moving average 

components to highlight how differently stock market volatility is related to forecastable option-

trading activity and unexpected (informed) option volume. Next, we classify option-trading activity 

based on moneyness to study how each class is related to stock market volatility. Further, we partition 

stock market into volatile and stable regimes to investigate how informed option traders react 

differently in the option market according to the state of the stock market. Empirical results show that 

informed traders prefer to highly leveraged option in volatile market, while they prefer to relatively 

less leveraged options in stable market. 

 

JEL classification: G12; G14; C13; C53 
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I. INTRODUCTION 

 

The relation between return volatility and volume of stocks has long attracted the 

attention of market participants and financial economists both on aggregate level [e.g., 

Campbell et al. (1993)] and on individual stocks [e.g., Llorente et al. (2002)].  Indeed, 

volatility of financial returns has been the central parameter for most, if not all, financial 

decisions ever since finance emerged as a discipline of study, while trading volume has been 

the most frequently used variable for measuring traders’ activity.  In general, the recent 

literature predicts a recognizable relation between the return volatility and trading volume 

of stock price, suggesting that volume provides valuable information about the behavior of 

returns.  

 

In addition to active research on the relationship between volume and volatility of stock 

price, several studies extend the literature into futures market by investigating the relations 

between trading activity in the futures market and stock price volatility.  For example, 

Bessembinder and Seguin (1992) use volume data as measurement of trading activity in the 

futures market, then they investigate the relations between futures-trading activity (volume 

and open interest) and underlying stock price volatility after dividing the volume into 

unexpected and expected components. The unexpected component of volume is regarded as 

informed trading because the expected component of volume depends on information of 

past data which is open to the market. They report that the expected component has 

negative relation with the volatility, while the unexpected component has positive relation 

with the volatility. Gulen and Mayhew (2000), targeting such countries as US, UK, and Japan, 

also study the relations between trading activity in the futures market and stock price 

volatility. They find that the open interest has negative relation with stock price volatility, 

while the volume does not have statistically significant relationship.  

 

Several recent studies further extend the literature into option market and report that 

option market contains information about the future stock market movements. Varson and 

Selby (1997) examine the lead-lag relations between option prices and equity stock prices of 

underlying stocks. Fleming et al. (1996) show the option prices lead the stock prices and the 

futures prices lead the option prices. Further, Easley et al. (1998) and Chan et al. (2002) 
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investigate whether option trading volume has information about the future stock price 

movements of underlying stocks. Easley et al. (1998) show significant evidence that the 

option trading volume has information about the future stock prices. However, Chan et al. 

(2002) report that net-buy-volume of options has no strong predictive ability for stock quote 

revisions. In addition, Pan and Poteshman (2006) document that the economic source of 

option trading volume’s predictability about future stock prices is nonpublic information 

possessed by option traders, after analyzing the relations between the put-call ratio and the 

future stock price returns,. Similarly, other studies report the relations between the option 

trading activity and the underlying stock market movements. For example, Stephan and 

Whaley (1990) investigate the lag-lead relations between option prices and stock prices and 

option volume and stock volume, respectively. They report that the stock prices lead the 

option prices, but option market precedes stock market in the case of volume. 

 

The main purpose of this paper is to examine further whether greater option-trading 

activity (volume and open interest) is associated with greater stock market volatility. In this 

context, our study contributes to the  literature in two ways. First, we extend the 

methodology Bessembinder and Seguin (1992) applied to the analysis of futures-trading 

activity and stock price volatility into the analysis of option-trading activity and stock price 

volatility. An important innovation of their study is incorporating a well-established 

recognition that there are roughly two different investor groups, namely, speculators and 

hedgers, in futures market. Because most speculators close their position during intraday, 

Bessembinder and Seguin (1992) regard volume as trading-activity of speculators and open 

interest as trading activity of hedgers, typically known as uninformed traders. One group 

(hedgers) trades option to hedge the risk of their underlying assets while the other group 

(speculators) trades option to seek the higher gain by using the leverage effect. In the current 

investigation, we first classify option-trading activity into trading volume and open interest. 

Then, we further classify trading volume into expected and unexpected components. The 

expected component of option volume is forecastable option-trading activity, based on 

historical data, while unexpected component is considered to be trading activity based on 

private information. That is, unexpected component is regarded as informed traders’ trading 

activity.  
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Second, we investigate the relation between each series (to be defined shortly) of option 

volume and stock price volatility using a regime-switching generalized auto regressive 

conditional heteroskedasticity (RS-GARCH) model, in which parameters are different in 

each regime to account for the possibility that the data generating process undergoes a finite 

number of changes over the sample period. There are various option series depending on the 

structure of maturity or exercise price for the same underlying asset. Therefore, for the 

purpose of our investigation, we define an option series as options of the same class (call or 

put), strike price, and maturity. Because each series of options has different class, maturity or 

exercise price for the same underlying asset, trading activity in each series of options may 

have different information and expectation as to the movement of underlying asset. That is, 

each series of options would affect stock price volatility differently in each regime. Therefore, 

we first divide all the options data (to be described in Section III) into several option series 

according to moneyness, and then analyze how differently each series of options affect the 

volatility of stock market price using a GARCH model. Finally, to highlight the linkage 

between the leverage effect of moneyness and regime-changing characteristics of stock price 

volatility, we apply a RS-GARCH model.   The extent that informed traders with private 

information would prefer deep-out-of-the-money option relative to other categories of 

moneyness option would be greater in a highly volatile market because of the highest 

leverage effect. In a stable market, however, informed traders would not be attracted to 

deep-out-of-the-money option because of low delta (the rate of change of option price with 

respect to the change in price of underlying asset).  Our RS-GARCH model confirms such 

heterogeneous relations between each component of option-trading activity and stock 

market volatility based on the states of the economy.  

 

The rest of the paper is organized as follows.  In the next section, we provide a 

description of the empirical methods we use to estimate relations between options-trading 

activity and equity volatility. In addition, we present a RS-GARCH model and discuss how 

it fits into the purpose of our investigation.  In Section III, we discuss our data and present 

the descriptive statistics. Then, we present empirical findings in Section IV.  Finally, Section 

V concludes the paper with a summary.  
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II. EMPIRICAL METHODS 

 

We first construct a detrended option-volume series by deducting the 30-day moving 

average from the original series. We also implement ADF (Augmented Dickey-Fuller) test 

after removing the trend by using 10-day, 50-day, and 100-day moving average so that 

whatever period is used for the test, all of the time series are stationary and do not affect the 

result of main empirical test.  Then, we use ARIMA (1, 0, 1) to divide option volume into 

expected and unexpected components. For the purpose of current study, we further divide 

option volume into each series of options according to moneyness, then again separate each 

series of options into expected, unexpected, and moving average components to analyze 

how stock price volatility is affected by each component. In the case of KOSPI 200 option, 

which is the source of data for the current study, each class of options has four different 

maturities. Among options that have different maturities, we use first month option for our 

empirical test. Let first month option denotes a series of options with less than one month of 

maturity. Next, option series with the same maturity are also divided according to exercise 

price. The moneyness classification is illustrated in Table 1. 

 

[Insert Table 1 about here.] 

 

 

A. The GARCH model 

 

We first use a GARCH (1,1) model modified for the purpose of our investigation to find 

the influence of trading activity on stock price volatility. The model used in this study is as 

follows: 
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In the above model, the dependent variable ty  denotes the rate of return at time t; 

)/ln( 1−= ttt PPy , where 
tP  is the KOSPI 200 index value at time t. tiD ,  is the dummy 
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variable used to control day-of-the-week effects, 
tε  is the residual with zero mean and 

2

tσ of variance from equation (1), 2

tσ  is the conditional variance, and tkVol ,  are the 

unexpected, expected and moving-average components for both volume and open interest. 

Thus, coefficients kγ  show the relations between conditional variance and trading activities 

for each of option series. 

 

 

B. The Regime-Switching GARCH model 

 

In addition, we estimate the relations between option trading activity and stock price 

volatility by using RS-GARCH (1,1) model proposed by Gray (1996) to find the presence of 

informed trading after separating stock price volatility into two states. The model adjusted 

for our empirical study is as follows:  
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We define for each t  an unobserved variable { }nSt ,,2,1 L∈ , which selects the model 

parameters with probability )Pr( 1−ℑ== ttjt jsp  where tℑ  is information set available at 

time t . The function ( )⋅jtp  can be a logistic or exponential link function. This function 

depends on unknown parameters at this stage and is the cumulative normal distribution 

function which ensures that the probabilities are positive and sum to unity. In this way, the 

state probabilities are allowed to be time varying and the dynamics of regimes switching 

probabilities depend on the level of stock returns. Also, if we assume this model has two 

possible states at each period (volatile or stable regime), we could obtain two coefficients 

1,kγ  and 2,kγ  for each kγ .  
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In RS-GARCH model, the conditional variance 2

tσ  depends on state ts  and 
2

1−tσ , where 

2

1−tσ  also depends on 
1−ts  and 2

2−tσ , and so on. Consequently, the conditional variance at 

time t  depends on the entire sequence of regime up to time t . Therefore, there are tn  

possible paths, where n  is the number of states. Assuming normality, the model is 

estimated by using maximum likelihood estimation. To compute the likelihood function for 

the t -th observation we have to integrate over  tn  possible paths. This is really huge size 

to compute it. That is why previous research, e.g., Cai (1994) and Hamilton and Susmel 

(1994), develop regime-switching models in which the conditional variance in each regime is 

characterized by a low-order ARCH process. But, Gray (1996) solves this problem. If 

conditional normality is assumed within each regime, the conditional variance in each 

regime is not path-dependent, therefore, it can be used as the lagged conditional variance in 

constructing 2

1,1 +tσ , 2

1,2 +tσ , and so on.  

There are four possible paths in the current paper since we use two states and a second 

observation. The subscripts show the paths of the regimes. For example, 2

2,1t
σ , stands for the 

conditional variance at time t , given that the process was in regime 1 at time 1−t  and is in 

regime 2 at time t . The current regime at time t  is not dependent on regime of history of 

the process. 

 

Let { }2,1∈ts  denote possible states 1 and 2 at time t . Path 1 is a regime path when 

11 == −tt ss , path 2 is the one when 2=ts  and 11 =−ts , path 3 is the one when 1=ts  and 

21 =−ts , and the last path is the one when 21 == −tt ss .  An illustration of path dependence 

in a regime-switching GARCH model with two states is presented in Figure 1. 

 

[Insert Figure 1 about here.] 

 

We explain the Bayesian algorithm for a RS-GARCH model with two regimes and 

normality of the error term tu . For the case of two regime, the model is given by equation 

(3) and (4), 1=ts  indicating the volatile regime and 2=ts  for the other regime, and a 

functional specification of either tp1  or tp2  (since tt pp 12 1−= ). We specify 
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with 01 <δ . Thus, tp1  tends to 1 as 
2

1−ty  tends to infinity, as required by assumption 

0)( 2

11 >−tt yp  and 1)( 2

11 →−tt yp  as ∞→−
2

1ty  for all t . We assume that the probability that 

1=ts  is strictly positive. This implies that regardless of the state the process is in at time 

1−t , there is always a positive probability that it will reach the volatile state at time t . The 

assumption does not bound tp1  from above, so the process can spend its entire time in the 

volatile regime. Furthermore, it is assumed that the stable process dominates the global 

process in the sense that the process collapses back to the stable regime when a big shock has 

occurred.  

  The model parameters consist of )',( 10 δδδ = , )',( 21 www = , )',( 21 θθθ =  where 

)',( 21 www = is )',,,,,( ,4,3,2,1 kkkkkkkw κλλλλµ=  and  )',( 21 θθθ =  is 

)',,,,,,,,( ,6,5,4,3,2,1 kkkkkkkkkk γγγγγγβαωθ =  for 2,1=k . We denote by tY  the vector 

( )tyyy L21
and likewise ( )tt sssS L21= . The joint density of 

ty  and ts  given the past 

information and the parameters is factorized as 
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(a Bernouilli distribution). The joint density of ( )Tt yyyy ,,, 21 L= and ( )Tt sssS ,,, 21 L=  

given the parameters is then obtained by taking the product of the densities in (8) and (9) 

over all observation: 
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  Since integrating this function with respect to S  by summing over all paths of the state 

variables is numerically too demanding, we implement a Gibbs sampling algorithm that 

allows us to sample from the full conditional posterior densities of blocks of parameters 

given by θ , w , δ , and the element of S .  

 

III. DATA DESCRIPTION 

 

Our primary sample consists of all daily data on the KOSPI 200 index and KOSPI 200 

option from the Korea Exchange (KRX), and the sample period is from January 4, 1999 to 

February 28, 2007. Although the KOSPI 200 option was listed in the KRX on July 7, 1997 for 

the first time, options were not actively traded during the beginning years, and thus we use 

the data traded from January 1999. Figure 2 is the KOSPI 200 Index returns during the 

sample period. As can be seen, the movement of stock market varies widely over time. It has 

been stable for sometimes but also been highly volatile for other times. If the reaction of 

informed traders on the market movement differs from uninformed traders’ at each regime, 

we should expect such a result from our empirical test using a RS-GARCH model rather 

than a GARCH model.  

 

Table 2 and Table 3 provide descriptive statistics on the KOSPI 200 index returns and 

KOSPI 200 option volumes for each of the option series. We use option volume divided by 

1,000. In Table 2, we can confirm that our sample data cannot be modeled by normal 

distribution because Jarque-Bera tests reported in the table reject the normality. Therefore, 

we expect that the variance in our sample data is not constant. In addition, we find that this 

distribution has long and fat tail to the left due to negative skewness. Finally, we find that 

mean and variance of the volumes are much larger than those of the open interests for both 

call and put options. 

 

[Insert Figure 2 about here.] 
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Table 3 provides summary statistics on the KOSPI 200 options for each series of call and 

put option. In the case of call options, we find that the mean and variance of volumes for 

near-the-money, out-of-the-money, and deep out-of-the money options are much larger than 

those of the open interest. To the extent that the open interest is regarded as trading activity 

of hedgers, hedgers trade in-the-money and deep-in-the-money option more actively, while 

speculators trade near-the-money, out-of-the-money, and deep out-of-the money option 

more actively. In the case of put options, we observe that in-the-money, out-of-the-money, 

deep out-of-the-money options are traded more actively in both open interest and volume. 

That is, near-the-money and deep-in-the-money options are less actively traded relative to 

other three moneyness categories. In other words, we are likely to find important piece of 

information, if any, from in-the-money, out-of-the-money, and deep out-of-the-money 

options. In sum, investors reveal their different preferences for moneyness in their option-

trading activity and thus the relations between option-trading activity and stock volatility 

can be different for each moneyness class of options. 

 

[Insert Table 2 and 3 about here.] 

 

IV. EMPIRICAL RESULTS AND THEIR INTERPRETATION 

 

Table 4 presents the result of GARCH(1,1) test modified for our study. The variables of 

this table follow equations (1) and (2). In the remaining tables to be discussed, let 
1γ , 2γ , 

3γ , 4γ , 5γ , and 6γ denote the unexpected component of volume , the expected component 

of volume, the moving average component of volume, the unexpected component of open 

interest, the expected component of open interest, and the moving average component of 

open interest, respectively. 

 

As can be seen in Table 4, in the case of call option, we do not find day-of-the-week 

effects.  The first serial correlation is also not statistically significant. In GARCH model, ω  

means long-term average value, α  shows information about volatility during the previous 

period, and β  shows the relations with the fitted variance from the model during the 
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previous period. The result indicates the conditional mean term (ω ) is not significantly 

different from zero, and the conditional variance is statistically positively related to the 

volatility and fitted variance from the model during the previous period, with 

6002.0,1502.0 == βα . Also, the results for relation between each trading activity and 

stock price volatility are in keeping with our assumption. That is, to the extent that the 

unexpected component of volume is regarded as informed trading, the results indicate that 

the informed trading is positively related to the volatility of stock price. All other 

components of option trading activities with the exception of moving average of open 

interest are either negatively related to volatility or do not have statistically significant 

relations. Estimated coefficients for both of moving average series are significant, again 

indicating that long term variations in activity are relevant for explaining volatility. 

Coefficient estimates on the moving average of option volume is negative and open interest 

is positive. The finding indicates that stock price volatility is negatively related to longer-

term shifts in option volume but it is positively related to longer-term shifts in open interest. 

Also, the unexpected component of open interest gives significant negative coefficients 

even though open interest is regarded as trading of uninformed traders.  

 

In the case of put option, we find the dummy variable for Monday is negatively 

significant, and the first serial correlation is not significant. The unexpected component of 

volume shows positive relation with stock price volatility, while other components either 

have negative relations with stock price volatility or do not have statistically significant 

relations. The fact that the unexpected component of volume has positive relation with 

volatility and the expected component of volume and all of components of open interest 

have negative relation with volatility agrees with our expectation that trading activity of 

uninformed traders is negatively related with stock volatility. 

 

[Insert Table 4 about here.] 

 

Our findings so far show the evidence on whether informed traders take part in options 

market or not. However, further tests may be in order to clearly show where and how they 

take part in options market. As shown in Table 3, option traders prefer to invest in option 

differently according to moneyness of options. Accordingly, we divide option volume into 
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each series of options according to moneyness, then estimate each series of options by using 

a modified GARCH(1,1) model. Table 5 and Table 6 present the results for each series of call 

and put options, respectively. 

 

Table 5 presents the results of call options after partitioning option volume and open 

interest according to their moneyness. The results show all of the unexpected components 

of volume have positive relations with stock price volatility with the exception of out-of-

the-money option. To the extent that the unexpected component of volume represents 

informed trading, the results indicate the evidence of informed traders’ activities on the 

volatility of stock price. In deep-in-the-money option, the moving average component of 

volume is positively related to stock price volatility. The moving average components of 

open interest in in-the-money and deep-out-of-the-money options are also positively 

related to stock price volatility. Unusually, the expected component of open interest in near-

the-money option is positively related with the volatility. Other trading activities show 

either negative relations with volatility or insignificant results. Because we regard the 

expected components of volume and open interest as uninformed trading, the results are in 

keeping with our assumption and the findings of previous research (e.g., Bessembinder and 

Seguin(1992)) that report uninformed trading as having negative or insignificant relation 

with volatility. 

 

[Insert Table 5 about here.] 

 

The results of test for put options are reported in Table 6. Unlike the case of call options, 

the results show that all of the unexpected components of volume have positive relations 

with stock price volatility regardless of the moneyness. In deep-in-the-money option, 

however, the expected component of volume which is assumed as trading activity of 

uninformed traders is positively related to stock price volatility. In addition, some of the 

unexpected and expected components of open interest which are regarded as trading 

activity of hedgers, also have positive relations with volatility. This is an interesting 

economic result because these results do not correspond to our initial expectation. In 

general, the stock index responds to the market more sensitively in downward market than 

upward market. Because of such an asymmetric property of market volatility (Nelson, 1991), 

many individual investors tend to prefer put options to call options. Specifically, typical 

삭제됨: of-
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uninformed traders are individual investors who do not have enough money to invest in 

options and they would prefer deep-out-of-the-money options which have the cheapest 

option premium when other things are equal.  When market volatility increases, these 

individual investors buy deep-out-of-the-money put options, then sell the options 

immediately or hold the option not for hedging but for gaining from the option position. 

The result that the trading activities of open interest are positively related with stock market 

volatility may be the reflection of trading behavior by these uninformed individual players 

in options market. Although some of the uninformed trading has positive relations with 

volatility, most of uninformed trading has negative or insignificant relations with stock 

price volatility.  

 

[Insert Table 6 about here.] 

 

In sum, both Table 5 and Table 6 show the strong evidence of informed trading in options 

market. Specifically, in these tables we can find where and how informed traders take part in 

options market after dividing trading activity into several moneyness components of 

informed trading and uninformed trading. As stated earlier, however, the changes in option 

value respond differently to the movement of underlying stock according to moneyness. 

Therefore, we further investigate informed traders’ trading behavior with respect to option 

contracts that have greater leverage implications in detail. 

 

If there are informed traders having private information, they will particularly prefer deep-

out-of-the-money option due to high leverage effects. Such preference would be more prevalent 

in a highly volatile market. Deep-out-of-the-money option is sometimes referred to as being 

options on volatility since deep-out-of-the-money option has the highest leverage effect in a 

volatile market. In a stable market, however, informed traders would not be attracted to deep-

out-of-the-money option because of low delta, which is the rate of change of option price with 

respect to the price of underlying asset. In other words, although deep-out-of-the-money option 

can have the highest leverage effects in a volatile market, the change of value of that option is 

expected to be mostly insensitive to the change of underlying asset’s value in a stable market. For 

these reasons, informed traders would differently behave in the different states of volatility. Thus, 

we divide the market volatility into two states --- volatile and stable regimes. For example, 

informed traders may prefer to invest in deep-out-of-the-money options rather than other 
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moneyness options due to leverage effects in a volatile market, while they prefer to invest in 

relatively higher delta option than deep-out-of-the-money option in a stable market because 

value of low delta options are not easily changed in a stable market. To capture such 

preferential differences of informed traders, we use RS-GARCH models for our study. 

Specifically, if the unexpected component of volume is regarded as informed traders’ 

activity, it will have positive relationship with stock market volatility, since the value of 

options is high when market volatility is high. Moreover, the positive relationship would be 

stronger in high leverage options when the volatility of market is very high. 

 

Table 7 and Table 8 present the results obtained by using RS-GARCH(1,1) model for call 

option and put option series, respectively. In the remaining tables to be discussed, let 1,1γ , 

1,2γ , 1,3γ , 1,4γ , 1,5γ , and 1,6γ denote the unexpected component of volume, the expected 

component of volume, the moving-average component of volume, the unexpected 

component of open interest, the expected component of open interest, and the moving-

average component of open interest, at a volatile state, respectively.  And, let 2,1γ , 2,2γ , 

2,3γ , 2,4γ , 2,5γ , and 2,6γ denote the unexpected component of volume, the expected 

component of volume, the moving-average component of  volume, the unexpected 

component of open interest, the expected component of open interest, and the moving-

average component of open interest, at a stable state, respectively. And let 
12P  and 

21P  

denote the transition probabilities. That is, 12P  defines the probability that index return will 

change from state 1 in period 1−t to state 2 in period t , and 21P  defines the probability 

that index return will change from state 2 in period 1−t to state 1 in period t .  

 

Table 7 presents results for call option series that are classified by the moneyness and 

incorporates the regime-switching effect of stock price volatility over our sample period. In 

the volatile state, the unexpected component of deep-out-of-the money option shows 

statistically significant positive coefficients. The unexpected components of near-the-money 

and out-of-the-money options also give statistically significant positive coefficients in the 

stable state. When we consider the unexpected component of volume as informed traders’ 

activities, the results indicate that informed traders actively trade deep-out-of-the money 

option in volatile markets, and prefer to trade near-the-money and out-of-the money option 
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in stable markets. These are interesting results. Although deep-out-of-the-money option can 

have very high leverage effects, the value of that option does not get changed much in the 

stable market because deep-out-of-the-money option has very low delta which is the rate of 

change of option price with respect to changes in the price of underlying asset. Therefore, it 

is possible for informed traders to trade out-of-the-money or near-the-money option, whose 

value is changed more quickly than deep-out-of-the-money options, more actively rather 

than deep-out-of-the-money option in the stable market. Informed traders, however, may 

prefer deep-out-of-the-money option in the volatile market even if the delta of the option is 

very low because potentially high leverage effects on the value of option can be expected in 

the volatile market. The result also shows that all the components of volume and open 

interest excluding the expected component of volume are positively related with stock 

market volatility in a volatile market for deep-out-of-the money option. In contrast, for the 

same deep-out-of-the money option, all the components of volume and open interest except 

the expected component of volume are negatively related with stock market volatility or 

have statistically zero coefficients in a stable market. This means that in volatile markets, 

deep-out-of-the-money option is actively traded thanks to high leverage effects and low 

premium without much reference to information which investors have. The results 

obtained from the RS-GARCH model also show most of the uninformed trading have 

statistically negative or insignificant relations with stock price volatility. Only deep-in-the-

money option of the expected component of volume reports significantly positive relation 

with stock price volatility. As stated earlier, moving average series indicate that long term 

variations in activity are relevant for explaining volatility. In volatile markets, moving-

average components of deep-out-of-the-money option of volume and open interest have 

positive relations with stock price volatility. This means that stock price volatility is 

positively related to longer-term shifts in option volume. Other moving-average 

components are negatively related to stock price volatility.  In addition, most of the 

transition probabilities are below 1%, so we know the volatility of states are seldom 

changed. This is in keeping with studies of previous research (e.g., Bollerslev et al. (1992) 

and Lo (1991)) that volatility of stock price is clustering.  

 

[Insert Table 7 about here.] 
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Table 8 reports results for put option series that are classified by their moneyness. The 

results obtained from the test of put option are almost similar to the test results of call option. 

In the volatile state, the unexpected component of deep-out-of-the-money option volumes 

has statistically significant positive relations with stock price volatility. In the stable state, in 

contrast, the unexpected component of near-the-money option volumes has statistically 

significant positive relations to stock price volatility. These results also show that informed 

traders move differently in volatile and stable markets. Results obtained from the tests of call 

and put option indicate that informed traders prefer high leverage option in volatile markets, 

while they prefer relatively high delta option in stable markets. Uninformed trading activity 

found in the expected components of volume and open interest shows negative or 

statistically insignificant relations with stock price volatility. We can interpret the informed 

trader’s behavior in the option market in detail using RS-GARCH model which separates the 

market volatility into stable and volatile states. Results of empirical tests show the informed 

traders react differently to the different states of market volatility and invest differently in 

the option market according to the state of the market.  

 

[Insert Table 8 about here.] 

 

In sum, in all of moneyness options except the out-of-the-money call option, unexpected 

components of volume representing informed traders are positively related to stock market 

volatility before dividing the regimes of different volatility. After dividing the volatility into 

two regimes, however, evidence of informed traders’ trading activities is strongly detected 

in deep-out-of-the-money option in volatile markets and similar evidence is also found near-

the-money and out-of-the-money call options and near-the-money put options in stable 

markets. 

 

V. CONCLUSION 

  In this paper, we examine the relation between  option volume and stock market 

volatility using RS-GARCH model. The rationale behind the use of this model stems from 

the fact that the relationship between option volatility and stock market volatility may be 

better characterized by regime shifts, which, in turn, suggest that trading activities in each of 

the option volume may respond differently between the volatile and stable markets. Because 



 

 

 

16 

the higher volatility is one of the key determinants of the higher option value, we can expect 

a strong interrelation between option trading volume and stock market volatilities. In 

addition, if informed traders are attracted more to options market than stock market due to 

lower transactions cost and beneficial leverage effects, option trading volume may precede 

future stock price volatility. To facilitate the investigation, we first divide option volume in 

terms of moneyness to examine how each option volume affects stock market volatility. We 

further divide the option volume into unexpected, expected and moving average 

components.  

 

Empirical results obtained from GARCH(1,1) models show the evidence of informed 

traders’ behavior in most of option series. To obtain more detailed evidence of informed 

traders’ behavior, after dividing stock price volatility into volatile and stable states, we 

empirically test further using RS-GARCH(1,1) models. Findings from empirical test indicate 

that both cases of call and put options contain informational significance in high leverage 

options such as deep-out-of-the-money option in volatile states. But informed traders invest 

in high leverage options no longer in stable markets. When the market does not move 

actively, informed traders invest in relatively high delta option such as near-the-money or 

out-of-the-money options.  
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FIGURE 1: Path Dependence in a RS-GARCH Model with Two States 
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FIGURE 2: KOSPI 200 Index Return in Percent   
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TABLE 1: The Classification of Moneyness 

Moneyness of Option Criterion 

call  put  

 %)61(/ +>SK  deep out-of-the-money deep-in-the-money 

 %)61(/%)21( +≤<+ SK  out-of-the-money in-the-money 

 %)21(/%)21( +<≤− SK  near-the-money near-the-money 

 %)21(/%)61( −<≤− SK  in-the-money out-of-the-money 

 %)61(/ −<SK  deep-in-the-money deep out-of-the-money 

S  is the price of underlying asset, and K  is the exercise price of options. If we classify option 

volume according to moneyness, we can get 10 different option series for one option class (call 

option or put option for the same underlying asset).  
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TABLE 2: Descriptive Statistics of KOSPI 200 Index Return and Call Option and Put Option 

for Total Option Volume 

 
KOSPI200 
index return 

Open interest 
for call option 

Volume 
for call option 

Open interest 
for put option 

Volume 
for put option 

Mean 0.0005** 1326.2** 3,578.10** 1,292.5** 3,246.1** 

Std. Dev. 0.0004** 840.6** 2,819.00** 827.5** 2,691.6** 

Skewness -0.3066** 0.2513** 0.7063** 0.1238** 0.9095** 

Kurtosis 2.9256** -0.5667** 0.4099** -1.096** 0.8071** 

Jarque-Bera 749.07** 48.13** 181.45** 105.88** 332.14** 

The symbols * and ** denote significance at the 5% and 1% levels, respectively. 
Each option volume is divided by 1,000. 
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TABLE 3: Descriptive Statistics of KOSPI 200 Each Series of Call and Put Option 

call open interest 

 DITM ITM NTM OTM DOTM 

Mean 29.8** 40.8** 135.9** 323.3** 681.9** 

Std. Dev. 39.4** 44.8** 133.5** 278.9** 602.2** 

Skewness 4.2015** 2.0025** 1.4560** 0.7676** 1.0562** 

Kurtosis 36.6838** 6.3385** 2.1531** 0.1618** 0.8188** 

Jarque-Bera 118,793.03** 4,715.24** 1,100.11** 199.88** 430.50** 

call volume 

 DITM ITM NTM OTM DOTM 

Mean 5.0** 42.9** 905.7** 1,506.6** 1,062.9** 

Std. Dev. 10.3** 180.2** 1668.0** 1571.0** 1288.9** 

Skewness 10.2809** 13.7373** 2.9702** 1.2414** 1.6160** 

Kurtosis 179.9601** 243.4889** 9.8330** 1.7580** 2.5006** 

Jarque-Bera 2,751,807.79** 5,035,998.85** 11,069.51** 776.24** 1,400.68** 

put open interest 

 DITM ITM NTM OTM DOTM 

Mean 23.1** 786.4** 36.3** 107.4** 203.3** 

Std. Dev. 40.3** 521.7** 40.1** 102.6** 183.5** 

Skewness 7.0179** 0.2248** 2.3945** 1.4698** 0.9958** 

Kurtosis 83.9840** -0.8881** 7.1772** 2.2708** 0.3657** 

Jarque-Bera 608,119.97** 83.11** 6,244.18** 1,157.27** 343.92** 

put volume 

 DITM ITM NTM OTM DOTM 

Mean 3.8** 1,321.7** 37.0** 716.2** 1,112.9** 

Std. Dev. 10** 1,236.4** 150.3** 1,436.6** 1,283.5** 

Skewness 11.6508** 1.0031** 11.7559** 3.2668** 1.6369** 

Kurtosis 218.7548** 0.7787** 173.5728** 12.5471** 3.3241** 

Jarque-Bera 4,057,252** 388.43** 2,484,245** 16,784.97** 1,825.71** 

DITM: deep-in-the-money; ITM: in-the–money; NTM: near-the-money; OTM: out-of-the-
money; DOTM: deep-out-of-the-money. 
 
The symbols * and ** denote significance at the 5% and 1% levels, respectively. 
Each option volume is divided by 1,000. 
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         TABLE 4: Results of GARCH (1,1) Test for Total Call and Put Option 

  Call Option Put Option 

Variable Coeff. Coeff. 

µ  0.000017* 
(0.0471) 

0.000016* 
(0.0350) 

1λ (Monday)  
-0.000018 
(0.1172) 

-0.000022* 
(0.0333) 

2λ (Tuesday)  
-0.000005 
(0.6836)  

-0.000002  
(0.9002) 

3λ (Wednesday)  
-0.000011 
(0.3514) 

-0.000011  
(0.3040) 

4λ (Thursday) 
-0.000008 
(0.4790)  

-0.000009  
 (0.3838) 

κ  
0.0404 

(0.1224) 

0.0404 

(0.1022) 

ω  
0.0004 
(0.0625)  

0.0002** 
(0.0000) 

α  
0.1502** 
(0.0000) 

0.1500** 
(0.0000) 

β  
0.6002** 
(0.0000) 

0.6000** 
(0.0000) 

1γ ( 410× ) 
0.0001* 
(0.0473) 

0.0002** 
(0.0001) 

2γ ( 410× ) 
-0.0034  
(0.0842) 

-0.0008  
(0.7985) 

3γ ( 4
10× ) 

-0.0002** 
(0.0000) 

-0.0001** 
(0.0037) 

4γ ( 4
10× ) 

-0.0006* 

(0.0148) 

-0.0012** 

(0.0000) 

5γ ( 410× ) 
-0.3560  
(0.1932) 

-0.1360** 
(0.0000) 

6γ ( 410× ) 
0.0001* 
(0.0325) 

-0.0001* 
(0.0492) 

The symbols * and ** denote significance at the 5% and 1% levels, respectively. 
Each option volume is divided by 1,000. 

 

삭제됨: .



 

 

 

25 

TABLE 5: Results of GARCH (1,1) Test for Call Option Series Classified by Moneyness 

  Moneyness 

Variable DITM ITM NTM OTM DOTM 

1γ ( 410× ) 
0.0468** 
(0.0000)  

0.0005** 
(0.0064)  

0.0001** 
(0.0000)  

-0.0001 
(0.3746)  

0.0008** 
(0.0000)  

2γ ( 410× ) 
-0.0632 
(0.1107)  

-0.0008 
(0.1724)  

-0.0030** 
(0.0000)  

-0.0014 
(0.3688)  

-0.0149 
(0.4475)  

3γ ( 4
10× ) 

0.0348* 
(0.0205)  

0.0005 
(0.2313)  

-0.0001* 
(0.0311)  

-0.0003* 
(0.0230)  

-0.0002** 
(0.0000)  

4γ ( 410× ) 
-0.0068** 
(0.0064)  

-0.0054** 
(0.0000)  

-0.0020** 
(0.0000)  

-0.0015* 
(0.0472)  

-0.0005* 
(0.0168)  

5γ ( 4
10× ) 

-12.5300* 
(0.0111)  

-0.0165** 
(0.0007)  

0.0233** 
(0.0001)  

-0.1680 
(0.3479)  

-0.6290** 
(0.0013)  

6γ ( 4
10× ) 

-0.0035**  
(0.0050) 

0.0027** 
(0.0000)  

-0.0019** 
(0.0000)  

-0.0013* 
(0.0424)  

0.0003** 
(0.0000)  

DITM: deep-in-the-money; ITM: in-the–money; NTM: near-the-money; OTM: out-of-the-
money; DOTM: deep-out-of-the-money. 
 
The symbols * and ** denote significance at the 5% and 1% levels, respectively. 
Each option volume is divided by 1,000. 
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TABLE 6: Results of GARCH (1,1) Test for Put Option Series Classified by Moneyness 

  Moneyness 

Variable DITM ITM NTM OTM DOTM 

1γ ( 410× ) 
0.0463** 
(0.0000)  

0.0002**  
(0.0000) 

0.0038**   
(0.0002) 

0.0002** 
(0.0014)  

0.0004* 
(0.0411)  

2γ ( 410× ) 
0.0417**   
(0.0000) 

0.0000  
(0.9669) 

-0.0370**   
(0.0072) 

-0.0013  
(0.3462) 

-0.0076**   
(0.0000) 

3γ ( 4
10× ) 

-0.0895**   
(0.0000) 

-0.0001**   
(0.0000) 

-0.0123**   
(0.0000) 

-0.0004**   
(0.0000) 

0.0001**   
(0.0000) 

4γ ( 4
10× ) 

0.0042  
(0.2664) 

-0.0009**   
(0.0000) 

-0.0152**   
(0.0000) 

-0.0046**   
(0.0000) 

0.0067**   
 (0.0000) 

5γ ( 410× ) 
-0.0361  
(0.5257) 

-0.0455**   
(0.0000) 

-0.9400  
(0.4584) 

-0.0092  
(0.7792) 

0.0418**   
(0.0006) 

6γ ( 410× ) 
-0.0013  
(0.1314) 

0.0001**   
(0.0000) 

-0.0097**   
(0.0015) 

-0.0038*  
(0.0127) 

0.0021*  
(0.0163) 

DITM: deep-in-the-money; ITM: in-the–money; NTM: near-the-money; OTM: out-of-the-
money; DOTM: deep-out-of-the-money. 
 
The symbols * and ** denote significance at the 5% and 1% levels, respectively. 
Each option volume is divided by 1,000. 
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TABLE 7: Results of RS-GARCH (1,1) Test for Call Option Series Classified by Moneyness 

  Moneyness 

 Variable DITM ITM NTM OTM DOTM 

1,1γ ( 410× ) 
-0.0027 
(0.7328)  

0.0000 
(0.9863)  

0.0000 
(0.8714)  

0.0000 
(0.9925)  

0.0001** 
(0.0023)   

1,2γ ( 410× ) 
-1.1904** 
(0.0000)  

-0.1122** 
(0.0000)  

-0.0019* 
(0.0440)  

-0.0071** 
(0.0000)  

-0.6264** 
(0.0000)   

1,3γ ( 410× ) 
0.0855** 
(0.0000)  

-0.0002 
(0.9194)   

-0.0003 
(0.1289)   

0.0002 
(0.3798)   

0.0004** 
(0.0000)   

1,4γ ( 4
10× ) 

-0.0014 

(0.7015)   

-0.0034 

(0.2207)   

-0.0045* 

(0.0395)   

-0.0014 

(0.1688)   

0.0002* 

(0.0230)   

1,5γ ( 410× ) 
-10.4830 
(0.3574)  

0.1467** 
(0.0000)  

0.0408** 
(0.0043)  

0.5504 
(0.2560)  

0.4035** 
(0.0000)  

1,6γ ( 4
10× ) 

-0.0013 
(0.6955)  

-0.0139** 
(0.0000)  

-0.0113** 
(0.0000)  

-0.0059** 
(0.0000)  

0.0010** 
(0.0000)  

State 1: 
volatile 
regime 

1,2P  
0.0025 
(0.2356)  

0.0054** 
(0.0071)  

0.0086** 
(0.0008)  

0.0114** 
(0.0000)  

0.0063** 
(0.0000)  

2,1γ ( 4
10× ) 

0.0022 
(0.4112)  

0.0000 
(0.9951)   

0.0000** 
(0.0050)   

0.0000* 
(0.0479)   

-0.0002* 
(0.0472)  

2,2γ ( 410× ) 
0.5166 

(0.0000)  

0.0362** 

(0.0000)   

-0.0055 

(0.0000)   

-0.0049** 

(0.0000)   

0.8312** 

(0.0013)  

2,3γ ( 410× ) 
0.0182* 
(0.0132)   

-0.0008 
(0.2581)   

0.0001** 
(0.0000)   

0.0004** 
(0.0000)   

-0.0007** 
(0.0000)   

2,4γ ( 410× ) 
-0.0010 
(0.2123)   

-0.0012* 
(0.0365)   

-0.0013** 
(0.0000)   

-0.0010** 
(0.0000)   

-0.0002 
(0.5674)   

2,5γ ( 410× ) 
0.0865 
(0.9710)  

-0.3949** 
(0.0000)  

-0.0702** 
(0.0000)  

0.7973** 
(0.0000)  

0.1395 
(0.5421)  

2,6γ ( 410× ) 
-0.0022 
(0.0070)  

0.0035** 
(0.0000)  

-0.0016** 
(0.0001)  

-0.0053** 
(0.0000)  

-0.0001 
(0.7219)  

State 2: 
stable 
regime 

 

2,1P  
0.0026 
(0.0685)  

0.0057* 
(0.0140)  

0.0207** 
(0.0009)  

0.0228** 
(0.0002)  

0.0050* 
(0.0245)  

DITM: deep-in-the-money; ITM: in-the–money; NTM: near-the-money; OTM: out-of-the 
money; DOTM: deep-out-of-the-money. 
 
The symbols * and ** denote significance at the 5% and 1% levels, respectively. 
Each option volume is divided by 1,000. 
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TABLE 8: Results of RS-GARCH (1,1) Test for Put Option Series Classified by Moneyness 

  Moneyness 

 Variable DITM ITM NTM OTM DOTM 

1,1γ ( 4
10× ) 

-0.0293** 

(0.0044)  

-0.0001 

(0.4505)   

-0.0003 

(0.4129)   

0.0002 

(0.1479)   

0.0000* 

(0.0406)  

1,2γ ( 4
10× ) 

-0.6288** 
(0.0000)   

0.0579** 
(0.0006)   

-0.1463** 
(0.0000)   

-0.0052** 
(0.0000)   

-0.0037** 
(0.0000)  

1,3γ ( 410× ) 
0.1549** 
(0.0000)   

-0.0004** 
(0.0025)   

0.0060** 
(0.0032)   

0.0003** 
(0.1154)   

0.0003** 
(0.0000)  

1,4γ ( 4
10× ) 

0.0060 
(0.1487)   

-0.0004 
(0.3571)   

-0.0061 
(0.0574)   

-0.0079** 
(0.0007)   

-0.0011** 
(0.0000)  

1,5γ ( 410× ) 
4.8483 
(0.0990)   

1.0272** 
(0.0066)   

-57.5610** 
(0.0041)   

0.0764** 
(0.0010)   

-0.0569** 
(0.0000)   

1,6γ ( 410× ) 
-0.0093* 
(0.0202)   

-0.0025** 
(0.0000)   

0.0174 
(0.1003)   

-0.0221** 
(0.0000)   

-0.0009** 
(0.0077)  

State 1: 
volatile 
regime 

 

1,2P  
0.0070** 
(0.0023)   

0.0026 
(0.1142)   

0.0223** 
(0.0000)   

0.0120** 
(0.0002)   

0.0126** 
(0.0008)  

2,1γ ( 4
10× ) 

-0.0008 
(0.3256)  

0.0000 
(0.7746)  

0.0003* 
(0.0107)  

0.0000 
(0.1876)  

0.0001 
(0.4149)   

2,2γ ( 4
10× ) 

0.4549** 
(0.0000)  

-0.0486** 
(0.0000)  

-0.1287** 
(0.0000)  

-0.0083** 
(0.0000)  

-0.0102** 
(0.0000)   

2,3γ ( 4
10× ) 

0.1344** 
(0.0000)  

0.0005** 
(0.0000)  

0.0128** 
(0.0000) 

0.0001** 
(0.0023)  

0.0010** 
(0.0000)   

2,4γ ( 410× ) 
0.0026* 
(0.0032)  

-0.0002 
(0.0951)  

0.0001 
(0.9304)  

-0.0010** 
(0.0025)  

-0.0055** 
(0.0001)   

2,5γ ( 410× ) 
-36.4030** 

(0.0000) 

0.2079* 

(0.0176) 

1.5192** 

(0.0023)   

0.0163** 

(0.0003) 

0.0847** 

(0.0000)   

2,6γ ( 410× ) 
0.0385** 
(0.0000)  

-0.0005** 
(0.0000)  

0.0007 
(0.5901)  

-0.0027** 
(0.0000)  

-0.0196** 
(0.0000)   

State 2: 
stable 
regime 

2,1P  
0.0080** 
(0.0045)  

0.0030 
(0.0720)  

0.0146** 
(0.0002)  

0.0205** 
(0.0008)  

0.0104** 
(0.0025)   

DITM: deep-in-the-money; ITM: in-the–money; NTM: near-the-money; OTM: out-of-the-
money; DOTM: deep-out-of-the-money. 
 
The symbols * and ** denote significance at the 5% and 1% levels, respectively. 
Each option volume is divided by 1,000. 


