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1. Introduction

Hedging derivative assets 15 an important 1ssue i inancial economics. We often dertve the relationship
hetween dertvatives and hedging mstruments by using regression analysis or modeling the GARCH
process. We can hedge dertvatives based on this relationship through these statistical approaches If we
hedge dertwatives which have linear payoffs, such as futures, these statistical approaches are useful tools.
However, when we try to hedge dertvatives which have non-linear payoffs, such as options, or when to
hedge dertvatives whose price changes don’t follow a stationary process, these statistical methods may not
he appropriate. Instead it 15 better to hedge denvatives based on financial models. Although the hedge
result may be sensitive to the selected models, it 15 quite useful when hedging the denvative whose payoff
1z non-linear.

Thiz study compares the empirical performance of hedging methods based on option pricing models
with the performance of hedging methods based on the pricing kernel Since these two classes of hedging
methods are all hased on financial models, we can also examine the empirical pricing and forecasting
performance of each model used for hedge. The pricing model can be dertved if the pricing kernel 13 given,
and we can identify the pricing kernel if the pricing model 13 gven. They have an one-to-one relationship.
Thus, at least theoretically, the empirical performance seems to be same regardless we hedge (price) the
option after estimating the pricing kernel or we hedge (price) the option after estimating the parameters of
the option pricing model Howewer, the empirical performance can be quite different because of many
practical issues when estimating the parameters of pricing models or pricing kernels.

To investigate the pricing, forecasting and hedging performance of the pricing kernel, we define the
functional form of the pricing kernel first and estinate it using financial data. The pricing kemel provides
the information on the mvestors” preference about the payoff depending on the future state. Also, the price
of financial assets 13 determnined in case that the pricing kernel, which 15 the function of the future state, and
the probability model on the future state are given. Ross (1978) presents the hnear waluation operator
which determines the price of asset by dizcounting the fture payoff of asset considering compensation for
the risk. This Ross (1978) study 15 the begimning of the theoretical research on the pricing kernel.

There are many studies which trv to correctly estimate the theoretical pricing kernel A strand of
research considers the pricing kernel as the function of consumption, and estimates it using consumption
data. After Hansen and Singleton (1982, 1983) estimated the pncing kernel using the aggregate 115
consumption data, many studies, such as Hansen and Jaganathan {1991 and Chapman (1997) have
mvestigated the relationship between the asset price and the consumption data. Howewer, this approach has
a defect in that the aggregate consumption data that 15 used to estmate the pricing kernel 15 measured
maccurately and the daily consumption data often doesn’t exist.

On the other hand, we can estinate the pricing kernel using the price or the return on assets without
consumption data through the no-arhitrage approach that doesn’t require any assumption on the investors’

risk preference. Aat-Sahalia and Lo (2000) present the concept of the projected pricing kernel that 15 a



function of the asset return. The projected pricing kernel can be derved by projecting the original pricing
kernel that 13 a function of the state vanables into the space of the asset return. Fosenberg and Engle (2002)
point out that Att-Sahalia and Lo (2000) estinate the projected pricing kernel on a yearly basis, and they
fail to detect any monthly change of the pncing kernel Roszenberg and Engle (2002) assume that the
undetlying process follows the asymmetnc GARCH process, and estimate the parametric pricing kernels
ont a monthly basizs. Pan (2002) ntroduces the parametnic pricing kernel that mcorporate the jutnp process
of the S&P 500 index to determine the option prices. While Att-Sahalia and Lo (2000) or Rosenberg and
Engle {2002} estimate the pricing kernel wnplied by the return of the same asset class, 1e., the S&P 500
mdex and the S&F 500 option return, Chernov (2003) estinates the projected pricing kernel by
stnultaneously considering the return on multiple assets, such as, the 5&P 500 index, individual stocks, T-
hills, and gold futures.

Instead of considering the pricing kernel, another group of research focuses on the form of the option
pricing maodel tself to explain ohserved option prices well and hedge them successfully. Smce the Black-
Scholes (1973) option pricing model, many option prcing models have evolved by relaxing some of the
restrictive assumptions of the Black-Scholes model These models generalize the Black-Sholes option
pricing model by introducing jumyp and stochastic volatility of the underlying process or assuming the
stochastic mterest rate process. For example, Merton (1973) and Amin and Jarrow (19923 models are
stochastic imterest rate option pricing models and Bates (1996a,c) and Scott (199712 option pricing models
can be classified as stochastic volatility jumyp diffusion models. However, more advanced and complicated
option pricing models do not always guarantee greater hedge performance. Bakshi et al {1997 denve the
option pricing model that can allow stochastic volatility, interest rates and jumps. They find that the pricing
performance of option models that simultaneously mcorporate the stochastic volatility and jumyp 1z fairly
good, but the option pricing models that only incorporate stochastic volatility alone show the best hedge
performance.

Some studies mtroduce GARCH framework for option pricing. Duan (1995 develops a GARCH
option pricing formula of which the underlying process follows the GARCH-type process. Using the
locally nsk-neutral waluation relationship, he presents an option pricing formula under the locally risk-
neutral measure (measure () YVung and Zhang (2003) nsist that the exponential GARCH option pricing
model performs better than the ad hoc Black-5Scholes model proposed by Dumas et al (1998) i tenms of
the in-sample valuation and the out-of-sample forecasting!. Heston and Nandi (20003 suggest a GARCH
option pricing model that provides analytical solution for European option pricing and Hsieh and Bitchlken
{2005 confirm the empirical performance of the Heston and Mandi model in terms of explaning the
volatility smile phenomenon. (ZH98 literature T 27F7H=, Yung and Zhang= 2] reference &1

Az we can see above, although there are many studies that mvestigate separately the empirical

! Howewer, they find more complicated exponential GARCH models perfomn poorly relative to the ad hoc Black:
schales model.



performance of option pricing models or that of models based on the pricing kernel assumption, to the best
of our knowledge, this study iz the first attermpt to compare the empirical performance of option pricing
models with the performance of the models based on the pricing kernel under the unified framework To
compare the option pricing model and the model based on the pricing kernel under the same framework,
we adopt the Duan (19957 s GARCH process to describe the dynarmics of the underlying process. We call
it the Duan-GARCH process in this paper and extend the Duan-GARCH process to reflect the asyrmmetric
volatility phenomenon.

The asymmetnic volatility phenomenon 15 based on the empirical regulanty that return and wolatility are
negatively correlated. Posttive and negative return shocks tend to wnply a different magmtude of future
volatility, or the return shocks respond asvmmetrically to the (conditional) change i wolatility, Dlany
papers report this asymmetric volatility phenomenon on the indrvidual stock level or the market mdex level
[Black (1976), Christie (1982), French, Schwert and Stambaugh (1987, Schwert (1990), Camphell and
Hentschel {1992), Duffee {1995)]. They explain the asymmetnc wolatility phenomenon by the leverage
hypothesis or the time-varying nsk premium theory, Bekaert and Wu (2000) suggest the umified
framewotl where these two hypotheses can be tested and Wu (20010 msists that both the leverage effect
and the volatility feedback are the cause of the asymmetnic wolatility phenomenon. After Helson (1991)
develops the asymmetric ARCH process and Glosten, Jagannathan, and Runkle {1993) present GIE-
CGARCH to explan the asymmetric volatility, most studies tnes to exammine the asymmetnic volatility
phenomenon under the extended GARCH framework. They find therr model outperforms other models
that don't accommodate the asymmetric volatility phenomenon. Thus, we incorporate the asyrmmetric
volatility by changing the conditional wariance in the Duan-GARCH process so that the conditional
volatility 15 affected differently by the positive lag error term and the negative lag error term like the GIR-
GARCH process.

In the KOSFI 200 optons market, we dluminate whether there 15 a difference i the empirical
performance between the option pricing models and the models based on the pricing kernel under the
unified frameworl, which 15 the extension of the Duan-GARCH framework. Due to the abundant liquidity
of the KOSPI 200 options, many traders and acadetricians have great interest m this market. The KOSPI
200 options matket entered the world’s top five dertvatives markets m 2000 and took over the top spot in
2001 in terms of trading wolume. The KOSPI 200 options had a volume of 2.4 hllion contracts traded in
2006, which was about five times larger than the trading volume of the Eurodollar futures, which was the
second most active dertvative product that vear.

We estimate the following models using the option data (and the undetlying return data) and mvestigate
the empirical performance of each case. We examine the GARCH option pricing model the GARCH
optiont model based on the pricing kernel assumption and the parametric pricing kernels which directly
assume the functional form of the pricing kernels. We adopt the parametric pricing kernels as Rosenberg

and Engle (2002) models and extend therm.



On the other hand, the pricing kernel can be estimated using only the undetlying return data. 5o we
exatming whether the petformance detenioration of the pricing kernel-based models exsts when we
estimate the pricing kernel using only the undetlying return data mstead of option data. Finally, we check
whether the above models inprove in terms of the empincal performance, compared to the Black-Sholes
model in the extended Duan-GARCH frameworls

B

2. Theory and previous research

2.1. Duan (1995)'s GARCH option pricing model

Duan (1995 proposes the GARCH option pricing model He assumes that the one period rate of
return on the underlying asset 15 conditionally log-normally distributed under the probability measure

F (physical measure). That 15, he suggests the following mean equation of the GARCH{p. o) process.

Ry 1
h—=r+d./h-——h+s  where g|I_, ~N(, under measure P 1
T LR ARSERUCKY ()

S,

. 15 the asset price attimet, 7 is the one period risk-free rate which is constant, 4 is the unit

risk premium and £ 1z the error term which has zero mean and conditional variance, f, under the
probability measure B 1, 1z the information set accwnulated at time t. Duan (1995) also assumes the

error term of the mean equation, &, follows a standard GARCH(p,q) process under measure P The

variance eguation follows.

g P
h=ay+y as,+2 8hy (2
i=1

i=1
where pz0, g=0; @, =0,a,20, i=1,..,9, 820, i=1,.,p.

For the GARCH(p,q) process to becomme a covariance stationary process and have a finite long run

e P )
variance, Z &+ & should be less than 1.
i=1
He defines a pricing measure ) which satizfies the locally risl-neutral valuation relationship with

measure B S, /8, | L, 1z log-normally distributed under this measure ), and the probability

measure () 15 mutually absolutely continuous with respect to the probability measure P defined abowve.

The conditional expectation and variance of the asset return under measure Q follows.

EES iS4 )=" (@
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This locally risk-neutral valuation relationship between measure P and measure O implies that the

mean equation changes like equation (5) under the probability measure Q.

11‘1& =r— %h: +&  where &1, ~ N /) under measure O (%)
t-1
And the variance equation changes like equation (6)
h-at S el A S ©
where pz0, g=0; @, =0,a,20, i=1,..,9, 820, i=1,.,p.
For this GARCH process under measure () to hecome a covariance stationary process and have a

e P ) .
fintte long run variance, Z a1+ 473+ A should be less than 1.

i=1
Mow, we can price European options because we identify the undetlying process under the locally
risk neutral measure {measure ).

For call options, the option pricig equation follows,
CF = B max(S, - K, 0)|4] )
For put option, the option pricing equation follows,

B o U BB (man(K -5, 00| L] (8

¥

where [, 1z the information set at time t.

2.2. Projected pricing kernel and Duan (1995)’s GARCH process

The original pricing kernel 15 the function of the state variable and the projected pricing kernel 15
the function of the asset return or asset payoff Even though they have different functional forms, they
play the same role when pricing financial assets. The projected pricing kernel can be dertved by the
original pricing kemel If we utilize the projected pricing kernel instead of the original pricing kernel,
we don’t have to be concerned about what state variable we should choose and can just use the asset
return or payoff data we can easily get The projected pricing kernel also gives us the similar
implication on the risk aversion implied by the original pricing kernel. Thus, we adopt the projected
pricing kernel instead of the original pricing kernel in this paper.

Equation (9 shows how to derive the projected pricing kernel from the original pricing kernel

P:'r: E:[Mr(zr:- Z:r+1>X:r+1] = Er[Er[Mr(Zr:-an)Xm | X:r+1]] = Er[Er[Mr(Z::-an)l X:r+1]X:r+1]

= E[M, (X, ) Xm]  where M, (X, )=E[M,(Z, 20X, ©



The original pricing kemel M,(Z, 2,0 15 a function of a current state variable (Z,) and a
future state wariable (2, ;) The projected pricing kernel A :(X, w1018 a function of the fiture asset
price (payoff), &, ;. The first equality holds because the asset price at time t, 5, should be equal to

E[M (2, 2, 0%,,,] bythe definition of the original pricing kernel The second equation holds by
the law of the terated expected operation.

By the definttion of the Arrow-Pratt (Arrow(1964), Pratt{1964))s relative risk aversion measure,

we can derive the relative risk aversion measure from the projected pricing kernel

W
" M, (X,
¥, = _j{m ?*—Hl (10}
M:r (‘:{:41:'l
From now of, since we always use the projected pricing kernel instead of the original pricing
kernel, we call the projected pricing kernel the pricing kernel in this paper.

We show how one can derive the pricing kernel when the option pricing model 15 given. The
pricing kernel and the pricing model have a one to one relationship. So the pricing kernel mplied by
the option pricing model varies 1n each option pricing model We start with the case of the continuous
time Black-Scholes option pricing model

Under the Black-Scholes assumptions, the stock price, &, will follow the stochastic process:

dS = pSdft + aSdw where dw is a standard Brownian motion.  (11)

There 1z a riskless asset, B, following the process

B = rBdt (12}
Then the Girsanov theorem shows that the Radon-Nikodym derivative of the risk neutral

probability measure Q with respect to the physical probability measure P will be

i—g:exp[— ;bw(T)—%ygT] where ¥ = —‘H;r {13)

Thus, the pricing kernel, mps 7t under the Black-3choles assumption will be

wrd 1
Mlaggr =€ r£=exp[— W(ﬂ—f"T—E?”zT] (14)

o
Smce ln—r:[fu—%a'z]?+ aw(T), We can dertve that the pricing kernel implied by the
0

continuous tine Black-Scholes option pricing model as a function of the asset (stock) return.
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where =¥ (15)

We apply this technigque to the GARCH option pricing model and derive the pricing kernel implied
by the GARCH option pricing model, which 1z a function of asset return. Even though the Duan-
GARCH process for the option pricing model 15 a discrete time version, we can successfully derive
the approximated pricing kernel using the Radon-MNikodym derivative of the locally risk-neutral
measure () with respect to measure F

If we normalize the each error terms of the Duan’s GARCH process under measure P and measure
) so that they follow a standard normal distribution, the normalized error terms correspond to the

standard Brownian motion of the continuous time case.

g,=——, where ¢ |[,_,~HN{0,1) (18)

v, =

,where v, |[_~N{0,1) (17

S o

g, and v, correspond to the standard Brownian motion.

The Radon-Nykodym dertvative in the continuous time finance framework follows

76T = exp[—fﬁ@dpm —%fﬁﬂ@m} (18)

£ iz the unit risk premium, and A in the Duan’s GARCH option pricing model can correspond

to the & Thus, we can define the Radon-Nykodym derivative in the Duan’s GARCH option pricing

model as equation (19).

T
ZGH(I,T)=exp[—AZ ek—%;!?(?’—r)} where €=~ N(O,1) (19

I=c+l .J’E



3, 1
g, is equalto [ln S—’— r— /1,,4!{??+ Ehl]f‘“@ by the mean equation under measure P

t-1

Thus, the Radon-MNykodym derivative 15 transformed into equation {207,

T 1 : <
ZGH(LT):@‘ZP[_AZ[Rk_r_/lﬁ‘kghk]fﬁ—gf(T—f)} where szlng_k (20

=+l k-1
The pricing kernel iz the product of the risk-neutral discount factor and the Radon-Nykodym
derrrative. Equation (210 shows that the pricing kernel implied by the Duan’s GARCH option pricing

maodel can be derived as a function of the asset return.

mEE V=TI T

_ exp[—r(?—f)— 5 [Rt e Aﬁ+%@]fﬁ—%f(ﬁ’—r}} 1)

lEctl

2.3. The parametric pricing kernel: Rosenherg and Engle {2002)

In the previous section, we show how one can derive the pricing kernel implied by the GARCH
option pricing model Mow, we adopt the Rozenberg and Engle (2002) model to investigate the
parametric pricing kernel of which the functional form iz explicitly modeled. Fosenberg and Engle
(2002) explicitly design a functional form of the pricing kernel and estitnate it using the observed
option data and the generated return distribution of the underlying process. They suggest two
specifications for the pricing kernel One pricing kernel 15 a power function of the underlying asset’s
gross return. We call it a power pricing kernel and the functional form of the power pricing kernel

follows.

M (r:8)=6,, (™ (22)

Since the power pricing kernel just has two parameters, we can easily estimate it And we can

derrve the projected risk aversion factor from the estimated parameter of the power pricing kernel.

The first parameter, & y 1z a scaling factor and the second parameter, & y 15 relative risl aversion as

shown in equation (23). The relative risk aversion varies as the second parameter varies over time.

-k _r M:, (.r'r):g

= _ 23
;Vt r Mr (r};l 1 I: :I

Another pricing kernel 15 the polynomial function of the underlying asset’s gross return. Foszenberg

and Engle (2002) use the generalized Chebyshev polynomial to specify the pricing kemel and we call

g



it as a polynomial pricing kernel It penmits more flexibility in the form of the pricing kernel, but it 15
relatively difficult to estimate and needs some restriction on the return distribution to estimate the

pricing kernel successfully.

M (8= 8, T+ 8,T(ra+86,T

(] 141 T 21 ﬂ(rf')+"'+$N;T

ey where, T,(x) =cos(x cos_l(x]l]l {24}

To estimate these parametric pricing kernels, we need to specify the underlying asset’s return
process. To reflect the asymmetric volatility phenomenon of the underlying return, Rosenberg and
Engle (2002) assume the underlying return process follows the asymmetric GARCH model based on

Glosten et al. (1993,

Mean equation: In(S, /5, ) ~rp, = i +5+85, &L ~N0A) (25)

Varance equation: A, =w+ .::Eef_l + Gk, + dMax(0, —rE':,_l]2 (26)
The wariance equation of this asymmetric GARCH model should satisfy the stability condition to

guarantee the existence of long-run variance.

Stability condition®. w>0,a >0 820,a+820, a+ ;9+1E§ <1 {27

The estimation procedure follows. The first step 13 to estimate the asymmetric GARCH model with
the restriction for the stability condition using the underlying return data.

Mext, we use the Monte-Carlo simulation method to determine the future underlying return
distribution. The one period log return 13 determined by the mean equation of the asymmetric GARCH

model as equation (28)

In(s

t+1

f8)= 7oy FHYE, (28]

Equation (29) shows m-period log return and equation (30) shows m-period gross return,

ln(gﬁm fSr) = Zz’-l,...,w ( 'rf;—lﬂ' + i + I"E::r+z') (29)

S:r+:w "IrS:r =&Ep [Zz'-l,..,w ('rf;—lﬂ' + H + Fpys ):| (ED)
We get the distribution of one period return by generating many one period returns. We can obtain

multi-period gross return distribution by the similar generating procedure. &, 15 extracted from the

T+

normal distribution, N (0, /.0, and the conditional variance, &, 15 obtained during the estimation

3 See Appendix &
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proce dure.

3. Data

3.1. KOSFI 200 options

The KOSPI 200 options market has grown to one of the most lguidity-fluent dertvative markets in
the world. From January 2001 to July 2006, which 1z the sample period in this study, the trading
actiwity at the KOSPI 200 options market 15 best among all derivative markets m the world Table 1
shows the trading volume in terms of the number of contract for the top ten derivative products in the
world during our sample period. As seen in the table, KOSPI 200 options dominate the other top 10
derrratives markets in a view that thewr trading volume exceeds the combined wolume of all other
products i the top 10 list.

The active participation of the domestic mdividual traders 1z another characteristic of KOSFI 200
options market. While institutional traders or foreign traders are the tmajor traders in the most
derrrative markets in the developed countries, domestic mdividual traders are the most active traders
group it the EOSPI 200 options market. The trading activity of the domestic individual traders
explains more than half of the total transaction in this market wrespective of whether it 13 measured by
the number of transactions, the trading volume, or the dollar trading value. For example, the trading
volume of the individual traders 1z the 65 8% (54 8%) of the total trading volume at the vear 2002
(2003,

The great trading actrvity and the unigque market participation rate of each investor type make the
KOSPI 200 options market remarkable. Moreover, we tnay find the empirical results in this market,

which 1z different to other option markets in the world.

3.2. Sample Data

On every trading day, while the KOSPI 200 options are traded until 3:15 p.m.*, the value of
KOSPI 200 index, which 1z the underlying asset of ECOPSI 200 options, iz updated per a minute until
3 p.m. Thus, we make daily data by extracting KOSPI 200 options and the KOSPI 200 mdex at 2:50
p.m. per every trading day to synchronize the option and underlying price.

We use the call rate as the proxy of the one day risk-free rate and calculate the price of short term
risk free bonds with the three month CD91 rate. The dividend wield over the life of each option 15
determined as the present walue of future dividends on the KOSPI 200 index until the option maturity
date divided by the current index level Table 2 reports the descriptive statistics for the daily KOSPI
200 log return. The sample period of the daily log-return of KOSPI 200 index 15 from January, 2001 to

* Source: Korean Financial Supervisory Service (Htp/www fas.or b
* The only exception is the maturity date of option. The KOSFI 200 options are traded until 2:50 p.rm. on that
day.

11



October, 2006, (Three month longer than the option sampling period.)

When we estimate the parameters of the option pricing model or the model based on the pricing
kernel, we select option data with several screening criteria to eliminate data errors and make the
estitnates relighle.

First, we include only the nearest maturity options i our sample because other maturtty options
are harely traded. The trading wolume of the nearest maturity options 15 more than five times larger
than that of the second-nearest maturity options even at the lguidation date of the nearest maturity
option. There 13 no comparison between the trading volume of the nearest and the second-nearest
maturity options at other trading dates.

Second, to be included in the sample, the option price should be greater than no arbitrage lower
bound and it should be laid between 0.03F and 15P Equation (313 {equation (32)) represents the no
arhitrage lower bound for call (put) options.

Meax(S,- D, - ke 77000 (3n)

(r-)

Mepc(Ke™™ ™' = (8, - D, ),0) (32)

S,

A 1z the risk free rate, T 1z

15 the current EOSPI 200 index price, K 15 the exercise price, 7

the option maturity date and [), r 15 the present walue of the lump-sum dividend over the life of the
option.

Third, Black-5holes implied volatility (equation (33)) should be greater than 0.05 and less than
0.95.

Implied volatility= (D, &, — L) T (3%

% 1z the currently observed option price, T 12 the time to maturity and calculated based on the
trading days not calendar days.

Fourth, the absolute value of option moneyness defined as (K/ S, —1) isless than 0.1,

|&/5,-1<01 (34

Finally, we include the trading day only if the number of options series that satisfy the above four
conditions 15 more than eight, because we need enough option contracts to estimate the parameters of
the models on the specific day We extract the option series with the time to maturity closest to 20
trading days and estimate the models on a monthly basis. We can find the option series with exactly
20 days to maturity every month during the whole sample period, which 15 67 months. In other words,

there are 67 months for which the number of option contracts that satisfy our screening criteria 1s

12



enough to estimate the parameters of the models. Table 3 15 the summary of option data that satisfy
the screening criteria. We find the wolatility smile phenomenon in this sample. The Black-Sholes
implied wolatility calculated using ATM options data i3 less than the implied wolatility from [T
options or OTM options data. Figure 1 depicts the six cross sections of call and put option of which
the time to maturtty 13 20 trading days. We pick up the options at June per each year and graph the
option prices against the option moneyness from the year 2001 to the year 2006, This figure shows
that the call option premia decrease with the exercize price while the put option premia increase with

the exercise price.

4. Models for estimation

In this paper, we basically try to illuminate the empirical performance of the option pricing model
and that of the model based on the pricing kernel They are estimated using option data. We adopt the
GARCH option pricing model as the option pricing model and consider the pricing kernel implied by
the CARCH option pricing model We choose the pricing kernels suggested by Rosenberg and Engle
(2002) as the parametric pricing kernels in this study We also compare the GARCH option pricing
model with the Black-Sholes option pricing model in the GARCH framework

On the other hand, since the pricing kernel can be estimated using only underlying return data, we
inwvestigate the empirical performance of the pricing kernels estitnate d without option data.

We examine the empirical performance of the following sox cases.

Case 1. Estination of the pricing kernel using only the underling return data.
Case 1.1. GARCH model for the underlying process.
Case 1.2, Black-Bholes model (in the GARCH framework) for the underlying process.

Case 2. Estitnation using the option data.

Case 2.1. GARCH option pricing model

Case 2.2, Pricing kernel-based GARCH option model

Case 2.3, Black-Bholes option pricing model (in the GARCH frameworlk).

Case 3. Parametnic pricing kernels. (the extended version of Rosenberg and Engle (200200
To fairly compare the performance of each case, we need to set up the unified framework for the
underlying process. We select the Duan- GARCH process as our unified framework and extend it to

reflect the asymmetric wolatility. The extended Duan-GARCH process under physical measure

{measure P follows.

13



Iean equation: IHSS—’— rf;_l = Eﬁ—%h, + &, where &, | I,_l -~ N(':':h;) (35)

-1

WVarance equation: A&, = w+ .::rEf_1+ Sk + 5[MGX(D,—E}_1:|]2 {36)
Stability condition: w >0, @ =20, 820, a+J5=0and a+ ;5’+g =1 (3N

7o 15 the short term risk-free rate which applies from time t-1 to time t. For the extended Duan-

GARCH process to become a covanance stationary and have a finite long run variance, the estimated
parameter should satisfy the stability condition {equation (3700
Option pricing 15 carried out under the risk neutral measure not under the physical measure. The

extended Duan- AR CH process under the locally risk neutral measure (measure ) follows.

. 5 1
Iean equation: 11‘13—‘r P = _Ehz +£ where & [ I~ N0, /) (38)

-1

Variance equation: f =&, + & (£ — /'l\/kz)z + 84+ M0, (5~ /1\/};))]2 (3%

Stability condition™ w>0, & =0, Bzl a+d20,

2‘2
and & +a(1+A)+5 e_T+(1+/12)'1I3(/1):|£1

A
J2r

where @ 1z the cumulative standard normal distribution (40}

Table 4 shows the properties of the estimated standardized mnovations of the extended Duan-

CGARCH process under measure P The standard innowvation series 15 calculated by dividing each

ordinary innovation (&) mto s corresponding conditional standard deviation (JE 1. Figure 2

depicts the KOSPI 200 annualized conditional wolatility implied by the extended Duan-GARCH
process under measure P It generally decrease as time goes by
We explain how to estinate the pricing kernel or the option pricing model and how to measure

pricing, forecasting and hedge performance of the models in each case.

Case 1. Estimation of the pricing kernel using only the underling return data.
Case 1.1. GARCH model for the underlying process.

First, from the underlying return data, we estimate the fixed parameters of the extended Duan-

GARCH process and calculate the conditional wariance series. The parameter set to be estimated iz

& =[wa, 8, 4,8] and the conditional variance senes is { /g1, &=£4+1,2,..,T.

¥ See Appendix A
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We estimate parameters using the masmimum likelithood estimation method assuming the
innovation density, MN(0,% ), is normal density. Even though the true innovation density is non-
normal, Bollerslev and Wooldridge (1992) show the conditions for which this method provides
consistent estimators.

The extended Duan-GARCH process implies the following pricing kernel {equation (417). Az we
show at the section 2.2, we can denve it under measure P The pricing kernel can be calculated given
the estimated parameters and the conditional variance series from time t+1 to time T Since the

conditional wartance and the short rate waries over time, the pricing kernel changes over time.

r
=TT

I T
mE( Ti=e &, Z(:,T) = exp [— > =AY (Rk —Fepr— A@+%kk]f Jh - % A%T—z}}

K=t+1 L=t +1
(41

M (¢ T stands for the pricing kernel implied by the extended Duan-GARCH process and this
pricing kernel applies from time t to time T

Mext, we explain how the pricing kernel explains the observed option price and measure its
empirical performance. We only deal with the call option in this section. The procedure for the put

option 15 similar and straightforward.

J
CME G Ty = Bl (g, T8 % payeff] O %Z[MGH(L‘.,T, 4 &) max(Sy ;- X, 0)}
J=1
1 I FE L .
= }Z[m (.7, ) max(S,RE,T,./) - £,0) |
J=1
r
where R, T, )= exp(D] {{}}1 +A\{E—%hk +€k} (42}
Emt+] i

M Tis the theoretical call option price implied by the pricing kernel at time t, which

matures at time T. The second approximated equality of equation (42) implies that the call option
price 15 calculated using the Monte-Carlo simulation. K iz the exercise price of the option. J 15 the

mumber of simulations and the index | means the walue at the j-th simulation. For instance,

mE T j;@) means the pricing kernel which applies from time t to time T at the j-th sinulation

given the parameter estimates. R(f,T, /) 1z the generated underlying gross retwn at the j-th
sitnulation.
Using the pricing kernel at time t+1, the theoretical call option price at time t+1 can also he

derived in a same manner,
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CYE (1T = Bl +1, T O payaff]  (43)

We measure the pricing and one-day forecasting performance by comparing the theoretical price
and the observed price. Equation (44) {equation {45)) represents the measure of pricing (forecasting)
performance in this study They are the relative pricing errors and we can judge the pricing

{forecasting) performance of a model 15 good 1f this value iz small

pric ; CHEEL (¢ T CM (¢ )| )
Ticin ErTOrimnance measire:
=P cEEeT |

. CHE (¢ 11, )= CY (141, T)
Forecasting performance measure: - {45
CHE E+1,T) |

Finally, we investigate hedge performance. We perform delta and gamma hedge, and compare each
result. We explain the detailed hedging procedure in the later section and qust show how to estimate
option delta and gamna using the theoretical option price in this section. We generalize the Engle and
Fosenberg (1995 methodology, They adopt the finite difference method to calculate the option delta
and gamma. Like Rosenberg and Engle (2002), we assume that there are three possible one-day

underlying price changes. Namely, the underlying price rises or falls by the symmetric size or remains

the same.

g+ E
RS A {46)

&= &
Delta: a(j“_l = I‘/:".:r+1|,5’r+s - I‘/:".:r+1|,3’r—s (47)

agnl 2z

Fet o Cope =2 +C
Camma: ;_,_1 = 415+ t;lw’r 415 -5 (43}
g

t+1

We define the size of £ as the one-day underlying price change when the error term, &,

increases by one standard deviation, /%, . When the error term increases by one standard deviation,

we can calculate the underlying price in the next period using the mean equation of the extended

Duan- GARCH process under measure P (equation {48)).

1
S = oy eEp(re, + Ayfi, - Eﬁzm + .0 (48)

The difference between the underlying price in the next period and current underlying price

lé



determine the size of =,

5= 5,1~ 5, = Slexplry, + Afh, - %km + ) - 1] (49)

The one-day future theoretical call option price given the underlying price in the next period

follows.

Cortirn = Zerti |:m He+T, @mm MM Sy - K, ':'):|

_F [mGH(rH,T; E)Max(s, RE+1,T)- K, D)]

15y

+1

where R(t+1,T) = exp( i [rm_l + A0, - lghk + sk}) (50)

Rt +2

The expectation operator & means the expectation of the time t+1 random variable given

o]

the walue of the underlying price at time t+1. Since the parameter at time t+1 given the value of the

t+1 underlying price, & 1z equal to the constant value, &, in this case, the second equality m

5y 7

equation (50) holds. We already estimate the wvalue of & i the first step. Equation {51) means that

we can calculate the value of O by the Monte-Carlo simulation as previously explained.

F+ 1|5

Sy

17 \
c :EZ[MGH(I+1,T, J; @)maX(S”—K,D)] where S, =S5,RE+LT, /) ()
J=1

Uszing the walue of C:r+1m= we dertve the option delta and gamma as m equation (47) and

equation (48). NMow we can conduct the delta and gamma hedge using the delta and gamma walue.

Case 1.2, Black-5holes model {(in the GARCH framework) for the underlying process.
We measure the empirical performance of the pricing kernel implied by the Black-Sholes model in
the GARCH framework, which 15 estimated using only underlying return data. The underlying process
of the Black-Sholes model in the GARCH framework corresponds to the Duan- GARCH{0, 0) process.
This process has a constant variance while the general Duan-GARCH process has a time-varying
conditional wartance. The underlying process of the Black-Sholes model under the physical measure

(measure P iz expressed by equation (510

O T W S P

-1
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e,=5t where |1, ~ N(O,D (52)

H
o

Under the locally risk-neutral measure (measure ), the underlying process follows.

1
" 11 e T _EJ? ta where & [1, )~ N0, (53)
+-]
v, = 2 where v, | I, ~ N(0, 1) (54)
[y

(H 714 Q-measure B35t A+ B = P-measure?t €8T 2 )

Ezcept that we use the Black-Sholes process (under measure F) for the underlying process instead
of the extended Duan- AR CH process, the entire procedure 15 the same as in Case 1.1,

Mow, we investigate how to estitnate the models and measure the empirical performance of the
models based on the pricing kernel or the option pricing models using the observed option data. To
elitninate the overlap of information due to put-call parity, we estinate the parameters of the models
using only OTM (out-of-the-money) call options whose moneyness has positive values and OTM put

options whose moneyness has negative value.

Case 2. Estimation with the option data.

Case 2.1. GARCH option pricing model.

In this Case 2.1, we estimate the parameters of the option pricing model and investigate the
empirical performance of the model without the consideration of the pricing kernel We adopt the
option pricing model as the GARCH option pricing model for which the underlying process follows
the extended Duan-GARCH process. By minimizing the difference between the theoretical price
suggested by the GARCH option pricing model and the observed option price, we estimate the time-
varying parameters of the underlying process under measure Q.

Under measure O, the extended Duan- GARCH process follows.

¥

) Y 1
IMean equation: IHS_ - {};-1 = _Ehz + é; where § | I:r—l ~ N(':': h:) (55)

-1

Variance equation: fi = w4 a(s | — /1.\/%;)2 + 8h_ + M0, -(£ | — AJE))]E (56)

The log return of the underlying asset can be calculated by the mean equation.

S & 1
In—F=3 I np-sh+d | T
S:, Kot +1 2
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First, we derive the theoretical option price implied by the GARCH option pricing model given the

parameter estimates.

CEET, K = g—gjﬂrm By [max@: EXP(ZT: |:r:f,t—1 - %k‘t + é}}_ X, C')} (58)

Rt

C,GH(T, £ 1z the call option price whose tine to maturity 15 T and exercise price i3 K. We can
calculate this walue using the Monte-Carlo simulation given the parameter estimates and the
conditional wariance series. The parameter 15 determined by minimizing the sum of the square of the

difference between the observed option price and theoretical price by the GARCH option pricing

model. We estimate the parameters using the loss function that is defined on dollar pricing error®.

i 2
min 5[ C - CEE O] (59)

o=l

C‘;f“m 15 the i-th ohserved option price at time t. L 1z the number of option series classified by

the exercize price at time t We estimate ©), =[w,, &, 5,,8,4] at every time t and calculate the

conditional variance sertes {4}, &=£f+12, ., T. The conditional variance series iz calculated

using the extended Duan-GARCH process under measure O during the process of determining the
value of parameter estinates.

Mext, to measure the empirical performance, we derive the one-day future theoretical price given
the undetlying price in the next period. We also can calculate the option delta and gamma using this

value as m equation (47) and equation (48). But we calculate the size of the one-day underlying asset

price change in a different manner. One standard deviation of the error term, &, 15 JA, under

measure O). When the innovation term increases by the size of one standard dewiation, the underlying

price i the next period 15 determined as m equation (607

1
Syl = 4y EX}::-(:?"JPJ - gﬁsm + /A ) (a0}

We set the size of change, £, as the difference between the current price and the underlyving price

change when the underlying price goes up.

% Besides the loss function that is defined on the dollar pricing error, we can consider other loss functions, such
as theloss function that is defined on the percent pricing error or nplied volatilities. When weusethe
pararneters, which are estimated from another loss function, the empirical performance of each case a slightly
bit deteriorate. Christoffersen and Jacobs 2004 insist that it iz more important to maintain the consistency of the
lozs function between estimating and ewaluating the model, rather than the choice of the loss function itzelf
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g=5

t+1

~ 8, = S,[explry, - w\ﬁz )-1] (6D

To measure the empirical performance including forecasting and hedge, we need to derive the one-
day future theoretical price i this case. Egquation {62) shows how to derive it given the parameter
estimates at time t and the undetlying price i the next period. We also can obtain the J-zet of the
generated underlying process under measure Q by the Monte-Carlo simulation. This J-set of the
generated underlying process can be used as the distribution of the underlying return, which applies

from time t+1ta T

-3
Cﬁﬁg{ (T,K):e'“ﬂr E:El |:max( +1‘3XP(Z|:”}¢-1 h.t+§.t:i)_ K:D>:| (62)

Rt +2

Cﬁﬁ'g{ (T, £) is the theoretical call option price implied by the model at time t+1, which matures

at time T and has exercise price K, given the underlying price at time t+1.

o ,,e'gf“ 12[1‘113:{(3” £0)] (63)

=154

Equation (63) shows we can calculate the theoretical call option price by the Monte-Carlo
simulation as previously explained. Sr,_;.- means the {-th generated walue of underlying price at time T

under measure O, given the parameter estimates at time t and the underlying price at time t+1. Now,
as in equation (47 and (48), we can calculate the option delta and gamma because we derive the
current and future call option price implied by the model and determine the size of the one day

underlying price change, £, using equation (1),

Case 22, Pricing kernel-based GARCH option model.

In this case, we still estimate the time-varying parameters using only the obhserved option data like
in the previous case, Case 2.1. But, we dertve the theoretical option price suggested by the pricing
kernel, which 1z implied by the GARCH option pricing model in this case. When the underlying
process follows the extended Duan-GARCH process, we know the pricing kernel can be derved

under measure P as in equation (64).

i?’ri—l 1 1
mGH(f- Ty=eg Z(f-,ﬂ:EXP’[ EZI’}’ k-1 AZ ( & 'rf,ka—l_’%xl"'zg.l;+§;2k]f1f;3k_§ﬂ2(?_f):|
(64)

Equation (65} shows the theoretical value of the call option at time t. It i3 the expected walue of the
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product of the pricing kernel and future payoff under measure P This option price 13 calculate d by the

Ionte-Carlo simulation as previously shown.

CHE(T Ky=EF [mGH(I,T)maX(S, exp(zr: [rm_l + Aoy - %hk + sk}) - K, D)} (65)

F=t+l
We also estimate the time varying parameter set, ®, =[w,, &, 5,,8,,4,] and get the conditional

variance series by solving equation (G6).

min (G - CEF (O] (66)

o=l

Equation (67) iz the formula for the one-day future call option price in this case.

01

= B [m ™ +1.T.0,,, ) Max(S; — K,0) |

15y

=E, [mGH(r+ 1,7, @ e (S, expl Zr" {{}}1 + AJE— %hk + E.'k:i)— K, D):| (67)

Kot +2

mE 41T E 3 1z the pricing kernel that applies from time t+1 to time T. & iz the

=154 54

parameter estimates at time t+1 given the underlying price in the next time period. To compare with

other cases in a consistent manner, we replace © with ®), which is estimated at time t. In

4|5
other words, we use the parameters of the pricing kemel estimated today (time t) for obtaining the
pricing kernel at the next date. Now we calculate the pricing kernel at time t+1 using the estimated
parameters and the conditional variance senes in a similar manner with equation (64,

Using the generated distribution of the undetrlying process, The one-day future call option price
can be calculated given the pricing kernel and the underlying price at the next date (e t+1). The
procedure for measuring the empirical performance using the current and the next theoretical call

price 15 stmilar to the previous cases and straightforward.

Case 2.3. Black-5holes option pricing model in the GARCH framework.

We examine the discrete time wersion of Balck-Sholes option pricing formula in the GARCH
frameworl. This 15 a kind of benchmark casze for the GARCH option pricing model. The underlying
process of the Black-Sholes model corresponds to the Duan- GARCH(0,0) process which has no lag-
error term and no conditional variance tenm i the variance equation of the GRACH model Equation
(68) represents the underlying process of the Black-Sholes model in the GRACH framework under

measure ).
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1
— Py =- Eaﬂ +& where & |1, ~ N(0,0%)  (68)

v Gy~ NOD (63)
o

Equation (69) shows that the normalize error 13 distributed as standard normal
The parameter to be estimate 13 just & in this case. The whole procedure for estimating and
evaluating 1s similar to that of Case 2.1 (the GARCH option pricing model) except that the underlying

process under measure O has been changed mto equation (68).

Case 3. Parametric pricing kernels

We investigate the parametric pricing kernels that have explicitly functional forms in this case.
Instead of using the pricing kernel implied by the undetlying process like m Case 2.2, we adopt two
parametric pricing kernels suggested by Eosenberg and Engle (2002). But we assume a different
process for the underlying process. While Roszenberg and Engle (2002) model the underlying process
as the simple asymmetric CARCH model like Glosten et al {1993), we adopt the extended Duan-
GARCH process to compare it with other cases under the unified framework

First, like in Case 1.1, we estimate the constant parameters of the extended Duan- GARCH process
under measure P using only underlying return data. Then we generate the return distribution based on
the parameter estimates and the conditional wariance series.

Second, we estitnate two parametric pricing kernels by minimizing the theoretical price given this
generated underlying return distribution under measure P and the observed option price (equation
{7003, The specification of the power pricing kernel 15 equation (713 and that of the polynomial pricing
kernel 15 equation (72). We transform the polynomial pricing kernel to guarantee it always has

positive value.

2

nyni(cﬁ‘m -cF@)

f
Power pricing kernel: M (r,,, &)= 5,'3;(!;+1)_F" {71}

Folynotmial pricing kernel:

M'(ry:8) = 8, T yexp [ B, T () + 8, T )+ 48, T ()]

where, T, (x)=rcos(n cos_l(x]l]l (72
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& stands for the parameter set of the pricing kernel In the case of the polynomial pricing kernel,
the domain of the inverse Cosine function should be [-1,1]. S0 we impose the restriction on the

underlying return distribution when we estinate it We set the generated return at time t, 7, to be

inside the interval [a2,5] and define the x as equation (73).

X=(2r—a-bib-an (73

We set the generated underlying return domain for the polynomial pricing kernel equal to [-30,
30%]" in this study. The remaining procedure for deriving the current and future theoretical price is
similar to that of case 2.2 except that we use the parametric pricing kernel estimates in this case. We
can tneasure the empirical performance in a same manner. In addition, we mmvestigate how the
empirical performance changes if we impose restriction that the pricing kernel exactly calihrates the

short term bond price as in Rosenberg and Engle (2002).

5. Empirical Results

In this section, we present the parameter estimates and the empirical performance of the models 1n
each case. We report the pricing, forecasting and hedging results as the empirical performance. In
each case, we estinate the parameters of the pricing model or the pricing kernel on a monthly basis,

Since there are 67 months ih our sample, we measure the empirical performance 67 times in each case.

5.1. The parameter estimates

Tahle 5 shows the descriptive statistics of the parameter estimates in each case. We estimate the
extended Duan- CARCH process using the underlying return data i Case 1.1. The delta coefficient
that catches the asyminetric wolatility phenomenon 15 significantly estimated. We estimate the time-
varying parameters of the models using option data in Case 2. We report the time-series mean, median
and standard deviation of the estitnates over 67 months. We present the titne-series mean, median and
standard deviation of the pricing kernel parameter estimates over 67 tmonths 1n Casze 3 (Panel C). (4
and (C7) of Panel C shows the descriptive statistics on the parametric pricing kernel estimates and (B)

and (I} of Panel C show the estimation results when we impose the bond pricing restriction. As we
can see in (B, the variation of the scaling parameter (5‘0;} 1z wery stnall compared to (A) which 15

estimated without the bond pricing restriction. This 15 because the scaling parameter 15 determined to
exactly fit the short term bond price in (B).

Figure 3 compares the variation for the estimated parameter values of the Duan- GARCH based

" Rosenberg and Engle (2002) restrict the return dotmain [-10, 10%%]. Ow caseis more general,
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models (Case 1.1, Case 2.1, and Case 2.2). Since the parameter of the Case 1.1 15 constant, we can’t
detect any movement of parameter in Case 1.1, Except the unit risk premium parameter, A, all other
parameter estinates of the GARCH option pricing model (Case 2.1) and the pricing kernel-based
CGARCH option model {(Case 2.2) move similarly as time goes by While the A estimates of the
CARCH option pricing model 15 relatively stable, that of the pricing kernel-based GARCH option
model swings.

Figure 4 graphs the movement of parameter estimates of the parametric pricing kernels. We

compare the variation for the parameters estimated with and without bond pricing restriction. We can

see that the scaling parameter (&) ;:I of the power pricing kernel estimated with bond pricing

restriction remains stable around 1. The risk aversion parameter (&) ;:I shows greater variation as time

goes by, The risk aversion parameters estimated with and without bond pricing restriction move

sitnilarly. This 1z hecause there 18 no reason for the drift of risk aversion change substantially even if

we suppose hond pricing restriction. Three parameters (&) s &, ; &, ;:I of the polynomial pricing kernel

remains relatively stable before the year 2004 and swing after the 2004 year. This pattern 15 seemingly

detected in the case of the risk aversion parameter of the power pricing kernel

5.2. The pricing and forecasting performance

Az previously explaine d, we tmeasure the pricing performance by comparing the current theoretical
option price suggested by the model with the currently observed option price and measure the
forecasting performmance by comparing the one-day future theoretical option price suggested by the
model with the ohserved option price in the next period We evaluate the performance the across

option toneyness. We define the OTM (ITMD option as the call option for which moneyness

(K15, -1) is closest 0.05 but greater (lesser) than 0.05 and choose the call option for which

moneyness (K S, —1) iz closestto 0 as in the ATM option.

To examine not only pricing performance but also one-day forecasting and hedge performance m a
consistent mannet, the OTM (ITMD option in the current day and the OTM (ITM) option m the next
day should be the satne option series. Mamely, they have same exercise price. If we can’t find one
day’s OTM (ITM) option in the sample of the next day, we select that day’s OTM (ITM) option
again. We redefine the OTM (ITM) option as the call option for which moneyness (K/S, -1} is
closest 0.05 but can be lesser {greater) than 0,05 We can always find the ATM option defined above
in the sample on the next date. 5o we don’t have to think about this 155ue i the case of ATM options.
While we can always define OTM option following above method, we can’t select suitable ITM
option for 2 months during our sample period.

Tahle & shows the pricing and forecasting performance of each case using the following measures,
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the average and dispersion of the relative pricing and forecasting error. If these values are small, we
can understand the option pricing model or the pricing kernel based model price and forecast well
Pricing performance measures follows.

CMM(;‘.,T)—CM(LTJ CM&E(f,ﬂ_CM(f,ﬂ
St D std [moxl St U (74)

menn [1UUX

Forecasting performance follows,

Judoded Skt Jdr el Jdmr Kt
CHEE1T) - O e T mDX|C +LT)=C 1L TY|) oy
MR s 1T | e e 11 Ty

menn [1UUX

We evaluate the empirical performance based on the average walue of abszolute pricing and
forecasting error over the whole sample period. When we use option data, the pricing and forecasting
performance 1z much unproved compared to using only the underlying data. When we estimate the
pricing kernel only using the underlying return data (Case 1), the performance of the extended Duan-
GARCH process (Case 1.1) iz far better than that of the Black-Sholes underlying process (Case 1.2).
This tmay be because the time-varying conditional variance describes the characteristics of the
underlying process hetter than the constant variance assumption. The pricing  (forecasting)
performance of BS models (Casze 1.2) shows greater variation across option moneyness commpared to
the performance of GARCH model (Case 1.1). This relates to the wolatility smile phenomenon when
we use Black-Sholes approach.

However, when we use the option data, the Black-Sholes option pricing model (Casze 2.3) shows
the best the pricing and forecasting performance for ATM options. Of course, the pricing and
forecasting errors of the Black-Sholes option pricing model shows relatively larger dispersion than
other cases considering the standard dewiation This may be because the stability on the pricing and
forecasting ability of the constant wolatility model 1z relatively low A slight bit poor pricing
performance for OTM and [T options still relates to the volatility smile phenomenon when we use
Black-Sholes approach.

Under the GARCH option pricing model framework, we find the model bazed on the pricing
kernel (Case 2.2) shows slightly better performance than the option pricing model (Case 2.1) except
for the ITM option. These models perform better than Black-Sholes option pricing model when
pricing and forecasting the OTM option of which liguidity iz very fluent compared to ATM or [T
options. Although we derive the pricing kernel with approzimation (Case 2.2), itz pricing (forecasting)
performance 15 gquite good.

When we price (forecast) the options using the parametric pricing kemels (Case 33, the
performance 1z farly improved compared to other cases. They seem to fit the observed option price
well because the parametric pricing kernels have flexible functional structure. Or this 15 because we

model the underlying process and the pricing kernel separately and estimate them using the
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underlying data and option data each. This may provide more accuracy®.

Furthermore, the pricing { forecasting) performance of the polynomial pricing kermel, which has a
more complicated functional form than the power pricing kernel, is remarkable. It prices (forecasts)
pretty well on average and the small dispersion of the pricing and forecasting error means that it
prices (forecasts) m a stable manner.

The pricing (forecasting) performance for OTM and ATM options worsens if we impose the
restriction that exactly calibrates the short term bond price on the pricing kernel as i Rozenberg and
Engle (2002). However, while the degree of deterioration 15 large in the case of the power pricing
kernel, the degree of deterioration 1z wery stnall in the case of the polynomuial pricing kemel, which
has relatively flexible functional form Furthermore, the pricing (forecasting) performmance on [T
options 15 rather enhanced with the short-term bond pricing restriction ((¥This result may he

attributable to the fact that the liquidity of ITM options is not abundant. parameter =3 2] ITM
option AFR & 0] E5HA] 4%t (because of put-call parity, Rosenberg and Engle(2002) A=),
o2t pricing Y O bond-pricing AleF £H SF|AAFE LY FREAA] ol Bt Aoly,
olAdx HAHol 3+ A E2 WA Y "o ITM 4% S AEE] A ahe

ZAZE ¢l=7tr ol HMEZ obd® ITM ol iEF pricing 3= hedge  section®HE
ddS A MHE =3 2doh)

5.3. The hedge performance

We measure the hedge performance by creating hedge portfolio for a 100 point position in OTH
call options hecause we want to fawrly evaluate the hedge performance for each month during the
whole sample period. For example, let’s assume the OTM call option price 15 2 points i January and
2.5 points in February Then we hedge 50 options in January and 40 options in February, We define
the OTM option and the ATM option i a same manner as in the previous section (section 5,27

The hedge performance 15 evaluated by the following hedge methods. First, we conduct the delta
hedge using only the underlying asset. Second, we also conduct the delta hedge but using only the
ATM call option. Third, we conduct the gamma hedge using the underlying asset and the AT call

option simultane ously.

Hedge method 1: Delta hedge using the stock index portfolio
Hedge method 2: Delta hedge using the ATM call option
Hedge method 3: Gamma hedge using the stock index portfolio and the AT call option

® In contrast to Case 3, we estimate the parameters of underlying process mplied by option data in

Case 2.
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When we define the hedge error and measure hedge performance, we follow the convention of
Bagchi et al {1997, The hedge error iz defined as the difference between the OTM option price and
the walue of our hedge portfolio. We report the average and standard dewviation of the hedge error

senies, and the average and standard dewiation of the absolute hedge error series.

ﬁif—f(ﬁ+£&f), sm’(H(r+££r)),$§|H(r+mr)|, std(| HE +1A8)])

i-1

where [=12, M-1M=(T-£)/M {78)

The H(f+[A¢f) stands for the hedge error at time f4+JAf. T is the end of time period We
examine the one-day hedge error A¢ 15 equal to 1 in our study Among these measures, we
especially have interests in the last two hedge performance measures. If they have small value, we can
judge the hedge performance as being good. We explain how we can hedge when we are 1 a long
position of one OTM call option. If we want to hedge for the 100 point OTM call option long posttion,
we can just hedge for call options whose amount iz determined by dividing 100 points by the current
OTM call option price.

We define the notations first. O 1z the OTM call price that 1z ohserved at time t. F 15 the

oI

15 the position on the underlying asset at time t and  w 15 the

value of portfolio at time t. w 4 3
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position on the ATM call option at time t &, 15 the amount that 1 invested o the money market

account. A iy I and T7

omer Dames 1 omey amey e option Greeks calculated by the finite difference

method as previously shown, 7 15 the continuous compounding risk-free rate and A¢ i3 the time

interval (one day). The detail hedge process for each hedge method follows.

Hedge method 1: Delta hedge using the stock index portfolio

F,, the value of portfolio at time t, 15 defined as equation (77). Since the delta value of the hedge
portfolio should be equal to the OTM call option delta value (ﬂﬂm;}, we set Wy, as ﬂamr;-

B=w, 8+ X, =hon S, +X, (77

X,

, 1z determined so that the OTM call option price, & 0T s 1z equal to hedge portfolio value £

at time t. At the next date, the value of hedge portfolio follows.

Bo=Bome St X, explr,hr)  (Ae=1250)  (78)

t+1 QIR 1+l
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We define the hedge error as the difference between the OTM call option price which 15 ohserved

at the market and the value of hedge portfolio at this time step.
Hedgeerror=£F,,-Copeny 79

Hedge method 2: Delta hedge using the ATM call option
Equation (800 shows the hedge portfolio walue at time t &, 15 also determined so that the OTM

call option premium, O 0T s 1z equal to hedge portfolio value £ attimet

B=W e Coamas + X, (30)

The delta walue of the hedge portfolio should be the same as the call option delta value (‘ﬂam;:’-

Thus w 1z determined by equation (31).

A}

A W b (31)

amey — WiamneySame

The value of hedge portfolio on the next day follows.

E

4

1= W_gm;cxm;u + X, exp(rfﬂ.ﬁ} (82

We define the hedge error as i equation (79).

Hedge method 3: Gamma hedge using the stock index portfolio and the ATWM call option

F, the walue of portfolio at time t, 15 defined as equation (83) m the hedge method 3.

F=wy 8 +wn, Cume, T4, (83
We decide the position in the underlying asset, Wy, and the position in the ATH call option using

equation (84) and (85) because the delta and gamma walue of the hedge portfolio should be equal to

the OTHM call option delta and gamma value.

ﬂamr; = w5;+wﬁm;ﬂﬁm; {84

=W I

I A 4TS 2 (85)

oI

The value of hedge portfolio on the next day follows.
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Ea= WS’,SHI +W_.gm;c_.gm;+1 + 4, exp(Rfﬂ.t) (BA)

We also define the hedge error as in equation {79).

Table 7 shows the empirical results on the hedge performance of each case evaluated by each
hedge method. We evaluate the hedge performance based on the mean and standard dewiation of
absolute hedge errors. When we use option data (Case 2 or 3), we find the hedge performance iz
generally improved compared to when only the underlying data 15 used (Case 1. But the degree of
improvement 15 not so remarkable compared to the pricing (forecasting) performance cases.

(hedeeS T T+  pricing® 22 underlying® AFEsH Y £33 Az Aokl
(Lhika] 71 = Ay 3A] B @geoh £7HE 483 ol fE FYHol A=A

When we estimate the pricing kernel only using the underlying return data (Case 1), the hedge
performance of the extended Duan- SARCH process (Case 1.1) 1z still better than that of the Black-
Sholes underlying process (Case 1.2) like the pricing (forecasting) performance. We may attribute this
result to the fact that the time-varying conditional variance describes the characteristics of the
underlying process better than the constant variance assumption.

In the three Case 2 models (Case 2.1, Case 2.2, Case 2.3,), the hedge performance of the pricing

kernel-based GARCH option model {(Case 2.2) 15 better than the performance of the GARCH option
pricing model (Case 2.1) when we conduct the delta hedge with the ATM options but we find the
opposite result when we conduct the gatmma hedge. Unlike result of the pricing (forecasting)
performance, these two models (Case 2.1 and Case 2.2) show a greater hedge performance than the
Black-Sholes option pricing model {Case 2.3) regardless of the chosen hedging method But, the
difference of the hedge performance 15 not so remarkable among these cases.
(@ g2 2Ye A7 Ao guHoR dus 2 doz gHA dU ¥ LB
Zot= Caze 22b0lollAd #Hl 2 dabe] F Fol7t g A2z uednh 25 H O
Agst 29 £2RT O o 22 oA o ZEoH AEF Black Sholsss discrete
time version{under GARCH{0,0) framework) o] 2tA I ZFe ojof] tish 7 ¢l dE?)

Comparing the hedge performance of the parametric pricing kernel models (Case 3) with that of
the models under the extend Duan-GARCH option pricing model framework (Case 2), we have a
different conclusion depending on the hedge method we use. For mstance, for the power pricing
kernel, while the hedge performance iz slightly improved 1n Case 3, if we conduct the delta hedge
using the underlying asset, it deteriorates if we evaluate the hedge performance by the gamma hedge
result.

The hedge performance of the polynomial pricing kernel 15 much better than that of the power
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pricing kernel when we conduct the delta hedge with the AT call option and the gamma hedge. And
the hedge performance of the polynomial pricing kernel 13 dominant over the performance of the
power pricing kernel when we impose the short tertmn bond pricing restriction ((B) and (D) 1n Panel C).
This result contrasts with Fosenberg and Engle (2002). They msist that the power pricing kernel 15
superior to the polynomial pricing kernel in terms of the hedge performance.

Az we show in the previous section (section 5.2), the pricing (forecasting) performance for OT
options worsens if we mnpose the restriction that the pricing kernel exactly calibrate the short term
bond price. Howewer, the hedge performance sometimes improves depending on the hedge method
For example, when we conduct the gamma hedge, the mean of absolute hedge error 13 9.539 of we
estimate the power pricing kernel with bond pricing restriction and 13251 if we estimate the power

pricing kernel without restriction.

6. Concluding Remarks

Cur paper nvestigates the empirical performance of the option pricing models and the pricing-
kernel based models in the unified framework We use KOSPI 200 option price andfor KOSO0T 200
return to estimate the option pricing models and the pricing kernel-based models. We compare the
pricing and forecasting ability across option monevness and examine the hedge performance using the
three different he dge methods.

The models estimated using option data are far better than the models estimated using only the
underlying return data in terms of the empirical performance. The parametric pricing kernels generally
outperform the GARCH option pricing models and the pricing kernel-based GARCH option models,
of which the hedge performance iz dominant to the Black-Scholes model under the GEACH
frameworl

While the pricing and forecasting performance across the models are prominent, the hedge
performance shows relatively less difference among the models. We conclude that the empirical

evidence on the performance of the models 13 mixed in the KOSPI 200 options market.
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The pricing and forecasting performance across the models i3 prominent.

Appendix A

Duan (1997 introduces an augmented GARCH(L, 1) process that can mclude many GARCH type
models and derive the stability condition to guarantee the existence of the long run variance of the
GARCH model We can derive the stability conditions of the GARCH class process used in this paper
through the stability condition of the augmented GARCH process. We show how one can derive the
various GARCH type models from the augmented GARCH process and how the stability condition

can be determined. We assume that error tertn follows standard MNormal distribution.

Augmented GARCH(1,1)process.
(I)Mean equation: X, = &, +-\/’§5} where & |1, ~ N0, 1)

(2)Variance equation: @, = & + 4,4 At £, 1

B = |Ad,— A+, ifA=0
| eplg-D,ia=o0

éu =a +a |r'3':r—::7|'tF + &, max(0,—(& -7
&, =& fe |, & +a, fmax(0, (g, -, &)

/4

{5tability condition
Agsurningthat @ =0, @, 20 a, +a, =0,
(a) @) + @, & Da‘, —r:|ﬁ:|+ &K [max([l',—(a, — r:))":l =1 if @, >0 or a=0

) a, <1 of ay=a;,=0

Nested GARCH Models
1. GARCH (1,1)

A=1lec=05=2a=0a =0,a,=0,a =0,a 20,a, =0
{1"Variance equation
By =Gy + ok + &2;3:-15:?—1

{215tability condition

3l



Using the fact that, E[Ef] =1, we can derive, @ +a, =1 °

2.NGARCH (1,1)

A=18=2a=0a=0a=0a =0,a 20,a, 20
{1"Variance equation

By = Gy + @l + @y (8, - )

{215tability condition

a+a, 1+ =1

3.GJR-GARCH (1,1)

A=1lec=0,6=2a,=0a=0a, >0, 20,a 20,a+a; 20
{1"Variance equation

By = G+ G + by 5+ Gl max(0,- £, )

{215tability condition

.::r1+.::r2+%a:z3 =1

4.GIJR-NGARCH (1,1)
/1: 1J§= 21&4 = D,ﬂfj = D,ﬂfn }D:'ﬂ:i ED:‘IE ED,% +'ﬂ:3 ED
{1"Variance equation

he=ag t @b +ah (6, — )+ ahy,  max(0,—(g_ - e))’
{215tability condition

@+, Bl|g, — cf 1+ e, Blmax(0,— (g, - c)*1 =1

—a+a,(1+c )+ a _L o7 +(1+r:2)¢?'(r:):|£1

J2r

{proof)
Let X =g where & ~ N(O1)

B[X]=0, B[ X*]=1, and @(c):fmf(x)aix:fmﬁe_%dx

@+, Bl X —c)' 1+ e Elmax(0,c — X)*]

® The strict condition, & + &, <1, guarantee the existence of stationary variance
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ot (et c:r3[r:2_[; Feoe—2c_xfGodes [ 5 f(x)dx]

:cr1+cr2(1+r:2)+a:3[%e_%+(1+62)®(c):|
i)

The second equality holds by the mnte gration by part,

rxf(xm_[x(—reﬂ)} o — F
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Table 1. The World's Top 10 Derivative Contracts
This table shows the ten most active dertvative contracts, measured in millions of contracts from the
year 2001 to the vear 2006. The rank 15 determined based on the trading wolume of the year 2005
hecause the rank of the TIIE 25-Day Interbank Rate Futures, which 15 5th at the vear 2006, 15 below
20th before the year 2002

Rank Contrac 2001 2002 2003 2004 2006 2006
1 KOSPL 200 options, Korea Exchange 233 LBBOB0 283770 252180 2,53320 241442
2 Eurodollar Futures, CME 184 2021 2088 2976 4104 0208
3 Euro-Bund Futures, Eurex 178 191.3 244 4 2398 2093 31989
4 1C-year T-Mote futures, CBOT 276 038 1465 19561 2151 25557
2 E-rnini S&P500 Index Futures, CBOT 3984 115.7 1el2 1672 2071 25793
5] Eurodollar Options, CMWE BB.2 166 1008 1a0a 1&8 26606
7 Euribor Futures, Euronex|liffe 911 105.8 137.7 157.8 1867 20209
& Euro-Bokl Futures, Eurex 0.6 114.7 1501 15392 1383 lar3l
a Euro-Sdhatz Futures, Eurex A2.6 108.8 1174 1229 141.2 1532
10 0 BEuro Stoex 50 Futures, Eurex 318 5654 116 1217 140 21351

Source: Futures Industry Association ChttpVerwrw. futuresindustry. org)
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Table 2. KOSPI 200 daily log-return descriptive statistics

The sample period of the daily log-return of KOSPI 200 index 15 from January, 2001 to October,
2006, (Three month longer than the option sample period) The annualized mean and annualized
standard deviation 1s percentage value. We report Jarque-Bera (1980) test statistic and p-walue for the
normality test.

Mumber of observations 1441
Annulized mean 17.577
Annulized std. dev. 20.687
Skewness -0.356
Kurtosis b.844
Jarque-Bera test statistics 917.816
larque-Bera test p-value 0.000
Sum 1.025
Sum sq. dew. 0.415
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Table 3. Summary of option data that satisfy the screening criteria

We extract our sample data from the cross-zection of options per every single month to estimate the
parameters of the models. The time to maturity 15 20 trading davs. In our sample, there are 67
estimation dates. When we estimate the parameters of the model, we use only the OTM call
(moneyness iz greater than zero, K/St-1==0) and the OTM put {monevness 15 less than zero, K/5t-1<0)
among this sample data.

moneynessikys-1) |Cal| options Put options
From To Mo. of observation  price  implied vol. Mo. of chservation  price  implied vol.
-01 -0.06 78 9.001 28.21 110 0754 30.08
-00e -003 B3 65687 24.65 59 1512 2872
-0.03 0 51 4.217 24.62 B2 2620 28.10
0 0.03 57 2546 2516 B 4338 2844
0.03 0.06 g8 1.397 25.08 B& GB35 29.02
0.06 01 99 06B6 253.06 94 9202 29.96

38



Figure 1. KOSPI 200 option prices of which time-to-maturities are 20 trading days

This figure depicts the sz cross-section of the call and put KEOSPI 200 option prices. We sample the
value at every June per vear. We graphs the call price for the positive option moneyness and put price
for the negative option moneyenss. The option monevenss 15 caculated by dividing the option exercise
price into the current KOSPI 200 index value and distracting 1.

—— 20010614
—- 20020611
—— 20030612
¥ 20040610
—H— 20050616
—8— 20060615

option price

-0.15 -0.1 -0.05 a 0.05 .1 015

moneyness (Kf5-1)
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Tahle 4. Descriptive statistics for the estimated standard innovations of the extended Duan-
GARCH process under measure P.

This table shows the properties of the estimated standardized mnovations of the extended Duan-
CGARCH process under measure P The standard innowvation series 15 calculated by dividing each
ordinary innovation by its corresponding conditional standard dewiation. The sample period of the
daily log-return of KOSPI 200 index 15 from January, 2001 to October, 2006, {Three month longer
than the option sampling period) We report Jarque-Bera (1980) test statistic and p-value for the
normality test.

Observations 1441
Mean 0.013
Median 0.058
M aximum 3.921
Minimum -7.332
Std. Devw. 0.977
Skewness -0.463
Kurtosis 0.552
Jarque-Bera 442,522
Probability 0.000
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Figure 2. Annualized K{OSPI 200 log-return conditional volatility, estimated using the extended
Duan- GARCH process under measure P.

T KOSPI200 return volatility
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Tahle 5. Descriptive statistics for the parameter estimates of each case.

This table shows the descriptive statistics for parameter estimates. We report the estimated
coefficients, standard dewiation and T-statistics for Casze 1| hecause we estimate the constant
parameters. We report the time-series mean, median, and standard deviation for Case 2 and Case 3. (&)
and {C of Pancel C shows the descriptive statistics on the parametric pricing kernel estimates without
hond pricing restriction and (B) and (D) of Panel C shows the result with bond pricing restriction.

Panel A. Case 1. Estimation of the pricing kernel using only the undeding return data.

Caze 1.1. GARCH model Case 1.2, Black-Sholes model

coeff. std  T-statistics coeff, std  T-statistics
al 256E-06  LOI1E-06 2.4 larnbda 003975 002636 151
al 003823  0.01559 245 sigmaz 000029 000001 236
bl 0.9141e 001727 52.594
larnbda 0.03326  0.02636 1.26
delta 009220 002591 3.58

Panel B. Case 2. Estimation with the option data.

Case 2.1.GARCH option priang model Case 2.3. Black-Sholes model

rhean  median stel rhean  rmedian st
al 0.00011  0.00009 0.00005 sigmaz 0.00035 0.00028 0.00020
al 0.14795  0.14833 0.01845
bl 040861  0.39820 0.05102
larnbda 0.03054 0.03056 0.00009
delta 0.05493 0.04075 006117

Case 2.2, Priang kernel-hased GARCH option model

rmean  median std
al 000011 0.00009 0.00006
al 012307 0.11923 003220
bl 039387 0.38692 0058645
larnbda 001907 0.01730 001512
delta 012170 0.11908 0.07903

Panel C. Case 3. Parametnc pricing kernel

(Mpower pricing kernal (Bipower PK with bond

rhean  median stel rhean  rmedian st
thetal 0.9455 0.9313 0.1970 thetal 0.9935 0.9954 0.0065
thetal 0.5800 03813 08457 thetal 0.5493 0.3429 0.5615
{Cipolynormial pricing kernel (DMpolynormial PK with bond

rhean  median stel rhean  rmedian st
thetal 0.8495 0.7201 06170 thetal 0.8283 0.7893 0.7133
thetal -04637 0.0905 14492 thetal -0.3677 0.1404 13412
theta? -0.5292 -04224 05947 theta? -04040  -0.2556 l.oodz
theta3 -0.0109 01772 05874 theta3 0.0209 0.1868 0.5519
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Figure 3. The trend of parameter estimates of the Case 1.1, Case 2.1, and Case 2.2.

This figure shows the trend of five prameter estimates for the extended Duan- GARCH process (Case
1.1, UnderCnly), the GARCH option pricing model {Case 2.1, OF) and the pricing kernel-based

GARCH optoin model (Case 2.2, OFK).
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Figure 4. The trend of parameter estimates of the parametric pricing kernel {Case 3)

This figure shows the trend of parameter estimates for the parametric pricing kernels i Case 3.

FPanel & shows the parameter estimates of the power proing kernel and Panel B shows the parameter
estiamtes of the polynomial pricing kernel In each panel, we compare the parameter value eatimated
with and without bond pricing restriction.

Fanle & power pricing kernel

1.8

16 ernel)

1.4
1.2
1
0.2
0.6 —4—without Bond
0.4 ——with Bond
0.2
|:| .
[ I w T o T T i T L+ B v N e AR w - N o T N |
L] — — — — — — L] — — — — — —
— 0 —~ = o o [~ ™ L0 oo 0 o~
Lo T an T I o T T - T o T e T B R o T 4 T
= e~ e~ ™~ &~ Mmoo oy < < LW L o
Lo R s T e Y o TN < T o T o T s T o T o T N o T < T
Lo TR o T Y o T < T o T o T s T o T o N R o T o T
L T e e I S e IO e N e BN e RN Y (Nt B e BN |

thetal (power pricing kernel)

—4—without Bond
——with Bond

15
1a
10
13
11
15

20011
20020
20020
20030
20030
20060
20060

45



Fanle B. polynomial pricig kernel
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Tahle 6. Pricing and forecasting performance

This table shows the pricing and one-day forecasting performance across option moneyness in each
case. We evaluate the empirical performance by the mean and standard dewviation of the relative
pricing and forecasting errors. (A) and () of Panel C shows the pricing and forecasting performance
of the parametric pricing kernel models without bond pricing restriction and (B) and (D) of Panel C
shows the results with bond pricing restriction.

Pricing performance measures are

by Ty _ bt ;)

maan | 100

CHER (T

Forecasting performance measures are

maan | 100

CMEEI(£+1,T:I _ C}xﬁ?‘:‘:ﬂ

and g4 | 100 %

AR s 11T

':Hl’ﬂ‘ and 2| 100%

||:ffxfilr5€.!’- (f,ﬂ _ C}xﬁ?‘:‘:ﬂ

| CHER (T

(z,?’:l‘

Panel A Casel Estimation of the pricing kemel using enly the underling retum data.

Casell GARCH model

Case 1.2 Black-sheoles model

| e e 11 Ty

(z+1,?’,1‘

Pricing ForeCasting Pricing ForeC asting
2T ATM I 2T ATM I 2T ATM I 2T ATM I
rmean 4357 22838 1719 4558 2182 1580 mean 14918 4303 %21 13708 44eh 237
std 5300 2189 1449 49487 2149 1403 std 17852 3931 B00 171r7d 4017 2182
Panel B. Case 2 Estirnation with the option data.
Case 21.GARCH option pricing model Case 23. Black-Sholes model
Pricing ForeCasting Pricing ForeC asting
2T ATM I 2T ATM I 2T ATM I 2T ATM I
mean 201 1055 493 2753 1217 558 medn 2605 211 003 2625 285 547
std 2312 101e 589 2562 1141 5.80 std 3253 15331 319 320 1528 T2
Case 22 Pricing kern el-based GARCH option modell
Pricing ForeCasting
2T ATM I 2T ATM I
rmean 1339 T 331 2508 1209 3.60
std 223 1293 342 2289 1354 3.13
Panel C. Case 3. Parametric pricing kernel
(Al power pricing kernel (B)power PK with bond
Pricing ForeCasting Pricing ForeC asting
2T ATM I 2T ATM I 2T ATM I 2T ATM I
mean 1516 593 1309 lale 223 1400 redn 3987 1458 742 3T 1375 5.60
std 172 593 1064 1561 iia 1281 std 4502 1389 a55 4116 1441 f.a2
(CIPelynomial pricing kernel [Chpolynomial PK with bond
Pricing ForeCasting Pricing ForeC asting
2T ATM I 2T ATM I 2T ATM I 2T ATM I
rmean 474 237 333 10.95 544 419 redn 567 204 192 1164 540 31z
std 423 17 271 3.43 436 354 std 515 197 197 206 493 358
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Tahle 7. Hedge performance

This table shows the hedge performance across three hedge method We evaluate the hedge
performance through the mean and standard dewviation of the absolute hedge error series in each hedge
method. {4) and (C) of Panel C shows the hedge performance of the parametric pricing kernel models
without bond pricing restnction and (B) and (D) of Panel C shows the results with bond pricing
restriction.

Panel A Case 1. Estimation of the pricing kernel using only the underling return data.

Case 11. GARCH model Case 1.2, Black-Sholes model
Error Absolute Error Errar Absolute Errar
mean st mean  std mean st mean  std
Stod: Cnly -3.125 23050 18417 16359 -2.010 24732 22836 26097
ATM only -0532 12711 8.515 2.395 Q187 22198 14450 16738
Stodk and ATM 2483 14502 10772 2.940 2851 23300 16558 16484

Panel B. Case 2. Estimation with the option data.

Case 21.GARCH option pridng model Case 2.3. Black-Sholes model
Error Absolute Error Errar Absolute Errar
mean st mean  std mean st mean  std
Stod: Cnly -20902  leedz 12029 10576 -1492 17826 13750 11.217
ATM only -1.218 8773 0.522 2.962 0.370 2351 6901 0264
Stodk and ATM 0535 B8.274 6.544 2.027 2332 10591 8081 71689

Case 22. Pricing kernel-based GARCH option model

Error Absolute Error

mean st mean  std
Stod: Cnly -1.942  leseyy 12292 10127
ATM only -0.624 &.038 2.978 2.360

Stod: and ATM 1110 aelr7 7572 5.881

Panel C. Case 3. Parametric pricing kernel

(Apower pridng kernel {Bipower PK with bond

Error Absolute Error Errar Absolute Errar

mean st mean  std mean st mean  std
Stod: Cnly -2 712 15611 12219 2.981 -2.071 19956 14321 14128
ATM only -0925 12270 B22Za6 2.095 -0B23 0 12291 B.297 2,184
Stodk and ATM 1232 19285 13251 13974 lesd 12102 9539 2.063
{C)Polynomial pricing kernel Dipaolynomial PK with bond

Error Absolute Error Errar Absolute Errar

mean st mean  std mean st mean  std
Stod: Cnly -2.290  leZes 12502 10812 -2420  leaez 12535 10959
ATM only -1.az27 5.661 6.124 6.224 -0.996 B.368  5.882 2.992
Stodk and ATM 0683 B8.123 68.134 2.317 1.380 5191 5142 2.539
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