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ASYMMETRIC VIOLATION OF PUT–CALL PARITY 

AND OPTION PRICING UNDER SHORT SALES CONSTRAINTS 

 

Abstract 

 

 

This paper provides a rational explanation of the previously documented evidence of 

asymmetric violation of put–call parity under short sales constraints. To accomplish this we 

set up an option pricing model under short sales constraints in the discrete time binomial 

framework and reinvestigate the put–call parity relation. Since the cost of short selling is 

unpredictable and can be enormously high, the upside boundary of the parity relation will 

not bind. As a result, the stock price may drift away from the implied stock price derived by 

the options market. For empirical analysis we propose a measure, implied volatility 

discrepancy, which is defined as implied volatility calculated from the midpoint of the bid–

offer spread of a put option minus that of a call option. If investors in the options market 

correctly incorporate the short sales constraints, the implied volatility discrepancy should 

be an increasing function of time to expiry and the cost of short selling, and a U-shaped 

convex function of the strike price. The empirical results support the prediction of our 

model–we find that investors in the options market properly take short sales constraints into 

account. 
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1. Introduction 
 

An arbitrage opportunity is a zero-investment portfolio with possible riskless profits. 

Most financial models assume no arbitrage opportunities in the market, and this is the 

premise for valuation of many financial instruments, especially derivatives. Thus, the 

existence of arbitrage opportunities has been one of the greatest concerns of financial 

researchers and practitioners. The most famous arbitrage strategy may be the put–call parity 

relation. It takes advantage of the differential between stock prices and their synthetic stock 

prices implied by the options market (hereafter, the implied stock price), both of which 

promise the same payoff at the expiry of the option. Many empirical studies report a small 

deviation of one price from the other when there are transaction costs involved in trading 

the underlying stock.1 

   Recent studies document severe violations of put–call parity when short sales constraints 

on the underlying stocks bind, i.e., investors find it difficult or impossible to short sell the 

stocks. Using a small sample of stocks that have gone through an equity carve-out, Lamont 

and Thaler (2003) find large violations of put–call parity. They regard the equity carve-out 

as a cause of short sales constraints. Ofek, Richardson, and Whitelaw (2004) collect a large 

number of stocks whose costs of short selling are considerable compared to other stocks. 

They find that violations of put–call parity are asymmetric in the direction of short sales 

constraints. That is, underlying stock prices are more frequently observed above the implied 

stock price than below it. They also document a strong relation between violations of put–

call parity and the cost of short selling, concluding that the stock and options markets are 

segmented and investors in the stock market are less rational than those in the options 

market. Although some irrationally optimistic investors bid up the stock price, mispricing 

in the stock market does not need to carry through to the options market due to limitations 

in arbitrage, i.e., short sales constraints. 

                                                 
1 See Klemkosky and Resnick (1979, 1980), Bodurtha and Courtadon (1986), Nisbet (1992), and Kamara and 
Miller (1995) 
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In this paper we provide a rational explanation of previously documented evidence of 

asymmetric violations of put–call parity. To accomplish this we set up an option pricing 

model under short sales constraints in the discrete time binomial framework similar to Cox, 

Ross, and Rubinstein (1979) (CRR hereafter) and Boyle and Vorst (1992). Short sales 

constraints here is in the form of fees charged when stocks are borrowed and short sold. 

Therefore an option position hedged by short selling the underlying stocks—that is, a long 

position in call options or a short position in put options—should include the lending fees 

or the cost of short selling. As a result, the offer price of a put option is higher than the bid 

price of a put option with the same underlying stock, strike price, and expiry by the exact 

amount of the discounted and expected cost of short selling. Similarly, the bid price of a 

call option is lower than the offer price of the respective call option. 

Using the option pricing model, we reinvestigate the put–call parity relation under short 

sales constraints. According to our model, a stock price that is higher than the implied stock 

price does not represent a true violation of put–call parity. Suppose that an arbitrageur tries 

to exploit the price difference between the stock and the options market by short selling a 

share of the stock and simultaneously buying a position of the implied stock. For the 

arbitrageur to obtain an arbitrage profit, the present stock price must be sufficiently higher 

than the implied stock price to cover the cost of short selling in every future state. This is 

theoretically impossible because the cost is unpredictable, and depends on the stock price 

movement in the future. The cost can be enormously high if the future stock price soars. 

For this reason we do not consider observations where the stock price is higher than the 

implied stock price as true violation of put–call parity, but refer to them as “seeming 

violations.” 

In our empirical analysis we test whether or not investors in the options market correctly 

incorporate short sales constraints. To measure the impact of short sales constraints on 

option prices, we use implied volatility discrepancy, which is defined as implied volatility 

calculated from the midpoint of the bid–offer spread of a put option minus that of a call 

option. Tests are designed to address each component of the cost of short selling, which is a 

multiple of three components: the rate of lending fees, the lending period, and the dollar 
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value of the underlying stocks to be lent. Maintained hypotheses tested are as follows. First, 

the implied volatility discrepancy is an increasing function of the rate of lending fees. Other 

things being equal, as the rate of lending fees increases, the implied volatility calculated 

from the bid (offer) price of a call (put) option falls (rises) while the offer price of a call 

option and the bid price of a put option do not change. Thus, the difference between the 

implied volatility calculated from the midpoint of a put option and that of a call option 

increases. Second, the implied volatility discrepancy is a U-shaped convex function of 

strike price. The number of shares to be short sold and the related cost of short selling will 

increase as an option goes deeper in-the-money. As strike price increases, the implied 

volatility of the bid price of a call option increases at a decreasing rate while that of the 

offer price of a put option increases at an increasing rate. Consequently, the shape of the 

implied volatility discrepancy curve across strike price is U-shaped. Third, the implied 

volatility discrepancy is an increasing function of time to expiry. The longer the time to 

expiry of an option, the more the cost of short selling will be included in the option 

premium. Thus, the implied volatility calculated from the bid (offer) price of a call (put) 

option price falls (rises) as the time to expiry of the option increases. As a result, the 

implied volatility discrepancy increases as time to expiry increases. 

We use a sample of stocks and options under severe short sales constraints from 

D’Avolio (2002). The empirical results support the prediction of our model—we find that 

our option pricing model is valid in the sense that investors in the options market properly 

take short sales constraints into account. 

The rest of the paper is organized as follows. In Section 2, we build the option pricing 

model under short sales constraints in the discrete time binomial framework, and 

investigate the impact that short sales constraints have on option price by changing 

parameters. In Section 3, we revisit the put–call parity relation, and derive the lower and 

upper limit of the stock price under short sales constraints. Section 4 reports our empirical 

results in support of the option pricing model, and Section 5 concludes. 
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2. Option Pricing under Short Sales Constraints 
 

The purpose of this section is to build an option pricing model under short sales 

constraints in a simple binomial tree framework. We then investigate the impact of short 

sales constraints on option price by changing the rate of lending fees, term to expiry, and 

strike price of the option. Before going further, we briefly explain the stock lending 

mechanism. 

 

2.1 Stock lending fees 

 

   Continuous trading of the underlying asset is one of the crucial assumptions in the Black 

and Scholes (1973) option pricing model. When transaction costs are involved in trading 

the underlying asset, continuous replication of an option is impossible. Hence the cost of 

replicating an option is no longer equal to the Black-Scholes price; the offer (bid) price of 

an option is higher (lower) than the Black-Scholes price. Several papers address the issue in 

both discrete and continuous time frameworks. Leland (1985) is one of the first researchers 

to develop a modified Black-Scholes formula in a continuous time framework under 

proportional transaction costs. Boyle and Vorst (1992) use a discrete time framework 

similar to the binomial tree model of CRR to construct a portfolio of underlying assets and 

riskless bonds. They show that this portfolio exactly replicates the option payoff at expiry 

in the presence of proportional transaction costs of the underlying asset, and derive a Black-

Scholes–type approximation with an adjusted variance. Hodges and Neuberger (1989) and 

Davis, Panas and Zariphopoulou (1993) develop a utility-based model to achieve an 

optimality in replicating an option under proportional transaction costs. Whaley and 

Wilmott (1997) reduce the optimality problem of Davis, Panas, and Zariphopoulou by 

applying asymptotic analysis, and derive a simple analytic formula. 

   The transaction costs addressed in the previous studies are brokerage fees, i.e., 

commissions that are proportional to the value of the underlying assets traded. The short 

sales constraints we introduce in this paper are of a different nature from brokerage fees. To 
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demonstrate the difference we briefly summarize the process of short selling stocks 

described in many papers including D’Avolio (2002), Geczy, Musto and Reed (2002), and 

Duffie, Garleanu and Pedersen (2002). Stocks must first be borrowed before they can be 

short sold. A borrower of the stocks posts collateral, mostly cash, to the lender. The lender 

pays the interest from the collateral to the borrower, which is called a “rebate.” The rebate 

rate is the interest rate that the borrower receives for the collateral. For most stocks, the 

rebate rates are almost equal to the market interest rate. Some “special” stocks have rebate 

rates lower than the market interest rate, and can sometimes be negative depending on the 

negotiation between the borrower and the lender. In case of a negative rebate rate, the 

borrower must pay the interest to the lender for use of the special stocks. On the special 

stocks, we say that, short sales constraints are binding. An investor who short sells the 

special stocks should first borrow them and pay lending fees, which is a multiple of the rate 

of the lending fee, the lending period, and the dollar value of the underlying stocks to be 

lent. The rate of lending fees is the rebate rate subtracted from the market interest rate in 

absolute value. Thus, the lending fees are the cost of short selling that the borrower must 

pay. We use the cost of short selling and the lending fees interchangeably in this paper. 

   From the viewpoint of option pricing, lending fees are different from brokerage fees in 

several ways. An investor who replicates an option position by borrowing and short selling 

the underlying stocks should include lending fees within the option price in a different way 

from brokerage fees. First, lending fees are charged proportionally to the period of lending. 

The longer the investor borrows the shares, the more lending fees he or she should include 

in the option premium. In contrast, brokerage fees are charged only when a transaction 

occurs. Second, while brokerage fees charged today are a multiple of the stock price today, 

lending fees charged today depend on the stock price yesterday. Technically, the former is 

adapted to the filtration today, but the latter is adapted to the filtration yesterday. Brokerage 

fees cannot be revealed until a transaction occurs. However, the investor knows today how 

much lending fees he or she should be charged tomorrow. Third, lending fees can—and 

usually are—different from one stock to another depending on the specialness of the stock. 

The rate of lending fees is determined in the individual stock loan market as a unique price. 
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When the demand for borrowing a stock is lower than the supply, the rate of lending fees is 

only 15 basis points (baseline fees). The stock with baseline fees is called a “general” stock. 

A “special” stock, where the demand is higher than the supply, will be lent and borrowed 

with higher lending fees.2 However, brokerage fees are homogeneous for every stock even 

though they might be different across the broker or dealers. Fourth, lending fees are 

included only in a bid price of a call option and an offer price of a put option while 

brokerage fees are reflected all the option prices. This is because only a long position in a 

call option and a short position in a put option require short selling the underlying stocks to 

be hedged. 

   The characteristics of lending fees we have discussed so far make replicating an option 

more difficult and costly. In the next subsection, we analyze the price of a portfolio that 

replicates the payoff of an option in the presence of lending fees. 

 

2.2 Model: The cost of replicating an option under short sales constraints 

 

   We start with the case of an option investor who writes a put option and hedges it by 

short selling the underlying asset. The other option positions will be discussed later. For 

simplicity we assume that there are no transaction costs other than lending fees. We 

construct a portfolio of the underlying stocks and riskless bonds that exactly replicates the 

payoff of the put option by using a discrete-time binomial framework. This procedure is 

similar to that found in CRR and Boyle and Vorst (1992). The evolution of the stock price 

is given by the following binomial tree: 

 

                                                 
2 The equilibrium in the individual stock loan market is discussed in Duffie (1996). 
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where we assume that d < R < u to preclude any arbitrage opportunity. R is equal to one 

plus the one-period riskless interest rate. A dynamic replicating strategy at each 

corresponding node is represented by a pair (Di, Bi), where Di and Bi denote the number of 

shares of the underlying stocks to be short sold and the units of the riskless bonds, 

respectively. The subscript i represents the location of each node in the tree. Note that the 

sign of Di of the put option is always less than or equal to zero. 

D0, B0

D1, B1

D2, B2

D3, B3

D4, B4

D5, B5  
 

In a single period case, self-financing portfolios, (D0, B0), should satisfy the following two 

equations:  

 

StDkBuSDRBuSD L 01100 Δ−+=+       (1) 

StDkBdSDRBdSD L 02200 Δ−+=+       (2) 

 

where kL is the rate of lending fees of the underlying stock. Equation (1) indicates that the 

portfolio (D0, B0) exactly replicates the option payoff plus the proper amount of lending 

fees at node 1. Equation (2) can be interpreted in a similar way. Note that the same lending 
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fees are added to the payoff of the option at both nodes 1 and 2. Using equation (1) and (2), 

the solution, (D0, B0), and the price of the put option at initial time, P0, are: 

 
CRR
00 DD =          (3) 

StDk
R
1BB CRR

0L
CRR
00 Δ−=        (4) 

StDk
R
1PP CRR

0L
CRR

00 Δ−=        (5) 

where [ ] CRRCRRCRRCRRCRRCRR BSDPuSDP
R

B
duS

PP
D 000010

21
0 ,1,

)(
+=−=

−
−

=  

 

Pi denotes the price or the payoff of the put option at node i.3 We use the CRR model as a 

benchmark for our model because comparing the differences of the two models yields 

insights into the results attained by our model. Equation (3) indicates that D0, the delta of 

our model at node 0, is the same as that of the CRR model. As the lending fees are 

independent from the state of the stock price and can be predictable at the initial time, they 

are not related to the delta. Instead, as shown in equation (4), the lending fees are funded by 

the riskless bonds. Thus, B0, the units of riskless bonds of our model, is greater than that of 

the CRR model by an amount exactly equal to the discounted lending fees. This leads to an 

increase in the price of the put option as seen in equation (5). 

   In a multi-period model, the price of a put option can be determined by using the one-

period model repeatedly, i.e., equation (1) and (2) are used recursively from the last period 

to the first period. Take a two-period case for example using the same diagram. In the 

single-period model that we have just explored, the price of the put option at node 1 and 2 

is: 

 

                                                 
3 Pi can be calculated by using Di and Bi; Pi is equal to Di multiplied by the stock price at node i plus Di. If 
node i is at the expiry, we can assume that Di and Bi of the in-the-money put option are equal to -1 and the 
strike price, respectively. 
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uStDk
R
1PP 1L

CRR
11 Δ−=        (6) 

dStDk
R
1PP 2L

CRR
22 Δ−=        (7) 

 

By substituting equations (6) and (7) for equations (3) and (4), we can find the delta and the 

price of the put option at the initial time: 

 

du
dDuDtk

R
1DD 21

L
CRR
00 −

−
−= Δ       (8) 

( )CRR
d

CRR
uLL

CRR dSDpuSDptk
R

StDk
R

PP 212000
11

+Δ−Δ−=    (9) 

where udu pp
du
uRp −=

−
−

= 1,  

 

In equation (8), the delta in our model is no longer equal to the CRR delta. This delta has an 

additional term that reflects an adjustment to the stock price movement in the following 

period. The interpretation of equation (9) is interesting. The second term on the right-hand 

side, tDSk
R
1

LΔ− , represents the present value of the lending fees after one period, and the 

third term, ( )CRR
2d

CRR
1uL2 dSDpuSDptk

R
1

+− Δ , is the present value of the expected lending 

fees after two periods. The expectation is taken under the risk-neutral probability measure. 

That is to say, under short sales constraints, the price of the put option is the CRR price 

plus the sum of the present values of the expected lending fees in the risk-neutral world. An 

investor who writes and hedges the put option should offer a price that is higher than the 

CRR price by the amount of discounted and expected lending fees. 

   The bid price of a call option can be obtained by using the same model. In this case, 

however, lending fees are subtracted from the CRR price because the delta of a call option 

is always equal to or greater than zero. As a result, an investor who buys a call option and 
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hedges it with the underlying stocks should bid at a price that is lower than the CRR price 

by the amount of discounted and expected lending fees. While a long call position and a 

short put position involve short selling the underlying stocks, a short call position and a 

long put position do not require an investor to short sell the stocks to hedge the option 

positions. In other words, the offer price of a call option and the bid price of a put option 

are equal to the CRR price even in the presence of short sales constraints. 

 

2.3 Risk of recall 

 

   A lender of stocks retains the right to recall the stocks at any time during the lending 

period. At the lender’s notification, the borrower must return the borrowed stocks within 

three days. To an investor who hedges an option position by short selling the underlying 

stocks, the abrupt notice of recall is indeed a risk to be taken into account. The investor can 

choose one of two alternatives at the notice of recall. First, the investor may locate another 

lender who is willing to lend her the same stocks at the same rate. If she fails to locate the 

same stocks, the investor must buy the borrowed stocks in the stock market to return them 

to the original lender, and simultaneously liquidate the option position in the options 

market. We investigate how the risk of recall can change the price of an option in the latter 

case. 

Even at the event of recall, the bid (offer) price of a call (put) option does not change as 

long as the rate of lending fees determined in the stock loan market does not change. Take 

the previous two-period example with a put option. At the initial time, the investor writes a 

put option, receives the premium, and short sells the appropriate amount of the underlying 

stocks to hedge the option position as in equation (8). We assume that the stocks borrowed 

at the initial time are recalled after one period, and the investor fails to locate the same 

stocks. Hence she buys the borrowed stocks in the stock market to return them to the lender 

with the lending fees, and liquidates the put option in the options market. The investor’s 

proceeds at each node is: 
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 ( ) SDPSnodeat recall
00 −  

( ) StDkuSDPuSnodeat L 001 Δ++−  

( ) StDkdSDPdSnodeat L 002 Δ++−  

 

The superscript, “recall,” emphasizes that it is the option premium for which the risk of 

recall is considered. 

Unless the rate of lending fees changes at the event of the recall, P1 and P2 are the same as 

in equation (6) and (7). The offer price of the put option at the initial time, recallP0 , can be 

determined by using the risk-neutral expectation argument. That is, the risk-neutral 

expectation of discounted payoffs after one period should lead to the premium at initial 

time: 

 

  
( ) ( )[ ]

( )CRR
d

CRR
uLL

CRR

LdLu
recall

dDpuDptSk
R

StDk
R

P

StDkdSDPpStDkuSDPp
R

SDP

2120

00200100

11

1

+Δ−Δ−=

Δ++−+Δ++−−=
(10) 

where udu pp
du
uRp −=

−
−

= 1,  

 

Equation (10) shows that as long as the rate of lending fees does not change, the offer price 

of the put option remains the same. If the rate of lending fees increases, however, the 

liquidation prices, P1 and P2, will also increase. 

 

2.4 Comparative statics 

 

   In this subsection we analyze the price of options under short sales constraints by 

changing some of the model parameters. Unless noted otherwise, the parameters are as 

follows: initial stock price = 100, strike price = 100, riskless interest rate = 5%, time to 
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maturity = 0.5 years, volatility = 40%, the rate of lending fees = 5% and the number of 

revisions = 250. 

 

Number of revisions and option prices 

   Boyle and Vorst (1992) show that, in the presence of proportional brokerage fees, the 

offer (bid) price of an option increases (decreases) as number of revisions to the replicating 

portfolio increases. As stated earlier, this is because brokerage fees are charged whenever 

the underlying stocks are traded. Unlike brokerage fees, lending fees are charged 

proportionally to the period of lending. This different characteristic of lending fees is 

reflected in the option prices in a different way. 

   We calculate the bid and the offer prices of both the call and put options as increasing the 

number of revisions to the replicating portfolio. The four prices are calculated by repeatedly 

using equation (5).4 To compare the relative level of the four prices, we convert each option 

price into its implied volatility and present all of them in Figure 1. The implied volatility is 

calculated by using the Black and Scholes (1973) model. The symbols, “+,” “□,” “*” and 

“o” represent the offer price of the call option, the bid price of the call option, the offer 

price of the put option, and the bid price of the put option, respectively. None of the four 

prices increase or decrease as the number of revisions increases, but they converge to some 

constant levels. This shows that lending fees are not related to the number of revisions. It 

should also be noted that the bid (offer) price of the call (put) option, translated as implied 

volatility, is lower (higher) than the CRR price by the amount of the cost of short selling. 

However, the offer price of the call option and the bid price of the put option are the same 

as the CRR price since they do not involve any lending fees. 

 

[Insert Figure 1 about here] 

 

                                                 
4 The lending fees in equation (5) should be omitted if replicating the option does not involve short selling the 
underlying stocks. 
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Rate of lending fees and option prices 

   Figure 2 shows the changes in option prices in response to an increase in the rate of 

lending fees. It is evident that implied volatility of the bid (offer) price of a call (put) option 

decreases (increases) as the rate of lending fees increases. The impact that lending fees 

have on the option price looks tremendous. When the rate of lending fees is 4.3%, the 

implied volatility of the bid price of the call option drops from 40.0% to 35.6% (a decrease 

of 4.4%), and the implied volatility of put offer price rises from 40.0% to 43.4% (an 

increase of 3.4%). When the rate of lending fees is as high as 50%,5 the implied volatility of 

the call bid price falls to 5%, and that of the put offer price rises to 90%. 

 

[Insert Figure 2 about here] 

 

Time to expiry and option prices 

   Figure 3 shows the relation between time to expiry of options and their implied 

volatilities. As time to expiry increases, implied volatility of the bid (offer) price of a call 

(put) option decreases (increases). A longer-term option takes a longer period of borrowing 

and short selling than a shorter-term option. Thus, the longer the term to expiry an option 

has, the more the costs of short selling will be included in its price. As a result, the implied 

volatility of the bid (offer) price of a call (put) option decreases (increases). 

 

[Insert Figure 3 about here] 

 

Moneyness and option prices 

   Figure 4 represents the relation between the moneyness of options and their implied 

volatilities. We define the moneyness of a pair of call and put options as the delta of the call 

option.6 The bid (offer) price of the call (put) option decreases (increases) as the option 

                                                 
5 The lending fee of Krispy Kreme Doughtnuts Inc. was 55% during February 2001. See D’Avolio (2002), 
page 287. 
6 Moneyness can be defined in many different ways. We define it as the delta of a call option for empirical 
reasons that will be discussed later in the paper. 
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goes deeper in-the-money. Intuitively, the number of shares to be short sold is greater for 

in-the-money options than for out-of-the-money options. Therefore, the deeper in-the-

money an option is, the more the costs of short selling are reflected in its price. 

 

[Insert Figure 4 about here] 

 

To summarize, the bid (offer) price of the call (put) option decreases (increases) as the rate 

of lending fees increases, time to expiry of the option increases, or the option goes deeper 

in-the-money. 

 

3. Put–call Parity under Short Sales Constraints 
 

   Put–call parity is an arbitrage relation between European call option and put options with 

the same underlying asset, strike price and expiry. Stoll (1969) first discovered that the 

payoff of a stock can be constructed by buying a call option, writing a put option, and 

investing in riskless bonds an amount equal to the present value of the strike price of the 

options as follows: 

 

( )KPVPCS +−=         (11) 

 

where S is the underlying stock price, C and P are the prices of call and put options, K is the 

strike price of the options, and PV is the present value operator. Equation (11) can be 

interpreted as indicating that the underlying stock price in the left-hand side must be equal 

to the implied stock price derived by put–call parity in the right-hand side. The relation 

always holds as long as the market is frictionless and there is no arbitrage opportunity. For 

American style options, equation (11) does not hold. Merton (1973) shows that if there is 

no dividend payout until the expiry, the stock price can be greater than the implied stock 

price because the American put option is more valuable than the European one by the 

amount of the early exercise premium. Thus, put–call parity relation for non-dividend-
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paying American options can be restated by adding the early exercise premium to the right-

hand side of equation (11): 

 

 ( ) EEPKPVPCS ++−=        (12) 

 

where EEP is the early exercise premium of the American put option. 

   An investor, especially an arbitrageur, may try to exploit arbitrage profits between the 

stock and the options market by using the above put–call parity relation. She can try one of 

the two strategies: she can buy a share of the underlying stock in the stock market and 

simultaneously sell the implied stock in the options market, or she can short sell a share of 

the underlying stock and simultaneously buy the implied stock. We define the former as 

long arbitrage strategy and the latter as short arbitrage strategy. Considering the bid–offer 

spread in the options market, the no-arbitrage relation in equation (12) should be modified 

into the following two inequalities: 

 

( ) EEPKPVPCSS offerbidS ++−=≥      (13) 

 ( ) EEPKPVPCSS bidofferL ++−=≤      (14) 

 

where the superscript offer (bid) points out that the price is the offer (bid) price of the 

option. We define SS (SL) as implied short (long) stock price, which is equal to the cost of 

replicating a short (long) position in the underlying stock. Equation (13) and (14) indicates 

that for any investor not to make arbitrage profits, the underlying stock price must be 

greater than the implied short stock price, SS, and must be lower than the implied long stock 

price, SL. In other words, the stock price is bounded from below and above by the implied 

short and long stock prices, respectively. 

   Equation (13) and (14) are derived on the assumption that the investor can short sell the 

underlying stocks at no cost. We now introduce short sales constraints into the put–call 

parity relation. There are two lines of research that investigate the behavior of asset prices 

when short sales constraints are binding. The first group of papers explores the impact that 
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short sales constraints have on the stock price behavior. Diamond and Verrecchia (1987) 

explore the effects of short sales constraints on the speed of price-adjustment to private 

information. Hong and Stein (2003) develop a heterogeneous agent model that explains the 

link between short sales constraints and market crashes. Jones and Lamont (2002) show 

that stocks that are expensive to short sell have high valuations and low subsequent returns. 

Ofek and Richardson (2003) show that short sales constraints have considerable and 

persistent negative impact on subsequent returns of DotCom stocks. Theses studies support 

the hypothesis that stock prices are frequently over-priced under short sales constraints. 

The second group of researchers investigates violations of well-known arbitrage 

strategies caused by short sales constraints. Geczy, Musto and Reed (2002) use a 

comprehensive dataset of short sales and find that short sales constraints have a mixed 

impact on the profitability of well-known arbitrage strategies. Ofek, Richardson and 

Whitelaw (2004) make an advance in investigating the put–call parity relation of equation 

(13) and (14) by introducing and directly measuring short sales constraints. They divide 

their option dataset into two groups according to the “rebate rate spread,” which, as they 

define it, is the deviation of the rebate rate on a particular stock from the standard rebate 

rate on the majority of stocks as discussed in the previous section. The stocks with a 

negative rebate rate spread are considered “special.” The main evidence can be summarized 

in three points. First, violations of put–call parity are asymmetric in the direction of short 

sales constraints, and the frequency of the violations is strongly related to the rebate rate 

spread. The frequency of violations where the stock price is higher than the implied long 

stock price is 12.23% while the frequency where the stock price is lower than the implied 

short stock price is 2.73%. For negative rebate spread stocks, the percentages of put–call 

parity violations are 19.51% versus 2.65%. The frequency of violations where the stock 

price is higher than the implied long stock price still remains large after considering the 

cost of short selling. Second, violations above the implied long stock price are related to 

time to expiry of options; that is, as time to expiry of options increases, the magnitude of 

the violations also increases. The mean magnitude of the violations, measured by the log 

difference between the stock price and the implied long stock price, is 0.86% for long 
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maturity options (183-365 days), versus 0.37% for short maturity options (30-90 days). 

Third, both the magnitude of put–call parity violations and the cost of short selling are 

significant predictors of future returns for individual stocks. Stocks with a rebate rate 

spread less than -0.5% and put-call parity violations greater than 1% yields -12.57% of 

average returns over the life of the option. Cumulative average returns on portfolios that are 

long the industry and short the filtered stocks are 66% after taking the cost of short selling 

into account. 

Ofek, Richardson and Whitelaw (2004) explain that these violations are consistent with 

the behavioral finance theory of overly optimistic investors and market segmentation as 

discussed in Miller (1977) and Ofek and Richardson (2003). On one hand, the irrationally 

optimistic investors raise the stock price while, due to short sales constraints, the rational 

investors do not simultaneously short sell the stock. On the other hand, the over-valued 

stock price can differ from the implied stock price if the markets are segmented such that 

the marginal investors across the two markets are different. 

We reinvestigate put–call parity relation under short sales constraints. By using our 

option pricing model, we once again derive the upper and lower limit of the stock price 

implied by long and short arbitrage strategies. To simplify our argument we assume that the 

options are European, there are no scheduled dividend payouts until the expiry of the 

options, and the stocks and riskless bonds are traded without any transaction costs except 

lending fees. 

 

Long arbitrage strategy under short sales constraints 

   The object of long arbitrage strategy is to make riskless profit by buying a stock and 

selling the implied stock simultaneously. A short position in the implied stock can be 

constructed by writing a call option at the bid price, buying a put option of the same strike 

price and expiry as the call option at the offer price, and issuing the riskless bond with its 

par value equal to the strike price of the options. At the expiry of the options, the payoffs 

from the long position in the stock and the short position in the implied stock will exactly 

offset each other at any circumstance. The long arbitrage strategy can be terminated even 



 20

before the expiry by selling the stock and buying back the implied stock, i.e., buying the 

call option at the offer price, writing the put option at the bid price, and paying the riskless 

bond back. We assume that, in the previous binomial tree model, an arbitrageur initiates the 

long arbitrage strategy at the initial time and terminates it after one period. The 

arbitrageur’s proceeds at each node are as follows: 

 

 ( )( ) ( )0)( <+−+− KPVPCSSnodeat offerbid     (15) 

 ( )( ) ( )0)( 11 =+−− KPVPCuSuSnodeat bidoffer     (16) 

 ( )( ) ( )0)( 22 =+−− KPVPCdSdSnodeat bidoffer     (17) 

 

Equation (16) and (17) show that the proceeds at uS and dS are both zero because the offer 

price of the call option and the bid price of the put option are equal to the CRR prices. Note 

that in the CRR model the put–call parity always holds. At node S in equation (15), 

however, the proceeds are negative because the bid price of the call option is lower than the 

CRR price and the offer price of the put option is higher than the CRR price. From equation 

(15) we can derive the lower limit of the stock price; the stock price should be greater than 

the implied short stock price. The difference between the two prices is: 

 

( )( ) tSk
R

KPVPCS L
offerbid Δ=+−−

1
00      (18) 

 

Equation (18) shows that the arbitrageur who uses the long stock arbitrage strategy will 

wind up with an immediate loss in an amount that is equal to the discounted costs of short 

selling. The sum of the costs of short selling that are included in both the call and put 

options is exactly equal to the discount costs of short selling because the deltas of the two 

options add up to one. To summarize, there exists no arbitrage opportunity incurred by the 

long arbitrage strategy as long as the stock price is above the implied short stock price. 

However, if the stock price is below the implied short stock price, the arbitrageur can make 

riskless profit. 
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Short arbitrage strategy under short sales constraints 

   Short arbitrage strategy involves short selling the underlying stock and simultaneously 

buying the implied stock. A long position in the implied stock can be constructed by buying 

a call option at the offer price, writing a put option of the same strike price and expiry as 

the call option at the bid price, and investing in riskless bond with its par value equal to the 

strike price of the options. Using short arbitrage strategy is riskier than using long arbitrage 

strategy for three reasons. First, the borrowed stock can be recalled any time before the 

expiry of the options. When recalled, the arbitrageur may finish the strategy at another’s 

discretion. Second, the amount of lending fees that the arbitrageur must pay at the end of 

each time period is unpredictable. Since the stock price itself is stochastic, lending fees, a 

multiple of the stock price, are also stochastic. Third, the American put option may be 

exercised before the expiry even in the absence of dividend payout. In this case the 

arbitrageur should finish her strategy. To take these aspects into account, we assume that, in 

the previous binomial framework, an arbitrageur initiates the short arbitrage strategy at the 

initial time and finishes the strategy after one period. The proceeds at each node are as 

follows: 

 

( ) ( )( ) ( )000 =+−− KPVPCSSnodeat bidoffer      (19) 

( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<Δ⎟

⎠
⎞

⎜
⎝
⎛ +−=Δ−+−+− 01111 tSk

R
utSkKPVPCuSuSnodeat LL

offerbid  (20) 

( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<Δ⎟

⎠
⎞

⎜
⎝
⎛ +−=Δ−+−+− 01222 tSk

R
dtSkKPVPCdSdSnodeat LL

offerbid  (21) 

 

In equation (19), the short arbitrage strategy does not involve any initial commitment 

because both the offer price of the call option and the bid price of the put option are the 

CRR prices and the put–call parity holds. However, as seen in equations (20) and (21), the 

arbitrageur winds up with a loss that can vary depending on whether the stock price rises or 

falls. The arbitrageur’s loss at node uS amounts to the sum of the lending fees during the 
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first period and that during the second period discounted by one period. The lending fees 

during the second period are embedded in both the call and put options, and are equal to 

( ) tSkRu LΔ− . The proceeds and the loss at node dS can be interpreted in a similar way. To 

preclude the arbitrage opportunities, the following equation must hold: 
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Equation (22) indicates that the upper limit of stock price is the implied long stock price at 

the initial time plus the maximum aggregate discounted cost of short selling charged in the 

future. The maximum operator is used to make sure that there is no arbitrage opportunity 

for any possible path of stock price movement in the future. The maximum cost depends on 

u, the size of the upward movement and, in turn, the volatility of the stock. 

It is theoretically impossible to make riskless profits with special stocks by the short 

arbitrage strategy. As time goes by, the maximum of the aggregate discounted lending fees 

becomes infinite, 7  i.e., the stock price is not bounded from above. This means that 

violations of equation (13) are not true violations.  We instead define those observations 

where stock price is higher than the implied long stock price as “seeming violations” of 

put–call parity. We can see in equation (22) that it is natural that, other things being equal, 

the frequency and magnitude of seeming violations increase as the rate of lending fees or 

time to expiry increases. 

 

                                                 
7 The maximum of the sum of the discounted lending fees approaches infinity because u>R. 
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In a continuous time framework, the sum of the discounted lending costs can be written as an integral, and its 

maximum is unbounded. 
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4. Empirical Analysis 
 

   In this section we perform an empirical analysis on our option pricing model and put–call 

parity relation under short sales constraints. The purpose of the empirical analysis is to 

validate our option pricing model by testing whether investors in the options market 

correctly incorporate short sales constraints or not, and support our argument that the stock 

price is not bounded from above by the implied long stock price derived in the options 

market. If our model is correct, we should be able to find the characteristics shown in 

Figures 2, 3, and 4—dependency of implied volatility on the rate of lending fees, time to 

expiry, and moneyness. We can then conclude that investors are rational and put–call parity 

relation holds even under short sales constraints. 

To measure the impact that short sales constraints have on option prices we use implied 

volatility discrepancy. We define implied volatility discrepancy as implied volatility 

calculated from the midpoint of the bid–offer spread of a put option minus that of a call 

option with the same underlying asset, time to expiry, and strike price, σput - σcall. Note that 

without short sales constraints, implied volatilities of call and put options with the same 

underlying stock, expiry, and strike price must be the same if and only if put–call parity 

relation holds. We use implied volatility discrepancy because implied volatility may 

contain other effects and may not be an adequate measure of the impact that short sales 

constraints have on option price. The shape of implied volatility function across time to 

expiry can be different from Figure 3 due to the possible influence of volatility term 

structure. Because of this, we test whether implied volatility discrepancy increases as time 

to expiry increases. In addition, the shape of implied volatility function may not be a 

decreasing function of moneyness as shown in Figure 4-(a) due to the well-known volatility 

smile or smirk phenomenon that is still under debate among scholars and practitioners. 

Using the implied volatility discrepancy, we expect that it is a U-shaped convex function of 

moneyness as shown in Figure 4-(b). Testing the dependency of implied volatility on the 

rate of lending fees in Figure 2 cannot be performed directly because the level of implied 

volatility can vary from one stock to another. Instead, we see if implied volatility 
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discrepancy is an increasing function of the rate of lending fees. In summary, we test the 

following hypotheses using implied volatility discrepancy: 

 

(H1) Implied volatility discrepancy is an increasing function of time to expiry. (Figure 3) 

(H2) Implied volatility discrepancy is a U-shaped convex function of moneyness. (Figure 4) 

(H3) Implied volatility discrepancy is an increasing function of the rate of lending fees. 

(Figure 2) 

 

Dependency of implied volatility discrepancy on time to expiry, moneyness, and the rate of 

lending fees can be deduced from Figures 3, 4, and 2, respectively. Although the figures are 

drawn by European option pricing model, American options should show similarity. 

The second hypothesis that implied volatility discrepancy is a U-shaped convex function 

of moneyness deserves a special remark. Under both the behavioral finance theory and our 

option pricing model, we should not be able to reject H1 and H3. The behavioral finance 

theory reports that the magnitude of (seeming) violations is related to time to expiry of 

options and the rate of lending fees. However, under the behavioral finance theory, there is 

no reason why implied volatility discrepancy shows moneyness dependency. In the sense, 

H2 is more conclusive to our option pricing model than the others. 

 

4.1 Data 

 

   D’Avolio (2002) reports a list of 35 negative rebate stocks from April 2000 through 

September 2001.8 This list appears in appendix A. Many stocks in the list are related to 

well-documented events such as initial public offerings, the DotCom crisis, or depository 

receipt issues, all of which are known to cause the negative rebate rate.9 The lending fees in 

the third column of the list range from 10.0% to 79.0%. In the last column, the specific 

month of the negative rebate rate for each stock is reported. Another source of our dataset is 
                                                 
8 D’Avolio (2002) does not reveal the source of the data. We could not expand the data since they are 
inaccessible at this moment. 
9 See Ofek and Richardson (2003), and Bris, Goetzmann and Zhu (2004). 
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the IVY OptionMetrics. We collect the end-of-the-day bid and offer prices of options by 

matching the two sources. We assume that all option quotes in the reported month are 

related to the one and only negative rebate rate although the actual rebate rate may be 

different on a day-by-day basis. Since it cannot be avoided, we leave this possible 

misspecification in our analysis. 

   Initially, 23,650 pairs of call and put option are collected. To filter out undesirable data, 

we apply a set of screening rules similar to those of Bakshi, Cao and Chen (1997) and 

Dumas, Fleming and Whaley (1998). First, option quotes less than $3/8 are dropped from 

our sample. These quotes may be too small compared to the minimum tick size to reflect 

the true value of options. Second, options with zero open interest are excluded from the 

sample. Prices of low liquidity may also show a deviation from the true value. Third, option 

quotes that violate the lower arbitrage bound are excluded. It is impossible to calculate 

implied volatility for these options. Fourth, option quotes on the stocks paying dividends 

before the expiry are removed for the ease of analysis. Fifth, options with time to expiry 

shorter than 10 days are eliminated. The close-to-expiry options may have microstructural 

concerns. Option quotes with time to expiry longer than 240 days are also eliminated due to 

their small sample size. 

After applying these screens, the sample is reduced to 4,712 pairs of call and put option 

quotes. We provide a distributional description of the sample in Table 1. The mean 

(median) value of expiry of options, T, is 109.85 (101.00) days. The mean (median) of delta 

of call and put options, Δcall and Δput, are 51.71% (51.05%) and -45.57% (-45.23%) 

respectively. Implied volatilities of both call and put options are very high. Implied 

volatilities are calculated from the midpoint of the bid–offer spread by using the CRR 

binomial framework to implement the American feature of the options. The implied 

volatilities of put options are much higher than those of call options. The mean (median) 

value of the implied volatility of put options is 107.92% (106.86%) while that of call 

options is 84.91% (81.39%). The maximum values are 188.96% and 223.21% for call and 

put options, respectively. The open interest, OI, of call options is much larger than that of 

put options. In the last column, the early exercise premium, EEP, of American put options 
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over European equivalents is reported after being divided by the option price. The mean of 

the premium which is 0.81% of the option price on average is negligible. 

 

[Insert Table 1 about here] 

 

To see how implied volatility changes across time to expiry and moneyness, we 

categorize the sample into four expiry groups of 60 days apart and five moneyness groups 

similar to Bollen and Whaley (2004) as shown in Table 2. We define the moneyness of a 

pair of call and put options as the delta of the call option instead of the typical measure of 

moneyness: exercise price divided by the stock price. The latter cannot truly reflect the 

likelihood that the option will be in-the-money at expiry because it depends heavily on the 

volatility and term to expiry. Unlike Bollen and Whaley (2004), we do not categorize call 

and put options by their own separate deltas because, by doing so, a pair of call and put 

options with the same underlying asset, expiry, and strike price can be placed in different 

moneyness groups. 

 

[Insert Table 2 about here] 

 

4.2 Seeming violations of put–call parity 

 

In Table 3 we provide the empirical distribution of the underlying stock prices against 

the implied stock prices derived from the options market. Specifically, we list the stock 

prices in comparison to the implied short stock price, SS, the implied long stock price, SL, 

and the stock price derived from put–call parity when all options are assumed to be traded 

at the midpoint of bid–offer spread, SM. SM can be regarded as the average level of the 

implied stock price. Like Ofek, Richardson and Whitelaw (2004), we report the frequency 

of observations where the stock prices are below SS, between SS and SM, between SM and SL, 

and above SL. 
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A few points are worth elaborating upon. First, there are a large number of observations 

satisfying S > SL (73.77% on average) while the observations satisfying S < SS are rare 

(0.47% on average). The results are quite similar to those obtained by Ofek, Richardson 

and Whitelaw (2004), but show more extreme asymmetry. This may be because our sample 

consists of extremely negative rebate stocks. Second, the frequency of observations 

satisfying S < SS represents less than 1% for each expiry group. This shows that there are 

few arbitrage opportunities to buy the underlying stock and simultaneously short sell the 

implied stock. Because the observations satisfying S > SL are not true violations of put–call 

parity, we can conclude that arbitrage opportunity between the stock market and the options 

market is negligible. Third, the frequency of seeming violations increases as time to 

maturity increases. The frequency of observations satisfying S > SL ranges from 67.29% for 

expiry group 1 to 79.15% for expiry group 4. In addition, the frequency where the stock 

prices is greater than the average implied stock price, S > SM, increases from 93.68% to 

98.10% as time to expiry increases. As discussed in the previous section, an increase in the 

frequency of seeming violations as time to expiry increases follows naturally from equation 

(22). Fourth, we also report the mean value of the log deviation of the stock price from the 

implied long stock price, 100Ln(S/SL), for each expiry group which measures the magnitude 

of seeming violations. The standard errors appear in parentheses. As expected, the 

magnitude of seeming violations rises as time to expiry increases. In summary, although 

our sample is limited to only 4,712 option pairs, it is large enough to represent the overall 

features similar in Ofek, Richardson and Whitelaw (2004). 

 

[Insert Table 3 about here] 

 

4.3 Implied volatility discrepancy of negative rebate stocks 

 

In this subsection we present an empirical test of the validity of our option pricing model, 

that is, whether option investors properly incorporate the cost of short selling into the 

option price. If our model is correct and investors price options properly, the cost of short 
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selling included in the option prices should depend on the rate of lending fees, time to 

expiry, and moneyness. Specifically, we test hypotheses H1, H2, and H3. 

In Table 4 we present the implied volatility discrepancies of individual stocks across the 

expiry groups. The stocks are sorted in descending order of the rate of lending fees. The 

implied volatility discrepancies are positive for almost all the stocks. ERICY is one of the 

exceptions, with an implied volatility discrepancy that is negative. The exceptions can be 

observed because we cannot pinpoint the specific time of specialness of the stock. While 

GM has observations in only one expiry group, other stocks show increasing implied 

volatility discrepancy with increasing time to expiry. MCDT is a perfect example; its 

implied volatility discrepancy increases from 13.01% for the near term expiry group all the 

way to 31.73% for the long-term expiry group. 

The average implied volatility discrepancies are listed in Table 5. In panel A, the implied 

volatility discrepancies averaged across the stocks in expiry groups 1 to 4 are 16.72%, 

24.86%, 24.01% and 28.26%, respectively. They are all statistically significant at the 1% 

confidence level. However, the results in panel A might be misleading due to unequal 

sample sizes across the stocks. For example, MSTR is over-weighted with a large number 

of observations, 825, and ABX is practically ignored with only one observation. To 

circumvent the problem we first take the average of the implied volatility discrepancy for 

each stock, and then average it across the stocks, so that each stock has the same weight. 

The results are shown in panel B of Table 5. The average implied volatility discrepancies in 

panel B are 10.30%, 14.65%, 17.90%, and 22.71% from expiry group 1 to 4, and all 

statistically significant at the 1% confidence level. These increasing shape of the implied 

volatility discrepancy are consistent with our option pricing model. We also report the 

implied volatilities of call and put options across expiry groups, but they are not consistent 

with the characteristics shown in Figure 3. As previously mentioned this may be due to the 

term structure of volatility. 

 

[Insert Table 4 about here] 
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[Insert Table 5 about here] 

 

In Table 6 we provide the implied volatility discrepancies of individual stocks across 

different moneyness groups. For most stocks the shape of the implied volatility discrepancy 

curve across moneyness is U-shaped, which is consistent with Figure 4-(b). For example, 

the implied volatility discrepancy of HAND starts with 18.12% at moneyness group 1, hits 

the lowest level, 10.33%, at group 3 and goes up to 19.30% at group 5. The average values 

are shown in panel A of Table 7, and are 36.57%, 25.72%, 19.64%, 20.96%, and 26.56% 

from moneyness group 1 to 5, respectively. The average shape is also U-shaped with the 

lowest level at moneyness group 3. The same shape remains even after adjusting for the 

unequal sample size among stocks, which is shown in panel B of Table 7. The mean values 

are 27.65%, 14.33%, 12.16%, 14.68%, and 24.60% from moneyness group 1 to 5, 

respectively, and all statistically significant at the 1 % confidence level. 

 

[Insert Table 6 about here] 

 

[Insert Table 7 about here] 

 

The last column of Table 6 shows the average implied volatility discrepancy for each 

stock. The stocks are sorted in descending order of the rate of lending fees. As shown in 

Figure 2, we expect that, all other things being equal, the mean implied volatility 

discrepancy decreases from top to bottom as the rate of lending fees decreases. However, 

the numbers do not show a clear decreasing pattern. There may be two explanations for this. 

First, the empirical results regarding the relation between the implied volatility discrepancy 

and the rate of lending fees may be misspecified because other variables, such as time to 

expiry and moneyness, are not controlled for. The second possible explanation can be 

found in Evans, Geczy, Musto and Reed (2006), who introduce an option to fail. A market 

maker can short stocks without borrowing, and have an option to fail to deliver stocks to 

the buyer of the stocks. In this case the marker maker should post the same amount of 
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collateral, but cannot earn interest (rebate) on the posted collateral. With this privilege, the 

market maker can limit the maximum borrowing costs below the riskless interest on the 

collateral. Consequently, regardless of the structure of the stock loan market, the rate of 

lending fees of a marginal arbitrageur can be limited to the riskless interest rate if the 

options market is competitive. However, if the options market is not competitive, the option 

price may reflect the higher borrowing costs in spite of the privilege of market markers. 

To test hypothesis (H3) we control the effect of time to expiry and moneyness with a 

simple regression model. The regression equation for stock i is: 

 

iii MoneynessMoneynessExpiryFeeIVD εβββββ +×+×+×+×+= 2
4i3i2i10  (23) 

 

where IVD is the implied volatility discrepancy, Fee is the rate of lending fees, Moneyness 

is moneyness of an option pair, i.e., the delta of the call option, Expiry is the time to expiry 

in years, ε  is the regression error, which is assumed to be normally distributed with zero 

mean and constant variance. Equation (23) shows the relation between the implied 

volatility discrepancy and the rate of lending fees after controlling for moneyness and time 

to expiry of the options. We use the Cochrane-Orcutt estimation procedure to correct for 

the possible existence of serial correlation in the regression residual. The regression results 

are shown in Table 8. For regressions on individual stocks we omit the rate of lending fees 

in the dependent variables. The results on individual stocks show that in most cases, both 

time to expiry and moneyness are statistically significant at the 1% confidence level. The 

implied volatility discrepancy of every individual stock shows a U-shaped convex function 

of moneyness with a negative coefficient for moneyness and a positive coefficient for the 

square of moneyness. In addition, the coefficient of Expiry is statistically significantly 

positive for most stocks.  

The aggregate relation between implied volatility discrepancy and the rate of lending fees is 

shown to be positive and statistically significant at the 1% confidence level as predicted in 

Figure 2. Standard errors appear in parentheses. The coefficient of time to expiry and 

moneyness is positive and statistically significant at the 1% confidence level as well, which 
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confirms the results observed in Figure 3. Altogether, the empirical results are consistent 

with our option pricing model. 

 

[Insert Table 8 about here] 

 

5. Conclusion 
 

   An arbitrage opportunity is a zero investment portfolio with possible riskless profit, and 

put–call parity is one of the most widely documented arbitrage strategies. In this paper we 

investigate the put–call parity relation under short sales constraints. For this purpose, we 

introduce a discrete time binomial tree model similar to that of CRR and Boyle and Vorst 

(1992). Using our model we reinvestigate put–call parity relation, and show that, under 

short sales constraints, the stock price that is higher than the implied stock price is not a 

true violation of the relation. That is to say, an arbitrageur cannot make riskless profits by 

short selling a share of the underlying stock and buying a position of the implied stock 

because the cost of short selling that he or she must pay in the future is unpredictable, and 

can be enormously high. The arbitrageur should consider the maximum lending fees that 

will discourage him or her to try the strategy. 

The empirical results, which employ a sample of extremely negative rebate stocks from 

D’Avolio (2002), validate our option pricing model. For empirical purpose we define and 

use implied volatility discrepancy, the implied volatility calculated from the midpoint of the 

bid–offer spread of a put option minus that of a call option with the same underlying stock, 

time to expiry, and strike price. As predicted in our model, the implied volatility 

discrepancy of an option pair widens as the time to expiry of the rate of lending fees 

increases, and is a U-shaped convex function of moneyness. Thus, we conclude that 

investors in the options market correctly reflect both the stock price and the cost of short 

selling. 
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Appendix10 

Selected negative rebate stocks (April 2000 through September 2001). 

Ticker Company Fee (%)a Month
CNH CNH GLOBAL 79.0 200105
GM GENERAL MTRS CORP 63.0 200005
TOT TOTAL FINA SA d 55.0 200006
KREM KRISPY KREME DOUGHNUTS INC b 55.0 200102
STLW STRATOS LIGHTWAVE INC b 50.0 200009
UN UNILEVER N V 46.0 200105
PRKR PARKERVISION INC 45.0 200005
MCDT MCDATA CORPORATION b 40.0 200106
RD ROYAL DUTCH PETE CO d 35.0 200108
PPD PRE PAID LEGAL SVCS INC 35.0 200109
PLMD POLYMEDICA CORP 35.0 200109
PLCE CHILDRENS PL RETAIL STORES INC 35.0 200105
PALM PALM INC b 35.0 200008
ABX BARRICK GOLD CORP 27.0 200005
BCE BCE INC 26.5 200006
NOK NOKIA CORP. d 25.0 200103
HAND HANDSPRING INC b 25.0 200102
INRG INRANGE TECHNOLOGIES CORP b 25.0 200010
COH COACH INC b 25.0 200104
AREM AREMISSOFT CORP DE 22.0 200107
ERICY ERICSSON d 20.5 200104
ABY ABITIBI CONSOLIDATED INC 20.0 200012
OWC OWENS CORNING 20.0 200106
RAD RITE AID CORP 20.0 200103
PCL PLUM CREEK TIMBER CO INC 20.0 200109
SFP SALTON INC 20.0 200109
PRCM PROCOM TECHNOLOGY INC 20.0 200106
PPRO PURCHASEPRO COM INC c 20.0 200107
LNUX VA LINUX SYS INC b 20.0 200006
MSTR MICROSTRATEGY INC  15.0 200007
WBVN WEBVAN GROUP INC b c 14.0 200009
SWZA SUIZA FOODS CORP 12.5 200104
PFSW PFSWEB INC b c 10.0 200007
WEBM WEBMETHODS INC b c 10.0 200008
RETK RETEK INC b 10.0 200010

a Fee: (defined by Rebate – Fed Funds) the highest recorded by each stock within the sample period. 
b IPO: stocks within one year of their issue date as provided by the Securities Data Company. 
c INTERNET: stocks that appear in the portfolio of 400 Internet “pure plays” compiled by Ofek and 
Richardson (2001). 
d ADRs 

                                                 
10 This table is originally reported in D’Avolio (2002), page 287. 
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Table 1 
Descriptive statistics 
Table 1 reports the descriptive statistics of the sample after filtering out the undesirable quotes. The sample 

used here comprises selected negative rebate stocks from April 2000 through September 2001 that originally 

appeared in D’Avolio (2002). We collect the relevant American option price quotes from IVY OptionMetrics. 

The sample is made up of 4,712 quotes. The variables T and Δ are the days to expiry, and the delta of an 

option, respectively. The implied volatility, σ, which is also provided by OptionMetrics, is calculated by using 

the Cox, Ross and Rubinstein (1979) binomial framework. The variable OI is the daily open interest of 

options. The subscript refers to the type of option. EEP (in percent) is the early exercise premium of the 

American put option over the European equivalent divided by the stock price. 

  T Δcall Δput σcall (%) σput (%) OIcall  OIput  EEP (%)

Mean 109.85  51.71  -45.57 84.91 107.92 1103 773  0.81 
Minimum 10.00  6.49  -95.93 14.17 22.50 1 1  0.06 
25th pctl 51.00  32.10  -61.14 63.35 79.10 103 44  0.37 
Median 101.00  51.05  -45.23 81.39 106.86 306 143  0.68 
75 pctl 173.00  71.78  -29.31 103.46 128.30 961 453  1.12 
Maximum 240.00  99.08  -4.70 188.96 223.21 32747 29150  3.81 
Std dev 61.65  24.10  20.33 31.14 36.65 2715 2298  0.57 
Skewness 0.08  0.03  -0.11 0.40 0.28 7 7  1.29 
Kurtosis 1.76  1.93  2.14 2.56 2.57 62 65  5.19 
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Table 2 

Moneyness and expiry groups 
Table 2 defines the moneyness and expiry groups of pairs of call and put options in the sample. Moneyness of 

an option pair is defined as the delta of a call option, Δ call. Option pairs with moneyness below 0.02 or above 

0.98 are excluded. 

Group Labels Range 
Panel A: Moneyness group 

1 Deep in-the-money call 0.875 < Δ call ≤ 0.98
 Deep out-of-the-money put 

2 In-the-money call 0.625 < Δ call ≤ 0.875
 Out-of-the-money put 

3 At-the-money call 0.375 < Δ call ≤ 0.625
 At-the-money  put 

4 Out-of-the-money call 0.125 < Δ call ≤ 0.375
 In-the-money put 

5 Deep out-of-the-money call 0.02 < Δ call ≤ 0.125
 Deep in-the-money put 

      
Panel B: Expiry group 
1 Nearest term to expiry 10 ≤  T < 60 

2 Short term to expiry 60 ≤  T  < 120 

3 Medium term to expiry 120 ≤  T  < 180 

4 Long term to expiry 180 ≤  T  < 240 
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Table 3 

Distribution of seeming violations of the put–call parity on selected negative rebate stocks 
Table 3 reports the distribution of seeming violations of put–call parity of negative rebate stocks for each 

group of time to expiry of options. The data used here are selected negative rebate stocks from April 2000 

through September 2001 that originally appeared in D’Avolio (2002). The variables SS, SM and SL are the 

implied short stock price, average implied stock price, implied long stock price derived by the options market 

defined as: 

 

( )
( )
( ) EEPKPVbidPofferCLS

EEPKPVmidPmidCMS

EEPKPVofferPbidCSS

++−=

++−=

++−=

 

 
PV is the present value operator, EEP is the early exercise premium of the put option, and S is the underlying 

stock price. We refer to observations where S > SL as seeming violations since it is theoretically impossible 

due to the unpredictable costs of short selling to make riskless profits by short selling the stock and 

simultaneously buying the implied stock. Below the distribution, the mean of the log deviations of the stock 

price from the implied long stock price, 100Ln(S/SL), is reported for each expiry group. The standard errors 

appear in parentheses, and all the means of log deviations of stock prices from the implied long stock prices 

are significant at the 1% confidence level. 

  
Expiry group 

1 2 3 4 All 
Obs 1330 1450 1036 892 4712
    

S < SS 0.83  0.34 0.29 0.34  0.47 
SS ≤ S < SM 5.49  5.59 3.57 1.57  4.35 
SM ≤ S ≤ SL 26.39  20.41 18.63 18.95  21.41 
S > SL 67.29  73.66 77.51 79.15  73.77 
    

100Ln(S/SL) 0.68*  2.70* 4.04* 5.84*  3.02* 
  (0.05) (0.10) (0.18) (0.22) (0.07)

* Significant at the 1% confidence level. 
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Table 4 

Implied volatility discrepancies of negative rebate stocks across expiry 
Table 4 reports the implied volatility discrepancies (in percent) of individual stocks across expiry groups, the 

range of which is defined in Table 2. We define the implied volatility discrepancy of an option pair, σput - σcall, 

as implied volatility calculated from the midpoint of the bid–offer spread of a put option minus that of a call 

option with the same underlying stock, time to expiry, and strike price. The data used comprise selected 

negative rebate stocks from April 2000 through September 2001 that originally appeared in D’Avolio (2002). 

    Expiry group 
Ticker Fee Obs 1 2 3 4 All 
GM 63 25  3.62  3.62 
KREM 55 362  19.17 25.79 20.54 28.73  24.21 
TOT 55 4  -6.70  -6.70 
STLW 50 396  38.30 71.48 84.43 82.59  67.10 
UN 46 18  10.30 0.56 -1.59  3.09 
MCDT 40 354  13.01 23.55 29.36 31.73  23.72 
PLCE 35 194  31.03 25.49 34.80 32.05  31.87 
PALM 35 547  1.56 1.07 0.91 1.84  1.35 
PLMD 35 274  7.41 12.47 10.12 14.48  10.97 
PPD 35 197  30.08 28.18 29.91  29.68 
RD 35 3  0.61  0.61 
ABX 27 1  7.77  7.77 
BCE 26.5 2  7.21  7.21 
COH 25 100  12.95 3.21 3.87  7.07 
HAND 25 382  8.97 13.35 14.93 12.67  12.48 
NOK 25 11  -2.26  -2.26 
AREM 22 338  31.23 29.76 34.76 31.51  31.13 
ERICY 20.5 44  -8.33 -0.25 -1.61 -2.09  -1.49 
PCL 20 32  12.62 15.70  13.19 
RAD 20 63  39.18 8.26 17.42 17.79  17.27 
SFP 20 16  -38.48 6.15 12.26  4.39 
LNUX 20 79  8.12 7.39 11.48 14.41  9.96 
MSTR 15 825  17.57 35.50 34.42 41.97  32.26 
WBVN 14 40  -19.81 -5.55 11.26  2.26 
SWZA 12.5 178  11.41 8.56 12.60  11.55 
RETK 10 86  4.50 5.27 4.99 9.40  5.76 
WEBM 10 141  6.84 6.03 9.94 12.30  8.81 
                 
All  4712 16.72 24.86 24.01 28.26 23.01
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Table 5 

Average implied volatility discrepancies across expiry 
Table 5 reports the average implied volatility discrepancies (in percent) across expiry groups, the range of 

which is defined in Table 2. We define the implied volatility discrepancy of an option pair, σput - σcall, as 

implied volatility calculated from the midpoint of the bid–offer spread of a put option minus that of a call 

option with the same underlying stock, time to expiry, and strike price. Panel B lists the mean values after 

being adjusted for unequal sample size among stocks while panel A shows the unadjusted mean values. The 

data used here are made up of selected negative rebate stocks from April 2000 through September 2001 that 

originally appeared in D’Avolio (2002). Standard errors appear in parentheses, and all implied volatility 

discrepancies are significant at the 1% confidence level. 

    Expiry group 
    1 2 3 4 All 
Panel A: Unadjusted mean values 
Obs  1330  1450 1036 892  4712 
σcall  88.74  88.15 74.19 86.35  84.91 
σput  105.47  113.01 98.20 114.61  107.92 
σput - σcall  16.72* 24.86* 24.01* 28.26* 23.01*

   (0.41) (0.56) (0.67) (0.79) (0.3)
 
Panel B: Mean values after being adjusted for unequal sample sizes among stocks 
Obs   26 21 20 15 27
σcall   71.57 75.73 73.16 82.87 67.46
σput   81.86 90.38 91.06 105.58 80.68
σput - σcall   10.30* 14.65* 17.90* 22.71* 13.22*

    (3.1) (3.52) (3.89) (3.97) (2.97)
* Significant at the 1% confidence level. 
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Table 6 

Implied volatility discrepancies of negative rebate stocks across moneyness 
Table 6 reports the implied volatility discrepancies (in percent) of individual stocks across moneyness groups, 

the range of which is defined in Table 2. We use the delta of the call option as the measure of moneyness of 

an option pair. We define the implied volatility discrepancy of an option pair, σput - σcall, as implied volatility 

calculated from the midpoint of the bid–offer spread of a put option minus that of a call option with the same 

underlying stock, time to expiry, and strike price. The data used here are made up of selected negative rebate 

stocks from April 2000 through September 2001 that originally appeared in D’Avolio (2002).  

     Moneyness group 
Ticker Fee Obs  1 2 3 4 5 All 
GM 63 25   7.09 2.99 3.73 2.33 7.15  3.62 
KREM 55 362   30.97 24.51 23.69 22.37 24.83  24.21 
TOT 55 4   -14.19 -5.72 -3.44  -6.70 
STLW 50 396   68.36 64.29 65.53 70.28 74.76  67.10 
UN 46 18   0.92 1.22 9.85  3.09 
MCDT 40 354   35.46 22.27 20.21 22.47 31.40  23.72 
PLCE 35 194   30.81 29.64 32.02 34.80  31.87 
PALM 35 547   -1.24 0.92 1.25 1.31 3.05  1.35 
PLMD 35 274   14.21 9.86 9.42 7.89  10.97 
PPD 35 197   29.08 28.23 29.85 38.06  29.68 
RD 35 3   0.61  0.61 
ABX 27 1   7.77  7.77 
BCE 26.5 2   7.21  7.21 
COH 25 100   6.56 6.40 5.79 34.22  7.07 
HAND 25 382   18.12 13.26 10.33 11.70 19.30  12.48 
NOK 25 11   -2.87 -1.47 -2.50  -2.26 
AREM 22 338   26.17 27.09 33.11 49.19  31.13 
ERICY 20.5 44   -1.85 -2.30 -0.59  -1.49 
PCL 20 32   13.96 12.60 13.12 15.97  13.19 
RAD 20 63   15.15 10.55 19.55  17.27 
SFP 20 16   -0.62 13.72 17.96  4.39 
LNUX 20 79   8.40 10.07 12.65  9.96 
MSTR 15 825   49.30 36.06 29.50 26.66 20.96  32.26 
WBVN 14 40   3.28 2.15  2.26 
SWZA 12.5 178   16.08 8.95 9.93 16.18  11.55 
RETK 10 86   5.01 5.88 5.76  5.76 
WEBM 10 141   13.16 8.55 8.24 9.34 9.79  8.81 
                  
Mean  4712  36.57 25.72 19.64 20.96 26.56  23.01 
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Table 7 

Average implied volatility discrepancies across moneyness 
Table 7 reports the average implied volatility discrepancies (in percent) across moneyness groups, the range 

of which is defined in Table 2. We use the delta of an option pair as the measure of moneyness. We define the 

implied volatility discrepancy of an option pair, σput - σcall, as implied volatility calculated from the midpoint 

of the bid–offer spread of a put option minus that of a call option with the same underlying stock, time to 

expiry, and strike price. Panel B lists the mean values after being adjusted for unequal sample sizes among 

stocks while panel A shows the unadjusted mean values. The data used here are made up of selected negative 

rebate stocks from April 2000 through September 2001 that originally appeared in D’Avolio (2002). Standard 

errors appear in parentheses, and all implied volatility discrepancies are significant at the 1% confidence level. 

    Moneyness category 
    1  2  3  4  5  All 
Panel A: Unadjusted mean values 
Obs   197  1311 1525 1309 365  4712 
σcall   94.27  89.25 84.38 82.67 75.20  84.91 
σput   130.83  114.97 104.02 103.63 101.76  107.92 
σput - σcall   36.57* 25.72* 19.64* 20.96* 26.56* 23.01*

    (1.57) (0.60) (0.48) (0.53) (1.20) (0.30)
      
Panel B: Mean values after being adjusted for unequal sample sizes among stocks 
Obs   8 22 25 25 17 27
σcall   79.41  71.14 70.07 67.09 68.01  67.46 
σput   107.06  85.47 82.23 81.77 92.61  80.68 
σput - σcall   27.65* 14.33* 12.16* 14.68* 24.60* 13.22*

    (4.46) (3.23) (2.96) (3.00) (3.46) (2.97)
* Significant at the 1% confidence level. 
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Table 8 

Regression result of implied volatility discrepancy 
Table 8 reports regression results of the implied volatility discrepancy (in percent) on time to expiry, 

moneyness, and the square of moneyness for each negative rebate stock. For the aggregate sample we regress 

the implied volatility discrepancy on the rate of lending fees after controlling for the effect of time to expiry, 

moneyness and the square of moneyness with the following regression equation: 

iii MoneynessMoneynessExpiryFeeIVD εβββββ +×+×+×+×+= 2
4i3i2i10  

We use the delta of the call option as the measure of moneyness of an option pair. The data used here are 

made up of selected negative rebate stocks from April 2000 through September 2001 that originally appeared 

in D’Avolio (2002). The standard errors appear in parentheses. 

     Independent variables   

Ticker Fee Obs  Intercept Fee Expiry Moneyness Moneyness2 R2

AREM 22.0 338  0.2191* -0.0137 -0.5308* 0.7179*  0.5976
      (0.0002) (0.0006) (0.0079) (0.0058)   
PLCE 35.0 194  0.0550* 0.2100* -0.5071* 0.4141*  0.4954
      (0.0000) (0.0003) (0.0047) (0.0028)   
HAND 25.0 382  0.0739* 0.1187* -0.5478* 0.5282*  0.5901
      (0.0000) (0.0001) (0.0008) (0.0009)   
KREM 55.0 362  0.0506*   0.1906* -0.5164* 0.5052*  0.3747
      (0.0000)   (0.0003) (0.0014) (0.0014)   
MCDT 40.0 354  0.0658*   0.4796* -0.7122* 0.7224*  0.7350
      (0.0000)   (0.0004) (0.0023) (0.002)   
MSTR 15.0 825  0.0299*   0.6525* -1.2515* 0.9678*  0.7312
      (0.0000)   (0.0004) (0.0026) (0.0024)   
PALM 35.0 547  0.0047**   0.0090 -0.0613* 0.0892*  0.1848
      (0.0000)   (0.0001) (0.0005) (0.0004)   
PLMD 35.0 274  0.1630*   0.1072* -0.5688* 0.4366*  0.1726
      (0.0005)   (0.0011) (0.0148) (0.0125)   
PPD 35.0 197  0.1314*   0.0125* -0.4216* 0.4462*  0.3930
      (0.0000)   (0.0007) (0.0034) (0.0027)   
STLW 50.0 396  0.0583*   1.2005* -0.3535* 0.6266*  0.8424
      (0.0000)   (0.0011) (0.004) (0.0033)   
WEBM 10.0 141  0.0642*   0.1149* -0.3667* 0.3177*  0.6644
      (0.0000)   (0.0001) (0.0012) (0.001)   
All   4712  0.0131* 0.3587* 0.2288* -0.5254* 0.5205*  0.2259 
      (0.0000) (0.0000) (0.0001) (0.0005) (0.0004) 

* Significant at the 1% confidence level. 
** Significant at the 5% confidence level. 
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Figure 1 

The convergence of option price under short sales constraints 

Four option quotes—call offer, call bid, put offer, and put-bid—are calculated in a discrete time framework 

similar to that of Cox, Ross Rubinstein (1979) by repeatedly constructing a portfolio of (D0, B0) from the 

following two equations: 

StDkBuSDRBuSD L 01100 Δ−+=+  

StDkBdSDRBdSD L 02200 Δ−+=+  

D0 and B0 are the number of shares and riskless bonds at the initial time, (D1, B1) and (D2, B2) are those in up-

state and down-state, respectively, and kL is the rate of lending fees. The symbols “+,” “□,” “*,” and “o” 

represent the offer price of a call option, the bid price of a call option, the offer price of a put option, and the 

bid price of a put option, respectively. The implied volatilities are calculated by using the Black-Scholes 

model and are presented to compare the relative level of the four prices. Parameters are as follows: initial 

stock price = 100, strike price = 100, riskless interest rate = 5%, time to maturity = 0.5 years, volatility = 40%, 

the rate of lending fees = 5%, and the number of time steps = 250. 
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Figure 2 

Implied volatility across the rate of lending fees under short sales constraints 

Four option quotes—call offer, call bid, put offer, and put bid—are calculated in a discrete time framework 

similar to that of Cox, Ross Rubinstein (1979) by repeatedly constructing a portfolio of (D0, B0) from the 

following two equations: 

StDkBuSDRBuSD L 01100 Δ−+=+  

StDkBdSDRBdSD L 02200 Δ−+=+  

D0 and B0 are the number of shares and riskless bonds at the initial time, (D1, B1) and (D2, B2) are those in up-

state and down-state, respectively, and kL is the rate of lending fees. The symbols “+,” “□,” “*,” and “o” 

represent the offer price of a call option, the bid price of a call option, the offer price of a put option, and the 

bid price of a put option, respectively. The implied volatilities are calculated by using the Black-Scholes 

model and are presented to compare the relative level of the four prices. Parameters are as follows: initial 

stock price = 100, strike price = 100, riskless interest rate = 5%, time to maturity = 0.5 years, volatility = 40%, 

the rate of lending fees = 5%, and the number of time steps = 250. 
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Figure 3 

Implied volatility across time to expiry under short sales constraints 
Four option quotes—call ask, call bid, put ask, and put bid—are calculated in a discrete time framework 

similar to that of Cox, Ross Rubinstein (1979) by repeatedly constructing a portfolio of (D0, B0) from the 

following two equations: 

StDkBuSDRBuSD L 01100 Δ−+=+  

StDkBdSDRBdSD L 02200 Δ−+=+  

D0 and B0 are the number of shares and riskless bonds at initial time, (D1, B1) and (D2, B2) are those in up-state 

and down-state, respectively, and kL is the rate of lending fees. The symbols “+,” “□,” “*,” and “o” represent 

the offer price of a call option, the bid price of a call option, the offer price of a put option, and the bid price 

of a put option, respectively. The implied volatilities are calculated by using the Black-Scholes model and are 

presented to compare the relative level of the four prices. Parameters are as follows: initial stock price = 100, 

strike price = 100, riskless interest rate = 5%, time to maturity = 0.5 years, volatility = 40%, the rate of 

lending fees = 5%, and the number of time steps = 250. 
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Figure 4 

Implied volatility and implied volatility discrepancy across moneyness under short 

sales constraints 
Four option quotes—call ask, call bid, put ask, and put bid—are calculated in a discrete time framework 

similar to that of Cox, Ross Rubinstein (1979) by repeatedly constructing a portfolio of (D0, B0) from the 

following two equations: 

StDkBuSDRBuSD L 01100 Δ−+=+  

StDkBdSDRBdSD L 02200 Δ−+=+  

D0 and B0 are the number of shares and riskless bonds at initial time, (D1, B1) and (D2, B2) are those in up-state 

and down-state, respectively, and kL is the rate of lending fees. The symbols “+,” “□,” “*,” and “o” represent 

the offer price of a call option, the bid price of a call option, the offer price of a put option, and the bid price 

of a put option, respectively. The implied volatilities are calculated by using the Black-Scholes model and are 

presented to compare the relative level of the four prices in (a). We use the delta of an option pair as the 

measure of moneyness. The implied volatility discrepancy of an option pair, σput - σcall, shown in (b) is defined 

as the implied volatility of a put option minus that of a call option with the same underlying stock, time to 

expiry, and strike price. Parameters are as follows: initial stock price = 100, riskless interest rate = 5%, time to 

maturity = 0.5 years, volatility = 40%, the rate of lending fee = 5%, and the number of time steps = 250. 
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