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1. Introduction 

Understanding the time variation and cross-sectional variation in risk premiums has long been a 

central research question for financial economists. One way to gain an understanding of the 

nature of risk premiums is to examine the linkage between financial markets and the 

macroeconomy, because risk premiums should reflect macroeconomic risk. Cochrane's 2007 

review article suggests the following in researching the interaction between macroeconomics 

and finance: 
 

The challenge is to find the right measure of “bad times,” rises in the marginal value of 

wealth, so that we can understand high average returns or low prices as compensation 

for assets’ tendency to pay off poorly in “bad times.” 
 

We propose here the “right measure” that captures economic recessions. 

  It is well-known that time variations in expected returns are related to business cycle (see 

Fama and French, 1989, and references therein). Expected returns are higher in economic 

recessions, since investors are less willing to hold risky assets, and lower in economic booms. 

This evidence suggests that time variations in equity premiums should be accounted for by 

variables related to business cycle. Previous research focuses mainly on financial indicator 

variables such as the dividend-to-price ratio, earning-to-price ratio, and dividend-to-earning 

ratio as candidates for predictive variables. Although these financial indicators can predict 

market return over long horizons, their predictive powers over business cycle frequencies are 

limited (Lettau and Ludvigson, 2001a). 

It is also well documented in the literature that small firms compared to large firms deliver 

higher returns and value firms compared to growth firms deliver higher returns. These 

systematic variations in equity premium across stocks of different types of firms are known as 
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the size and value premiums documented by Fama and French (1992). The consumption capital 

asset pricing model (CCAPM) developed by Breeden (1979) expects that cross-sectional 

variations in expected returns should be explained by cross-sectional variations in assets’ 

exposure to consumption risk. Empirical works, however, provide strong evidence against this 

model. Hansen and Singleton (1982, 1983) reject the CCAPM with power utility. The CCAPM 

fails to explain the cross-section of asset returns (Mankiw and Shapiro, 1986; Breeden, Gibbons, 

and Litzenberger, 1989). Furthermore, it often performs worse than the CAPM in explaining the 

cross-section of size and book-to-market sorted portfolio returns (Lustig and Van Nieuwerburgh, 

2005). 

We study both the variation in risk premium over time and the variation in risk premium 

across stocks based on the proposed measure which captures business-cycle-related 

macroeconomic risks. A starting point of this study is to recognize that macroeconomic 

variables which are used to predict stock returns — dividend yield, term spread, default spread, 

and short rate — share a common long-term trend, that is, they are cointegrated. We examine 

the role of trend deviations in the cointegrated macroeconomic variables in predicting future 

asset returns and explaining the cross-section of average returns. 

  It is now well documented that predictive variables such as dividend yield, term spread, 

default spread, and short-rate are very persistent (Torous, Valkanov, and Yan, 2004; Boudoukh, 

Richardson, and Whitelaw, 2006). There is, however, ongoing debate as to whether these highly 

persistent variables are indeed non-stationary. For example, Roll (2002) states that predictive 

variables that are functions of asset prices, such as dividend yield, could be non-stationary under 

rational expectations. On the other hand, as documented in Cochrane (2005), dividend yield 

should be stationary because asset price and dividend are cointegrated. In this study, we do not 

argue whether these variables are integrated or not; rather, we argue that the use of highly 
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persistent time-series variables in predictive regressions as well as cross-sectional analyses 

causes some statistical problems, as documented by Ferson, Sarkissian, and Simin (2003). These 

authors demonstrate that if the expected returns are persistent, these persistent variables can 

cause spurious regression bias in the predictive regressions. Their simulation results cast some 

doubt on the existing literature of stock return predictability by showing that many of the 

regression results are spurious. 

In their simulation study, Campbell and Perron (1991) show that although the asymptotic 

distribution of a time-series is stationary, treating near-integrated stationary data as a unit root 

variable inferred from unit root and/or cointegration tests may be better modeled in a finite 

sample.1 Following Campbell and Perron, we assume that the four variables are non-stationary, 

since we cannot reject the null hypothesis of non-stationarity in the augmented Dickey-Fuller 

tests in our sample period. From the conjecture that these predictive variables are closely related 

to the business cycle, we generate the stationary trend deviation from the Johansen cointegration 

test. We employ this stationary trend deviation as our conditioning variables, since it is very 

likely to incorporate information on business cycle as indicated by the four predictive variables. 

The main findings of this paper are summarized as follows. First, deviations from common 

long-term trends in macroeconomic variables have strong predictive ability for not only future 

stock returns over long horizons but also future asset returns over business cycle frequencies, 

where financial indicator variables lack forecasting power. Moreover, this variable has 

significant marginal forecasting power when other popular predictive variables such as payout 

ratio, suggested by Lamont (1998), and consumption-aggregate wealth ratio, developed by 

Lettau and Ludvigson (2001a), are included in the forecasting regression.2 

                                            
1 Lettau and Ludvigson (2001a,b) also follow Campbell and Perron's advice when they construct the consumption-
wealth ratio (Lettau and Ludvigson, 2007). 
 
2 Deviations in common trends among macroeconomic variables can explain a substantial fraction of the variations 
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Second, when our trend deviations are used as a conditioning variable for the CCAPM, it 

performs almost as well as Fama and French's (1993) three-factor model and better than the 

CCAPM of Lettau and Ludvigson (2001b) in explaining the cross-section of average returns on 

Fama and French 25 size and book-to-market sorted portfolios. In addition, the proposed 

conditional CCAPM performs well for other test assets, including 10 earning-to-price sorted 

portfolios and 10 industry portfolios. Intuitively, the success of pricing size and book-to-market 

sorted portfolios arises from the fact that small stocks and value stocks have higher 

consumption betas than big stocks and growth stocks because they are more highly correlated 

with consumption growth during recessions, when marginal utility rises, which is consistent 

with Lettau and Ludvigson (2001b). We provide evidence for the intuition. Thus, our results 

support a risk-based interpretation of size and book-to-market effects. 

The most closely related previous studies with our approach include Lettau and Ludvigson 

(2001a, 2001b), Santos and Veronesi (2006), and Lustig and Van Nieuwerburgh (2005). Lettau 

and Ludvigson show that the ratio of consumption to wealth forecasts future stock returns and a 

conditional CCAPM using this variable as a conditioning variable can explain size and value 

cross-sectional effects. Santos and Veronesi derive a conditional CAPM in which the ratio of 

labor income to consumption is a conditioning variable. They show that this variable predicts 

aggregate returns and that the scaled CAPM can account for the cross-section of average returns 

of the Fama and French size and book-to-market sorted portfolios. Lustig and Van 

Nieuwerburgh suggest the ratio of housing wealth to human wealth as a conditioning variable 

and empirically demonstrate that this housing collateral ratio carries relevant information for 

predicting asset returns and explaining value-size cross-sectional effects. 

This paper adds to the extensive literature on market return predictability and consumption-

                                                                                                                                
in future returns about as well as the cay variable for both long- and short-term future stock returns.  
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based explanations of the cross-section of stock returns. Our empirical works are related to 

Campbell and Shiller (1988), Fama and French (1989), Hodrick (1992), Lamont (1998), 

Lewellen (2004), Ang and Bekaert (2007), and Boudoukh, Michaely, Richardson, and Robert 

(2007) on the time-series predictability of stock returns and to Chen and Ludvigson (2004), 

Bansal, Dittmar, and Lundblad (2005), Parker and Julliard (2005), Yogo (2006), and 

Jagannathan and Wang (2007) on the CCAPM. 

The remainder of this paper is organized as follows. Section 2 presents the framework of the 

conditional factor model. Section 3 describes the data and discusses the empirical methodology 

used in testing asset pricing models. Section 4 reports the empirical evidence on the 

predictability of stock returns. Section 5 documents the empirical results on the cross-section of 

average returns. Section 6 summarizes and presents our conclusions. 

 

 

2. The model 

 

2.1. The unconditional and conditional CAPMs 

Developed by Sharpe (1964) and Lintner (1965), the CAPM is the first asset pricing model in 

modern finance. The CAPM had been the most widely used asset pricing model until Fama and 

French’s three-factor model (1993, 1996) drew attention as a challenge to the CAPM. The 

CAPM implies that the stochastic discount factor, 1tm + , is a linear function of the market 

portfolio return: 

1 1
M

t t t tm a b r+ += +      (1) 

where ta and tb are parameters and 1
M

tr +  is the market portfolio return at time t + 1. In the 



 7

empirical approach, the CRSP value-weighted portfolio is commonly used as a proxy for the 

market portfolio. 

We assume that there exists a risk-free asset and denote the risk-free rate at time t by f
tr . 

The vector of factors in the stochastic discount factor is denoted by 1tf +  throughout this paper. 

From the conditions that the CAPM exactly prices the market portfolio and the risk-free asset, 

ta and tb  are given by 

1
1 ( )

1
M

t t t tf
t

a b E r
r += +

+
     (2) 

1
2

1

( )
(1 ) ( )

M f
t t t

t f M
t t t

E r rb
r rσ

+

+

−
=

+
     (3) 

where 2
tσ  denotes conditional variance. If ta and tb  are constant over time, the unconditional 

CAPM is obtained, where 1 1
M

t tf r+ += , and the unconditional and conditional CAPMs do not 

create any difference. The beta representation of the unconditional CAPM is given by 

, 1[ ] [ ]f
i t t iE r E r β λ+ = +      (4) 

where 1 , 1

1

( , )
( )
t i t

t

Cov f r
Var f

β + +

+

=  and λ  is the risk premium for the market portfolio. 

If ta and tb  are time varying, however, the unconditional CAPM does not hold. Instead, the 

conditional version of CAPM could hold; stocks’ expected returns are proportional to their 

conditional betas. Though the risk-free rate and conditional variance of the market portfolio are 

constant over time, it is very likely that tb  is time varying, since a variety of empirical asset 

pricing papers argue that the excess market return is forecastable.3 If the parameters are time 

varying, the conditional model does not imply the unconditional model. 

Following Cochrane (1996) and Lettau and Ludvigson (2001b), we model 0 1t ta a a z= +  

and 0 1t tb b b z= + , where tz  is a vector of conditioning variables that help predict market 

                                            
3 See Fama and Schwert (1977), Fama and French (1989), and Lettau and Ludvigson (2001a), among others. 
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excess return. Since coin, which will be defined later, is a strong forecaster of the market excess 

return, we use it as our conditioning variable. Hence, 1tm +  can be written as 

1 0 0 1 1 1 1+ + += + + +M M
t t t t tm a b r a coin b coin r    (5) 

where 0a , 1a , 0b , and 1b are constants. Therefore, the conditional CAPM implies the 

unconditional linear factor pricing model with 1 1 1( , , )M M
t t t t tf r coin coin r+ + += . 

 

2.2. The consumption CAPM 

Despite its poor performance as an asset pricing model (Mankiw and Shapiro, 1986; Breeden, 

Gibbons, and Litzenberger, 1989; Cochrane, 1996), the CCAPM still draws a lot of attention 

because consumption-based models are very general and intuitively appealing. As documented 

by Cochrane (2005), consumption-based models are general because any factor model can be 

considered as a specialization of consumption-based models. In addition, they are very intuitive 

in that a simple relation between consumption growth rate and stock return can describe the 

implications of complicated intertemporal asset pricing models. Moreover, Cochrane (2007) 

emphasizes the importance of consumption-based models this way: “At some level, the 

consumption-based models must be right if economics is to have any hope of describing stock 

markets.” Therefore, our challenge is to improve the empirical performance of CCAPM rather 

than to develop alternative asset pricing models. 

The CCAPM states that an asset’s risk is determined by the correlation between consumption 

growth rate and the return on that asset. Investors require a lower return when the asset provides 

better insurance against consumption risk. In the language of the stochastic discount factor, the 

CCAPM implies that it can be written as 1 1
1

( , )
( , )

c t t
t

c t t

U C Zm
U C Z

δ + +
+ = , where cU  is the marginal 

utility of consumption, Z refers to other factors that might affect utility, and δ  is the subjective 
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rate of time preference. This equation can be approximated as 1 1+ +≈ + Δt t t tm a b c , where 

ta and tb are parameters and 1+Δ tc  is the log consumption growth rate. 

If ta and tb  are not time varying, the unconditional CCAPM is obtained with 1 1+ += Δt tf c . 

The beta representation of the unconditional CCAPM is written as 

, 1[ ] [ ]f
i t t iE r E r β λ+ = +      (6) 

where 1 , 1

1

( , )
( )
t i t

t

Cov f r
Var f

β + +

+

=  and λ  is the risk premium for the consumption risk. 

As stated in the CAPM, it is very likely that ta and tb are time varying. For example, 

Campbell and Cochrane (1999) developed a consumption-based asset pricing model in which an 

asset’s riskiness is determined by the intertemporal marginal rate of substitution. This depends 

on the consumption growth rate and the change in the investors’ relative risk aversion. Hence, 

under Campbell and Cochrane’s framework, the parameters, ta  and tb  are not constant over 

time. As Lettau and Ludvigson (2001b) document, even though the coefficients ta  and tb  

can be functions of unobservable variables, their variations can be well captured by proxies for 

time varying risk premiums. If this is the case, the conditional version of CCAPM may hold. As 

in the conditional CAPM, we model 0 1t ta a a coin= +  and 0 1t tb b b coin= + . Therefore, 1tm +  

can be written as 

1 0 0 1 1 1 1+ + +≈ + Δ + + Δt t t t tm a b c a coin b coin c    (7) 

where 0a , 1a , 0b , and 1b are constants. Hence, the conditional CCAPM implies the 

unconditional linear factor pricing model with 1 1 1( , , )+ + += Δ Δt t t t tf c coin coin c . 

 

 

3. Methodology 
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3.1. Data 

We use quarterly data for the period from the third quarter of 1963 to the fourth quarter of 2005. 

We choose the Fama and French (1993) 25 size and book-to-market sorted portfolios as main 

test assets and construct excess returns as the difference between the returns of these portfolios 

and the returns on a three-month Treasury bill. We study these portfolios because (1) they 

display a large dispersion in average returns such that they represent one of the most 

challenging sets of portfolios in the asset pricing literature, (2) they have been a standard 

playground for evaluating asset pricing models so that we can compare our specification with 

other asset pricing models, and (3) they are designed to investigate economically interesting 

characteristics of portfolios, which are the size effect (firms with small market capitalization, on 

average, have higher returns) and the value premium (firms with higher book/market values, on 

average, have higher returns). In addition, we examine the ability of our specification to explain 

the cross-section of average returns of several other test assets, namely, 10 portfolios sorted by 

size, 10 portfolios sorted by book-to-market, 10 portfolios sorted by earning-to-price ratio, and 

ten industry portfolios. All test assets, including the Fama and French factors, are taken from 

Kenneth French’s website.4 

Following Parker and Julliard (2005), we use quarterly real consumption expenditures on 

nondurable goods per capita from the National Income and Product Accounts (NIPA) tables 

available from the Bureau of Economic Analysis. We exclude services because they include 

health care and education that are not entirely for personal consumption, as well as housing that 

is subject to large adjustment costs. 

To construct the conditioning variable for the conditional CCAPM, we use the cointegrating 

relation among macroeconomic variables. The macroeconomic variables used and the test of 

                                            
4 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. We thank Kenneth French for providing 
the data. 
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their cointegrating relation are presented in Appendix A. The conditional variable used in our 

study is coin, which is defined as 

0.28 0.25 0.49 3.54t t t t tcoin DIV TERM DEF RF= − + + −             (8) 

where , , ,t t tDIV TERM DEF and tRF  represent dividend yield, term spread, default spread, 

and short-term interest rate at time t, respectively. 5 

To compare our proposed empirical specification for the conditional CCAPM with that of a 

popular asset pricing model, we use the cay variable constructed by Lettau and Ludvigson 

(2001b), which is known as the most successful scaling variable for the conditional CCAPM. In 

addition, to compare the time-series forecasting power of our conditioning variable with that of 

competing predictive variables, the cay variable and the payout ratio of Lamont (1998) are 

employed.6 

 

3.2. Econometric approach 

Cochrane (1996) argues that conditional factor models can be tested as multifactor models with 

additional factors equal to the conditioning variable and the interaction term between the 

original factor and the conditioning variable. Therefore, our conditional CAPM or CCAPM can 

be represented as unconditional three-factor models, implying that we can employ the 

econometric approach used in the unconditional models. The performance of Fama and French’s 

three-factor model (1993) with factors 1 1 1 1( , , )+ + + += M
t t t tf r SMB HML  and the conditional 

CCAPM of Lettau and Ludvigson (2001b) with factors 1 1 1( , , )t t t t tf cay c cay c+ + += Δ Δ  are 

compared with our specification. To this end, we use two econometric approaches. 

First, we employ the Fama and Macbeth cross-sectional regression methodology to test the 

                                            
5 We demean the conditioning variable as advocated by Ferson, Sarkissian, and Simin (2003).  
6 Following Lamont (1998), the log dividends are the natural logarithm of the Standard and Poor's (S&P) Composite 
Index and the log earnings are the natural logarithm of a single quarter’s earnings per share. These data are from the 
Security Price Index Record published by S&P's Statistical Service. 
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competing asset pricing models. This choice of methodology in our analysis is driven by the 

facts that some factors do not represent portfolio returns and this regression-based method is 

widely used in testing asset pricing models. In the first stage of the method, we run multivariate 

time-series regressions for each of the Fama and French 25 portfolios to estimate the betas: 

'
, 1 1 , 1, 1,..., 25i t i i t i tr f iα β ε+ + += + + =    (9) 

where , 1i tr +  is the excess return of asset i at time t + 1 and 1tf +  is the vector of factors at time 

t + 1. The slope coefficient estimates are used as the explanatory variables in a series of cross-

sectional regressions. In the second pass of the method, for each time t, we regress the excess 

returns of all 25 portfolios on a constant and estimated betas: 

'
, 1 0 , 1, 1,...,i t i tr e t Tγ γ β+ += + + =    (10) 

where 0γ  is the estimated risk-free rate and γ  is a vector of risk premiums for the factors 

1tf + . 

As documented in Cochrane (2005), Fama and Macbeth's standard errors do not include 

corrections for the fact that the betas are estimated. Shanken (1992) develops a correction 

procedure that accounts for the errors-in-variables problem. Hence, we report the traditional 

Fama and Macbeth t-statistics as well as Shanken’s corrected t-statistics. 

Second, we follow the stochastic discount factor methodology using the generalized method 

of moments (GMM). Since our empirical specification and competing models are all linear 

models, their stochastic discount factors can be represented as a linear combination: 

1101 ++ ′+= tt fbbm     (11) 

where 1+tf  
is a 1×k  vector of factors, 0b

 
is a constant, and 1b is a 1×k vector of 

coefficients. 
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The testable asset pricing implications of the models are the set of Euler equations 

nnttt RmE 0]1[ 11 =−++     (12) 

where 1+tR is an 1×n  vector of gross return, n1
 
is an 1×n  vector of ones, and n0 is an 

1×n  vector of zeros. 

We estimate the unknown vector of factor loadings b̂  by making the pricing errors close to 

zero in the sense of the minimizing quadratic form 

)()(minargˆ bgWbgJb TTt ⋅⋅′==    (13) 

where )(bgT  denotes the vector of sample pricing errors and W  is the weighting matrix. 

We choose two weighting matrices in estimating the objective function represented in (13). 

First, we adopt the asymptotically optimal weighting matrix to compute Hansen’s J-statistic on 

the overidentifying restrictions of the models. Second, Hansen and Jagannathan (1997)’s 

weighing matrix, 1][ −′RRE , which is the inverse of the second moments of asset returns, is 

employed and the Hansen and Jagannathan (HJ) distance and its p value are computed.7 Since 

this prespecified weighting matrix is invariant across models, the HJ distance enables us to 

compare asset pricing models. Also the HJ distance has interesting economic implications for 

asset pricing models: It can be interpreted as the maximum pricing error for the set of assets (see 

Campbell and Cochrane, 2000). 

 

 

4. Empirical evidence on time-series predictability 

                                            
7 Jagannathan and Wang (1996) derive the distribution of the HJ distance, which is a weighted sum of kn −   
independent and identically distributed random variables of )1(2χ  distribution, where n  denotes the number of 
assets and k  the number of factors. We simulate 10,000 of the kn − )1(2χ  variables to compute the p value of 
the HJ distance. 
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Figure 1 displays the standardized time-series of market excess returns as well as the trend 

deviations, coin, from the second quarter of 1953 to the third quarter of 2005. Note that we use a 

different sample period in the time-series analysis to match our sample period with those of 

Lettau and Ludvigson (2001a) and Lamont (1998).8 It appears that our trend deviations have 

some outstanding patterns, namely, being high during recessions and low in booms.9 More 

importantly, trend deviations well capture the “bad times” by showing that high positive trend 

deviations precede high market excess returns. 

To investigate the forecasting ability of our coin variable for stock market excess returns, 

Table 1 shows the results for forecasting regressions using the trend deviation, coin, and/or other 

predictive variables as explanatory variables. The dependent variable of each model is the log 

excess returns on the CRSP value-weighted returns, while a constant and the predictive 

variable(s) are the explanatory variables.10 Table 1 reports one-quarter-ahead as well as long-

horizon forecasts of excess returns on the CRSP value-weighted Index. In all of the regressions 

in Table 1, we report the ordinary least squares (OLS) coefficient estimates in the first row, 

Newey-West corrected t-statistics with five lags in the second row, and the adjusted R2 in 

parentheses. 

 

4.1. One-quarter-ahead forecasts 

The first column of Table 1 presents one-quarter-ahead forecasts of the excess return on the 

CRSP value-weighted Index. Model 1 reports the results for the forecasting regression with our 

trend deviation. Regression of the log excess returns on the trend deviation produces 6% of the 

                                            
8 The sample period is from the fourth quarter of 1952 to the third quarter of 1998 in Lettau and Ludvigson (2001a) 
and from the first quarter of 1947 to the fourth quarter of 1994 in Lamont (1998). Since coin is available from the 
third quarter of 1953, our sample period is from the third quarter of 1953 and we extend it to the fourth quarter of 
2005. 
9 Business cycle expansions and contractions are taken from the National Bureau of Economic Research (NBER). 
10 Using the log returns (not excess returns) on the CRSP value-weighted returns as the dependent variable does not 
alter our time-series evidence. The results are available upon request. 
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adjusted R2
. Moreover, the corrected t-statistic is more than three standard errors from 0. A 

positive slope estimate is consistent with Figure 1, indicating that the increase in trend deviation 

predicts the rise in the expected log excess return. Model 2 shows the regression result using the 

payout ratio. Unlike the original results in Lamont (1998), the payout ratio explains little of the 

time variation of the log excess market returns. Our results can be different from Lamont's 

because we use the log excess returns on the CRSP value-weighted Index as the dependent 

variable, whereas Lamont uses the log excess returns on the S&P Composite Index and the 

sample periods of the two are different. Lamont (1998) states that high stock prices in the 1990s 

induced a low forecasting power of the payout ratio in 1990s. Since our sample covers all 

market excess returns in the 1990s, it seems that the payout ratio has low forecasting power in 

recent years as well. Model 3 displays the regression result when the cay variable is used as a 

predictive variable, showing its powerful forecasting ability. 

To investigate the additional marginal explanatory power in the presence of competing 

predictive variables, we regress the log excess market returns on a constant, coin, the payout 

ratio, and the cay variable, and the results are reported in model 4. Even in the presence of the 

payout ratio and the cay variable, coin has marginal explanatory power. The three variables 

together explain 10% of the variation, whereas cay and coin alone explain 6 and 5% of the 

variation in one-quarter-ahead returns, respectively. Therefore cay and coin play different roles 

in predicting log excess market returns. 

 

4.2. Long-horizon forecasts 

In this subsection, we study the relative predictive powers of macroeconomic variables for 

excess returns at longer horizons. Long-horizon regressions of excess stock returns, over 

horizons spanning 2 to 24 quarters, on a lagged forecasting variable(s) are presented from 
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column 2 to column 8 of Table 1. The trend deviation, coin, has significant forecasting power 

for future returns at all horizons. The adjusted R2 increases up to 2 year horizon (8 quarters), 

reaching at 20%, and then decreases at longer horizons of 3 and 4 years. As one-quarter-ahead 

regressions, the payout ratio is insignificant and the cay variable is statistically significant for all 

horizons. Again, coin preserves its significant forecasting power when cay and the payout ratio 

are added to the list of independent variables. 

 

 

5. Empirical evidence on the cross-section of stock return 

 

5.1. Fama and Macbeth cross-sectional regressions 

Table 2 reports the Fama and Macbeth cross-sectional regression results using the Fama and 

French 25 size and book-to-market sorted portfolios. It contains the estimated coefficients of the 

risk premium, uncorrected Fama and Macbeth t-statistics, corrected Shanken’s (1992) t-statistics, 

and adjusted R2 statistics. We use the adjusted R2 statistic as a summary statistic for the overall 

fit of each specification.11 Row 1 shows the well-known failure of the unconditional CAPM to 

explain the cross-section of the average returns. The compensation for market risk is negative 

and statistically insignificant. Furthermore, this specification explains little of the cross-section 

of the Fama and French 25 portfolios. Row 2 presents results for Fama and French’s three-factor 

model. The risk premium of HML factor is positive and statistically significant and the adjusted 

R2 is 76%. As documented in a variety of papers, Fama and French’s three-factor model does a 

                                            
11 Jagannathan and Wang (1996) use the cross-sectional 2R  measure to evaluate the goodness of fit of the model. 

The measure is calculated as 
2 2

2
2
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( )

C C

C

R eR
R
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σ

−
= , where 2

Cσ  is the in-sample cross-sectional variance, R  

is a vector of average excess returns, and e  is the vector of average residuals. 
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much better job explaining the cross-section of the Fama and French 25 portfolios than the 

unconditional CAPM. As shown in the third row, we estimate Lettau and Ludvigson’s (2001b) 

conditional CAPM with an updated cay variable. Unlike Lettau and Ludvigson’s original results, 

the cross-term mcay R×  has no power to explain the cross-sectional variation of average returns. 

We believe that the extended sample period and the use of the updated cay data in this paper 

may give rise to different regression results.12 Row 4 shows the slope coefficients when the 

conditioning variable coin is included in the regression analysis. The risk premium for the 

interaction term mcoin R×  is positive and both the uncorrected and corrected t-statistics are 

statistically significant. This conditional model performs much better than the unconditional 

CAPM at explaining about 58% of the cross-section of the Fama and French 25 portfolios. 

When the CRSP value-weighted return instead of the consumption growth rate is used as the 

proxy for the market portfolio in our specification, however, it does not perform as well as  

Fama and French’s three-factor model. 

We now investigate the power of consumption-based models in explaining the cross-section 

of average returns. Row 5 gives the results for the unconditional CCAPM. The price of risk 

related to consumption goes in the right direction and the uncorrected Fama and Macbeth t- 

statistic is more than two standard errors from 0. The adjusted R2 of the unconditional CCAPM 

is about 21%, implying that it performs better than the unconditional CAPM at explaining the 

cross-section of the Fama and French 25 portfolios. Row 6 displays Lettau and Ludvigson’s 

estimates with the cay variable and shows that, contrary to Lettau and Ludvigson’s original 

results, the cross-term cay c×Δ  is statistically insignificant. Again, we suspect this weak 

explanatory power comes from the use of different sample periods and the updated cay 

                                            
12 Our sample period is from the third quarter of 1963 to the fourth quarter of 2005, while Lettau and Ludvigson’s 
sample period spans the third quarter of 1963 to the third quarter of 1998. Furthermore, we use expanded time-series 
of cay data from Lettau and Ludvigson. 
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variable.13 Finally, row 7 reveals the results for the conditional CCAPM when coin is employed 

as a conditioning variable. It shows substantial improvement over the unconditional CCAPM 

results. The risk premium of the consumption risk and the compensation for the interaction term 

are positive and the Fama and Macbeth t-statistic is close to three standard errors from 0. 

Moreover, the adjusted R2 is 76%, which is comparable to that for Fama and French’s three-

factor model. 

If each specification is correct, the intercept of the cross-sectional regression should be zero, 

since the dependent variables of the second Fama and Macbeth regression are excess returns. 

Lettau and Ludvigson (2001b) document that the intercept of the cross-sectional regression is 

usually large when macroeconomic variables are used as factors. This is, however, not the case 

for our model. The estimated intercept of our conditional CCAPM is 1.60% per quarter, which 

is about half of the intercept in Fama and French’s three-factor model or the conditional 

CCAPM of Lettau and Ludvigson (2001b). Moreover, the error-in-variable adjusted Shanken’s 

t-statistic is statistically significant in Fama and French’s three-factor model and Lettau and 

Ludvigson’s specification, whereas it is statistically insignificant in our specification. The 

intercept of the uncorrected Fama and Macbeth t-statistic is, however, statistically significant in 

our specification. Thus, it appears that our specification could still be missing some important 

determinants of the cross-section of the Fama and French 25 portfolios. 

 

5.2. Average pricing errors 

Figure 2 illustrates the realized versus fitted average returns of the unconditional CAPM (Panel 

A), Fama and French’s three-factor model (Panel B), the unconditional CCAPM model (Panel 

C), and the conditional CCAPM model with coin as a conditioning variable (Panel D). Each 

                                            
13 Li, Vasslou, and Xing also obtain results that differ from those of Lettau and Ludvigson (2001b). 
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two-digit number identifies a different portfolio. The first digit represents the size quintiles of 

the portfolios (1 indicating the smallest and 5 the largest), while the second digit refers to the 

book-to-market quintiles of the portfolios (1 indicating the lowest and 5 the highest). If the 

competing model is well specified, all the portfolios should lie on the 45-degree line through the 

origin. 

  Since a variety of portfolios lie far from the 45-degree line, Panel A shows the well-known 

failure of the unconditional CAPM to explain the cross-sectional variation of the Fama and 

French 25 portfolios. In particular, the fitted average returns of portfolios 11 and 15 are almost 

the same even though the realized average returns are very different, meaning that the 

unconditional CAPM does not explain the well-known value premium. As illustrated in Panel B,  

Fama and French’s three-factor model performs much better than the unconditional CAPM. It 

has, however, some difficulty explaining the growth portfolios in the smallest and largest size 

quantiles (portfolios 11, 41, and 51). 

  The unconditional CCAPM model performs slightly better than the unconditional CAPM, as 

displayed in Panel C. This specification, however, cannot explain why the value stocks earn 

more than the growth stocks throughout our sample period. Panel D gives the results for our 

specification. In terms of the distance from the 45-degree line, our model does about as well as  

Fama and French’s three-factor model. Our conditioning CCAPM does a better job explaining 

the problematic portfolios 11 and 51 than Fama and French’s three-factor model. The average 

pricing errors of portfolios 11 and 51 are decreased by 39 and 61%, respectively. Since the 

linear asset pricing model, such as Fama and French’s three-factor model, does not perform well 

in explaining the return behavior of small growth stocks, the pricing error reduction in portfolio 

11 is a performance gain for our model.  
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5.3. Fama and Macbeth cross-sectional regressions including characteristics 

Jagannathan and Wang (1998) suggest that model misspecification can be tested using firm 

characteristics as additional explanatory variables in the Fama and Macbeth cross-sectional 

regressions. If the model is well specified, the t-statistics of the firm characteristic variables 

should be zero. Following Fama and French (1992), for each time t in the second stage of the 

Fama and Macbeth regressions we include the log value of the book-to-market equity ratio and 

the log value of firm size. The time-series averages of the estimated slopes, the Fama and 

Macbeth t-statistics, and the adjusted R2 from the Fama and Macbeth regressions are given in 

Tables 3 and 4. 

  As shown in row 2 of Table 3, the slope coefficient of the log book-to-market ratio is 

statistically significant under Fama and French’s three-factor model, indicating that the book-to-

market ratio helps explain the cross-section of the average returns.14 When the book-to-market 

ratio is included in the conditioning CAPM, its coefficients are always statistically significant. 

  We now examine the residual effects of the CCAPM. The estimated coefficient of the book-

to-market ratio is statistically significant in the unconditional CCAPM, as displayed in row 5, or 

in the conditional CCAPM with cay, as in row 6. In our specification of the conditional 

CCAPM with coin, however, the book-to-market ratio does not have statistically significant 

explanatory power in the presence of factors. Moreover, the book-to-market ratio does not drive 

out the interaction term cointΔct+1. 

Table 4 reports the Fama and Macbeth cross-sectional regression results when size is added as 

a variable. In this case, the slope coefficient of size is statistically insignificant only in the 

conditional CCAPM of Lettau and Ludvigson (2001b). The slope coefficient of size is 

statistically significant under our specification, indicating that our model might be misspecified. 

                                            
14 Jagannathan and Wang (2007) also find that the book-to-market ratio is significant when included as an 
explanatory variable in the Fama and French three-factor model. 
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It is, however, also statistically significant under Fama and French’s three-factor model. 

 

5.4. Conditional consumption betas 

We are now in a position to discuss why our conditional CCAPM performs better than the 

unconditional CAPM and CCAPM. Since there is growing evidence that the parameters ta  

and tb  are time varying in equations (2) and (3), it is natural to think that the unconditional 

asset pricing model and our conditional CCAPM arrive at very different conclusions. We have 

shown that the conditioning variable coin has strong power to forecast excess returns on the 

market portfolio, indicating that variations of ta and tb  are well captured by the conditioning 

variable coin. Hence, we essentially argue that this conditioning substantially improves the 

performance of the conditional CCAPM. 

  If the conditional CCAPM holds period by period, we should take a look at the conditional 

correlation, rather than the unconditional correlation, between the consumption growth rates and 

asset returns. For instance, in the unconditional CAPM, the unconditional beta of (small and 

growth) portfolio 11 is 1.67, while the unconditional beta of (small and value) portfolio 15 is 

1.19 in our sample period. With these parameter values, the unconditional CAPM does not 

explain why value stocks earn more than growth stocks. 

  To examine further, we calculate the conditional consumption betas for good states and bad 

states. One stylized fact is that the market risk premium is closely related to business cycle; 

being high in business cycle troughs and low in business cycle peaks.15 Since a high coin value 

forecasts a high market excess return and a low coin value forecasts a low market excess return, 

following Lettau and Ludvigson (2001b), we define a good state as a quarter during which coin 

is at least one standard deviation below its average, and a bad state as a quarter during which 

                                            
15 See Fama and Schwert (1977), Fama and French (1989), and Lettau and Ludvigson (2001a), among others.   
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coin is at least one standard deviation above its average. In our analysis, the number of quarters 

of both bad states and good states is 29, among 170 quarters, respectively. 

In the first stage of the time-series regression in our model, the regression equation is given 

by 

1 1 1 , 1, 2,...25i i i i i
t coin t c t c coin t tr coin c c coin iα β β β+ + × += + + Δ + Δ =  (14) 

where 1
i

tr +  is the excess return on i th Fama and French portfolio at time t + 1. The conditional 

consumption beta, i
tB , on portfolio i  at time t  is defined as i i i

t c c coin tB coinβ β ×≡ + . 

Similarly, we can calculate the conditional consumption betas in bad states and good states, 

, ,
i i i
t j c c coin t jB coinβ β ×≡ + , where j  = 1 refers to the bad states and j  = 2 refers to the good 

states. 

Table 5 reports the average conditional consumption betas in all states, bad states, and good 

states for Fama and French 25 portfolios. Following Lettau and Ludvigson (2001b), it is helpful 

to provide a visual comparison of the average consumption betas for value stocks and growth 

stocks. Figure 3 illustrates the average consumption betas for portfolios 1, 15, 21, 25, 31, 35, 41, 

and 45 in bad and good states. In bad states, the average consumption betas for value portfolios 

(15, 25, 35, 45) are higher than those for the growth portfolios (11, 21, 31, 41). For example, the 

average consumption beta for portfolio 15 in bad states is 4.43, which is higher than the 2.04 for 

portfolio 11. In contrast, in good states, the average consumption betas for value portfolios are 

lower than those for growth portfolios. For instance, the average consumption beta for portfolio 

15 in good states is 3.48, which is lower than the 5.98 for portfolio 11. These comparisons of 

average consumption betas imply that value stocks are more highly correlated with consumption 

risk in bad times than they are in good times and growth stocks are more highly correlated with 

consumption risk in good times than they are in bad times. Overall, our specification shows that 
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value stocks are riskier than growth stocks in bad times, when the risk premium is high. 

Therefore, it appears that our model supports the risk-based story behind the value premium. 

 

5.5. GMM estimation 

This section tests competing asset pricing models using the GMM cross-sectional estimator. We 

report estimation results in Table 6 with the Fama and French 25 portfolios used as test assets. 

Panel A reports the results for the unconditional CCAPM. The coefficient of consumption 

growth rate ( cΔ ) in the pricing kernel is statistically significant, implying that the consumption 

risk factor is useful to price assets. The consumption factor commands a significant positive risk 

premium. This model, however, delivers the worst fit based on the HJ distance. Hansen’s 

overidentification test (J test) rejects the model as well. 

Panel B refers to Fama and French’s three-factor model. The coefficients and risk premiums 

for SMB and HML are economically significant, but those for MKT (the market factor) are not 

significant and produce the wrong sign: Its premium is estimated to be -0.18% per quarter. The 

Wald test — Wald (b) — rejects the null hypothesis that the slope coefficients b in the model are 

jointly equal to zero. Fama and French’s three-factor model reduces the average pricing errors 

from those of the CCAPM, yielding a 0.598 HJ distance, which is smaller than 0.636 as 

estimated from the CCAPM. Nonetheless, the model is still rejected by the data in terms of both 

the J test and HJ distance. 

Panel C reports the performance of the Lettau and Ludvigson model. The consumption factor 

and intersection term have economically significant coefficients and risk premiums. The cay 

factor is not statistically significant. The coefficients, however, are jointly significant, as 

indicated by the Wald (b) test. When cay is used to scale consumption risk factor, the model is 

able to better describe the cross-sectional differences in expected returns, but it performs worse 
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than Fama and French’s three-factor model (HJ distance = 0.611). Again, the model is rejected 

by the data. 

Panel D is about the conditional CCAPM model with coin as the scaling variable. The 

coefficients are all significant, meaning that all three factors are significant determinants of the 

cross-section of equity returns. The consumption factor and its scaled factor by the coin variable 

are priced by size and book-to-market portfolios. On the other hand, the coin factor does not 

receive statistically significant risk premiums. The HJ distance for this model is 0.580, which is 

lowest among the competing models. In spite of demonstrating the best performance, this model 

is rejected by the data as well. 

As a robustness test, we examine whether competing models maintain their pricing abilities 

by requiring them to price a different set of assets. In particular, Fama and French 25 portfolios 

and their scaled 25 portfolios by the variable cay are chosen as test assets. As Cochrane (1996) 

discusses, scaled returns have an economically interesting interpretation: They are understood as 

managed portfolios in which the fund manager adjusts portfolio weights based on the 

information he receives from the conditioning variable. 

Table 7 reports GMM estimation results when managed portfolios are used as a basis asset. A 

comparison of Tables 6 and 7 shows that the relative performances of competing models are 

preserved when they are required to price an alternative set of assets. The difference arises from 

increased average pricing errors for the managed portfolio used. When we consider, however, 

the increased dimension of the payoff space to be priced, the increase in pricing errors is not 

unexpected. 

 

5.6. Cross-sectional regression including conditioning information 

Ferson and Harvey (1999) document that Fama and French’s three-factor model does not 
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account for the time varying patterns in stock returns by showing that the sensitivity of the fitted 

conditional expected return is statistically significant when included in the cross-sectional 

regressions. Petkova (2006) also performs similar regressions to provide empirical evidence that, 

unlike Fama and French’s three-factor model, her model is able to capture the time varying 

patterns in returns predicted by the conditioning variables. Since this test enables us to examine 

whether our model is a good conditional model as well as provides the specification test of the 

competing asset pricing models as documented by Petkova (2006), it is worth revisiting Ferson 

and Harvey’s experiment. 

Specifically, we first run the multivariate time-series regressions for the 25 size and book-to-

market sorted portfolios to estimate the betas of lagged conditioning variables: 

, 1 , , , , , 1i t i DIV t i TERM t i DEF t i RF t i tr DIV TERM DEF RFα β β β β ε+ += + + + + +          (15) 

where , 1i tr +  is the excess return of portfolio i at time t + 1 and , , ,t t tDIV TERM DEF and 

tRF  represent the dividend yield, term spread, default spread, and short-term interest rate at 

time t, respectively. We then add these estimated betas in our cross-sectional regressions of 25 

size and book-to-market sorted portfolios to test whether , ,DIV TERM DEFγ γ γ , and RFγ  are equal 

to zero: 

, 1 0 , , ,

, , , , , 1

i t c i c coin i coin coin c i coin c

DIV i DIV TERM i TERM DEF i DEF RF i RF i t

r
u

γ γ β γ β γ β

γ β γ β γ β γ β
+ Δ Δ Δ Δ

+

= + + +

+ + + + +             (16) 

To compare competing asset pricing models, we also report the results for Fama and French’s 

three-factor model as well as Lettau and Ludvigson’s (2001a, b) model and the results are given 

in Table 8. In Panel A, the estimated slopes of short-term interest rate and dividend are 

statistically significant, indicating that short-term interest rate and dividend yields are 

determinants of the cross-section of stock returns in the presence of Fama and French's three 
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factors. Lettau and Ludvigson’s (2001) model fails to capture the time varying patterns of 

expected returns related to the cross-sectional differences in sensitivity with respect to the 

default spread shown in Panel B. On the other hand, neither of , ,DIV TERM DEFγ γ γ , and RFγ  is 

statistically different from zero in our specification. Therefore, our conditional consumption 

CAPM serves as a good conditional model and passes the model misspecification test. 

 

5.7. Other portfolios 

We have used the Fama and French 25 size and book-to-market sorted portfolios as our test 

assets throughout this paper since these portfolios have become the common benchmark in 

testing asset pricing models. In this subsection, we compare the performance of our conditional 

CCAPM and Fama and French’s three-factor model using various test assets, namely, 10 

portfolios sorted by size, 10 portfolios sorted by book-to-market ratio, 10 portfolios sorted by 

earning-to-price ratio, and 10 industry portfolios. 

Table 9 reveals the slope coefficients, Fama and Macbeth t-statistics, Shanken’s corrected t-

statistics, and adjusted R2 for our specification and Fama and French’s three-factor model. Our 

specification is comparable to Fama and French’s three-factor model for the portfolios sorted by 

size (Panel A), book-to-market ratio (Panel B), and earning-to-price ratio (Panel C). First, both 

our specification and Fama and French’s model explain a large fraction of the variation in 

average returns. Alternative models deliver an R2 of 93, 91, and 85% for size, book-to-market, 

and earning-to-price sorted portfolios, respectively. Second, in spite of these models' high 

explanatory power, in both cases the estimated intercepts are often large and significant. The 

estimated intercept is larger in our specification for portfolios formed on book-to-market ratio, 

whereas it is smaller for portfolios based on the earning-to-price ratio. 

Some argue that it is not surprising that Fama and French’s three-factor model can explain the 
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cross-section of the 25 size and book-to-market portfolios, because factors and test portfolios 

are formed on the same set of characteristics in Fama and French’s three-factor model.16 Since 

industry portfolios are not based on price variables, explaining the cross-section of the industry 

portfolios may be a challenge for Fama and French’s three-factor model. Daniel and Titman 

(2006) emphasize that sorting into portfolios on the basis of industry captures variations in risk 

factor loadings that are unrelated to book-to-market ratio. Therefore, such an approach should 

provide power against the characteristic alternative. 

Panel D of Table 9 shows that our model performs better than Fama and French’s three-factor 

model in explaining the cross-sectional variation of the 10 industry portfolios. Our specification 

performs better in several other aspects as well. First, it has a smaller estimated intercept of 

0.46% per quarter and is not statistically significant, whereas Fama and French’s three-factor 

model has an estimated intercept of 4.55% per quarter, which is marginally significant. Second,  

Fama and French’s three-factor model can explain 24% of the cross-sectional variation in 

average returns. In sharp contrast, our specification explains 75% of the cross-sectional 

variation of industry portfolios. Figure 4 displays the realized versus fitted average returns of  

Fama and French’s three-factor model (Panel A) and the conditional CCAPM model with coin 

as a conditioning variable (Panel B). Each number identifies a different industry portfolio.17 

Our specification performs well except for portfolios 8 and 10. Since portfolio 10 is classified as 

"other" in its SIC code and includes different business sectors, the failure in explaining the 

average return of portfolio 10 may not be a big concern. 

Fama and French (1997) document that there is a strong variation over time in the Fama and 

                                            
16 Berk (1995) states that firm size measured by market equity and the ratio of book equity to market equity can 
account for the cross-section of average returns regardless of whether they are related to rationally priced economic 
risks. He emphasizes that ratios with a price in the denominator are related to returns by construction and if book 
equity can be used as a control for the cross-section variation, the book-to-market ratio is a good measure of expected 
returns. 
17 The industry portfolio data are from Kenneth French’s website. 
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French three-factor risk loadings of industry portfolios. Therefore, if we assume that the factor 

loadings of Fama and French’s three-factor model are constants and estimate the factor loadings 

using the full-sample data, then the model does a poor job in explaining the cross-section of 

industry portfolios. This is consistent with our results. Overall, our model performs about as 

well as Fama and French’s three-factor model and is even better at explaining the average return 

of industry portfolios. 

 

 

6. Conclusion 

This paper contributes to the evidence on the linkage between financial markets and the 

macroeconomy. We construct a conditioning variable from a set of macroeconomic variables 

and address one of the most compelling issues in finance, the time and cross-sectional variations 

in risk premium based on the suggested variable. We show that the proposed measure contains 

important information for predicting future stock returns and explaining the cross-section of 

average equity returns. 

We empirically find that the macroeconomic variables known to forecast stock returns are 

cointegrated in finite samples and propose deviations from this shared trend as a conditioning 

variable. This approach is built on the study of Campbell and Perron (1991). These authors 

document simulation evidence that although the asymptotic distribution of a time-series is 

stationary, treating a near-integrated stationary data inferred from unit root and/or cointegration 

tests as unit root variable may be better modeled in a finite sample. Lettau and Ludvigson 

(2001a, b) also follow the advice of Campbell and Perron when they construct the consumption-

wealth ratio (Lettau and Ludvigson, 2007). 

We show that the stationary deviation in the common trend among macroeconomic variables 
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picks up fluctuations in equity premium over time and has strong forecasting power for future 

stock returns over short and long horizons. In contrast to the lack of predictive power of 

financial indicators at shorter horizons, the proposed variable strongly forecasts movements in 

excess stock returns at business cycle frequencies. Furthermore, this variable has significant 

marginal forecasting power when other popular predictive variables appear in the forecasting 

regression. 

We also empirically demonstrate that the marginal utility of consumption is the relevant 

measure of risk when the suggested conditioning variable is used to scale the parameters in the 

discount factor. The suggested conditional version of the CCAPM can account for the cross-

section of expected returns of the size and book-to-market sorted portfolio nearly as well as 

Fama and French’s (1993) three-factor model and better than the Lettau and Ludvigson (2001b) 

model. Moreover, this scaled CCAPM is the only model that passes the book-to-market 

specification test suggested by Jagannathan and Wang (1998) and that can account for a large 

portion of the cross-section of average returns for other test assets as well. 

A key component of the empirical success of deviations from the common trend among 

macroeconomic variables as a forecasting variable and a scaling variable for the CCAPM is the 

ability of this variable to track the business cycles related to time varying risk premiums. The 

expected return is high in bad state of the economy when deviations from a shared trend 

increase. Small stocks and value stocks have greater exposure to consumption risk than big 

stocks and growth stocks during contractions, when deviations from the common trend are 

higher relative to their average values. 

Although fluctuations in the proposed variable contain relevant information for forecasting 

excess stock returns and explaining the cross-section of expected returns, we also find evidence 

indicating possible model misspecifications. The scaled multifactor version of the CCAPM fails 
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to pass a size specification test. Hence, there could be some residual effects of firm 

characteristics related to size in the proposed model. In addition, the constant in the Fama and 

MacBeth cross-sectional regression for our specification is statistically significant, implying that 

there could be some omitted factors which carry important information for explaining the equity 

returns in the model. Evidence of possible model misspecifications, however, often appears in 

previous studies as well (see Hahn and Lee, 2006; Jagannathan and Wang, 1996, 2007; Lettau 

and Ludvigson, 2001b; Lustig and Van Nieuwerburgh, 2005; Santos and Veronesi, 2006). 

Possible sources of model misspecifications are left for future research.  
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[Appendix A] Johansen cointegration tests for conditioning variables 

We use the most widely used macroeconomic variables for forecasting the future returns on the 

market portfolio from the previous studies to model their cointegrating relationship. These 

conditioning variables are (1) the dividend yield of the CRSP value-weighted portfolio 

(computed as the sum of dividends over the last 12 months, divided by the level of the index, 

see Fama and French, 1988); (2) the difference between the yields of a ten-year and a one-

month government bond (term spread, see Fama and French, 1989); (3) the difference between 

the yields of a Moody’s Baa and Aaa corporate bonds yields (default spread, see Fama and 

French, 1989); (4) the three-month T-bill yield (see Ferson, 1989). Data on bond yields are from 

the FRED® database of the Federal Reserve Bank of St. Louis. 

In this paper, we are interested in the long-run equilibrium relation among four conditioning 

variables. For this purpose, we perform the cointegration test of Johansen (1988). Before 

applying the Johansen test, we implement the augumented Dickey-Fuller (ADF) test of unit 

roots in the four conditioning variables. For all variables, we cannot reject the null hypothesis of 

non-stationarity as shown in table A1. 

The Johansen method applies the maximum likelihood procedure to determine the presence 

of cointegrating vectors. In addition, it provides the number of cointegrating equations. This 

method assumes a k-dimensional vector autoregressive (VAR) model with order p, where k is 

the total number of non-stationary variables. We report two cointegration tests of Johansen. The 

first is “Trace” statistic, providing a likelihood ratio test of the null hypothesis of r cointegrating 

relations against the alternative of k cointegrating relations, where k is the number of 

endogenous variables, for r=0,1,…,k-1. The second is “L-max” statistic, supplying the 

maximum eigenvalue statistic that tests the null hypothesis of r cointegrating relations against 

the alternative of r+1 cointegrating relations. 
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The critical values from the Johansen method depend on the number of lags as well as the 

deterministic trend specifications. The Akaike Information Criterion (AIC) is employed to select 

the number of lags required in the cointegration test. For the cointegration test specification, we 

assume that the level data of the conditioning variables might have deterministic trends. 

However, we allow the cointegrating equations to have only intercepts, since there is no reason 

that the cointegrating relations have linear trends. 

Table A2 presents the cointegration test results among the four conditioning variables.  For 

the trace test, we cannot reject the null hypothesis of one cointegrating relation against the 

alternative of two or more cointegration relations. The L-max test also indicates that we cannot 

reject the null hypothesis of one long-run stationary relationship against the alternative of two. 

Therefore, table A2 shows that there are one cointegrating equation among the four conditioning 

variables. 
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Table A1. Augmented Dickey-Fuller (ADF) tests of conditioning variables. 

The augmented Dickey-Fuller unit root tests have been performed to the four conditioning variables, DIV, TERM, 

DEF, and RF. DIV is the dividend yield of value-weighted portfolio CRSP Index (computed as the sum of dividends 

over the last 12 months, divided by the level of the index), TERM is the difference between the yields of a ten-year 

and a one-month government bond, DEF is the difference between the yields of a Moody's Baa and Aaa corporate 

bonds yields, RF is the three-month constant maturity Treasury yield. The lag length in each test is chosen by 

Schwarz information criterion (SIC). The sample period covers from second quarter of 1953 to third quarter of 2005. 

 

Variables ADF t-statistic 
Critical Values 

5% Critical Level 1% Critical Level 

DIV -2.584 -2.875 -3.462 
TERM -1.772 -2.875 -3.462 
DEF -2.949 -2.875 -3.462 
RF -1.284 -2.875 -3.462 
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Table A2. Johansen cointegration tests. 

This table presents the results of Johansen cointegration tests among the four conditioning variables using "Trace" 

statistic, and "L-Max" statistic. The four conditioning variables are DIV, TERM, DEF, and RF. DIV is the dividend 

yield of value-weighted CRSP Index (computed as the sum of dividends over the last 12 months, divided by the level 

of the index), TERM is the difference between the yields of a ten-year and a one-month government bond, DEF is the 

difference between the yields of a Moody's Baa and Aaa corporate bonds yields, RF is the three-month constant 

maturity Treasury yield. Linear trend in each conditioning variable is allowed, and a constant is only included in the 

cointegration relation. The Akaike Information Criterion (AIC) is employed to select the number of lags required in 

the cointegration test. 

 

Null Hypothesis 
Trace L-Max  

Test Statistic 95% Critical Value Test Statistic 95% Critical Value 

r=0 58.80 47.86 33.96 27.58 
r≤1 24.84 29.80 17.48 21.13 
r≤2 7.37 15.49 5.36 14.26 
r≤3 2.01 3.84 2.01 3.84 
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Table 1. Forecasting market returns. 
This table reveals the regression results of current excess market returns on lagged variables coint, dt-et, and cayt. In each model, the OLS coefficient estimates are presented in the 

first row, the Newey-West estimators with five lags are in the second row, and adjusted R2 statistics are in parentheses. The dependent variable is the log excess returns on the CRSP 

value-weighted portfolio. The independent variables are as follows: coint denotes the cointegrating error adopted in this paper, dt-et is the log dividend payout ratio, and cayt is the log 

consumption-wealth ratio. Here H represents the return horizon in quarters. The sample period is from the third quarter of 1953 to the fourth quarter of 2005. 

 

Dependent Variable: Log Excess Market Return 

   Forecast Horizon H 

Model Regressors 1 2 3 4 8 12 16 24 

1 coin 0.03  0.06  0.08  0.10  0.14  0.15  0.16  0.27  

  3.83  4.04  4.50  4.73  3.92  3.27  3.29  4.39  

  (0.06)  (0.10)  (0.14)  (0.18)  (0.20)  (0.18)  (0.16)  (0.31)  

2 d-e 0.03  0.04  0.03  0.03  0.05  0.07  0.03  0.13  

  1.04  1.04  0.52  0.41  0.40  0.37  0.14  0.61  

  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  

3 cay 1.52  2.86  3.97  5.16  8.88  11.70  12.76  14.89  

  3.50  3.65  3.64  3.79  4.91  5.23  6.09  6.09  

  (0.05)  (0.10)  (0.13)  (0.17)  (0.30)  (0.40)  (0.41)  (0.35)  

4 coin 0.03  0.05  0.07  0.09  0.12  0.13  0.13  0.24  

  3.64  4.03  4.83  5.44  4.99  4.36  4.74  5.58  

 d-e 0.00  -0.02  -0.06  -0.08  -0.13  -0.18  -0.25  -0.19  

  -0.10  -0.65  -1.32  -1.64  -1.91  -1.90  -2.62  -1.32  

 cay 1.34  2.60  3.73  4.89  8.48  11.29  12.58  13.77  

  2.92  3.20  3.27  3.48  5.11  5.56  6.31  7.62  

    (0.10)  (0.18)  (0.25)  (0.32)  (0.45)  (0.52)  (0.53)  (0.60)  
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Table 2. Cross-sectional regression. 
This table shows the Fama and MacBeth (1973) cross-sectional regression estimation results using the excess returns 

on 25 size/book-to-market sorted portfolios created by Fama and French (1993). The full-sample factor loadings, 

which are used as the independent variables, are computed in one multiple time-series regression. The coefficients are 

expressed in percentages per quarter. The term Rm is the excess return on the CRSP value-weighted Index, Δc is the 

log consumption growth, and SMB and HML are the Fama and French mimicking portfolios related by size and book 

to market, respectively. The conditioning variables are cay as created by Lettau and Ludvigson (2001a, b) and coin as 

adopted in this paper. The first row reports the coefficient estimates. Fama and MacBeth t-statistics are reported in the 

second row and Shanken corrected t-statistics are in the third row. The adjusted R2 followed by Jagannathan and 

Wang (1996) are presented in the last column. The sample period is from the third quarter of 1963 to the fourth 

quarter of 2005. 

 

Model Factors Adj. R2 
      
CAPM Constant Rm    
Estimate 2.73  -0.47   -0.02  
t value 3.08  -0.43    
Shanken t 3.07  -0.43    
      
Fama French Constant Rm SMB HML  
Estimate 3.02  -1.63 0.72 1.47  0.76  
t value 2.58  -1.21 1.53 2.90   
Shanken t 2.43  -1.15 1.52 2.87   
      
Cay CAPM Constant cay Rm cay · Rm  
Estimate 2.41  -0.02 -0.94 0.06  0.51  
t value 2.87  -2.95 -0.89 2.37   
Shanken t 1.58  -1.64 -0.57 1.36   
      
Coin CAPM Constant coin Rm coin · Rm  
Estimate 2.11  0.42 -0.74 6.79  0.58  
t value 2.34  1.91 -0.68 3.88   
Shanken t 1.40  1.15 -0.46 2.36   
      
CCAPM Constant Δc    
Estimate 0.94  0.54   0.21  
t value 1.56  1.73    
Shanken t 1.23  1.37    
      
Cay CCAPM Constant cay Δc cay · Δc  
Estimate 3.17  -0.01 0.33 0.00  0.59  
t value 3.04  -1.98 1.06 0.73   
Shanken t 2.13  -1.40 0.75 0.53   
      
Coin CCAPM Constant coin Δc coin · Δc  
Estimate 1.60  -0.12 0.54 0.46  0.76  
t value 2.57  -0.79 2.67 2.97   
Shanken t 1.42  -0.45 1.51 1.67   
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Table 3. Cross-sectional regression including nook-to-market ratio. 
This table shows the Fama and MacBeth (1973) cross-sectional regression estimation results using the excess return 

on 25 size/book-to-market sorted portfolios created by Fama and French (1993). The full-sample factor loadings, 

which are used as the independent variables, are computed in one multiple time-series regression. The coefficients are 

expressed as percentages per quarter. This table examines whether book-to-market (BM) has incremental explanatory 

power in each of the models. The first row reports the coefficient estimates. Fama and MacBeth t-statistics are 

reported in the second row and Shanken corrected t-statistics are in the third row. The time-series averages of the 

quarterly adjusted R2 are presented in the last column. The sample period is from the third quarter of 1963 to the 

fourth quarter of 2005. 

 

 

Model Factors   Adj. R2 
       
CAPM Constant Rm   BM  
Estimate 0.54  1.66   1.18  0.70  
t value 0.55  1.32   3.67   
       
FF3 Constant Rm SMB HML BM  
Estimate 3.18  -1.26 0.77 0.32  0.73  0.76  
t value 2.75  -0.93 1.65 0.41  2.15   
       
Cay CAPM Constant cay Rm cay · Rm BM  
Estimate 0.22  0.00 1.83 0.03  1.08  0.69  
t value 0.25  -0.21 1.60 1.19  4.31   
       
Coin 
CAPM Constant coin Rm coin · Rm BM  
Estimate 0.51  0.05 1.54 1.73  0.98  0.69  
t value 0.51  0.24 1.21 1.21  3.49   
       
CCAPM Constant Δc   BM  
Estimate 1.34  0.46   0.76  0.71  
t value 2.11  1.42   2.63   
       
Cay 
CCAPM Constant cay Δc cay · Δc BM  
Estimate 1.33  0.00 0.37 0.00  0.74  0.70  
t value 1.97  0.45 1.24 0.89  2.38   
       
Coin 
CCAPM Constant coin Δc coin · Δc BM  
Estimate 1.41  0.02 0.33 0.35  0.41  0.78  
t value 2.21  0.15 1.56 2.59  1.57   
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Table 4. Cross-sectional regression including size. 
This table shows the Fama and MacBeth (1973) cross-sectional regression estimation results using excess returns on 

25 size/book-to-market sorted portfolios created by Fama and French (1993). The full-sample factor loadings, which 

are used as the independent variables, are computed in one multiple time-series regression. The coefficients are 

expressed as percentages per quarter. This table examines whether size has incremental explanatory power in each of 

the models. The first row reports the coefficient estimates. Fama and MacBeth t-statistics are reported in the second 

row and Shanken corrected t-statistics are in the third row. The time-series averages of the quarterly adjusted R2 are 

presented in the last column. The sample period is from the third quarter of 1963 to the fourth quarter of 2005. 

 

 

Model Factors   Adj. R2 
       
CAPM Constant Rm   SIZE  
Estimate 8.35  -2.94   -0.47  0.79  
t value 4.73  -2.51   -3.99   
       
FF3 Constant Rm SMB HML SIZE  
Estimate 5.07  -1.26 -0.25 1.32  -0.27  0.79  
t value 3.04  -0.95 -0.35 2.57  -1.96   
       
Cay CAPM Constant cay Rm cay · Rm SIZE  
Estimate 7.43  0.00 -2.43 0.03  -0.42  0.78  
t value 5.18  -0.65 -2.23 1.24  -4.48   
       
Coin 
CAPM Constant coin Rm coin · Rm SIZE  
Estimate 6.79  -0.26 -1.65 1.93  -0.44  0.82  
t value 5.17  -1.62 -1.50 1.43  -4.79   
       
CCAPM Constant Δc   SIZE  
Estimate 3.45  0.04   -0.23  0.26  
t value 2.74  0.14   -2.29   
       
Cay 
CCAPM Constant cay Δc cay · Δc SIZE  
Estimate 4.55  -0.01 0.08 0.00  -0.13  0.61  
t value 3.45  -2.24 0.35 0.39  -1.21   
       
Coin 
CCAPM Constant coin Δc coin · Δc SIZE  
Estimate 5.32  -0.40 0.41 0.09  -0.32  0.84  
t value 4.51  -2.85 1.97 0.77  -3.62   
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Table 5. Conditional betas in consumption CAPM. 
This table reports average consumption betas of all states, good states, and bad states for each Fama and French size 

and book-to-market sorted portfolio. The average consumption betas for portfolio i are calculated as 

coinB i
coinc

i
c

i
j ×+≡ ββ , where coin  is the average value in bad states (j = 1) and good states (j = 2). Following 

Lettau and Ludvigson (2001b), we define a good state as a quarter in which the coin variable is one standard below 

its mean value, and a bad state as a quarter in which the coin variable is one standard above its mean value. 

 

 

Portfolio All States Good States Bad States 
S1B1 4.0346  5.9752  2.0378  
S1B2 4.5827  5.3249  3.8191  
S1B3 3.3359  3.4881  3.1793  
S1B4 3.4631  2.6925  4.2559  
S1B5 3.9497  3.4813  4.4317  
S2B1 3.5895  4.6652  2.4825  
S2B2 2.7908  3.5895  1.9690  
S2B3 2.7540  2.8963  2.6077  
S2B4 2.6544  1.9951  3.3329  
S2B5 3.5244  3.4779  3.5723  
S3B1 3.1973  5.4153  0.9150  
S3B2 2.6965  3.3424  2.0319  
S3B3 2.2155  1.6854  2.7609  
S3B4 2.3861  2.4076  2.3640  
S3B5 2.7518  2.7386  2.7654  
S4B1 2.7091  5.0732  0.2766  
S4B2 2.5318  3.7063  1.3232  
S4B3 2.0926  2.0630  2.1232  
S4B4 2.0456  1.7247  2.3757  
S4B5 2.9096  2.4594  3.3728  
S5B1 1.8320  3.1821  0.4428  
S5B2 1.6037  2.5108  0.6703  
S5B3 1.8402  3.2212  0.4193  
S5B4 1.4581  2.1082  0.7891  

S5B5 2.2773  2.4876  2.0608  
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Table 6. GMM Estimation. 
This table reports GMM estimation results of the competing models by using 25 size/book-to-market sorted portfolios 

created by Fama and French (1993). The term Δc is the log consumption growth and SMB and HML are the Fama 

and French mimicking portfolios related by size and book-to-market, respectively. The conditioning variables are cay 

as created by Lettau and Ludvigson (2001) and coin as adopted in this paper. The t values of the coefficients in the 

pricing kernel and the risk premiums of the factors are reported in parentheses. The J test is Hansen’s (1982) test on 

the overidentifying restrictions of the model. The Wald (b) test is a joint significance test of the factor loadings in the 

pricing kernel. The HJ distance is the Hansen-Jagannathan (1997) measure and its p value is obtained from 10,000 

simulations. The coefficients in the pricing kernel and the test statistics for J and Wald (b) are computed through the 

GMM estimation that uses the optimal weighting matrix. The p values of the test statistics for J, Wald (b), and the HJ 

distance are reported in square brackets. The sample period is from the third quarter of 1963 to the fourth quarter of 

2005. 

 
Panel A: Unconditional CCAPM 

 Constant Δc   J Wald (b) HJ distance 
b 1.25  -0.69    104.61 16.21 0.636 
t value (14.52)  (-4.03)   [0.000] [0.000] [0.000] 
        
Risk premium  0.35       
t value  (4.03)      
        
Panel B: Fama and French’s Three-Factor Model 
 Constant MKT SMB HML J Wald (b) HJ distance 
b 1.10  0.01  -0.05  -0.04  58.07 27.03 0.598 
t value (22.56)  (0.35) (-2.90) (-3.00)  [0.000] [0.000] [0.000] 
        
Risk premium  -0.18  1.23  1.24     
t value  (-0.22) (3.41) (3.31)     
        
Panel C: Lettau and Ludvigson Model 
 Constant cay Δc cay · Δc J Wald (b) HJ distance 
b 1.87  0.20  -2.23  -0.92  53.06 33.16 0.611 
t value (8.53)  (0.73) (-4.96) (-3.27)  [0.000] [0.000] [0.003] 
        
Risk premium  -0.18  0.95  0.72     
t value  (-0.34) (4.47) (2.37)     
        
Panel D: Alternative Model 
  Constant coin Δc coin · Δc J Wald (b) HJ distance 
b 1.18  0.65  -0.69  -1.32  66.09 17.21 0.580 
t value (9.17)  (1.93) (-3.20) (-3.07)  [0.000] [0.001] [0.037] 
        
Risk premium  -0.05  0.36  0.21     
t value  (-0.55) (3.03) (2.68)     
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Table 7. GMM Estimation on the Managed Portfolios. 
This table reports GMM estimation results of the competing models by using 25 size/book-to-market sorted portfolios 

created by Fama and French (1993) plus the 25 scaled Fama and French portfolios. The scaled Fama and French 

portfolios are obtained by multiplying each of the Fama and French 25 portfolios by cay, which is the consumption-

wealth ratio created by Lettau and Ludvigson (2001a). The term Δc is the log consumption growth and SMB and 

HML are the Fama and French mimicking portfolios related by size and book-to-market, respectively. The 

conditioning variables are cay and coin as adopted in this paper. The t values of the coefficients in the pricing kernel 

and the risk premiums of the factors are reported in parentheses. The J test is Hansen’s (1982) test on the 

overidentifying restrictions of the model. The Wald (b) test is a joint significance test of the factor loadings in the 

pricing kernel. The HJ distance is the Hansen-Jagannathan (1997) measure and its p value is obtained from 10,000 

simulations. The coefficients in the pricing kernel and the test statistics for J and Wald (b) are computed through the 

GMM estimation that uses the optimal weighting matrix. The p values of the test statistics for J, Wald (b), and the HJ 

distance are reported in square brackets. The sample period is from the third quarter of 1963 to the fourth quarter of 

2005. 

 

Panel A: Consumption CAPM 
 Constant Δc   J Wald (b) HJ distance 
b 1.31  -0.60    221.20 61.36 0.796 
t value (31.50)  (-7.83)    [0.000] [0.000] [0.000] 
        
Risk premium  0.28       
t value  (7.83)       
        
Panel B: Fama and French’s Three-Factor Model 
 Constant MKT SMB HML J Wald (b) HJ distance 
b 1.10  0.03  -0.07  -0.05  133.07 149.04 0.736 
t value (35.49)  (2.57)  (-6.61) (-6.18)  [0.000] [0.000] [0.000] 
        
Risk premium  -1.13  1.52  1.73     
t value  (-2.46)  (5.80)  (9.10)     
        
Panel C: Lettau and Ludvigson Model 
 Constant cay Δc cay · Δc  J Wald (b) HJ distance 
b 1.73  -0.13  -1.27  -0.53  168.18 110.06 0.790 
t value (20.46)  (-1.17)  (-6.55) (-4.10)  [0.000] [0.000] [0.000] 
        
Risk premium  0.31  0.42  0.45     
t value  (2.09)  (5.80)  (5.52)     
        
Panel D: Alternative Model 
  Constant coin Δc coin · Δc J Wald (b) HJ distance 
b 1.48  1.25  -0.92  -2.11  138.94 59.90 0.767 
t value (15.45)  (6.48)  (-5.86) (-6.46)  [0.000] [0.000] [0.000] 
        
Risk premium  -0.12  0.39  0.25     
t value  (-2.38)  (5.65)  (4.43)     
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Table 8. Ferson and Harvey (1999) test. 
This table shows the Fama and MacBeth (1973) cross-sectional regression estimation results using the excess return 

on 25 size and book-to-market sorted portfolios created by Fama and French (1993). We first run the multivariate 

time-series regressions for each portfolio to estimate the betas of lagged conditioning variables. We then add these 

estimated betas to the cross-sectional regressions. Panels A and B reveal the results for Fama and French’s three-

factor model and Lettau and Ludvigson’s (2001) model. Panel C shows the results for our specification. The 

coefficients are expressed as percentages per quarter. The first row of each panel reports the coefficient estimates. 

Fama and MacBeth t-statistics are reported in the second row. The time-series averages of the quarterly adjusted R2 

are presented in the last column. The sample period is from the third quarter of 1963 to the fourth quarter of 2005.  

 

 

Panel A: Fama and French’s Three Factor Model with Loadings on Lagged Values of DIV, TERM, DEF, and RF 

  Constant Rm SMB HML DIV TERM DEF RF Adj. R2

Estimate -0.09 1.81 1.74 0.75 -0.83 -0.24 0.01 -1.25 0.86 

t value -0.07 1.13 2.83 1.42 -3.08 -0.43 0.08 -2.02  

Panel B: Lettau-Ludvigson Model with Loadings on Lagged Values of DIV, TERM, DEF, and RF 

  Constant cay Δc cay · Δc DIV TERM DEF RF Adj. R2

Estimate 1.59 -0.02 0.47 0.00 0.06 1.25 0.40 -0.20 0.74 

t value 2.00 -2.48 2.39 -1.56 0.19 1.80 2.88 -0.29  

Panel C: Alternative Model with Loadings on Lagged Values of DIV, TERM, DEF, and RF 

  Constant coin Δc coin · Δc DIV TERM DEF RF Adj. R2

Estimate 0.69 -0.02 0.46 0.39 -0.26 0.30 0.17 -0.58 0.79 

t value 1.16 -0.07 2.18 1.83 -0.87 0.58 1.37 -0.86   
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Table 9. Cross-sectional regression of other portfolios. 
This table shows the Fama and MacBeth (1973) cross-sectional regression estimation results using the return on other 

portfolios. Test portfolios are 10 size sorted portfolios, 10 book-to-market sorted portfolios, and 10 earning-to-price 

sorted portfolios. The full-sample factor loadings, which are used as the independent variables, are computed in one 

multiple time-series regression. The coefficients are expressed as percentages per quarter. The first row reports the 

coefficient estimates. Fama and MacBeth t-statistics are reported in the second row and Shanken corrected t-statistics 

are in the third row. The adjusted R2, which is followed by Jagannathan and Wang (1996), are presented in the last 

column. The sample period is from the third quarter of 1963 to the fourth quarter of 2005. 

 

 

 Alternative Model Fama and French’s Three-Factor Model 

 Constant coin Δc coin · Δc Adj. R2 Constant Rm SMB HML Adj. R2

Panel A: 10 Size Portfolios 
Estimate -0.03  0.32  0.08  -0.04  0.93 -1.42  2.88 0.74  0.42  0.94
t value -0.04  1.60  0.27  -0.36   -0.66  1.27 1.56  0.37  

Shanken t -0.04  1.29  0.22  -0.29   -0.61  1.18 1.54  0.35  

Panel B: 10 Book-to-Market Portfolios 
Estimate 2.69  -0.23  0.16  0.48  0.91 1.54  -0.04 1.90  0.54  0.95
t value 2.83  -1.18  0.64  1.76   0.82  -0.02 1.50  0.80  

Shanken t 1.57  -0.66  0.36  0.98   0.76  -0.02 1.41  0.77  

Panel C: 10 Earning-to-Price Portfolios 
Estimate 1.35  -0.11  0.54  0.33  0.85 3.03  -1.53 2.38  0.68  0.93
t value 1.98  -0.60  2.27  1.71   2.00  -0.93 2.26  1.01  

Shanken t 1.25  -0.38  1.45  1.09    1.72  -0.81 1.99  0.93    
Panel D: 10 Industry Portfolios 

Estimate 0.46  0.47  -0.38  -0.01  0.75 4.55  -3.01 1.75  -0.94  0.24
t value 0.75  1.31  -0.88  -0.02   2.00  -1.25 1.37  -1.35  

Shanken t 0.51  0.89  -0.60  -0.02    1.61  -1.02 1.13  -1.18    
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Figure 1. Excess returns and trend deviations. 

This figure plots the series of market excess returns and trend deviation from the second quarter of 1953 to the third 

quarter of 2005. Trend deviation is the estimated cointegration error using the four conditioning variables: dividend 

yield of the CRSP value-weighted Index (computed as the sum of dividends over the last 12 months divided by the 

level of the index), the difference between the yields of a ten-year and a one-month government bond, the difference 

between the yields of a Moody's Baa and Aaa corporate bond, the three-month constant maturity Treasury yield. Both 

series are normalized to standard deviations of unity. The vertical grid lines are the NBER business cycle peaks and 

troughs. 
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Figure 2. Realized and fitted excess returns. 

This figure illustrates the realized versus fitted average returns of the unconditional CAPM (Panel A), Fama and 

French’s three-factor model (Panel B), the unconditional CCAPM model (Panel C), and the conditional CCAPM 

model with coin as a conditioning variable (Panel D). Each two-digit number identifies a different portfolio. The first 

digit represents the size quintiles of the portfolios (1 indicating the smallest and 5 the largest), while the second digit 

refers to the book-to-market quintiles of the portfolios (1 indicating the lowest and 5 the highest). The sample period 

is from the third quarter of 1963 to the fourth quarter of 2005. 
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Figure 3. Conditional consumption beta in good and bad states. 

This figure displays the average consumption betas for 11, 15, 21, 25, 31, 35, 41, and 45 portfolios in bad and good 

states. Each two-digit number identifies a different portfolio. The first digit represents the size quintiles of the 

portfolios (1 indicating the smallest and 5 the largest), while the second digit refers to the book-to-market quintiles of 

the portfolios (1 indicating the lowest and 5 the highest). A good (bad) state is defined as a quarter during which coin 

is at least one standard deviation below (above) its average. The sample period is from the third quarter of 1963 to the 

fourth quarter of 2005. 
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Figure 4. Realized and fitted excess return of 10 industry portfolios. 

This figure illustrates the realized versus fitted average returns of Fama and French’s three-factor model (Panel A) 

and the conditional CCAPM model with coin as a conditioning variable (Panel B). Each digit number identifies a 

different portfolio: 1 is consumer nondurables, 2 is consumer durables, 3 is manufacturing, 4 is oil, gas, and coal 

extraction and products, 5 is business equipment, 6 is telephone and television transmission, 7 is wholesale, retail, 

and services, 8 is health care, medical equipment, and drugs, 9 is utilities, and 10 is other sectors, including mines, 

hotels, entertainment, and finance. The sample period is from the third quarter of 1963 to the fourth quarter of 2005. 

 

 

 

 


