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I. Introduction

Capital income taxes and transaction costs affect the net returns of assets which are paid

to investors. Rational investors will choose optimal portfolios at which the discounted

expected value of marginal net returns with respect to a risk-neutral probability is equal

to the equilibrium asset prices. Since capital income taxes and transaction costs are an

important ingredient of the marginal net returns, they have impact on the asset prices

in equilibrium. When tax rates are independent of income levels, marginal tax rates are

constant. In this case, their effect on net returns is easily incorporated into calculating

market value of asset returns. If tax schedules are nonlinear so that marginal tax rates

hinge on the level of capital income, it is hard to measure them and thus, calculate the

effect of income taxes on asset prices without observing capital income tax schedules

and portfolio choices. For example, as shown in Ross (1987), the pricing kernel with

progressive taxation depends upon the marginal effects of capital income taxes and thus,

may not be observable.

The paper establishes the fundamental theorem of asset pricing (FTAP) in multi-period,

finite-state asset markets with return-related market frictions such as capital income taxes

and transaction costs. Specifically, we show the triple equivalence between (i) the no ar-

bitrage condition, (ii) the existence of pricing rules, and (iii) the viability of asset prices.1

The net returns of assets are assumed to be a concave function of portfolios. Thus, market

frictions under examination subsume all the types of captial income taxes and transaction

costs as far as they allow the net return functions to be concave. In particular, the current

framework of market frictions encompasses progressive income taxes and convex trans-

action costs which lead to nonlinear net return schedules. Remarkably, the pricing rules

are determined by the lowest and highest net returns and thus, characterized as simply

as in the case with proportional tax schemes and transaction costs. The result is in sharp

contrast to equilibrium pricing models where prices depend on hard-to-observe quanti-

ties such as nonlinear marginal net returns.

The approach of the paper to return-related market frictions depends on the superlin-

ear functions determined by the lowest and highest marginal rate of nonlinear net return

1Informally speaking, asset prices are viable if optimal portfolio choices are available to investors.
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functions.2 Notably, intermediate marginal net returns do not affect the set of pricing

rules which fulfill the no arbitrage condition. The idea of the paper is closely related

to Dammon and Green (1987) which characterize the no tax arbitrage condition with the

highest and lowest marginal tax rates under progressive tax regimes. Dammon and Green

(1987) demonstrate that intermediate marginal tax rates need not be taken into account in

formulating the arbitrage pricing rules with progressive taxation.

The FTAP of the paper is differentiated from the results of the literature in several

respects. First, the equivalence between the no arbitrage condition and viability implies

that the notion of arbitrage enables us to capture exactly the interval of equilibrium asset

prices in a general setting. As shown Won (2006), well-known no-arbitrage conditions of

the literature fail to pass the viability test. Second, no matter how complex the net return

functions are, the pricing rules are characterized as simply as in the case with superlinear

net return functions and therefore, determined independently of the marginal effect of

market frictions. Third, the paper provides a unified view of different notions of arbi-

trage adopted in the literature which examines asset pricing implications of proportional

or progressive tax regimes, and convex transaction costs in multi-period, finite-state asset

markets. Fourth, investors’ portfolio choices are not necessarily restricted to the set of

self-financing strategies because they are allowed to consume in intermediate dates be-

tween the initial and final dates. Harrison and Kreps (1979) show that since intertemporal

income transfers are free in the frictionless world, the approach to the two-date consump-

tion model can be extended to the finite-period model where consumptions are available

at all dates. Their arguments do not hold any more in the case with return-related mar-

ket frictions which make intertemporal income transfers costly and affect ultimately the

tradeoff between consumptions at different dates.

There exists a large body of the literature on arbitrage pricing with proportional trans-

action costs. Garman and Ohlson (1981), Boyle and Vorst (1992), Jouini and Kallal (1995),

Kabanov (1999), Kabanov and Stricker (2001), Delbaen, Kabanov and Valkeila (200), Zhang,

Xu and Deng (2002), Schachermayer (2004) among others examine the effect of propor-

2A function is superlinear if it is concave and positively homogeneous. Positively homogeneous func-
tions are linear in the nonnegative direction of any vectors. For example, the net return functions with
proportional taxes or transaction costs are superlinear.

2



tional transaction costs on asset pricing. The notions of arbitrage adopted in this literature

are not applicable to market frictions which lead to nonlinear net returns such as progres-

sive tax schedules. Dermody and Prisman (1993) attempt to adapt the notion of arbitrage

with proportional transaction costs to the case with convex transaction costs. As illus-

trated in Won (2006), however, the notion of arbitrage of Dermody and Prisman (1993)

fails to pass the viability test and may underestimate the interval of the viable pricing

rules. Won (2006) verifies the fundamental theorem of asset pricing with convex trans-

action costs. Prisman (1986) and Ross (1987) introduce the notion of ‘local arbitrage’ to

study the impact of nonlinear tax schedules on pricing rules. As illustrated in Dammon

and Green (1987), however, the equivalence of the absence of local arbitrage and viability

of pricing rule fails because local arbitrages exist in equilibrium in general.3

The paper is organized as follows. In Section II, multi-period, finite-state markets with

return-related market frictions are described. The unifying notion of arbitrage is defined

in terms of the superlinear function determined by the lowest and highest net returns,

and the main consequences of the paper is presented in Section III. Concluding remarks

are given in Section IV.

II. The Model

Asset markets are assumed to persist over finite time periods, t = 0, 1, . . . , T . Let

Ω = {1, 2, . . . , S} denote a finite partition of states of nature. The revelation of information

is described by a collection of partitions of Ω, F = {F0,F1, . . . ,FT}, where Ft is finer than

Ft−1 (i.e. σ ∈ Ft and σ′ ∈ Ft−1 imply that σ ⊂ σ′ or σ ∩ σ′ = ∅) for all t = 1, . . . , T .4

We assume that F0 = {Ω}. The information available at time t = 0, 1, . . . , T is described

by the set σ ∈ Ft of the states of nature. We set D =
⋃T

t=0Ft and D−T =
⋃T−1

t=0 Ft. An

element in D is called a node or an event and D is called an event tree. In particular, σt

in D denotes an event in Ft. For each σt ∈ Ft, let σ−t denote the event which immediately

precedes σt, σ+
t the set of events which immediately succeed σt, and Dσt the set of events

3Local arbitrage is defined with respect to some reference portfolio. Thus there may exist a local arbitrage
in general at portfolio choices which differ from the reference portfolio.

4For more details on the stochastic economy, see Magill and Shafer (1991) or Magill and Quinzii (1996).
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which consist of σt and all the events succeeding σt. The set Dσt is a subtree at σt. For

some positive integer n, let L(D−T , Rn) denote the collection of all Rn-valued functions

on D−T . For brevity, Ln will be used instead of L(D−T , Rn). Let #D and #D−T denote

the number of elements in D and #D−T , respectively. Then Ln is the Euclidean space of

dimension (#D−T )×n. Let L denote the set of all real-valued functions defined on D. We

set L+ = {x ∈ L : x(σ) ≥ 0, σ ∈ D} and L++ = {x ∈ L : x(σ) > 0, σ ∈ D}.

We assume that a single good is available in each state of time t = 0, . . . , T .5 There

are J long-lived assets issued at time 0 and traded in each state of time t = 0, . . . , T − 1.

Allowing for some notational abuse, we also denote the set of assets by J . A price process

of asset j is a function qj : D−T → R and a trading strategy is a function θ : D−T → RJ .

Thus, q = (q1, . . . , qJ) and θ are a point in LJ . More specifically, qj(σ) and θj(σ) denote a

price and a position of asset j, and q(σ) ∈ RJ and θ(σ) ∈ RJ denote prices and positions

of J assets at the node σ ∈ D. For a price-event pair (q, σ) in LJ×D, let R(·, q; σ) : LJ → R

denote the net return schedule which is derived from deducting transaction costs from

the gross return. Specifically, if a trading strategy θ ∈ LJ is chosen at the price q, the

net return R(θ, q; σ) will be delivered to the investor in the event σ. For a price q ∈ LJ ,

let R(·, q) denote the function which assigns each σ ∈ D to R(·, q; σ). Thus, for a trading

strategy θ ∈ LJ , R(θ, q) is a #D-dimensional net return vector.

We impose the following conditions on the net return functions.

Assumption 1: For each q ∈ LJ and σ ∈ D, R(0, q; σ) = 0 and R(·, q; σ) is concave and

continuous.

Assumption 2: For a price q ∈ LJ , let θ 6= 0 be a point in LJ with limλ→∞R(λθ, q)/λ = 0.

Then there exists a nonzero γ ∈ LJ such that

lim
λ→∞

R(λγ, q)

λ
= 0 and lim

λ→∞

R(λ(θ + γ), q)

λ
> 0.6

The condition R(0, q; σ) = 0 of Assumption 1 means that no portfolio holding pays noth-
5It is straightforward to incorporate the case of multiple goods into the current setting.
6The inequality > indicates a vector inequality such that for two vectors x, y in a Euclidean space, x > y

means that each component of x is larger than that of y and x 6= y.
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ing. The concavity of R(·, q; σ) is suitable to characterizing the effect of progressive tax

schedules and proportional transaction cost functions on net returns. To check Assump-

tion 2, we introduce some notation. For each q ∈ LJ and σ ∈ D, we define the function

V (·, q; σ) : LJ → R such that for all θ ∈ LJ ,

V (θ, q; σ) = lim
λ→∞

R(λθ, q; σ)

λ
. (1)

For each q ∈ LJ , let V (·, q) denote a collection of functions V (·, q; σ)’s for all σ ∈ D.7 By

Lemma 3.1 stated in the next section, we have V (θ′ + γ′, q) ≥ V (θ′, q) + V (γ′, q) ≥ 0 for

any θ′ and γ′ with V (θ′, q) = 0 and V (γ′, q) = 0. The condition of Assumption 2 goes little

further by imposing that for any θ with V (θ, q) = 0, there exists γ with V (γ, q) = 0 such

that V (θ + γ, q) > 0.

For each q ∈ LJ , we set C(q) = {θ ∈ LJ : V (θ, q) = V (−θ, q) = 0}. Since R(·, q)
is concave, it follows that for all θ ∈ LJ , v ∈ C(q), and λ ∈ R, R(θ + λγ) = R(θ, q).8

In particular, R(λγ) = 0 for all γ ∈ C(q) and λ ∈ R. Suppose that C(q) is not trivial, i.e.,

C(q) 6= {0}. Then LJ is nontrivially decomposed as a direct sum of C(q) and its orthogonal

complement C(q)⊥. Portfolios in C(q) do not affect the opportunity set of income transfers.

In this case, nothing will be changed when we work with C(q)⊥ and the restriction of

R(·, q) to C(q)⊥. Thus, from now on, we will assume that C(q) = {0} to avoid unnecessary

complications.

To examine the relationship between arbitrage-free prices and viability of asset prices,

we introduce an agent who has the endowment of consumptions e ∈ L+ and preferences

represented by a utility function u : L+ → R.9 We make the following assumption.

Assumption 3: The function u is continuous and strictly increasing.10

For a price q ∈ LJ , the agent chooses (x∗, θ∗) ∈ L+ × LJ which solves the optimization

7Recall that V (v, q) has the same dimension as the differential of R(v, q).
8The set C(q) is called the constancy space of R(·, q). For details, see Rockafellar (1970).
9It is implicitly assumed that a single consumption good is available in each state of the economy.

10The function u is strictly increasing if u(x) > u(x′) for any x, x′ in L+ which satisfy x(σ) ≥ x′(σ) for all
σ ∈ D and x 6= x′.
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problem:

max
(x,θ)

u(x)

subject to the budget set

B(q) = {(x, θ) ∈ L+ × LJ : x− e ≤ R(θ, q)}.

The demand correspondence ξ(q) is the set of optimal choices in L+×LJ which solve the

above optimization problem. Viability of asset prices are defined as follows.

Definition 2.1. An asset price q ∈ LJ is viable if ξ(q) 6= ∅.

We analyze the tax arbitrage model of Dammon and Green (1987) in the current frame-

work.

Example 1: Let R denote the pre-tax return matrix and R the taxable portion of R. Let θ

and q be a point in LJ . For each σ ∈ D,

R(θ, q; σ) =

 −q · θ, σ = σ0

Rσ · θ − T (Rσ · θ), σ 6= σ0

where Rσ and Rσ are the returns and the taxable portion of returns in state σ, respectively,

and T is the tax schedule. It is assumed in Dammon and Green (1987) that

(DG1) T is a nondecreasing, convex, and continuous function of taxable income with

T (0) = 0 and there exists c > 0 such that T is differentiable at all y’s with |y| > c.

Since T is continuous and convex, for each q ∈ LJ and σ ∈ D, R(·, q; σ) is continuous and

concave. Thus, it satisfies Assumption 1. On the other hand, by L’Hôpital’s rule, for all

σ 6= σ0, we have11

V (θ, q; σ) = lim
λ→∞

R(λθ, q; σ)

λ
=

 (Rσ − tRσ) · θ, if Rσ · θ ≥ 0

(Rσ − tRσ) · θ, if Rσ · θ < 0
,

11For details, see Dammon and Green (1987).
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We set t = limy→+∞ dT (y)/dy and t = limy→−∞ dT (y)/dy. The rate t is the highest marginal

tax rate and t the lowest marginal tax rate. Note that t = t if T represents the linear tax

schedule. If T is linear, θ ∈ C(q) if only if V (θ, q) = 0.

Now we check that the tax arbitrage model satisfies Assumption 2. If T is linear,

Assumption 2 holds trivially because C(q) = {0}. Thus, we will assume that T is not

linear, i.e., t < t. Notice that θ ∈ C(q) if and only if V (θ, q) = 0, and R · θ = 0. For

each θ′ ∈ LJ , we define the sets D+(θ′) = {σ ∈ D\{σ0} : Rσθ
′ > 0} and D−(θ′) = {σ ∈

D\{σ0} : Rσθ
′ < 0}. Let θ be a nonzero point in LJ with V (θ, q) = 0. Since C(q) = {0},

we have θ 6∈ C(q) and therefore, R · θ 6= 0. Then either D+(θ) 6= ∅ or D−(θ) 6= ∅. If

D+(θ) 6= ∅, we choose γ ∈ LJ such that V (γ, q) = 0, R · γ 6= 0, and D+(θ)∩D−(γ) 6= ∅. Let

σ ∈ D+(θ) ∩D−(γ). Then we have Rσ(θ + αγ) > 0 for sufficiently small α > 0. It follows

that

V (θ + αγ, q; σ) = (Rσ − tRσ) · (θ + αγ)

= α(Rσ − tRσ) · γ

> α(Rσ − tRσ) · γ = 0

Similarly, if D−(θ) 6= ∅, we choose γ ∈ LJ such that V (γ, q) = 0, R · γ 6= 0, and D−(θ) ∩
D+(γ) 6= ∅. Let σ ∈ D−(θ) ∩ D+(γ). Then we have Rσ(θ + αγ) < 0 for sufficiently small

α > 0. It follows that

V (θ + αγ, q; σ) = (Rσ − tRσ) · (θ + αγ)

= α(Rσ − tRσ) · γ

> α(Rσ − tRσ) · γ = 0

In short, there exists γ such that V (γ, q) = 0 and V (θ + αγ, q) > 0 for some α ∈ (0, 1).

Thus, Assumption 2 is fulfilled in the tax arbitrage model.

III. Main Results

We provide a notion of arbitrage which is appropriate to studying the effect of return-

related market frictions on asset pricing.
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Definition 3.1: An asset price q ∈ LJ admits no arbitrage opportunities if there is no θ ∈ LJ

which satisfies V (θ, q) > 0.12

Definition 3.1 is an extension of the notions of arbitrage appearing in the literature. Sup-

pose that for all θ, q in LJ , there exists R(q) such that R(θ, q) = R(q) · θ. Then it holds

trivially that V (θ, q) = R(q) · θ. Frictionless markets belong to this class of net return func-

tions. Another spacial case is that for all q ∈ LJ , R(·, q) is superlinear and thus, satisfies

R(θ, q) = V (θ, q). Examples are asset markets which are subject to proportional taxes or

transaction costs.

Before going to the main results of the paper, we provide a useful characterization of

the function V .

Lemma 3.1: For a pair (q, σ) ∈ LJ ×D, the following hold.

i) For all θ ∈ LJ and λ ≥ 0, V (λθ, q; σ) = λV (θ, q; σ).

ii) V (·, q; σ) is a concave function.

iii) For all θ, γ in LJ , V (θ + γ, q; σ) ≥ V (θ, q; σ) + V (γ, q; σ).

iv) For a sequence {θn} in LJ with ‖θn‖ → ∞ such that θn/‖θn‖ converges to a point θ̂,

we have

V (θ̂, q) ≥ lim inf
n→∞

R(θn, q)

‖θn‖
.

PROOF : i) This result is immediate from the definition of V .

ii) Let α be a number in [0, 1]. It follows from (1) that for points θ, θ′ in LJ ,

V (αθ + (1− α)θ′, q; σ) = limλ→∞
R(λ(αθ+(1−α)θ′),q;σ)

λ

≥ limλ→∞
αR(λθ,q;σ)+(1−α)R(λθ′,q;σ)

λ
(by concavity of R(·, q; σ))

= α limλ→∞
R(λθ,q;σ)

λ
+ (1− α) limλ→∞

R(λθ′,q;σ)
λ

= αV (θ, q; σ) + (1− α)V (θ′, q; σ)·

12Let v and v′ be vectors in a Euclidean space. Then v ≥ v′ implies v is greater than or equal to v′ in a
component-wise manner; v > v′ implies that v ≥ v′ and v 6= v′; v � v′ implies that each component of v is
greater than the counterpart of v′.
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This implies that V (·, q; σ) is a concave function.

iii) By i) and ii), we obtain

V (θ + γ) = V (2(θ/2 + γ/2))

= 2V (θ/2 + γ/2)

≥ V (θ) + V (γ).

iv) For each (q, σ) ∈ LJ ×D, we define the set

G(q, σ) = {(θ, µ) ∈ LJ × R : R(θ, q; σ) ≥ µ},

and denote the recession cone of G(q, σ) by G∞(q, σ).13 Since R(·, q; σ) is continuous and

concave, G(q, σ) and G∞(q, σ) are closed and convex. Clearly, (θn, R(θn, q; σ)) ∈ G(q, σ)

for each n.

By the concavity of R(·, q; σ) along with R(0, q; σ) = 0, we have R(θn, q; σ))/‖θn‖ ≤
R(θn/‖θn‖, q; σ)) for sufficiently large n. Since R(θn/‖θn‖, q; σ)) → R(θ̂, q; σ)) < ∞. {R(θn, q; σ))/‖θn‖}
is bounded. Thus, {R(θn, q; σ))/‖θn‖} has a subsequence convergent to µ(q, σ) ∈ R.

(For notational simplicity, we will keep the index n to denote the convergent subse-

quence.) Then limn→∞R(θn, q; σ))/‖θn‖ = µ(q, σ). Since (θ̂, µ(q, σ)) ∈ G∞(q, σ), we have

(λθ̂, λµ(q, σ)) ∈ G∞(q, σ) for all λ > 0. Recalling that R(0, q; σ) = 0, we have (λθ̂, λµ(q, σ)) ∈
G(q, σ) or R(λθ̂, q; σ)) ≥ λµ(q, σ). It follows that

lim
λ→∞

R(λθ̂, q; σ))

λ
≥ µ(q, σ) = lim

n→∞

R(θn, q; σ)

‖θn‖
≥ lim inf

n→∞

R(θn, q)

‖θn‖
.

In particular, i) and iii) of Lemma 3.1 show that V (·, q; σ) is superlinear for all q ∈ LJ and

σ ∈ D.

Let Λ denote the set of no arbitrage prices. Then we see that

Λ = {q ∈ LJ : V (θ, q) 6> 0 for all θ ∈ LJ},
13A vector v ∈ LJ is called the direction of recession of the convex set Z ∈ LJ if for some z ∈ Z and all

λ ≥ 0, z + λv ∈ Z. The recession cone of Z is the set of all the directions of recession for Z. For details, see
Rockafellar (1970).
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where 6> denotes the negation of the vector inequality >. Most literature on asset valua-

tion by arbitrage focuses on verifying the equivalence between the no arbitrage conditions

and the existence of pricing functionals. If the notions of arbitrage do not pass viability

test, however, they fail to exactly characterize asset pricing in equilibrium. We shows that

the no arbitrage condition of Definition 3.1 is equivalent to viability. Thus the no arbitrage

condition of Definition 3.1 provides a coherent conceptual framework for studying asset

pricing, portfolio choice problem, or equilibrium in markets with return-related market

frictions such as taxes and transaction costs.

Theorem 3.1: Under Assumptions 1-3, q ∈ Λ if and only if ξ(q) 6= ∅.

PROOF : (⇐) For a price q ∈ LJ , suppose that ξ(q) 6= ∅. Then there exists a point (x, θ) ∈
ξ(q). Suppose that there exists a nonzero v ∈ LJ such that V (v, q) > 0. It follows from the

concavity of R(·, q) that for all λ > 1,

R(θ + v, q) = R

[
1

λ
(θ + λv, q) +

(
1− 1

λ

)
θ

]
≥ 1

λ
R(θ + λv, q) +

(
1− 1

λ

)
R(θ, q)

By passing to the limit, it follows from iv) of Lemma 3.1 that

R(θ + v, q) ≥ lim
λ→∞

1

λ
R(θ + λv, q) + lim

λ→∞

(
1− 1

λ

)
R(θ, q)

= V (v, q) + R(θ, q)

> R(θ, q)

By the strict monotonicity of u, this result implies that there exists x′ ∈ L+ such that

u(x′) > u(x) and (x, θ + λv) ∈ B(q), which contradicts the optimality of (x, θ) in B(q).

(⇒) Let q be a price in Λ. We set

X(q) = {x ∈ L+ : (x, θ) ∈ B(q) for some θ ∈ LJ}.

First we claim that each X(q) is closed and bounded, i.e., compact. To show that X(q) is

closed, we choose {xn} in X(q) which converges to a point x ∈ L+. For each n, we can

choose θn ∈ LJ such that (xn, θn) ∈ B(q). We claim that {θn} is bounded. Otherwise, let

10



θn/‖θn‖ → θ̂. Since {xn} is bounded, we have limn→∞R(θn, q)/‖θn‖ ≥ 0. By v) of Lemma

3.1, we have V (θ̂, q) ≥ limn→∞R(θn, q)/‖θn‖ ≥ 0. Since q ∈ Λ, we must have V (θ̂, q) = 0.

Recalling that θ̂ 6= 0, by Assumption 2, there exists η ∈ LJ such that V (θ̂ + η) > 0, which

contradicts the fact that q ∈ Λ. Thus, {θn} is bounded. Since {(xn, θn)} is bounded, it has

a subsequence convergent to a point (x, θ) ∈ L+ × LJ . This implies that (x, θ) ∈ B(q) and

therefore, X(q) is closed in L+.

Now we show that X(q) is bounded. Suppose that it is unbounded. Then there exists

{xn} in X(q) such that ‖xn‖ → ∞. Let {θn} be a sequence in LJ such that (xn, θn) ∈ B(q)

for each n, i.e., xn − e ≤ R(θn, q). Noting that ‖xn‖ → ∞, we have ‖θn‖ → ∞. Since

{θn/‖θn‖} is bounded, it has a subsequence which converges to a nonzero point θ̂ ∈ LJ .

By the concavity of R(·, q; σ) along with R(0, q; σ) = 0, it follows from iv) of Lemma 3.1

that for each n,

0 ≤ lim
n→∞

(
xn

‖θn‖
− e

‖θn‖

)
≤ lim

n→∞

R(θn, q)

‖θn‖
≤ V (θ̂, q).

The same argument made above leads to a contradiction. Thus, X(q) is bounded. Since

X(q) is closed, we conclude that X(q) is compact.

Since u is continuous and X(q) is compact, there exists x ∈ L+ which satisfies u(x) ≥
u(z) for all z ∈ X(q) and therefore, θ ∈ LJ such that (x, θ) ∈ ξ(q).

The following shows the equivalence between the no arbitrage condition and the exis-

tence of pricing rules.

Theorem 3.2: Under Assumption 1, the following two statements are equivalent.

i) q ∈ Λ.

ii) There exists π � 0 such that π · V (θ, q) ≤ 0 for all θ ∈ LJ .

PROOF : ii) ⇒ i): Suppose that q 6∈ Λ. Then there exists θ ∈ LJ such that V (θ, q) > 0. Since

λ � 0, this implies that λ · V (θ, q) > 0, which leads to a contradiction.

i) ⇒ ii): Suppose that q ∈ Λ. We define the set

Z(q) = {y ∈ L : y ≤ V (θ, q), θ ∈ LJ}.

By i) and ii) of Lemma 3.1, Z(q) is a closed, convex cone.
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Let ∆ denote the set {y ∈ L+ :
∑

σ∈D y(σ) = 1}. Clearly, ∆ is compact and convex.

Then q ∈ Λ is equivalent to the condition that Z(q) ∩ (L+ \ {0}) = ∅ or Z(q) ∩ ∆ = ∅.

Since Z(q) is a closed, convex cone, by the separating hyperplane theorem there exists a

nonzero π ∈ L such that

sup
θ∈LJ

π · V (θ, q) < inf
y∈∆

π · y.

In particular, we see that

0 = π · V (0, q) ≤ sup
θ∈LJ

π · V (θ, q) < inf
y∈∆

π · y.

Thus we have infy∈∆ π · y > 0, which implies that π ∈ L++. Let θ ∈ LJ . Then for each

λ > 0, we have π · V (λθ, q) < infy∈∆ π · y. Recalling that V (λθ, q) = λV (θ, q) for all λ > 0,

we obtain π · V (θ, q) < infy∈∆(π · y)/λ for all λ > 0, and therefore, π · V (θ, q) ≤ 0.

Theorem 3.1 and 3.2 leads to a full extension of the FTAP of Harrison and Kreps (1979)

and Dybvig and Ross (1989) to asset markets with return-related market frictions.

Theorem 3.3: Under Assumptions 1-3, the following statements are equivalent.

(i) q ∈ Λ.

(ii) There exists π ∈ L++ such that π · V (θ, q) ≤ 0 for all θ ∈ LJ .

(iii) ξ(q) 6= ∅.

IV. Conclusion

The fundamental theorem of asset pricing is presented in the presence of return-related

market frictions such as progressive income taxes. Specifically, Theorem 3.3 states the

triple equivalence among the no arbitrage condition, the existence of pricing rules, and

the viability of asset prices. The result relies on no specific functional form and thus, can

find applications to a broad range of return-related market frictions. In particular, no

matter how complex the structure of return-related market frictions looks like, the viable

pricing rules are determined by the lowest and highest marginal net returns, and thus,

characterized as simply as in the case with the superlinear net functions.

12



Theorem 3.3 can be applied to real-world examples of the net return function. In this

case, one immediate issue is to find lowest and highest marginal net returns to get the

corresponding superlinear function V (·, ·). Another interesting problem is to extend the

results of Theorem 3.3 to asset markets where the net return functions are not concave or

certain form of restrictions are imposed on individual portfolio choices.
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