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Effective Portfolio Optimization Based on Random Matrix Theory  
 
 

 

Abstract 

In this study, we investigate empirically whether the control of the correlation matrix via the random 

matrix theory (RMT) method can create a more efficient portfolio than the traditional Markowitz's model. 

The reasons for this improvement are also investigated. From the viewpoints of both the degree of 

efficiency and diversification, we find that the portfolio from the correlation matrix without the properties 

of the largest eigenvalue via the RMT method is more efficient than the one created from the 

conventional Markowitz’s model. Furthermore, we empirically confirm that the properties of the largest 

eigenvalue cause an increase in the value of the correlation matrix and a decrease in the degree of 

diversification, thus ultimately increasing the degree of portfolio risk.  These results suggest that the 

properties of a market factor are negatively related to the degree of efficiency obtainable through the 

Markowitz's portfolio model. In addition, on the basis of the ex-ante test (using the expected stock returns 

and risk of the past period as well as actual data in the future period) we find that the performance of the 

observed RMT-based efficient portfolio is superior to that of the portfolio from Markowitz's model. 

These results demonstrate that the improvement of Markowitz's portfolio model via the control of the 

correlation matrix can be a source of significant practical utility. 
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  1. Introduction 

 

As Markowitz's (1952) seminal idea highlights, an increased emphasis on risk control in 

modern portfolio theory and practice characterizes the relevant finance and econometrics 

literature. Many studies have shown that portfolio optimization may generate substantial 

benefits in terms of risk reduction and performance evaluation in the investment industry (Evans 

and Archer, 1968; Elton and Gruber, 1977; Statman, 1987). However, the portfolio theory has 

been implemented with only a limited degree of success mainly because of the nature of the 

inputs required for portfolio theory. Specifically, the inputs of Markowitz's model applied to the 

portfolio theory are expected returns, expected risks, and expected correlation matrix; 

employing quadratic optimization function, this model should theoretically yield optimum 

portfolios. The problem lies in achieving accurate expectations of the three types of inputs 

required for this model (Elton and Gruber, 1974).  

  Although a great deal of attention has been paid in previous studies to the estimation of 

expected returns and risks, little attention has been paid thus far to the estimation of the 

expected correlations. That is because researchers must overcome a few problems before 

portfolio optimization can be practically applied. First, as the number of stocks involved in a 

portfolio typically counts in the hundreds or thousands, it is quite difficult to estimate every 

element of the correlation matrix. The correlation matrix determined by a portfolio containing 

 stocks has  elements. Therefore, in the extant literature, the simplest method of 

estimating expected correlation matrix using historical data has been to assume that the past 

correlation value is a useful estimate of its expected value in the future. Next, the characteristics 

of the financial time series are affected significantly by noises, outlier observations, missing 

data, and thin trading. If the length of the time series is not sufficiently long, measurement 

errors will exist in the calculated correlation matrix. This means that statistical uncertainties, 
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such as measurement errors, will typically exist in the calculated correlation matrix. It is, 

therefore, necessary to control properly for these influential factors in estimating the correlation 

matrix for portfolio optimization. 

  Recently, several contributions have been made in the econophysics literature in terms of 

quantifying the degree of statistical uncertainty inherent to a correlation matrix. These findings 

have been obtained using the concepts and tools of random matrix theory (RMT) (Mehta, 1991). 

The RMT has been applied to financial time series as a means of removing noise in the 

correlation matrix and selecting statistically significant components (Laloux et al., 1999 and 

Plerou et al, 1999), and the effectiveness of the RMT has been verified by studies of the 

financial time series of a number of countries (Wilcox and Gebbie, 2004 and 2007; Garas and 

Argyrakis, 2007). Previous studies in which the RMT method has been applied to analyze the 

properties of a correlation matrix demonstrate that a considerable degree of randomness exists 

in the measured correlation matrix, and that the deviating eigenvalues from the random matrix 

remain stable over time. Additionally, several studies on the economic meaning of the 

properties of eigenvalues created by the RMT method indicate that the eigenvalues deviating 

from the random matrix have economic meanings, such as market and industrial factors (Plerou 

et al., 2002; Eom et al., 2008 and 2008). In particular, it has been relatively well established that 

the properties of the largest eigenvalue have the economic meaning of a market factor. In 

addition, the previous results regarding the RMT method are quite similar to the results drawn 

from the principal component analysis for finding the deterministic factors of stock prices (King, 

1966; Meyers, 1973; Trzcinka, 1986; Brown, 1989). Based on eigenvalues, these studies also 

identified a number of common factors, which can commonly affect all stocks, and provided 

results revealing that the common factors have economic meanings---including those of market, 

industry, and company factors. 

  Several studies have explored the advantages of the RMT method in portfolio optimization 
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(E.g., Laloux et al., 2000; Rosenow et al., 2002; Sharifi et al., 2004; Tola et al., 2008; Eom et al., 

2009). These studies have shown that the RNT-based correlation matrix is a better 

approximation of the portfolio elicited from the actual correlation matrix of the future period 

than the conventional approach using the correlation matrix of the past period as the estimated 

correlation matrix of the future investment period. In addition, these studies also demonstrate 

that the use of the RMT method improves the reliability of portfolio selection and enhances the 

accuracy of risk assessment, and the control of the correlation matrix provides many benefits in 

terms of stability.  

  Moreover, the interesting findings of the previous studies in which the RMT method was 

combined with Markowitz's model show that the portfolio constructed by the correlation matrix 

from the RMT method is located on the left side of those created by other correlation matrices. 

Recently, the study of Eom et al.(2009) generates empirical evidence that the risk of a portfolio 

elicited from the correlation matrix via the RMT method was smaller than that of a portfolio 

drawn from the conventional Markowitz model. Therefore, these findings have been  

recognized as a meaningful contribution, not only to the academics of portfolio theory, but also 

to the practices of the investment industry. However, sufficient efforts have yet to be exerted to 

explain the observed results systematically and to evaluate whether this approach is practically 

useful.   

  The principal objective of this study is first to empirically investigate whether controlling the 

correlation via the RMT method can generate a more efficient portfolio than one determined via 

the conventional Markowitz's portfolio theory at a given identical return. Furthermore, if a more 

efficient portfolio than one determined via the conventional Markowitz's model exists, we 

attempt to systematically provide possible explanations as to why a created portfolio is more 

efficient, on the basis of empirical evidence. Finally, in order to ascertain the practical utility of 

the observed more efficient portfolio, we employ an ex-ante test to confirm empirically the 
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changes in the performance of a more efficient portfolio in terms of gradual improvements in 

the predictability of the expected return and expected risk (standard deviation).  

  The observed results are summarized as follows. We find robustly the existence of a more 

efficient portfolio with a lower risk than the portfolio determined by Markowitz's model from 

the viewpoint of efficiency. In particular, the portfolio created by the group correlation matrix, 

which has the properties of the eigenvalues except those of the largest eigenvalue among the 

eigenvalues deviating from the random matrix, is more efficient than those generated from other 

correlation matrices via the RMT method. Furthermore, using the group correlation matrix, the 

RMT method also proved to be an effective tool for improving the degree of diversification for 

investment weights among stocks in a portfolio---which has been a practical limitation to the 

application of conventional Markowitz portfolio theory. In addition, we show that the 

correlation matrix is affected directly by whether the property of the largest eigenvalue was 

reflected. The property of the largest eigenvalue causes an increase in the value of the 

correlation matrix, and thus a lower degree of diversification, which ultimately increases the 

degree of portfolio risk. Moreover, by considering the practical utility on the basis of an ex-ante 

test, we show that the performance index of the portfolio elicited from the group correlation 

matrix is higher than that of the portfolio created by the conventional Markowitz's model, as 

well as the equal-weighted method using the actual return and risk of a future period, by 

somewhat improving the predictability of return and risk of stocks in the past period. These 

results constitute empirical evidence that the group correlation matrix constructed by the RMT 

method has a high degree of utility for portfolio investments that are based on the Markowitz 

model. 

  The remainder of this paper is structured as follows. Section II presents a brief description of 

the analyzed data and describes the methods employed in this study. Following the stated 

research objectives, Section III provides the results of effective portfolio optimization from the 
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conventional Markowitz portfolio theory and the RMT method.  Section IV presents the results 

of an ex-ante test of a more efficient portfolio. Finally, we summarize the findings and 

conclusions of this study. 

 

  2. Data and Methods 

 

  2.1 Data 

 

This study considers an efficient portfolio of individual stocks traded on the stock market, 

and thus we utilize the daily prices of stocks included in the market indices of Korea and the US. 

The following three steps are considered for the selection of stocks from each country. First, 

stocks with consecutive daily prices for the 18 years from January 1990 to December 2007 were 

selected. Second, stocks with outliers in the descriptive statistics of skewness (>|2|) and kurtosis 

(>30) were excluded. Third, stocks in sectors with four or less companies were excluded. The 

data selected according to these processes included 104 stocks from the KOSPI 200 of the 

Korean stock market, and 310 stocks from the S&P 500 of the US stock market. The stock 

returns, , were calculated by the logarithmic changes of the prices, , 

in which  is the stock price on day . 

  The period of this study is divided into the overall period and sub-periods. First, the final year 

(2007) of the entire period was established as the future period for the application of the 

estimated correlation matrix to the optimization function, and the past period (January 1990 ~ 

December 2006) was established as the estimation period for the correlation matrix. Second, the 

entire period was divided into three equal sub-periods to consider the effects of the changes in 

market status. The periods were defined with an identical method applied to the overall period 

of six years (January 1990 ~ December 1995, January 1996 ~ December 2001, January 2002 ~ 
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December 2007). That is, the future period applied to the estimated correlation matrix is the 

final year (1995, 2001 and 2007), and the past period for the estimation of the correlation matrix 

is the previous five years (January 1990 ~ December 1994, January 1996 ~ December 2000, 

January 2002 ~ December 2006).  

 

  2.2 Random Matrix Theory Method 

 

The RMT method is introduced as a means for controlling the correlation matrix with 

measurement errors in the financial time series. By the statistical properties of the correlation 

matrix created by the random interactions, if the length of the time series ( ) and the number of 

data ( ) are infinite, the eigenvalue( ) probability density function of the correlation matrix, 

 , is defined by Sengupta and Mitra (1999) 

   (1) 

 

 

and the range of eigenvalues belonging to the random matrix are , in which 

 is the maximum eigenvalue, and   is the minimum eigenvalue. 

  As in previous studies, we categorized the range into filtered, market, and group ranges on 

the basis of the eigenvalue range of the random matrix. First, the range at which the eigenvalue 

exceeds the maximum eigenvalue of the random matrix is defined as the filtered range, 

 (using script , ); second, the largest eigenvalue among those that exceed the 

maximum eigenvalue of the random matrix as the market range,   (script , 

); and third, the eigenvalue range except for the largest eigenvalue among those that exceed 

the maximum eigenvalue of the random matrix as the group range, , except for  
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(script , ). It has been relatively well established that the eigenvalues deviated from the 

random matrix have economic meanings such as market, industry, and company factors; and in 

particular, the properties of the largest eigenvalue give the economic meaning of a market factor. 

However, it was verified in previous studies have shown that economic meanings cannot be 

attached to the properties of the eigenvalue belonging to the range of the random matrix (See, 

e.g., Plerou et al., 2002; Eom et al., 2008 and 2008; King, 1966; Meyers, 1973; Trzcinka, 1986; 

Brown, 1989). Therefore, we exclude the random matrix from this study because it does not 

correspond with the primary objective of our study, which is to provide systematic explanations 

on the basis of empirical evidence. 

 

  2.3 Markowitz's Optimization Model 

 

In the conventional portfolio theory, the optimization function for calculating the investment 

weight to minimize the risk at a given identical return can be expressed as is shown in Eq. 2. If 

an investment asset's expected return, , expected risk, , and correlation matrix, , are 

provided as inputs to the optimization function, the investment weight, , of each stock is 

yielded as output. The portfolio return,  and risk,  are then numerically calculated 

using the investment weight. Accordingly, the Markowitz's model involves the determination of 

investment weights in order to create an efficient portfolio on the basis of the dominance 

principle as an investment rule---that we prefer less risk for a given return and prefer greater 

return for a given risk.  

  (2) 

Condition 1:  

Condition 2:  
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Condition 3:   

 

As mentioned previously, our objective is to empirically assess and explain the existence of a 

more efficient portfolio using a variety of correlation matrices, which is an input to the 

optimization function shown in Eq. 2. Therefore, as in the empirical designs of previous studies, 

it can be assumed that the expected return,  and the expected risk,  of individual 

stocks are known, and that only the correlation matrix from past periods is estimated (Laloux et 

al., 2000; Rosenow et al., 2002; Sharifi et al., 2004; Tola et al., 2008; Eom et al., 2009). The 

difference with the designs of previous studies is that we tested the portfolios under the 

assumption of the dominance principle. That is, every portfolio created by the correlation matrix 

compares the magnitudes of risk at an identical target return,  (condition 1 in Eq. 2). Then, a 

portfolio is generated with a minimum risk, , according to the minimization objective 

function for the identical target return, and the investment weight, , for stocks in a portfolio 

are generated in the process. Finally, connecting the combination points [ , ] of 

portfolio risks and returns created by varying the target return within a range, , 

provides an efficient investment curve as a set of optimum portfolios. In turn, because every 

portfolio drawn has an identical return, a portfolio with lower risk becomes a more efficient 

portfolio. Conditions 2 and 3 show that short-selling is not permitted.  

  Five types of correlation matrices were applied to the optimization function of Eq. 2 in this 

study. The first of these were the correlation matrices using the original returns--the correlation 

matrix of the past period,  (using script ) used in the conventional portfolio theory, 

and the correlation matrix,  (script ) calculated using the actual data of the future 

period. The second type was the correlation matrix, , measured during the past period and 

then decomposed into three types of correlation matrices via the RMT method. The third 
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correlation matrix type applied to the optimization function of Eq. 2 was the type based on the 

eigenvalue range of the random matrix, which is a filter correlation matrix reflecting the 

properties of the eigenvalue that exceeds the eigenvalue range of the random matrix, 

. The fourth of these was the market correlation matrix that reflects only the 

properties of the largest eigenvalue, . Finally, the fifth type was the group 

correlation matrix reflecting the properties of the eigenvalues except for the properties of the 

largest eigenvalue, .  

As mentioned above, we utilized three inputs of the optimization function: the first, the return, 

; the second, the risk,  of individual stocks calculated using the actual data of the future 

period; and the third, the correlation matrix  in the future period, and the four types of 

correlation matrices, , , , , estimated in the past period. We then conducted a 

comparison of the five types of portfolio risks, , , , , , created under the given 

identical returns.  

 

 

 

 

 

  3. Results for Effective Portfolio Optimization 

 

  3.1 Existence of a More Efficient Portfolio via the RMT 

 

This section presents empirical evidence as to whether a more efficient portfolio with a lower 

risk at a given identical return can be generated via a combination of the RMT method with 
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Markowitz's model. To ensure the robustness of the observed results, we utilized measurements 

from two perspectives---the degree of efficiency and the degree of diversification. The former 

involves determining whether the portfolio has a lower risk for a given identical return, and the 

latter is concerned with whether the investment weights among stocks in a portfolio are well 

distributed. Therefore, a more efficient portfolio should be satisfying from both the viewpoint of 

the degree of efficiency and that of the degree of diversification. 

  First, we present the observed results from the viewpoint of the degree of efficiency in Fig. 1 

and Table 1. The actual stock returns and risks during the future period (2007), the four 

correlation matrices, , , ,  estimated in the past period (1990 ~ 2006) and the 

actual correlation matrix  of the future period are provided as inputs for the optimization 

function of Eq. 2. In Fig. 1, the results are divided into those obtained from the Korean and US 

stock markets, as shown in Fig. 1(a) and Fig. 1(b), respectively. The X-axis denotes the 

portfolio risks, and the Y-axis indicates the portfolio returns as the identical target returns. In the 

figure, black circles indicate the portfolio created using  as inputs into Markowitz's model, 

 as cyan pentagrams,  as blue circles,  as green tangles, and  as red squares. 

According to our results, regardless of the country data, the portfolio created from , which 

reflects the properties of the eigenvalues except for those of the largest eigenvalue among 

eigenvalues deviating from the random matrix, is in the left-most position. That is, the portfolio 

from  harbors a lower risk at a given identical return than those created from other 

correlation matrices. In order to obtain robust results in Fig. 1, we utilized an identical process 

for the stock of each country using three sub-periods (1990 ~ 1995, 1996 ~ 2001 and 2002 ~ 

2007). These results are provided in Table 1. We utilized the average value of portfolio risks, 

. In Table 1, we also show that the risks, , of the portfolio created from  

are clearly smaller than those of the portfolios created from other correlation matrices in all 

sub-periods. Therefore, the findings can be said to reveal that the portfolio created using  is 
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clearly more efficient than the ones created from other correlation matrices from the viewpoint 

of degree of efficiency as measured by the size of the portfolio risk. 

Next, we provide the observed results from the viewpoint of degree of diversification in Fig. 2 

and Table 2. In order to conduct a quantitative observation of how well the portfolio was 

diversified, we utilized two measurements of the intra-portfolio correlation, , and the 

concentration coefficient,  using the investment weights  calculated from the previous 

results of Fig. 1 and Table 1, as follows. 

  (3) 

    (4) 

 

The first measurement, , quantifies the distribution level of the investment weights among 

stocks in a portfolio. The range of the  is .  denotes that the 

investment weights are well distributed among all of the stocks in the portfolio, and  

shows that the investment weights are not distributed at all. Namely, the lower the  is, the 

higher the level of distribution for the investment weights among stocks in a portfolio will be. 

The second measurement, , as a complementary parameter to , quantifies the degree 

of concentration of investment weights among stocks in a portfolio. The range of the  is 

.  denotes that 100% of the investment is made on one stock in a portfolio, 

and  means that an equal investment weight  is applied to every stock in a 

portfolio. In other words, the higher the  is, the lower the degree of concentration of 

investment weights among stocks in a portfolio---that is, the higher the level of distribution of 

investment weights---will be. 

  The correlation matrix is composed of the five types of correlation matrices, , , , 
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,  used in Fig. 1 and Table 1, and the investment weight,  is calculated from Eq. 2 

using the five types of correlation matrices as an input of the optimization function, respectively. 

The observed results are provided in Fig. 2. Fig. 2(a) & (b) show the results using the Korean 

stocks, and Fig. 2(c) & (d) show the US stocks. The X-axis indicates the 50 portfolio cases, and 

the Y-axis presents  [Fig. 2(a) & (c)] and  [Fig. 2(b) & (d)]. The figure is 

categorized as follows: black circles , cyan pentagrams , blue circles , green tangles 

 and red squares . The results illustrate that the  of the portfolio generated from 

 has the smallest value and its  is the greatest, regardless of the country data. That is, 

the investment weights among stocks in a portfolio generated from  are not concentrated on 

a specific stock, and are well diversified among all stocks in a portfolio. In addition, the  

(the ) has a higher (lower) value as risk increases, . This means that the 

lower position among portfolios is better diversified than the portfolio in the higher position. 

These can be inferred in cases in which in order to achieve a higher return, we increase the 

investment weight of a specific stock with high return, and then these increase the risk of the 

portfolio, and such a distribution of investment weights results in a low degree of diversification. 

In order to achieve robust results in Fig. 2, we test identical processes for the stock of each 

country using three sub-periods. We present the results in Table 2. We utilized the average 

value,  and  for each sub-period. According to our 

results, the  (the ) of the portfolio created from  is smaller (larger) than the  

(the ) from other correlation matrices. These results robustly confirmed that the investment 

weights among stocks in a portfolio created from  are well diversified. 

  Besides, we have been additively considering the number of the stocks with non-zero 

investment weights,  , in an effort to robustly examine the degree of diversification of 

the stocks in a portfolio. The results obtained with the Korean and the US stocks are provided in 
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Fig. 3(a) and Fig. 3(b), respectively. In the figure, the Y-axis represents the ratio, , of 

the number of stocks having non-zero weights, , among the overall stocks,  in each 50 

portfolios. For example, the '1 (= )' on the left of the X-axis represents the position of the 

number of stocks having non-zero investment weights in one among the 50 portfolios. 

Otherwise, the '50 (= )' on the right indicates the position of the number of stocks having 

non-zero investment weights among all 50 of the portfolios. Therefore, the position of the 

number of stocks having no weight among all 50 portfolios is the '0 (= )' on the left-most of the 

X-axis. The X-axis indicates the number of cases of stocks with non-zero weights, , 

among the 50 portfolios in Fig. 1, and accordingly the range of the X-axis is . 

In Fig. 3, the bar indicates the  for the portfolios created from the actual correlation matrix 

 of the future period, and the figure is categorized as follows: black circles , cyan 

pentagrams , blue circles , green tangles  and red squares .  

  According to our results, the =69% (89%) of the stocks in a portfolio generated from 

 for the Korean (not the US) data does not have investment weights for all 50 of the 

portfolios. In other words, only 31% (11%) of the stocks have a non-zero investment weight. 

Additionally, the cases using the other correlation matrices, , , and , were not 

appreciably different from the results of , with =70% (80%) on '0' for the Korean (the 

US) data. However, interestingly, there is no stock with  in the portfolio generated from 

the  for the Korean data [ =0%]. That means, the degree of diversification has taken 

place for every stock. For the US stock market, the ratio of the stocks with  was 

significantly lower (approximately =5%). These results indicated that the group 

correlation matrix generated via the RMT method, as a major input of Markowitz's model, is an 

effective means of improving the degree of diversification for investment weights among stocks 

in a portfolio, which has previously been a practical limitation in the application of conventional 
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portfolio theory. 

  For the reasons mentioned above, we robustly detected the existence of a more efficient 

portfolio with a lower risk than the portfolio determined by Markowitz's portfolio theory. 

Furthermore, from the perspectives of the degrees of efficiency and diversification, the portfolio 

created from the group correlation matrix is more efficient. Additionally, we note that even the 

use of a correlation matrix that reflects only a few of the properties of the eigenvalues deviating 

from the random matrix generates a more efficient portfolio than the portfolios generated from 

the conventional Markowitz portfolio theory. 

 

  3.2 Reasons for Existence of a More Efficient Portfolio  

 

This section provides empirical explanations as to why the portfolio generated from  is 

more efficient than those generated from other correlation matrices. From the results presented 

in the previous section, factors that may possibly affect the existence of a more efficient 

portfolio are the correlation matrix and the investment weight, because all of the other 

conditions were identically applied. That is, the correlation matrix is considered an input of 

Markowitz's model, and the investment weight was used as an output. Thus, we attempted to 

determine the reasons that those two influential factors helped to generate a more efficient 

portfolio. 

  First of all, we present the results obtained from the viewpoint of investment weight in Fig. 4. 

In order to assess the effects of the investment weight on a more efficient portfolio, we elected 

to assign a identical investment weight, , to all of the stocks within a portfolio. 

This is because the different investment weights of stocks calculated from Eq. 2 were 

considered in the previous section. If a  assigned with an identical investment weight still 

has the lowest portfolio risk as compared to the other correlation matrices, the investment 
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weight cannot be considered to be affecting the existence of a more efficient portfolio. 

Specifically, we apply the process in the previous studies (Evans and Archer, 1968; Elton and 

Gruber, 1977; Statman, 1987) to analyze the effects of portfolio diversification. That is, we 

examine the reduction of a portfolio's risk,  ( ) is 

reduced as the number of stocks within a portfolio, , increases. This is similar to the objective 

function of Eq. 2. The only difference is that the number of stocks in a portfolio, , varies, 

whereas the number of stocks in a portfolio in Eq. 2 was fixed at . Additionally, we utilized a 

varying number of  stocks in a portfolio,  [ ]. In addition, in order to 

minimize the effects of selection bias, we conducted a simulation of 100 repetitions for each 

46(=70-25+1) case, changing the number of stocks within a portfolio, respectively. Importantly, 

the types of stocks in a portfolio were not identical for each of the 100 simulations. The 

minimum number of stocks was set at  due to the use of the correlation matrix 

generated via the RMT method. 

  The results are provided in Fig. 4. The diversification effects of the portfolio were assessed 

by applying the four types of correlation matrices, , , , and , estimated in the past 

period (1990~2006) to the stocks in the future period (2007). The reference of comparison was 

the result from the actual correlation matrix, , of the future period. In addition, as the  of 

the future period did not adopt the RMT method, we applied a wider range, , to also 

confirm the original diversification effects of a well-known portfolio in finance (Evans and 

Archer, 1968). The X-axis represents the number of stocks within a portfolio in the range of 

, in which , the left-most position of the X-axis, corresponds to an individual 

stock. The Y-axis is the portfolio risks. In accordance with the empirical design, we conducted 

100 simulations for each portfolio with a specific number of stocks, and thus, we present the 

results with an error-bar graph using the average and standard deviations of the 100 risks for 
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each of the portfolios. The figure is divided into black circles of , cyan pentagrams of , 

blue circles of , green tangles of  and red squares of , according to the correlation 

matrices. Fig. 4(a) is the results attained with the Korean stocks, and Fig. 4(b) for the US stocks. 

  As expected, the results show that increasing the number of stocks within a portfolio 

exponentially reduces the risk of the portfolio. Moreover, as the number of  stocks in a 

portfolio increases, the portfolio created from  evidenced lower risk than those created from 

other correlation matrices, regardless of the country data used. That is, as the risk of the 

portfolio using  was smallest despite the assignation of identical investment weights to all 

stocks within a portfolio created from other correlation matrices, it is difficult to claim that the 

investment weight is a deterministic influential factor in whether or not a more efficient 

portfolio exists. It is believed that the investment weight performs a pivotal role in providing 

better diversification for a more efficient portfolio, rather than having effects of a deterministic 

factor on the existence of a more efficient portfolio.  

Next, we present the results observed from the viewpoint of the correlation matrix on the 

existence of a more efficient portfolio in Fig. 5. We assessed the probability density function of 

frequency for the five correlation matrices used in the previous process, , , , , 

and . The results are provided in Fig. 5. In the figure, the results indicate the probability 

distributions of five correlation matrices. In Figs. 5 (a) & (b), the yellow bar is the probability 

distribution of  in the future period, and the probability distributions of  in the past 

period are indicated with cyan pentagrams,  with blue circles,  with green tangles, and 

 with red squares. Fig. 5(a) shows the results of the Korean stocks, and Fig. 5(b) shows the 

results for the US stocks. According to the results, the center of the probability distribution of 

 is positioned to the left of all of the other correlation matrices. That is to say,  has the 

lowest average value. According to these results, the reason why the observed more efficient 

portfolio has a lower risk than the portfolios created from other correlation matrices is that  
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has a smaller value than all of the other correlation matrices. Accordingly, these results show 

that the correlation matrix is a deterministic influential factor establishing the existence of a 

more efficient portfolio. 

 

3.3 The Effects of Market Properties on a More Efficient Portfolio 

 

It is interesting to observe from the results of Section 3.2 that among the correlation matrices 

generated via the RMT method, the only difference between the filtered correlation matrix,  

and the group correlation matrix, , is whether the properties of the largest eigenvalue are 

reflected. In contrast, the difference between  and  can be clearly seen in the previous 

results. Therefore, in this section, we discuss the additional analysis required to determine the 

properties of the largest eigenvalue, which is the difference between  and , in order to 

identify the hidden deterministic factor behind the existence of a more efficient portfolio.  

  In the previous studies of the RMT method applied to finance, the correlation matrix, 

, can be divided into the components of the eigenvector, , and the eigenvalue, 

. Therefore, components that can influence the difference between  and  are the 

eigenvector and the eigenvalue. We attempted to assess the possible explanations behind the 

difference of correlation matrices from two components. 

  First of all, we present the results observed from the properties of eigenvectors in the 

correlation matrix, as an influential factor. The results are provided in Fig. 6. In the figures, Fig. 

6(a) & (c) display the eigenvector of the largest eigenvalue,  (red circles) and that of the 

second largest eigenvalue,  (black bar) for each stock using the Korean stock data, , 

and the US stock data, , respectively. The X-axis is the stocks within a portfolio. In 

addition, we observed each eigenvector for the eigenvalues deviating from the random matrix. 5 

eigenvalues exceed the range of the random matrix for the Korean stock market, and 15 
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eigenvalues exceed the range of the random matrix for the US stock market. For the 5~15 types 

of eigenvalues, the observed results are shown as a box-plot in Fig. 6(b) for the Korean stock 

market, and in Fig. 6(d) for the US stock market.  

  The results show that the eigenvector with the properties of the largest eigenvalue (red 

circles) assigns a high value to every stock as a whole [Fig. 6(a) & (c)]. This means that high 

values are not assigned only to a few stocks. On the other hand, the eigenvector of the second 

largest eigenvalue (black bar) assigns a definitely high value to a few stocks, but a very small or 

no value to the majority of stocks. These results are robustly confirmed from the finding that the 

box-plot for the values of the first eigenvector are distributed in a narrow range, whereas the 

box-plot of other eigenvectors are scattered in a larger range [Fig. 6(b) & (d)]. Additionally, the 

center of the box-plot of the first eigenvector is positioned higher than those of other 

eigenvectors.  

  Our observed results are similar to the results of previous studies (e.g., Plerou et al., 2002; 

Eom et al., 2009) suggesting that the largest eigenvalue has market properties, and those others 

that exceed the range of the random matrix have industrial attributes [12-23]. A market factor  

represents a common factor in the stock market, which commonly affect every stock traded in 

the market. On the other hand, industrial factors affect only the stock group in a specific 

industry. Therefore, the value of correlation matrices among stocks are increased when the 

market factor properties are included in the properties of individual stocks. Conversely, when 

the market factor properties are removed, the value of the correlation matrix decreases because 

the common properties included in every stock are eliminated. According to these results, the 

 without the properties of the largest eigenvalue, as a market factor, has a smaller value than 

, which evidences the properties of the largest eigenvalue. 

  Next, in order to assess the properties of the eigenvalue that can determine the properties of 

the correlation matrix, we present results observed from a time series reflecting the properties of 
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each eigenvalue in Fig. 7. The time series, , is used to assess the 

properties of each eigenvalue in previous econophysics and finance studies, in which,  

indicates the eigenvector with the properties of the  eigenvalue, , and , 

 denote the actual returns of stock .  

  The results are shown in Fig. 7. As in the process of the previous section, the data utilized for 

analysis were divided into Korea [Fig. 7(a) & (b)] and the US [Fig. 7(c) & (d)]. In the figures, 

Fig. 7(a) & (c) provides the probability distribution of the time series created for the eigenvalues 

deviating from the random matrix. That is to say, 5 eigenvalues exceed the range of the random 

matrix from stocks of the Korean stock market, and 15 eigenvalues for the US stock market. In 

Fig. 7(a) & (c), the circles (black) are the time series that reflect the properties of , 

squares(colour) for ~ , triangles(colour) for ~ , diamonds(colour) for ~ , and 

pentagram(colour) for ~  [Korea: ~  and the U.S.: ~ ]. Fig. 7 (b) & (d) show the 

volatility, which was calculated from the standard deviation,  

for the time series, . The X-axis is the category of the time series in descending order of 

eigenvalue size, and the Y-axis is the volatility of the time series.  

  The results indicate that among the eigenvalues that exceed the range of the random matrix, 

the probability distribution of the time series, , calculated from the largest eigenvalue 

evidences the widest degree of dispersion [Fig. 7(a) & (c)] and the highest volatility [Fig. 7(b) 

& (d)]. On the other hand, as the magnitude of other eigenvalues become smaller, the degree of 

dispersion of the probability distribution of the other time series, ,  becomes 

narrower, and the size of the volatility decreases exponentially. Accordingly, the properties of 

the largest eigenvalue cause an increase in the portfolio risks, as well as the value of the 

correlation matrix between stocks within a portfolio. These results show that the reason why the 

portfolio created from  has a lower risk than the portfolio created from  at a given 
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return is that in , the properties of the largest eigenvalue are included. Therefore, since it has 

been well established in previous studies that the properties of the largest eigenvalue have the 

economic meaning of a market factor, these results indicate that the market factor properties 

cause an increase in the value of the correlation matrix, thus lowering the degree of 

diversification, and increasing the degree of portfolio risk. 

 

  4. Results for an Ex-ante test of a More Efficient Portfolio 

 

In this section, using the ex ante test, we attempted to determine empirically whether a more 

efficient portfolio elicited from the group correlation matrix has practical utility in the field of 

finance. The optimum portfolio elicited from Markowitz's model is affected not only by the 

expected correlation matrix, but also by the prediction accuracy of the expected return,  

and the expected risk (standard deviations), , of stocks in a portfolio. In Section 3, however, 

we assumed that the expected return and risk of stocks in a portfolio were  and 

, in which  and  are the return and risk calculated from the actual data, 

respectively. In other words, we assumed that the expected return and risk of a portfolio's stocks 

were given, and focused only on comparing the performance of the portfolio created by the 

various correlation matrices. Accordingly, in order for a more efficient portfolio observed by the 

group correlation matrix to have practical utility, the changes in portfolio performance in the 

future period must be evaluated according to the gradual improvement of the predictability of 

return and risk of stocks from the past period.  

 

  4.1 An Empirical Design for an Ex-ante Test 
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In order to achieve the research objective mentioned, we should select a means for predicting 

the return and risk of stocks. A number of methods have been introduced in finance for the 

prediction of a stock's return and risk with various levels of predictability. However, if we select 

one of the prediction models, the observed results will be influenced not only by the prediction 

method we select, but it will also be difficult to assess the changes in portfolio performance in 

accordance with gradual improvements in predictability. Accordingly, in order to appropriately 

consider the stated objective, we assume that if we utilize a accurate prediction model, there will 

be no difference between the return and risk predicted from a past period and the actual return 

and risk of a future period. Therefore, with the initial prediction value as the starting point, 

when predictability is improved gradually at a specified interval until it approaches the actual 

value of the future period, we can assess the changes in the portfolio performance observed in a 

more efficient portfolio by  in the previous section. 

  We now present a design for the gradual improvement of predictability, as follows. The first 

step involves calculating the difference between the actual and predicted return and risk of 

stocks within a portfolio. We selected simple average return  and risk 

(standard deviation) , as initial prediction values calculated from a 

past period, and the average return, , calculated in the future period is utilized as the actual 

value. Then, the difference between the two values  is calculated. Similarly for 

the risk, the standard deviation of the past period,  , and that of the future period, , are 

calculated, as well as their difference: . In the second step, a constant value is 

calculated for the improved predictability required to cause the initial prediction to gradually 

converge to the actual value. We divided the process of improving predictability into 10 

intervals. The difference,  consists of magnitude  and sign  [  if 

,  if ], and  is divided into ten intervals. Similarly for ,  is 
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also divided into 10 intervals. Therefore, the constant values for improving predictability are 

 and  for return and risk, respectively. In the third step, using the initial 

prediction value as the starting point, the constant value for improving predictability is 

accumulated in order to calculate the predicted value until it approaches the actual value. 

Accordingly, the prediction values of the improved predictability are  

( ), and we establish the simple average return as the initial prediction value, 

 ( ). The prediction value of risk  ( ) is 

also calculated in the same way, and the initial risk prediction value is  ( ). 

  Additively, we utilized the mean squared error (MSE) to quantify the degree of gradual 

improvement of predictability from the initial prediction value to the actual value. As the simple 

average return and risk were established as the initial prediction values of stocks in a past period, 

the degree of prediction errors for the actual value in the future period are 

 and . The prediction 

error calculated from the initial prediction value becomes the maximum prediction error---that 

is to say, the maximum return prediction error,  and the maximum risk 

prediction error, . We then calculated the degree of improvement of 

predictability, , as the average value of the degree of improvement of the return 

prediction error, , and the risk prediction error, . That is,  

  (5) 

where,   [ ] 

  [ ] 

 

in which the ranges of improvement of return and risk prediction errors are 

 and , respectively. Accordingly, the degree of 
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improvement of overall prediction error is also . For example, as  

corresponds to the starting point, , which indicates no improvement in 

predictability, and then predictability improves continuously up to , at which the perfect 

prediction  is reached, becoming identical with the actual data. We divided 

the process with which predictability improves from the initial value to the actual data into 10 

intervals, and  measured at each interval from Eq. 5 is shown in Fig. 8 with a bar graph, 

as well as in Table 3. 

  Next, we present the process for combining the correlation matrix and the predicted return 

and risk of the stocks in a portfolio from a past period in order to determine the portfolio return 

and risk of a future period. The investment weights of stocks in a portfolio, 

, , are calculated using , , and  

predicted in the past period, as the input data of Markowitz's model. 50 investment weights are 

calculated in accordance with the given target return. In order to calculate the portfolio return, 

 and risk, , the calculated investment weights are combined with the  and  

values of stocks in a portfolio from a future period as follows.  

  (6) 

  (7) 

 

We selected three comparative portfolio performances in order to evaluate the usefulness of 

portfolio performance derived from the group correlation matrix. The first is the portfolio 

performance of the future period drawn from the historical correlation matrix, , used in the 

conventional Markowitz's model. Using ,  and  predicted in the past period, the 

investment weight,  of the stocks in a portfolio is calculated, and 
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then the calculated investment weight is combined with the actual return and risk of the future 

period to generate the portfolio return and risk by  and 

, respectively. The second is the portfolio 

return,  and risk,  calculated by the equal-weighted average 

method using the actual data of the future period. The third comparison is the portfolio 

performance elicited from Markowitz's model using the actual data of the future period. Using 

,  and  in the future period, the  of stocks in a portfolio is 

calculated, and then the calculated investment weights are combined with  and ,   and 

the portfolio return and risk are  and                                             

, respectively.  

  Finally, we create the portfolio performance index as a measure of portfolio returns per unit 

of portfolio risks in an investment. This is because the four types of portfolios mentioned above 

feature different risks and returns, and thus it is difficult to compare risks and returns based 

merely on their magnitude. Accordingly, we utilized the portfolio performance index, 

. The index is quite similar to the Sharpe ratio (= , in which  is 

the risk-free rate [25]). The difference is whether the portfolio return, , or the portfolio 

excess return, , is utilized in the numerator. Thus, we conduct a comparison by 

calculating  for the four portfolio types. First,  is calculated using 

the portfolio return and risk drawn from , second,  is calculated 

using the portfolio return and risk from , third,  is calculated using the return 

and risk of the equal-weighted portfolio, and fourth,  is calculated using the 

portfolio return and risk from . The criteria of evaluation is that the higher the portfolio 

performance index, the higher the level of compensation of return for risk. That is, the higher 
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the , the more efficient is the portfolio. 

 

  4.2. Results from an Ex-ante Test 

 

According to the design mentioned above, the results conducted based on an ex ante test to 

determine whether a more efficient portfolio drawn from the group correlation matrix has 

practical utility are provided in Fig. 8 and Table 3. Fig. 8 provides the results for the entire 

period (estimating period 1990-2006/testing period 2007), and Table 3 indicates the results of 

the identical test process performed in three sub-periods (1990-1994/1995, 1996-2000/2001, 

2002-2006/2007) to obtain the robustness of the results in Fig. 8. 

  In Fig. 8, the X-axis represents comparisons C1-C2, and the 10 intervals of gradual 

improvements of predictability, S1-S10. Stated differently, C1 and C2 are the  from  

and the  from the equal-weighted average portfolio using the future period's actual data, 

respectively. Otherwise, S1-S10 indicate the 10 intervals with which predictability is improved 

gradually from the initial prediction value of the past period, S1, to the actual value, S10. In the 

figure, the yellow bar represents , which indicates the level of improvement in 

predictability compared to the initial prediction value. In addition, the portfolio performance 

index calculated from  is marked with red circles, ,  [and magenta 

hexagram, , ] and the portfolio performance index calculated from  is 

denoted by blue squares,  [and cyan diamond, ]. Since we calculated the portfolio 

return and risk for 50 target returns via Markowitz's model, 50 portfolio performance indices are 

calculated. We also confirmed, from the previous results of Section 3, that the degree of 

diversification for the portfolio stocks was higher in the first half, , than in the second 

half, . Accordingly, we categorized the portfolio performance index into the results 
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for the entire region, , and the first half, . In the figure, the average and standard 

deviation of each of the portfolio performance indices are represented by error-bar graphs. Fig. 

8(a) and Fig. 8(b) show the results obtained using Korean and US stock market data for the 

entire period, respectively. 

  The results of the ex ante test empirically show that a more efficient portfolio derived from 

 has a higher portfolio performance index than the three comparisons. These results also 

show that a more efficient portfolio from  has a high degree of practical utility for portfolio 

investment on the basis of Markowitz's model. The results for each comparative portfolio 

performance can be summarized as follows. 

  The first comparison is the portfolio performance index, , derived from the 

conventional Markowitz's model that utilizes . We verified that the average value of the 

portfolio performance index drawn from ,  (red circles) and  (magenta 

hexagram), is higher on average than the portfolio performance index derived from , 

 (blue squares) and  (cyan diamond), regardless of the degree of improvement 

in predictability  of the return/risk of stocks in a portfolio. In other words, the 

portfolio performance index of a future period for a more efficient portfolio drawn from  is 

always higher than that of the conventional Markowitz's model, regardless of the level of 

predictability of the return and risk of stocks in a past period. 

  The second comparison is the portfolio performance index, , derived from the risk and 

return of the portfolio calculated via the equal-weighted averages method using the actual data 

of stocks in a future period. According to our results, the portfolio performance index calculated 

via the equal weighted average method in the future period for the Korean [Fig. 8(a)] and US 

[Fig. 8(b)] stock markets were =0.067 and =-0.019, respectively. Otherwise, the 

portfolio performance index derived from  in a past period is =0.318 (t:21.44) and 
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=0.187 (t:8.92) at  of the initial prediction value  for the Korean 

stock market, which is greater than , and the US stock market data yielded =0.250 

(t:6.73) and =0.214 (t:10.10) at the second prediction value, , with a predictability 

improvement of  from the initial value---which was also greater than . 

These results revealed that the portfolio performance index derived from  is greater than 

that of the equal-weighted portfolio calculated using the actual stock returns and risks. That is to 

say, the reward-to-risk of the portfolio from  is higher than those of an equal-weighted 

portfolio. 

  The third comparison involved the portfolio performance index, , calculated from  in 

a future period. According to our results, the portfolio performance index derived from the 

actual data of a future period for the Korean stock market was =0.123 (t:9.31) and 

=0.150 (t:18.81). For the US stock market, it was =0.125 (t:13.04) and 

=0.148 (t:24.42). As confirmed previously, the portfolio performance indices,  for 

the Korean stock market and the  for the US stock market, derived from the past 

period's  are greater than , even if based on the initial prediction value. However, as in 

the conventional Markowitz's model, the portfolio performance index elicited from the  of 

the past period does not evidence a significant difference from . In other words, despite the 

low predictability of the return and risk of the stocks in a past period, the portfolio performance 

index derived from  is greater than that of future period's portfolios in the ex ante test, and 

is clearly superior to the portfolio performance achieved via the conventional Markowitz's 

model. 

  Finally, we conducted a comparison between the first half, , and the entire region, 

, for the performance indices of the portfolio derived from . With regard to the 
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observation made from the Korean stock market data, the portfolio performance indices for the 

entire region were , and those of the first half were 

. The portfolio performance of the first half was superior to that of the 

entire region. Similarly, in the US stock market, the portfolio performance of the first half 

 was higher than that of the entire region . 

However, the portfolio performance indices calculated from the  of the conventional 

Markowitz's model evidence results that contrast with what was observed from . In the case 

of the Korean stock market, the portfolio performance indices for the entire region were 

, which were greater than those of the first half . 

Additionally, for the US stock market, the portfolio performance indices for the entire region 

were , as compared with those of the first half 

. Accordingly, it can be noted from the observed results that the fact 

that the first half of the portfolio performance was higher than those of the entire region is a 

characteristic of a portfolio derived from . 

The above-mentioned findings are also confirmed in the results of an identical test conducted 

for the three sub-periods demonstrated in Table 3. Therefore, we robustly determined that the 

performance of a more efficient portfolio from the group correlation matrix is clearly superior to 

the portfolio performance of the conventional Marlowitz's model, even if it is combined with the 

stock returns and risks predicted ex ante in a past period. That is to say, the performance of a 

portfolio derived from the group correlation matrix has a higher level of compensation of return 

for risk than is observed from portfolios generated via other means. Based on these results, we 

surmise that our findings may contribute not only in terms of the academic aspects of the 

portfolio theory, but also in terms of the practical implications of efficient portfolio performance 

management. 
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5. Conclusions 

 

  The objective of the portfolio theory is to implement a methodology by which investors' 

portfolios can be optimized through diversification. Research efforts designed to generate more 

efficient portfolio selections have not only academic, but also practical, importance. The 

principal objective of this study was to provide empirical evidence as to whether a correlation 

matrix controlled via the RMT method might yield a more efficient portfolio, with a lower risk 

at a given return, as compared to the one created from the conventional Markowitz's model. 

Additionally, we intended to provide explanations regarding the existence of a more efficient 

portfolio on the basis of the empirical evidence. We also attempted to determine whether the 

observed more efficient portfolio has practical usefulness on the basis of the ex ante test of the 

return and risk predictability of stocks in a portfolio. We utilized stocks from Korea and the US 

stock market for various periods. The observed results can be summarized as follows. 

  First, we attempted to determine whether a portfolio from the correlation matrix generated via 

the RMT method is more efficient than the portfolios from Markowitz's portfolio theory in two 

perspectives—namely, that of the degree of efficiency and that of the degree of diversification. 

We robustly detected the existence of a more efficient portfolio with a lower risk than the 

portfolio generated by Markowitz's model from the viewpoint of efficiency. In particular, the 

portfolio created by the correlation matrix, which has the properties of the eigenvalues except 

for those of the largest eigenvalue among the eigenvalues deviating from the random matrix, 

proved more efficient than those generated from other correlation matrices via the RMT method. 

This correlation was designated as a group correlation matrix in this study. Furthermore, using 

the group correlation matrix, the RMT method is also an effective tool for improving the degree 

of diversification for investment weights among stocks in a portfolio, which has previously 
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presented a practical limitation to the application of the conventional Markowitz's portfolio 

theory. Namely, the distribution level of investment weights among stocks in a portfolio is 

generally quite good. 

  Next, we attempted to determine empirically why the portfolio generated from the group 

correlation matrix is more efficient than those from other correlation matrices. We discovered 

that the correlation matrix was directly affected by whether the property of the largest 

eigenvalue was reflected. That is, the other correlation matrices have the properties of the 

largest eigenvalue, but the group correlation matrix excluded the properties of the largest 

eigenvalue. Therefore, we noted that the properties of the largest eigenvalue cause an increase in 

the value of the correlation matrix, lowering the degree of diversification, and ultimately 

increasing the degree of portfolio risk. In previous studies, it has been relatively well established 

that the properties of the largest eigenvalue have the economic meaning of a market factor. 

Therefore, these results indicate that the correlation matrix without the property of the market 

factor has a lower correlation matrix value and a lower degree of risk, and thus yields a more 

efficient portfolio. 

  Finally, we attempted to verify whether a more efficient portfolio derived from the group 

correlation matrix has practical utility, based on the results of an ex ante test. In other words, we 

conducted an empirical observation of the variation in the performance of the portfolio derived 

from the group correlation matrix as the level of predictability of the expected return and the 

risk of stocks in a portfolio changed. We found that the performance index of the portfolio 

derived from the group correlation matrix was higher than that of the portfolio generated via the 

equal-weighted method using the actual return and risk of a future period. Moreover, by 

somewhat improving the predictability of the expected return and the expected risk of the past 

period, the performance index of the portfolio derived from the group correlation matrix was 

higher than that of the portfolio generated by Markowitz's model using actual data. Therefore, 
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we confirmed empirically that the group correlation matrix constructed by the RMT method has 

a high degree of utility for portfolio investment on the basis of Markowitz's model. 

  With regard to the research topic of portfolio selection, the ability to select a more efficient 

portfolio is not only an academic improvement of the portfolio theory, but also constitutes a 

practical improvement for effective asset allocation. These results imply that our research 

efforts have uncovered empirical evidence supporting the notion that the correlation matrix 

controlled via the RMT method has a high degree of utility in the development of investment 

strategies that apply the portfolio theory in practice, from both academic and practical 

viewpoints. In addition, our study results may be directly applicable to the real world, and the 

observations made in this study are expected to bring about applications and expansions of 

future studies of various portfolio types. 
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Fig. 1 (colour online): This figure indicates the results from the viewpoint of the degree of 

efficiency. Fig. 1(a) shows the results for the Korean stock market, and Fig. 1(b) for the US 

stock market. The X-axis denotes the portfolio risk, and the Y-axis indicates the portfolio 

returns. In the figure, black circles indicate the portfolio created from the actual correlation 

matrix, , cyan pentagrams as the historical correlation matrix, , blue circles as the 

filtered correlation matrix, , green triangles as the market correlation matrix, , and red 

squares as the group correlation matrix, . 
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               Sub-period 

Portfolio Risks 

Sub-period 1 

(99.1~95.12) 

Sub-period 2 

(96.1~01.12) 

Sub-period 3 

(02.1~07.12) 

Korean  

Stock  

Market 

Actual,  0.0097
*
 0.0162

*
 0.0225

*
 

Historical,  0.0110
*
 0.0188

*
 0.0215

*
 

Filtered,  0.0110
*
 0.0191

*
 0.0216

*
 

Market,  0.0107
*
 0.0187

*
 0.0215

*
 

Group,  0.0055
*
 0.0095

*
 0.0149

*
 

US 

Stock  

Market 

Actual,  0.0070
*
 0.0109

*
 0.0114

*
 

Historical,  0.0077
*
 0.0106

*
 0.0101

*
 

Filtered,  0.0078
*
 0.0107

*
 0.0102

*
 

Market,  0.0076
*
 0.0104

*
 0.0095

*
 

Group,  0.0059
*
 0.0071

*
 0.0060

*
 

Notes:* significant at the 1% level. 

 

Table 1: This table represents results of average values of portfolio risk, , to 

quantify the degree of efficiency for each sub-periods.  
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Fig. 2 (colour online): This figure denotes the results from the viewpoint of degree of 

diversification. In the figures, Fig. 2(a) & (b) are the results generated using the stocks of the 

Korean stock market, and Fig. 2(c) & (d) for the stocks in the US. The X-axis indicates the 50 

cases of portfolio, and the Y-axis presents  [Fig. 2(a) & (c)] and  [Fig. 2(b) & 

(d)]. The figure is categorized as black circles , cyan pentagrams , blue circles , 

green triangles  and red squares . 
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             Sub-period 

Correlation Matrix 

Sub-period 1 

(99.1~95.12) 

Sub-period 2 

(96.1~01.12) 

Sub-period 3 

(02.1~07.12) 

      

Korean  

Stock  

Market 

Actual,  0.1173
*
 11.63

*
 0.1187

*
 8.69

*
 0.2304

*
 7.07

*
 

Historical,  0.1778
*
 11.05

*
 0.2248

*
 7.81

*
 0.1926

*
 8.68

*
 

Filtered,  0.1803
*
 10.25

*
 0.2375

*
 7.92

*
 0.1972

*
 8.28

*
 

Market,  0.1572
*
 11.25

*
 0.2265

*
 7.91

*
 0.1875

*
 8.33

*
 

Group,  -0.0060
*
 31.79

*
 -0.0037

*
 36.04

*
 -0.0017

*
 31.59

*
 

The US  

Stock  

Market 

Actual,  0.015
*
 16.76

*
 0.095

*
 5.19

*
 0.368

*
 6.89

*
 

Historical,  0.065
*
 13.35

*
 0.122

*
 5.90

*
 0.241

*
 9.23

*
 

Filtered,  0.069
*
 13.64

*
 0.126

*
 5.61

*
 0.250

*
 9.09

*
 

Market,  0.056
*
 13.88

*
 0.111

*
 6.06

*
 0.198

*
 10.09

*
 

Group,  0.005
*
 71.43

*
 0.012

*
 41.84

*
 0.016

*
 52.01

*
 

Notes:* significant at the 1% level. 

 

Table 2: This table represents results of the average values of intra-portfolio correlation, 

,  and those of concentration coefficient, 

, for stock of each country using three sub-periods. 
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Fig. 3 (colour online): This figure shows the frequency of the stocks with non-zero investment 

weights, , in order to examine the degree of diversification of the stocks in a portfolio. 

Fig. 3(a) is results using the stocks of the Korean stock market, and Fig. 3(b) for the stocks in 

the US. The Y-axis represents the frequency ratio of the number of stocks having non-zero 

weight among the overall number of stocks in each 50 portfolios. The X-axis indicates the 

number of cases of stocks with non-zero weights,  among the 50 portfolios in Fig. 1, 

and accordingly, the range of the X-axis is . In the figures, the bar 

indicates the frequency ratio for the portfolios generated from the actual correlation matrix 

 of the future period, and the figure is categorized as black circles , cyan pentagrams 

, blue circles , green triangles , and red squares .  
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Fig. 4 (colour online): This figure represents the results of the diversification effects of the 

portfolio with an error bar graph using the average and standard deviations of 100 simulations. 

Fig. 4(a) shows the results of stocks of the Korean stock market, and Fig. 4(b) for the US 

stock market. The X-axis represents the  number of stocks within portfolio,  

range, in which   corresponds to an individual stock. Y-axis is the portfolio risks. 

The figure is divided into black circles of , cyan pentagrams of , blue circles of , 

green triangles of , and red squares of . 
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Fig. 5 (colour online): This figure shows the results from the probability distributions of five 

correlation matrices. Fig. 5(a) is the results of stocks of the Korean stock market and Fig. 5(b) 

for the US stock market. In Figs. 5(a) & (b), the yellow bar is the probability distribution of 

 in the future period, and the probability distributions of  in the past period are 

indicated with cyan pentagrams,  with blue circles,  with green triangles, and  

with red squares.  
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Fig. 6 (colour online): This figure represents the results from the properties of eigenvectors in 

the correlation matrix. In the figure, Fig. 6(a) & (c) show the eigenvector of the largest 

eigenvalue (red circles) and that of the second largest eigenvalue (black bar) for each stock 

using the Korean and US stock data, respectively. The X-axis is the stocks within a portfolio. 

In the box-plot of Figs. 6(b) & (d), there are eigenvalues that exceed the range of the random 

correlation matrices from stocks of the Korean stock market and the US, respectively. The 

X-axis differentiates the five types of eigenvalues.  



Effective Portfolio Optimization Based on Random Matrix Theory 

Eom et al.(2009) 

44 

 

 44 

 

Fig. 7 (colour online): This figure shows the results from time series reflecting the properties 

of each eigenvalue. The data used for Korea [Fig. 7(a) & (b)], and the US [Fig. 7(c) & (d)]. 

Fig. 7(a) & (b) display the probability distribution of the time series created for the 

eigenvalues that exceed the range of random correlation matrices. In the figure, the circles 

(black) are the time series that reflect the properties of , squares(colour) for ~ , 

triangles (colour) for ~ , diamonds (colour) for ~ , and pentagram (colour) for 

~  (Korea: ~ and the U.S.: ~ ). Fig. 7(b) & (d) display the volatility (standard 

deviation) calculated for the time series. The X-axis is the category of the time series in 

descending order of eigenvalue, and the Y-axis is the volatility of the time series. 
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Fig. 8 (colour online): This figure shows the results based on an ex ante test to determine 

whether a more efficient portfolio from the group correlation matrix has practical utility. In 

the X-axis, C1 and C2 on the X-axis are  from the actual correlation matrix and  

from the equal-weighted average portfolio using the future period's actual data, respectively, 

and S1-S10 are the 10 intervals of gradual improvements of predictability. In the figure, the 

yellow bar represents . In addition, the portfolio performance index calculated from 

the group correlation matrix is indicated with red circles,  [and magenta hexagram, 

] and those from the historical correlation matrix with blue squares,  [and cyan 

diamond, ]. In the figure, the average and standard deviation of each portfolio 

performance index are represented with error-bar graphs. Fig. 8(a) and Fig. 8(b) are the 

results obtained using the Korean and US stock market data for the entire period, respectively. 
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Sub-Period 1 Sub-Period 2 Sub-Period 3 

GROUP 

:  

HIST 

:  

GROUP 

:  

HIST 

:  

GROUP 

:   

HIST 

:   

 25P 50P 25P 50P 25P 50P 25P 50P 25P 50P 25P 50P 

# using Data of Korean Stock Market 

1 0% 0.32 0.18 0.07 0.04 0.31 0.19 0.06 0.04 0.29 0.17 0.02 0.01 

2 21% 0.46 0.37 0.11 0.12 0.45 0.35 0.09 0.11 0.42 0.33 0.06 0.09 

3 40% 0.51 0.44 0.11 0.15 0.50 0.43 0.11 0.14 0.48 0.42 0.08 0.13 

4 56% 0.53 0.41 0.13 0.16 0.51 0.40 0.12 0.15 0.50 0.40 0.10 0.14 

5 69% 0.54 0.40 0.13 0.16 0.52 0.40 0.13 0.15 0.51 0.39 0.12 0.15 

6 80% 0.54 0.40 0.13 0.16 0.52 0.39 0.13 0.16 0.51 0.39 0.12 0.15 

7 89% 0.54 0.40 0.13 0.16 0.52 0.39 0.13 0.16 0.51 0.38 0.13 0.16 

8 95% 0.54 0.40 0.13 0.16 0.52 0.39 0.13 0.16 0.51 0.38 0.13 0.16 

9 99% 0.54 0.40 0.13 0.16 0.52 0.38 0.13 0.16 0.51 0.38 0.13 0.16 

10 100% 0.54 0.39 0.13 0.15 0.52 0.38 0.13 0.16 0.51 0.38 0.13 0.16 

ACTUAL 

:  

25P 0.16 25P 0.17 25P 0.12 

50P 0.17 50P 0.18 50P 0.15 

EQUAL 

:  
0.07 0.07 0.07 

# using Data of the US Stock Market 

1 0% -.15 -.10 -.07 -.04 -.15 -.10 -.04 -.03 -.13 -.09 -.03 -.02 

2 21% 0.29 0.23 0.07 0.09 0.24 0.21 0.06 0.09 0.22 0.20 0.07 0.08 

3 40% 0.40 0.34 0.11 0.16 0.34 0.31 0.11 0.15 0.34 0.30 0.12 0.15 

4 56% 0.44 0.37 0.14 0.18 0.38 0.34 0.14 0.17 0.39 0.33 0.14 0.16 

5 69% 0.46 0.39 0.15 0.19 0.40 0.35 0.15 0.18 0.41 0.35 0.14 0.17 

6 80% 0.48 0.40 0.16 0.20 0.52 0.36 0.17 0.19 0.43 0.36 0.15 0.17 

7 89% 0.49 0.41 0.16 0.20 0.43 0.37 0.17 0.20 0.44 0.37 0.16 0.17 

8 95% 0.50 0.42 0.17 0.21 0.45 0.38 0.18 0.20 0.45 0.38 0.16 0.18 

9 99% 0.51 0.43 0.18 0.21 0.46 0.39 0.18 0.20 0.46 0.39 0.16 0.18 

10 100% 0.52 0.43 0.18 0.22 0.46 0.40 0.18 0.20 0.47 0.39 0.16 0.18 

ACTUAL 

:   

25P 0.23 25P 0.19 25P 0.12 

50P 0.25 50P 0.21 50P 0.15 

EQUAL 

:   
-0.04 -0.02 -0.02 

 Notes:* significant at the 1% level. 

Table 3 : This table represents the results from four types–the , from the group correlation, 

, from the historical correlation,  from the actual correlation, and  from the 

equal weighted portfolio for the stock of each country, using three sub-periods. , 

 indicates the level of improvement in predictability as compared to the initial 

prediction value. 


