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Abstract

In this paper, we propose a new hazard model for default prediction. In
the model, macroeconomic exposures are formed to be linear functions of
observable firm characteristics. With this feature, the model allows not only
time-varying but also firm-specific exposures on macroeconomic risk factors.
Empirical tests are performed in Korean market using the default data from
1993 to 2005. Our model outperforms alternative models with regard to the
power of forecasting default of firms. We also find that IT, health care and
consumer companies are more exposed to changes in USD/KRW exchange
rate volatility. Also, high credit quality firms are found to be more sensitive
to macroeconomic effects, which is consistent with previous researches.

Keywords : hazard model; macroeconomic exposure; default prediction; credit
risk

JEL classification: G17, G11



1 Introduction

It is reasonable to expect that the individual firm’s default likelihood re-
sponds differently on various macroeconomic effects. For example, the finan-
cial healthiness of firms like Toyota Motors, whose businesses depend heavily
on exports, are more affected by the foreign exchange rate movement than
the others, and thus those firms can be more vulnerable to currency risk.

In a linear factor model, the individual sensitivity to macroeconomic ef-
fects means that the beta coefficients of the common factors are firm-specific.
However, we cannot simply allow the beta coefficient to be firm-specific due
to the cross-sectional nature of the survival data. Default is a rare event and
it is usually not repeated for a company. Thus, even if we have multi-period
information of a firm’s survival status, it is not enough to conduct a time
series analysis to obtain individual sensitivities. So the models for estimating
default likelihood introduced so far do not provide firm-specific sensitivities
on macroeconomic effects.

We use the hazard model to estimate default probability. Shumway (2001)
argues that the single-period models such as static logit models are incon-
sistent because those models fail to consider each firm’s period at risk. On
the other hand, hazard models are shown to be consistent because they are
basically multi-period and consider the whole life of a firm. Also, hazard
models can easily incorporate dynamic nature of firms’ credit healthiness by
allowing time-varying explanatory variables.

The importance of macroeconomic factors on default probability has been
explored in many researches (Duffie et al., 2007; Bonfim, 2009). Unfortu-
nately, the hazard models applied in credit risk so far do not capture firm-
specific sensitivities to macroeconomic or other common factors because the
coefficients of the explanatory variables are restricted to be common to all
firms; see Shumway (2001), Chava and Jarrow (2004) and Duffie et al. (2007).

One way to obtain firm-specific sensitivities on common factors is to use
time-series of credit spread data as in Duffee (1999) and Driessen (2005).
However, this requires a well-developed and highly liquid credit market,
which is not the case for many countries. Thus, we still need to look at
default data directly to cover a broad range of firms and markets.

In this paper, we extend the existing hazard models to incorporate firm-
specific exposures on common macroeconomic factors. In our hazard model
specification, individual firm characteristics form the beta coefficients or,
more specifically, the factor loadings. By allowing the factor loadings be
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linear functions of firm characteristics, the parameters can be identified. This
is based on the assumption that the firm-specific factor loadings are explained
by firm characteristics, which is in line with the classical multi-factor model
by Rosenberg (1974). This assumption is partially justified by the long list of
researches on the determinants of beta; see Hamada (1972), Rosenberg and
McKibben (1973), Turbull (1977) and Ryan (1997) among many others.

The model is tested with Korean default data from 1993 to 2005 both
in-sample and out-of-sample. Our model is shown to capture firm-specific
macroeconomic exposures well. Also, it outperforms previous hazard models
with regard to forecast accuracy. The proposed model allows us to investigate
which firms are more exposed to macroeconomic shocks. We find that IT,
health care and consumer companies are more vulnerable to foreign exchange
rate volatility (FXV) changes. Also, high credit quality firms are found to be
more sensitive to FXV. Of course, this empirical result is specific to Korean
firms.

The factor loadings in our model are not only individual but also time-
varying since the factor loadings are functions of firm-specific characteristics
which is time-varying. This structure allows dynamic default correlations,
and this is a topic of subsequent research in Kang, Kim and Lee (2009).

The rest of the paper is organized as follows. In section 2, we briefly
introduce hazard models. Section 3 develops a new hazard model that allows
firm-specific macro exposures. Section 4 describes the data and presents the
empirical results. Section 5 concludes.

2 Hazard Model

In this section, we briefly review the hazard models in survival analysis; see
the monographs by Cox and Oakes (1984) for details.

The default time of a firm is represented by a non-negative random
variable τ . We assume that τ is a continuous random variable with a
probability density function f (t) and a cumulative distribution function
F (t) = Pr [τ ≤ t]. The probability that the firm survives until t is given
by the survival function

S (t) = Pr [τ > t] = 1− F (t) =

∫ ∞
t

f (s) ds. (1)
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The hazard rate is defined as

λ (t) = lim
dt→0

Pr [t < τ ≤ t+ dt | τ > t]

dt
. (2)

For a small dt, the λ (t) dt can approximate the conditional probability that
the default event occurs in the interval (t, t+ dt) given that it has not oc-
curred before. From this, we can interpret the hazard rate as an instanta-
neous rate of default. Using the definition of the conditional probability, we
have

λ (t) =
limdt→0 Pr [t < τ ≤ t+ dt] /dt

Pr [τ > t]
=
f (t)

S (t)
,

which is often used as an alternative definition of the hazard rate.
If we note that −f (t) is the derivative of S (t), the hazard rate can be

written as

λ (t) = − d

dt
lnS (t) . (3)

From this and a boundary condition, S (0) = 1, we can obtain a formula

S (t) = exp

{
−
∫ t

0

λ (s) ds

}
. (4)

So the hazard rate and the survival probability have effectively the same
information.

In practice, it is convenient to directly model the hazard function. The
most frequently used is the proportional hazard model by Cox (1972). It
assumes the following form for the hazard rate at time t for an individual
firm i with covariate xi:

λi (t | xi) = λ0 (t) exp
{
β

′
xi

}
, (5)

where β and xi are vectors with the same dimension. For a hypothetical firm
with xi = 0, the hazard rate is λ0 (t), which is called the baseline hazard
rate. Then exp

{
β

′
xi

}
gives the relative risk associated with the individual

characteristics xi. The covariates can be time-varying so that the hazard rate
can change over time.

Survival data has censoring features. There are several cases. First,
firms can survive until the end of the observation period. Second, firms can
exit from the data set due to merge or reasons other than default event
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even during the observation period. Lastly, we have firms that experienced
default event. The firms in the first two cases are said to be censored (right
censoring). Also note that firms can newly enter the market during the
observation period. All the firms, except those newly enter the market, are
also censored because the business starting dates of those firms are not known
(left censoring).

The likelihood function considers the censoring mechanism. Assume we
observe firms i = 1, 2, · · · , nj at discrete time tj where j = 1, 2, · · · , T , and
default occurs only at tj’s. If a firm defaulted at tj, its contribution to the
likelihood at that time is the density of the default time, which is the product
of the hazard rate and the survival function, f (tj) = λ (tj)S (tj). If a firm
is alive at tj, the likelihood of this event is simply S (tj). So the likelihood
at tj for firms i = 1, 2, · · · , nj is

Lj =

nj∏
i=1

λ (tj | xi (tj))
Di(tj) S (tj | xi (tj)) (6)

where Di (tj) is either 1 if firm i defaulted at tj or 0 otherwise. The total
likelihood function is then

L =
T∏

j=1

nj∏
i=1

λ (tj | xi (tj))
Di(tj) S (tj | xi (tj)) , (7)

and the log-likelihood function is

lnL =
T∑

j=1

nj∑
i=1

[Di (tj) lnλ (tj | xi (tj)) + lnS (tj | xi (tj))] (8)

Note that the number of firms in each period nj can change over time due
to new entries or exits of firms.

3 Incorporating Macroeconomic Effects

Let us look at the proportional hazard function for firm i with time-varying
covariates:

λi (t | xi (t)) = λ0 (t) exp
{
β

′
xi (t)

}
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If we directly take common factors as covariates, the sensitivities to the
movement of common factors, that is the beta coefficients, are equal across
firms cross-sectionally. In usual multi-factor asset pricing models, the beta
coefficients can be easily estimated from time-series regressions so that we can
obtain firm-specific beta estimates. However, we cannot obtain individual
beta estimates from default data because default is basically a zero/one event
that is rare for a firm.

We now turn our attention to the beta coefficients. If we notice that
the beta coefficients (β) are common to all firms and the covariates (xi) are
firm-specific, we can think differently to interpret β as common factors and
the firm-specific xi as factor loadings. Considering individual firm character-
istics as factor loadings is in line with the multi-factor asset pricing model
by Rosenberg (1974), which is based on the assumption that the factor load-
ings in multi-factor models are linear functions of firm characteristics. This
assumption is partially justified by the researches on the determinants of
systematic risk (beta) in equity markets; see Hamada (1972), Rosenberg and
McKibben (1973), Turnbull (1977) and Ryan (1997) for example. However,
these are all based on the classical capital asset pricing model (CAPM).
Thus, a full justification should be done on a multi-factor framework and
this requires a further research.

More specifically, we suppose a linear factor structure for the beta coef-
ficients, which are time-varying. Let

xi (t) =

 xi1 (t)
...

xiL (t)

 , β (t) =

 β1 (t)
...

βL (t)

 . (9)

The beta coefficients are assumed to have linear factor structures

βk (t) = bk0 +
M∑

j=1

bkjFj (t) (10)

where bij’s are constants and Fj’s are common factors. Then, we can see
that the factor loadings for common factors are linear transformations of
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individual firm characteristics:

β (t)
′
xi (t) =

L∑
k=1

βk (t)xik (t) (11)

=
L∑

k=1

(
bk0 +

M∑
j=1

bkjFj (t)

)
xik (t)

=
L∑

k=1

bk0xik (t) +
M∑

j=1

(
L∑

k=1

bkjxik (t)

)
Fj (t)

In another form, we can write

β (t)
′
xi (t) =

L∑
k=1

bk0xik (t) +
L∑

k=1

M∑
j=1

bkjxik (t)Fj (t) (12)

= b
′
yi (t)

where

yi (t) =


xi (t)

xi (t)F1 (t)
...

xi (t)FM (t)

 , b =


b10

b20
...

bLM

 (13)

The hazard model becomes the Cox’s proportional hazard model with new
covariates yi (t):

λi (t | yi (t)) = λ0 (t) exp
{
b

′
yi (t)

}
. (14)

So we can utilize the same estimation method for the linear multi-factor
hazard model.

If we also put a multi-factor structure into the baseline hazard rate, we
can have constant terms for each of the factor loadings. More specifically, if
we let

λ0 (t) = exp

{
a0 +

M∑
j=1

ajFj (t)

}
, (15)
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then

λ0 (t) exp
{
β (t)

′
xi (t)

}
(16)

= exp

{
a0 +

M∑
j=1

ajFj (t) +
L∑

k=1

bk0xik (t) +
M∑

j=1

(
L∑

k=1

bkjxik (t)

)
Fj (t)

}

= exp

{
a0 +

L∑
k=1

bk0xik (t) +
M∑

j=1

[
aj +

(
L∑

k=1

bkjxik (t)

)]
Fj (t)

}

This is the model we consider in this paper.

4 Empirical Analysis

4.1 Data

We investigate Korean market for our empirical tests. Data is obtained from
NICE D&B and NICE Investors Service. The sample space includes all the
firms that have ever listed in KSE (Korea Stock Exchange) and KOSDAQ
(Korean Securities Dealers Automated Quotations) from 1993 to 2005. Fi-
nancial companies are excluded in the analysis. The default event is defined
broadly to include bankruptcy filings, workouts, pre-packs and failure to
payments.

Table 1 reports the number of non-defaulted and defaulted firms in our
data. Each year, the default status of each firm is recorded as either 1
if defaulted or 0 if survived. For example, survived firms show only zeros
before they are censored. On the other hand, defaulted firms show zeros
before the default year when the status is recorded as one.

[Table 1]

For the macroeconomic variable, we use KRW/USD foreign exchange rate
volatility (FXV) using monthly rate. Firm-specific explanatory variables for
hazard rates are summarized in Table 2. Due to limited observations in
Korea, we only consider one-factor model. Though not reported in the paper,
we also investigated other macroeconomic variables such as GDP growth rate
and KOSPI index returns, but these variables do not provide any advantage
over FXV for explaining default likelihood in Korea. Nam et al. (2008) also
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use FXV as a macroeconomic variable to explain default likelihood of Korean
firms.

[Table 2]

To reduce the influence of extreme values, we replace all observations
above the 99th percentile of each variable with the 99th percentile value. The
observations below the first percentile of each variable are also truncated in
the same way.

4.2 Model Specification

We investigate three hazard models. We first consider the hazard model with
only firm-specific explanatory variables (Model I):

λi (t | xi (t) , F (t)) = exp

{
a0 +

L∑
k=1

bk0xk (t)

}

The second model (Model II) takes a macroeconomic factor (FXV) as an
another explanatory variable in addition to the firm-specific variables:

λi (t | xi (t) , F (t)) = exp

{
a0 + a1F (t) +

L∑
k=1

bk0xk (t)

}

Finally, the last model (Model III) has product terms of the macroeconomic
factor and the firm-specific variables so that each firm can show individual
sensitivity to the common factor:

λi (t | xi (t) , F (t))

= exp

{
a0 +

L∑
k=1

bk0xk (t) +

(
a1 +

L∑
k=1

bk1xik (t)

)
F (t)

}

= exp

{
a0 +

L∑
k=1

bk0xk (t) + a1F (t) +
L∑

k=1

bk1xik (t)F (t)

}

In this setup, the coefficient of the macroeconomic factor is a linear function
of the firm-specific covariates.
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4.3 Estimation

For estimation, we use discrete time hazard rates following Allison (1995),
Shumway (2001) and Chava and Jarrow (2004). We divide our sample into
two sub-samples. The parameters are estimated with the data from 1993 to
2000. Then the estimated parameter is used for out-of-sample test from 2001
to 2005. For the out-of-sample test, we use the previous year’s variables to
predict the default likelihood of firms. For example, for the default events in
2002, we use variables observed in 2001.

[Table 3]

Table 3 presents the estimation result. The numbers are the coefficient es-
timates of explanatory variables, and the corresponding chi-square statistics
(χ2) are in the parentheses.

Model I is the simple hazard model that uses only firm-specific market and
accounting characteristics as explanatory variables. In this model, a firm’s
default probability is explained by TEGR, FCTD, CDTA, OCFTA, STA,
SIGMA and METL. The result shows that SIGMA is significant at 10%
level, and the others are significant at 5% and 1% levels. TEGR, OCFTA,
STA and METL are shown to be negatively related to default probability,
whereas FCTD, CDTA and SIGMA show positive relationship. This result
is consistent with our intuition.

Model II is the hazard model with common macroeconomic exposure
that has FX volatility (FXV) as an additional common explanatory vari-
able. Here, we exclude SIGMA because it becomes insignificant after FXV
is added. As expected, FXV is significant at 5% level.

Model III, which is the main focus of this paper, is the hazard model with
firm-specific macroeconomic exposures, which has cross-product terms be-
tween macroeconomic factor (FXV) and firm-specific variables. The selected
firm-specific variables (FCTD, OCFTA, STA and METL) are assumed to ex-
plain individual macroeconomic exposures. All the cross-product terms are
statistically significant supporting this assumption. OCFTA and STA are ex-
cluded from the single terms as they become insignificant. This implies that
these variables have explanatory power only as parts of macro exposures.
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4.4 Forecast Accuracy

We now compare the out-of-sample forecast accuracy of the hazard models
under consideration.

[Table 4]

Table 4 presents the out-of-sample forecast accuracy of the hazard mod-
els. During the test years (2001-2005), the default probabilities are calcu-
lated each year using the parameter estimates from 1993 to 2000. Following
Shumway (2001), the firms are grouped into deciles sorted by their fore-
casted default probabilities in descending order. The number of defaults in
each decile in each year is then aggregated over the test years. We also repeat
the same procedure with default probability quintiles.

We can see that the most accurate model is the hazard model with firm-
specific macroeconomic exposures (Model III). Model III classifies 72.5% of
defaults in the highest default probability decile (Decile 1) while Model I
and II classify 67.5% and 62.5% in the first deciles, respectively. Quintile
classification confirms that Model III significantly outperforms other models.
From Model III, 87.5% of defaults are classified in the first quintile whereas
Model I and II classify 75% and 72.5% of defaults in the same quintile.

We also calculate AUROC (area under receiver operating characteristic
curve), a widely used forecast accuracy measure in categorical data analysis,
to compare the performance of the hazard models. A value of 0.5 means
the model has no predictive power, and the predictive power increases as
AUROC becomes closer to 1; see Argesti (2007, pp.143-144) for details.

[Table 5]

Table 5 presents a summary of AUROC for each model, measured yearly
from 2001 to 2005. Again, Model III shows the best performance. The mean
AUROC of Model III is 0.8887 while that of Model I and II are 0.8332 and
0.8164, respectively. Also, Model III provides the most stable forecast accu-
racy during the whole test years; see the standard deviation and minimum
reported in the table.

4.5 Firm-specific Macroeconomic Exposures

The purpose of this research is to examine firm-specific exposures on macroe-
conomic risks. In our model (Model III), the macroeconomic exposure is a
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linear function of firm characteristics including a constant. So the estimated
exposure is

âj +
L∑

k=1

b̂kjxik (t)

where âj and b̂kj are estimates.

[Figure 2]

The model allows not only individual but also time-varying macroeco-
nomic exposures via the time-varying firm characteristics x(t). Figure 2
shows how the average exposures on macroeconomic risk change over time.
It is constructed based on yearly average of macroeconomic exposure esti-
mates of all firms in the sample. It seems that there is a structural change
through the Asian financial crisis period (1998-1999). This is due to the
changes in firm characteristics in Korea after the crisis.

[Figure 3]

Since our model provides firm-specific exposures, it is easy to investigate
the risk exposures by industry. Figure 3 shows the changes of industry aver-
age macroeconomic exposures. We can see that IT, health care and consumer
industries are more exposed to macroeconomic shock (FXV), and they also
experienced larger structural changes through the Asian financial crisis. This
can be verified if we look at Table 6, which reports the industry average FXV
exposures over two sub-periods (1993-1998 and 1999-2005). We can see that
all industries, except utilities, become more exposed to FXV after the crisis,
and the change is larger for IT, health care and consumer industries.

[Table 6]

[Figure 4]

Figure 4 shows how the macro exposures differ by default probability. We
divide firms by half based on default probabilities estimated from our model
(Model III). Low default probability firms are those with high credit quality.
In the figure, we can see that the low default probability firms are more
exposed to macroeconomic effect (FXV) than the high default probability
firms.
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5 Conclusion

In this paper, we present a new hazard model for predicting default. The
model allows firm-specific and time-varying exposures on macroeconomic risk
factors as macroeconomic exposures are formed to be linear functions of ob-
servable firm characteristics. We test the model with Korean default data
from 1993 to 2005 both in-sample and out-of-sample. It is shown that our
model captures individual macroeconomic exposures well, and it outperforms
alternative models with regard to the power of forecasting default of firms.
With the proposed model, we can now investigate which firms are more ex-
posed to macroeconomic shocks. We find that IT, health care and consumer
companies are more vulnerable to changes in macroeconomic environment.
Also, high credit quality firms are found to be more sensitive to macroeco-
nomic effects.

Due to the limited default observations in our data, we have explored only
one-factor hazard model in this paper. Empirical investigation of multiple
factor models would be subject to rich historical default data.

With firm-specific exposures on macro factors, we can measure default
correlation more accurately. In a companion paper, Kang, Kim and Lee
(2009), we show that our model produces higher default correlation than pre-
vious hazard models. This is due to more realistic specification of common
variables as expected in Yu (2005). Since our model provides firm-specific
and time-varying coefficients, it is possible to measure firm-level default cor-
relation. Also, conditional on firm characteristics, default correlation can
change dynamically over time with macro variables. Thus, the default cor-
relation measure from our hazard model can be a good alternative to the
measures from the cohort methods (Lucas, 1995) or the copula methods (Li,
2000).
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Figure 1. Foreign exchange rate volatility (FXV) and annual default frequency. 
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 Table 1. Number of firms 

1993-2000 2001-2005 Total
Non-defaulted 1,553       1,599       1,712       
Defaulted 108          46            154           
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Table 2. Description of explanatory variables. 

 

Variable Definition 
Expected 

Sign 
Mean Median Std. Dev Min Max 

TEGR total equity growth rate - 0.4722 0.1198 1.4382 -1.4368  10.6476 

FCTD financial costs to total debt + 0.0513 0.0489 0.0334 0.0  0.1393 

CDTA current debt to total assets + 0.3818 0.3693 0.1898 0.0342  0.9765 

STA asset turnover ratio(sales to 
total assets) 

- 1.1619 1.0178 0.6937 0.0883  4.2228 

OCFTA operating cash flow to total 
assets 

- 0.028 0.0022 0.1102 -0.4097  0.3341 

SIGMA volatility of monthly stock 
returns 

+ 0.0363 0.0331 0.0184 0.0014  0.0906 

METL market equity to total 
liabilities 

- 1.8561 0.6823 3.6569 0.024  24.9423 

FXV volatility of foreign exchange 
rate 

+ 43.7244 25.68 43.8186 6.22  164.07 

Notes: The third column shows the expected sign of the coefficient of each explanatory variable. 
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Table 3. Estimation results. 

Intercept -5.6298 *** (81.72) -5.3265 *** (83.6) -7.3889 *** (69.91)

TEGR -0.3732 ** (4.6) -0.3318 * (3.76) -0.3947 ** (4.97)

FCTD 21.2610 *** (26.14) 20.3074 *** (24.14) 39.2093 *** (25.95)

CDTA 2.3905 *** (14.06) 2.371 *** (13.44) 2.1412 *** (11.16)

OCFTA -3.1603 ** (6.53) -2.7823 ** (4.94)

STA -1.0686 *** (11.14) -1.2134 *** (13.65)

SIGMA 10.8412 * (3.56)

METL -1.4607 *** (11.32) -1.4156 *** (10.64) -3.5592 *** (16.19)

FXV 0.0041 ** (5.63) 0.0220 *** (9.19)

FCTD*FXV -0.1902 *** (8.2)

OCFTA*FXV -0.0284 *** (9.48)

STA*FXV -0.0069 ** (6.48)

METL*FXV 0.0203 *** (10.33)

Model Fit 204.9 *** 214.03 *** 222.72 ***

Model I Model II Model III

 
 
Model I is the simple hazard model, Model II is the hazard model with common macroeconomic exposure, 
and Model III is the hazard model with firm-specific macroeconomic exposures. USD/KRW exchange 
rate volatility is used as a proxy of macroeconomic risk factor in Korea. The estimation is conducted 
using data from 1993 to 2000. The data set consists of all the firms that have ever listed in both KOSPI 
and KOSDAQ, excluding non-financial companies. Parameter estimates are given with chi-square 
statistics in parentheses. ***, **, and * denote statistical significance at 1%, 5%, and 10% levels, 
respectively. TEGR = total equity growth rate; FCTD = financial costs to total debt; CDTA = current debt 
to total assets; OCFTA = operating cash flow to total assets; STA = asset turnover ratio (sales to total 
assets); SIGMA = volatility of monthly stock returns; METL = market equity to total liabilities; FXV = 
volatility of USD/KRW foreign exchange rate; FCTD*FXV, OCFTA*FXV, STA*FXV, and METL*FXV 
are cross-product terms between FXV and each firm variable. The chi-square statistics of likelihood ratio 
test for the model fit are reported in the last row. 



 19

Table 4. Comparison of accuracy. 

Decile Model I Model II Model III
1 67.50 62.50 72.50
2 7.50 10.00 15.00
3 5.00 7.50 0.00
4 5.00 2.50 0.00
5 5.00 7.50 0.00
6 2.50 2.50 5.00
7 5.00 5.00 0.00
8 0.00 0.00 2.50
9 2.50 2.50 5.00

10 0.00 0.00 0.00

Quintile Model I Model II Model III
1 75.00 72.50 87.50
2 10.00 10.00 0.00
3 7.50 10.00 5.00
4 5.00 5.00 2.50
5 2.50 2.50 5.00  

Model I is the simple hazard model, Model II is the hazard model with common macroeconomic exposure, 
and Model III is the hazard model with firm-specific macroeconomic exposures. USD/KRW exchange 
rate volatility is used as a proxy of macroeconomic risk factor in Korea. The estimation is conducted 
using data from 1993 to 2000. The data set consists of all the firms that have ever listed in both KOSPI 
and KOSDAQ, excluding non-financial companies. The numbers represent the percentage of defaulted 
firms classified into each of the deciles in the year when they failed. 
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Table 5. Area Under the ROC curve.(AUROC) 
Model Mean Median Std. Dev Min Max
Model I 0.8332 0.8793 0.0990 0.6922 0.9171
Model II 0.8164 0.8675 0.0980 0.6745 0.9061
Model III 0.8887 0.8874 0.0512 0.8230 0.9601  
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Figure 2. FXV exposure changes over time, where the exposures are averaged across all firms cross-

sectionally. 
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Figure 3. FXV exposure changes by industry. 
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Table 6. Average FXV exposures by industry and sub-period. 

Industry 1993-1998 1999-2005
Energy 0.0200 0.0455
Materials 0.0141 0.0260
Industrials 0.0128 0.0353
Consumer 0.0109 0.0437
Health Care 0.0187 0.0818
Information Technology 0.0269 0.0898
Utilities 0.0267 0.0159  
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Figure 4. FXV exposure changes by high and low default probability groups. 
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Appendix. Summary statistics of FXV exposures by industry and year. 

Industry Year Mean Std. Dev Min Q1 Median Q3 Max

1993 0.0328 0.0282 0.0104 0.0104 0.0235 0.0645 0.0645
1994 0.0675 0.0860 0.0087 0.0087 0.0277 0.1662 0.1662
1995 0.0283 0.0304 0.0047 0.0047 0.0176 0.0626 0.0626
1996 0.0192 0.0189 0.0015 0.0027 0.0141 0.0391 0.0496
1997 0.0060 0.0112 -0.0086 0.0006 0.0058 0.0075 0.0282
1998 0.0054 0.0133 -0.0122 -0.0044 0.0037 0.0114 0.0301
1999 0.0285 0.0609 -0.0015 0.0018 0.0037 0.0140 0.1661
2000 0.0222 0.0215 0.0036 0.0085 0.0203 0.0243 0.0677
2001 0.0486 0.0537 0.0044 0.0073 0.0281 0.1121 0.1378
2002 0.0382 0.0417 0.0101 0.0128 0.0170 0.0756 0.1172
2003 0.0493 0.0669 0.0070 0.0137 0.0201 0.0716 0.1930
2004 0.0380 0.0379 0.0022 0.0151 0.0241 0.0482 0.1167
2005 0.0936 0.1764 0.0023 0.0202 0.0213 0.0529 0.4918
1993 0.0187 0.0204 -0.0046 0.0074 0.0135 0.0212 0.1358
1994 0.0242 0.0257 -0.0041 0.0103 0.0173 0.0289 0.1987
1995 0.0151 0.0146 -0.0070 0.0049 0.0123 0.0193 0.0811
1996 0.0151 0.0201 -0.0106 0.0040 0.0098 0.0205 0.1592
1997 0.0089 0.0136 -0.0177 0.0017 0.0064 0.0133 0.1026
1998 0.0076 0.0161 -0.0202 -0.0027 0.0043 0.0118 0.0993
1999 0.0195 0.0299 -0.0130 0.0040 0.0107 0.0249 0.2130
2000 0.0179 0.0218 -0.0082 0.0044 0.0121 0.0224 0.1457
2001 0.0270 0.0364 -0.0045 0.0083 0.0176 0.0324 0.3161
2002 0.0229 0.0219 -0.0104 0.0092 0.0180 0.0297 0.1649
2003 0.0291 0.0308 -0.0109 0.0108 0.0195 0.0338 0.2069
2004 0.0299 0.0418 -0.0060 0.0109 0.0180 0.0340 0.5133
2005 0.0333 0.0434 -0.0032 0.0139 0.0212 0.0384 0.5211
1993 0.0168 0.0189 -0.0155 0.0059 0.0115 0.0237 0.1209
1994 0.0184 0.0181 -0.0202 0.0066 0.0138 0.0268 0.0937
1995 0.0113 0.0130 -0.0240 0.0041 0.0088 0.0175 0.0528
1996 0.0126 0.0217 -0.0277 0.0036 0.0068 0.0159 0.2018
1997 0.0101 0.0288 -0.0267 0.0012 0.0055 0.0126 0.3336
1998 0.0101 0.0285 -0.0351 -0.0007 0.0056 0.0122 0.2476
1999 0.0274 0.0507 -0.0285 0.0055 0.0134 0.0292 0.3400
2000 0.0276 0.0572 -0.0328 0.0052 0.0138 0.0287 0.5223
2001 0.0398 0.0589 -0.0320 0.0092 0.0221 0.0452 0.3511
2002 0.0317 0.0428 -0.0192 0.0102 0.0176 0.0395 0.3510
2003 0.0393 0.0567 -0.0094 0.0119 0.0208 0.0429 0.3747
2004 0.0386 0.0582 -0.0176 0.0127 0.0197 0.0404 0.4781
2005 0.0391 0.0419 -0.0221 0.0158 0.0237 0.0432 0.3103
1993 0.0149 0.0167 -0.0112 0.0042 0.0101 0.0215 0.0900
1994 0.0176 0.0166 -0.0115 0.0073 0.0136 0.0219 0.0844
1995 0.0112 0.0120 -0.0131 0.0038 0.0081 0.0156 0.0692
1996 0.0109 0.0122 -0.0117 0.0036 0.0080 0.0158 0.0766
1997 0.0081 0.0123 -0.0165 0.0007 0.0051 0.0123 0.0758
1998 0.0066 0.0176 -0.0210 -0.0024 0.0024 0.0103 0.1417
1999 0.0458 0.1032 -0.0140 0.0037 0.0108 0.0280 0.5156
2000 0.0305 0.0556 -0.0180 0.0060 0.0149 0.0278 0.4326
2001 0.0451 0.0725 -0.0132 0.0100 0.0221 0.0459 0.5264
2002 0.0363 0.0514 -0.0177 0.0116 0.0213 0.0376 0.3868
2003 0.0462 0.0631 -0.0006 0.0138 0.0240 0.0485 0.5124
2004 0.0460 0.0729 -0.0068 0.0125 0.0234 0.0476 0.5272
2005 0.0536 0.0790 -0.0040 0.0160 0.0274 0.0578 0.5262

Energy

Materials

Industrials

Consumer 
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Industry Year Mean Std. Dev Min Q1 Median Q3 Max

1993 0.0140 0.0122 -0.0019 0.0054 0.0120 0.0183 0.0623
1994 0.0248 0.0185 0.0018 0.0139 0.0181 0.0378 0.0769
1995 0.0144 0.0130 -0.0027 0.0055 0.0111 0.0211 0.0516
1996 0.0182 0.0169 -0.0012 0.0087 0.0139 0.0222 0.0818
1997 0.0195 0.0282 -0.0042 0.0052 0.0099 0.0211 0.1194
1998 0.0211 0.0496 -0.0076 0.0026 0.0088 0.0156 0.2861
1999 0.0563 0.1041 -0.0046 0.0051 0.0172 0.0481 0.4958
2000 0.0663 0.1100 -0.0026 0.0122 0.0363 0.0569 0.5289
2001 0.0837 0.1273 -0.0011 0.0239 0.0418 0.0676 0.5290
2002 0.0606 0.0897 -0.0005 0.0172 0.0350 0.0708 0.5300
2003 0.0807 0.1151 0.0021 0.0242 0.0381 0.0734 0.5241
2004 0.0916 0.1247 0.0086 0.0257 0.0449 0.0859 0.5277
2005 0.1158 0.1338 0.0098 0.0318 0.0585 0.1448 0.5271
1993 0.0239 0.0209 -0.0005 0.0133 0.0166 0.0294 0.0883
1994 0.0277 0.0198 0.0021 0.0145 0.0222 0.0335 0.0883
1995 0.0218 0.0282 -0.0048 0.0107 0.0159 0.0208 0.1680
1996 0.0270 0.0361 -0.0090 0.0089 0.0151 0.0290 0.2266
1997 0.0234 0.0425 -0.0170 0.0054 0.0120 0.0248 0.2783
1998 0.0330 0.0859 -0.0113 0.0028 0.0109 0.0260 0.5229
1999 0.1787 0.1863 -0.0019 0.0334 0.0926 0.2917 0.5244
2000 0.0671 0.0848 -0.0154 0.0195 0.0374 0.0821 0.5266
2001 0.1091 0.1333 -0.0008 0.0280 0.0548 0.1249 0.5302
2002 0.0787 0.1081 -0.0017 0.0198 0.0371 0.0920 0.5313
2003 0.0848 0.1160 -0.0034 0.0200 0.0371 0.0969 0.5349
2004 0.0794 0.1101 -0.0073 0.0180 0.0345 0.0907 0.5295
2005 0.0847 0.1074 -0.0087 0.0253 0.0423 0.0984 0.5353
1993 0.0249 0.0084 0.0168 0.0168 0.0244 0.0336 0.0336
1994 0.0310 0.0068 0.0241 0.0252 0.0315 0.0368 0.0368
1995 0.0351 0.0108 0.0190 0.0259 0.0381 0.0410 0.0485
1996 0.0379 0.0240 0.0150 0.0173 0.0273 0.0514 0.0835
1997 0.0208 0.0187 0.0038 0.0058 0.0145 0.0235 0.0578
1998 0.0197 0.0289 -0.0188 0.0011 0.0151 0.0234 0.0873
1999 0.0181 0.0153 -0.0041 0.0106 0.0136 0.0204 0.0585
2000 0.0113 0.0113 -0.0071 0.0088 0.0118 0.0176 0.0327
2001 0.0136 0.0098 -0.0047 0.0111 0.0131 0.0158 0.0315
2002 0.0153 0.0080 0.0041 0.0095 0.0137 0.0182 0.0334
2003 0.0160 0.0091 0.0045 0.0091 0.0156 0.0196 0.0351
2004 0.0186 0.0082 0.0085 0.0146 0.0166 0.0189 0.0369
2005 0.0186 0.0088 0.0081 0.0138 0.0164 0.0193 0.0368
1993 0.0172 0.0186 -0.0155 0.0061 0.0122 0.0220 0.1358
1994 0.0213 0.0213 -0.0202 0.0086 0.0162 0.0273 0.1987
1995 0.0138 0.0156 -0.0240 0.0046 0.0104 0.0189 0.1680
1996 0.0147 0.0207 -0.0277 0.0043 0.0097 0.0193 0.2266
1997 0.0114 0.0239 -0.0267 0.0016 0.0067 0.0137 0.3336
1998 0.0122 0.0389 -0.0351 -0.0015 0.0051 0.0138 0.5229
1999 0.0599 0.1182 -0.0285 0.0055 0.0147 0.0437 0.5244
2000 0.0377 0.0661 -0.0328 0.0079 0.0181 0.0387 0.5289
2001 0.0601 0.0956 -0.0320 0.0125 0.0280 0.0601 0.5302
2002 0.0469 0.0745 -0.0192 0.0125 0.0232 0.0459 0.5313
2003 0.0557 0.0850 -0.0109 0.0146 0.0257 0.0540 0.5349
2004 0.0545 0.0860 -0.0176 0.0137 0.0254 0.0531 0.5295
2005 0.0607 0.0875 -0.0221 0.0177 0.0298 0.0633 0.5353

Total

Utilities

Information
Technology

Health Care
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