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Abstract

Illiquidity as a Priced Factor: Evidence from
Intradaily Data

A number of proxies for illiquidity have been proposed in the literature that relates

trading costs to asset prices. However, some of the illiquidity measures provide equivo-

cal relations to returns. Other measures conceal important dynamics underlying high-

frequency data because they are constructed from daily or lower frequency databases. In

this study, we adopt a direct and intuitive approach to estimating illiquidity. Specifically,

we estimate a set of price-impact parameters based on four different models using the

intradaily order flows processed via the Lee and Ready (1991) algorithm from the tick-

by-tick databases for NYSE stocks over the past 23 years. Our empirical results provide

strong evidence that illiquidity measured by the price-impact parameters is priced in the

cross-section of stock returns, even after controlling for risk factors, firm characteristics,

and other illiquidity proxies prevalent in the literature. Consistently high levels of sta-

tistical significance also suggest that the price-impact parameters estimated using the

intradaily order flows are more reliable proxies for illiquidity.



Do investors require higher returns from less liquid securities? This has been an enduring

question in financial economics. In a seminal paper, Amihud and Mendelson (1986)

provide evidence that stock returns include a significant premium for the quoted bid-

ask spread. Since that study, Brennan and Subrahmanyam (1996), Brennan, Chordia,

and Subrahmanyam (1998), Jacoby, Fowler, and Gottesman (2000), Jones (2002), and

Amihud (2002) all elaborate upon the role of (il)liquidity as a determinant of returns.

Pástor and Stambaugh (2003) and Acharya and Pedersen (2005) relate liquidity risk

to expected stock returns. Eisfeldt (2004) associates liquidity with the real sector and

finds that productivity, by affecting income, feeds into liquidity. Johnson (2005) models

liquidity as arising from the price discounts demanded by risk-averse agents to change

their optimal portfolio holdings. Recently, Chordia, Huh, and Subrahmanyam (2008)

provide evidence that theory-based estimates of illiquidity are priced in the cross-section

of expected stock returns.

As we realize in the literature, an important issue in studies that relate illiquidity

to asset prices is how to measure illiquidity. Other than direct empirical measurements

of illiquidity by the bid-ask spread, the approach taken in the literature has often been

to employ empirical arguments and econometric techniques to measure illiquidity. For

example, Amihud (2002) proposes the ratio of absolute return to dollar trading volume

as a measure of illiquidity. Brennan and Subrahmanyam (1996) suggest measuring illiq-

uidity by the relation between price changes and order flows. Pástor and Stambaugh

(2003) measure illiquidity by the extent to which returns reverse upon high volume, an

approach based on the notion that such a reversal captures inventory-based price pres-

sures. Hasbrouck (2005) provides a comprehensive set of measures, including the Roll

(1984) measure as one of the CRSP-based proxies for a TAQ-based effective cost [because

dealing with high-frequency (TAQ) data is hard]. An exception is a study by Chordia,

Huh, and Subrahmanyam (2008), who turn to theory in order to derive closed-form ex-

pressions for Kyle lambdas, for which plausible empirical proxies can easily be devised

from low frequency databases.

There is no denying that those measures have added considerably to our understand-

ing of illiquidity, but there are some concerns. First, some of the measures have not

yielded unambiguously consistent results. To cite a few, Brennan and Subrahmanyam
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(1996) find a negative relation between bid-ask spreads and expected returns that is at

odds with the liquidity premium argument. Eleswarapu and Reinganum (1993) show that

the positive relationship between returns and bid-ask spreads occurs mainly in January,

suggesting that the link between liquidity and expected returns is not pervasive. Spiegel

and Wang (2005) also document that a variety of illiquidity proxies do not tend to be

priced after controlling for the idiosyncratic risk. Second, many of the empirical measures

have often been estimated or constructed from daily or low frequency databases, which

may conceal some important dynamics that may exist in high frequency data. Third,

in cases where (il)liquidity measures are estimated from high frequency databases, the

coverage has not been broad or long enough because data availability is limited or estima-

tion is computationally burdensome. As an alternative, therefore, theory-based measures

have been derived and tested in Chordia, Huh, and Subrahmanyam (2008). The theo-

retical measures have advantage in the sense that broad and long input proxies for the

measures are available at low costs. As is often the case, however, there may be a debate

about the relevance of some empirical proxies used as inputs to the theoretical measures.

It has been recognized that a primary cause of illiquidity in financial markets is the

adverse selection which is induced by privately informed traders. Many large trades often

occur outside the spread and many small trades occur within the spread (Lee, 1993).

Moreover, Glosten (1989), Kyle (1985), Easley and O’Hara (1987), and Glosten and

Harris (1988) suggest that the illiquidity effect of asymmetric information are most likely

to be captured by the price-impact of trades, or the variable component of trading costs.

These facts imply that the quoted bid-ask spread may be a noisy measure of illiquidity

at best. Intuitively, to examine whether illiquidity due to information asymmetry is a

priced factor, it seems best to estimate the price-impact of trades and relate it to returns.

However, processing intradaily order flows and estimating the price impact have been a

computationally arduous task, because billions of transactions should be classified into

buyer- or seller-initiated trades. That is why most studies that attempt to use order flows

or price-impact parameters focus on narrow samples of stocks or short periods of time. For

instance, Brennan and Subrahmanyam (1996) estimate price-impact parameters using

only two-year data from the Institute for the Study of Securities Markets. But it may

not be prudent to draw a general conclusion from a study that uses the two-year data, as

Merton (1980) suggests that the accuracy in estimation depends on the length of data,
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not the sampling frequency.

Owing to improvements in computer technology, it has become possible to estimate

price-impact parameters (interchangeably “lambdas”)1 for a longer period of time as

well as for a broader sample of stocks, although the computing is still onerous. In this

paper, we put together diverse empirical techniques frommarket microstructure and asset

pricing research. Specifically, we adopt an intuitive and direct approach to measuring

illiquidity and relate the measures to asset returns, thereby providing strong evidence in

the empirical illiquidity-return relations. For this purpose, we estimate different types

of price-impact parameters based on four different models using intradaily order flow

data for a comprehensive set of NYSE-listed stocks over the past 23 years (276 months)

from January 1983 to December 2005. To the best of our knowledge, this study uses

the longest time-series of high frequency transactions data for NYSE stocks in order to

process intradaily order flows and estimate a set of price-impact parameters. Order flows

are processed via the Lee and Ready (1991) algorithm. To reduce the error-in-variable

problem, we also adjust returns against the risk of the Fama and French (1993) factors

along the lines of Brennan, Chordia, and Subrahmanyam (1998).

Our contribution in this study is that we first construct a database of marketwide

intradaily order flows and the four different types of price-impact parameters in a long

time series. By examining the time-series behavior of the price-impact parameters, we

find a declining trend in the measures over time, which mirrors the behavior of other

illiquidity proxies, such as bid-ask spreads (Jones, 2002). Then, we explore whether

these lambdas as proxies for illiquidity caused by asymmetric information are priced in

the cross-section of stock returns. After controlling for known characteristics such as

book-to-market equity and momentum as well as for known sources of risk such as the

Fama and French (1993) factors, we provide strong evidence that illiquidity measured

by the four different types of lambdas is priced in the cross-section of stock returns. We

check the robustness of our findings by using portfolio average lambdas and quote mid-

point returns. In addition, we run a “horse race” with other commonly used illiquidity

measures, demonstrating that our illiquidity measures are priced even after accounting for

1Throughout this paper, a lambda means specifically the variable permanent cost portion only, when
the estimation models (Glosten and Harris, 1988; Foster and Viswanathan, 1993; and Sadka, 2006)
decompose trading costs into several elements. For details, see Section I.
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the effects of other competing illiquidity measures. These findings suggest that with all

the computational difficulties, the price-impact parameters estimated using the intradaily

order flows are among the most reliable proxies for illiquidity in stock markets.

The remainder of this paper is organized as follows. In Section I, we present the

algorithm to process order flows as well as the four models to estimate price-impact

parameters using the intradaily order flow data. Section II describes the methodology

for analyses. Section III outlines data sources, definitions, descriptive statistics, and data

adjustments. Section IV discusses the empirical results and robustness checks. In Section

V, we compare the effects of the price-impact parameters with those of other alternative

illiquidity measures. Section VI concludes.

I. Estimation of Price-Impact Parameters

A. Lee and Ready’s (1991) Algorithm

To estimate price-impact parameters, which will be used as our illiquidity measures, from

monthly regressions, we first should obtain intradaily order flows. Before describing the

models on which the estimation of the price-impact parameters are based, we briefly

explain how the intradaily order flows (signed volume) are processed from trade and

quote databases.

Given that not all trades occur at the bid or ask price, we classify each trade as a

buyer- or seller-initiated trade according to the Lee and Ready (1991) algorithm using

trades and quotes data from the Institute for the Study of Securities Markets (ISSM: 1983-

1992) and the NYSE Trades and Automated Quotations (TAQ: 1993-2005) databases.

In order to match trades and quotes, any quote less than five seconds prior to the trade

is ignored and the first one at least five seconds prior to the trade is retained for the

years 1983 to 1998. Based on feedback from microstructure scholars, who indicate that

timing differences in recording trades and quotes have dramatically declined in recent

years, this typical five-second delay rule in matching is not imposed for the last seven

years. Instead, the quote immediately prior to each transaction (i.e., the quote closest in

time to the transaction, with a time stamp of two seconds or more before the transaction)
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is retained for the last seven years (1999-2005).

Then the transactions data are signed as follows. If a trade occurs above the prevailing

quote mid-point, it is regarded as buyer-initiated and vice versa. If a trade occurs exactly

at the quote mid-point, we discard the trade. Admittedly, there may be some signing

errors in the process. In this sense, the resulting order flows are estimates. However, Lee

and Radhakrishna (2000) and Odders-White (2000) show that the algorithm is accurate

enough not to pose any serious problem.

B. Models for Estimating Price-Impact Parameters

Given the intradaily order flow data processed as above, we now present some methods

and models used to estimate price-impact parameters in four different ways as follows.

B.1. Estimation Based on Kyle (1985)

The first one of the four price-impact parameters (lambdas) is estimated based on a

simple model of Kyle (1985). The Kyle (1985) model suggests that

∆Pi,t,m = λKi,mSi,t,mVi,t,m + �i,t,m, (1)

where ∆Pi,t,m is a price change (in stock i at time t in month m), Si,t,m is the sign of

a trade (S = +1 if the trade is buyer-initiated, and S = −1 if it is seller-initiated),
and Vi,t,m is volume (share volume or dollar volume) of the trade. Si,t,mVi,t,m is now

signed volume, which is often called order flows. Our price-impact parameter, λKi,m (Kyle

lambda), is estimated each month for each stock by running the time-series regressions

in Eq.(1) (with a constant term) using the intradaily order flows available within month

m (m =1983:01 to 2005:12).

B.2. Estimation Based on Glosten and Harris (1988)

Glosten and Harris (1988) decompose trading costs into four components: i) fixed per-

manent cost (denoted as λ), ii) variable permanent cost (λ), iii) fixed transitory cost (ϕ),
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and iv) variable transitory cost (ϕ). The first two components are due to adverse selec-

tion or asymmetric information, while the last two are due to inventory holding costs,

clearing fees, and/or monopoly power.

Let μt denote the expected value of a security (conditional on the information set

at time t) for a market maker who observes only the order flows (StVt) and the public

information signal (ξt). Then, models of price formation such as Kyle (1985) and Admati

and Pfleiderer (1988) imply that μt evolves as follows:

μt = μt−1 + λStVt + ξt. (2)

Glosten and Harris (1988) show evidence that the fixed permanent cost and the variable

transitory cost are negligible in their sample (14 months from December 1981 to January

1983): i.e., λ = ϕ = 0. In the estimation, we reflect their finding and assume competitive

risk-neutral market makers. Given the sign (St) of each trade, we can write the observed

security price, Pt, as

Pt = μt + ϕSt. (3)

Plugging Eq.(2) into Eq.(3), we have

Pt = μt−1 + λStVt + ϕSt + ξt. (4)

From Eq.(3), we also know

Pt−1 = μt−1 + ϕSt−1. (5)

If we subtract Eq.(5) from Eq.(4) and use the notations in a more specific way for our

purpose, the price change, ∆Pt, is given by

∆Pi,t,m = λGHi,mSi,t,mVi,t,m + ϕGH
i,m (Si,t,m − Si,t−1,m) + ξi,t,m, (6)

where λGHi,m (Glosten-Harris lambda) is our second measure of illiquidity (for stock i in

month m), ϕGH
i,m is the fixed transitory cost, and ξi,t,m is the unobservable error term.

To estimate the Glosten-Harris lambda (λGHi,m ) each month for each stock, we run the

time-series regressions as in Eq.(6) (with a constant term) using all the intradaily order

flows available within month m.
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B.3. Estimation Based on Foster and Viswanathan (1993)

To estimate a measure of the adverse selection component of price changes, Foster and

Viswanathan (1993) use the unexpected order flows, instead of the raw order flows used

in Eq.(6) above. This approach has an advantage because, if the order flows are au-

tocorrelated, then part of the order flows is predictable and should not be included in

measuring the information content of a trade.

Following Brennan and Subrahmanyam (1996) and Sadka (2006), we thus filter the

order flows by an AR(5) process as in the following equation,

StVt = δ +
5X

q=1

κqSt−qVt−q + τ t, (7)

where τ t is the residual from the time-series regression. We use τ t as the unexpected order

flows to estimate price-impact parameters, replacing StVt with τ t in Eq.(6) as follows:

∆Pi,t,m = λFVi,mτ i,t,m + ϕFV
i,m(Si,t,m − Si,t−1,m) + ξ0i,t,m, (8)

where λFVi,m (Foster-Viswanathan lambda), as our third measure of illiquidity for stock i

in monthm, is now the response to the unexpected portion of the order flows, and ϕFV
i,m is

the corresponding fixed transitory cost. To estimate λFVi,m each month for each stock, we

run the time-series regressions as in Eq.(8) (with a constant term) using all the intradaily

order flows available within month m.

B.4. Estimation Based on Sadka (2006)

Unlike Glosten and Harris (1988), Sadka (2006) documents that the fixed permanent cost

(λ) and the variable transitory cost (ϕ) do not tend to be zero. In this sense, Sadka’s

(2006) specification is equivalent to the full version of Glosten and Harris (1988).

Following Sadka (2006), we first estimates the unexpected order flows (τ t), their

variance (σ2τ ), and the fitted value of order flows (dStVt) from Eq.(7). Then we compute
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the unexpected sign (πt) of a trade using the following equation,

πt = St −Et−1(St) = St −
(
1− 2Φ

Ã
−
dStVt
στ

!)
,

where Φ(.) denotes the normal cumulative distribution function. Now the four compo-

nents of trading costs can be estimated by the following regression:

∆Pi,t,m = λ
S

i,m(Si,t,mVi,t,m − Si,t−1,mVi,t−1,m) + λSi,mτ i,t,m + ϕS
i,mπi,t,m

+ ϕS
i,m(Si,t,m − Si,t−1,m) + ς i,t,m, (9)

where λ
S

i,m is the fixed permanent cost, λSi,m (Sadka lambda), as our fourth measure

of illiquidity, is the variable permanent cost, ϕS
i,m is the variable transitory cost, and

ϕS
i,m is the fixed transitory cost.

2 To estimate Sadka lambda (λSi,m) each month for each

stock, we run the time-series regressions as in Eq.(9) (with a constant term) using all the

intradaily order flows and other related variables available within month m. Note that

when λ
S

i,m = ϕS
i,m = 0, Eq.(9) is reduced to the parsimonious Foster and Viswanathan

(1993) model specified in Eq.(8).

As we see above, the last three models decompose trading costs into two to four

components. In those cases, given that we are more interested in the trading cost related

to information asymmetry, we use the price-impact parameters that represent the variable

permanent cost only (i.e., λGHi,m , λ
FV
i,m , and λ

S
i,m), ignoring the other components of trading

costs. Another issue that arises when we estimate the price-impact parameters in Eq.(1)-

Eq.(9) is whether to use dollar order flows or share order flows. When running the

time-series regressions, we design the programs so that the parameters are estimated in

both ways, resulting in the eight different types of measures. For our main analyses,

we employ the price-impact parameters estimated with dollar order flows as our primary

basis, because we believe that dollar order flows can better estimate the price impact. For

robustness checks, however, we also discuss later the results from using the parameters

estimated with share order flows.
2For full derivation of Eq.(9), see Sadka (2006).
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II. Methodology

For asset pricing tests, we follow the Brennan, Chordia, and Subrahmanyam (BCS)

(1998) approach, which uses data on individual securities [Hasbrouck (2005) also uses

this approach]. The BCS methodology is important because using portfolios could be

problematic, as Roll (1977) and Lo and MacKinlay (1990) suggest. This approach not

only avoids the data-snooping biases that are inherent in the portfolio-based approaches

but also gets around the error-in-variable biases caused by errors in estimating factor

loadings.

Now assume that returns are generated by an L-factor approximate factor model:

R̃jt = E(R̃jt) +
LX

k=1

βjkf̃kt + ẽjt, (10)

where R̃jt is the return on security j at time t and f̃kt is the unanticipated return on the

k-th factor (k = 1, 2, ..., L) at time t. The exact, or equilibrium, version of the arbitrage

pricing theory (APT) in which the market portfolio is well diversified with respect to

the factors (Connor, 1984; Shanken, 1985, 1987) implies that the expected excess returns

may be written as

E(R̃jt)−RFt =
LX

k=1

θktβjk, (11)

where RFt is the return on the risk-free asset and θkt is the risk premium on the k-th

factor portfolio. Plugging Eq.(11) into Eq.(10), the APT implies that realized returns

are given by

R̃jt −RFt =
LX

k=1

βjkF̃kt + ẽjt, (12)

where F̃kt ≡ θkt+ f̃kt is the sum of the risk premium on the k-th factor portfolio and the

innovation of the k-th factor.

Our goal is to test whether illiquidity (due to information asymmetry) measured by

the price-impact parameters has any incremental explanatory power for returns relative

to the Fama and French (FF, 1993) 3-factor benchmark after controlling for other security

characteristics. For this purpose, a standard application of the Fama-MacBeth (1973)
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procedure would involve estimation of the following equation:

R̃jt −RFt = c0 + φλijt +
LX

k=1

θkβjkt +
NX
n=1

cnZnjt + ẽjt, (13)

where λijt (i = K, GH, FV , or S) is one of our illiquidity measures estimated in Section

I, and a vector of control variables, Znjt, is firm characteristic n (n = 1, ..., N) for

security j in month t. Under the null hypothesis that excess returns depend only on risk

as measured by βjk, coefficients φ and cn (n = 1, ..., N) will be zero. This hypothesis can

be tested in principle by first estimating the factor loadings each month using the past

data; conducting a cross-sectional regression for each month in which the independent

variables are an illiquidity measure, factor loadings, and other non-risk characteristics;

and then averaging the monthly coefficients over time and computing their standard

errors. This basic Fama-MacBeth approach, however, will present a problem if the factor

loadings are measured with errors.

In order to address the errors-in-variables problem, we use risk adjusted-returns as

the dependent variables. Risk adjustment is made using the Fama-French (1993) three

factors (interchangeably “FF3”: MKTt, SMBt, and HMLt) in two different ways. In

the first method, we compute risk-adjusted returns, R̃∗jt, for each month as the sum of

the intercept and the residual, i.e.,

R̃∗jt = (R̃jt −RFt)− (bβ∗j1MKTt + bβ∗j2SMBt + bβ∗j3HMLt)

= bα∗ + b̃e∗jt, (14)

after conducting regressions in Eq.(12) (but with a constant term α) using the entire

sample range (from January 1983 to December 2005 for NYSE stocks) of the data.3 We

denote this risk-adjusted return (R̃∗jt) as FF3EXSRET1. We also use another version

of risk adjustment for robustness. In the second method, we obtain rolling estimates of

the factor loadings, βjk, for each month over the sample period for all securities using

the time series of the past 60 months (at least 24 months) with Eq.(12). Given the

current month’s data (R̃jt-RFt,MKTt, SMBt, and HMLt) and the factor loadings (bβ∗∗jk)
3In the first method, therefore, for each stock we have only one set of the factor loadings (bβ∗jk),

estimated using the whole time-series of the data.
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estimated each month for all stocks, we can compute the risk-adjusted return on each of

the securities, R̃∗jt, for each month t as follows:

R̃∗jt = (R̃jt −RFt)− (bβ∗∗j1MKTt + bβ∗∗j2SMBt + bβ∗∗j3HMLt). (15)

This risk-adjusted return (R̃∗jt) is notated as FF3EXSRET2.

The risk-adjusted returns from Eq.(14) and Eq.(15) constitute the raw material for

the estimates that we present in the following Fama-Macbeth (1973) cross-sectional re-

gressions:

R̃∗jt = c0t + φtλ
i
jt +

NX
n=1

cntZnjt + ẽ0jt, i = K, GH, FV, or S. (16)

Note that the error term in Eq.(16) is different from that in Eq.(13) because the error

in Eq.(16) also contains terms arising from the measurement error associated with the

factor loadings.

To check whether illiquidity is priced, we report three types of statistics based on

regressions in Eq.(16): the statistics based on regressions with the dependent variable

in Eq.(16) being (i) risk-unadjusted excess returns (we call this unadjusted return EXS-

RET); (ii) risk-adjusted excess returns using the first method, FF3EXSRET1; and (iii)

risk-adjusted excess returns using the second method, FF3EXSRET2. For our purposes,

we estimate the vector of coefficients ct = [c0t φt c1t c2t...cNt]
0 from Eq.(16) each month

with a simple OLS regression as

bct = (Z0tZt)
−1Z0tR̃

∗h
t ,

where h = 1 or 2, Zt = [λi Z1 Z2...ZN ]
0 and R̃∗ht is the vector of risk-adjusted excess

returns based on Eq.(14) or Eq.(15). The standard Fama-MacBeth (1973) estimator is the

time-series average of the monthly coefficients, and the standard error of this estimator

is taken from the time series of monthly coefficient estimates, bct. Note that although
factor loadings are estimated with error in Eq.(12), this error affects only the dependent

variable, R̃∗ht , as we see in Eq.(14), Eq.(15), and Eq.(16). While the factor loadings will

be correlated with vector Zt = [λ
i Z1 Z2...ZN ]

0, there is no a priori reason to believe that

the errors in the estimated loadings will be correlated with the vector Zt. This implies
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that coefficient vector bct estimated in Eq.(16) is unbiased.
If the errors in the estimated factor loadings are correlated with the explanatory

variables Zt, the monthly estimates of the coefficients, bct, will be correlated with the
factor realizations, and thus the mean of these estimates (which is the Fama-MacBeth

estimator) will be biased by an amount that depends on the factor realizations. Therefore,

as a check on the robustness of our results, we also obtained a “purged” estimator for each

of the explanatory variables in the regressions of FF3EXSRET1 and FF3EXSRET2: i.e.,

the constant term (and its t-value) from the regression of the monthly coefficients (bct)
estimated in Eq.(16) on the time series of FF 3 factor realizations. This estimator, which

was developed by Black, Jensen, and Scholes (1972), purges the monthly estimates of

the factor-dependent component so that it is unbiased even when the errors in the factor

loading estimates are correlated with vector Zt.

III. Data, Definitions, Descriptive Statistics, and Ad-
justments

For examining the impact of illiquidity on the cross-section of stock returns, we mainly

use NYSE-listed firms at an intradaily, daily, and monthly frequency over the 276 months

(23 years) from January 1983 to December 2005.

A. Order Flows and Price-Impact Parameters

To process order flows via the Lee and Ready (1991) algorithm and estimate the four

types of price-impact parameters based on the models described in the previous section,

we focus only on NYSE stocks (the case where the exchange code is “N” in trade and

quote databases), because NASDAQ has different trading protocols (Atkins and Dyl,

1997). The intradaily transaction data sources are the Institute for the Study of Securities

Markets (ISSM) and the NYSE Trades and Automated Quotations (TAQ). The ISSM

data are available for 1983-1992 while the TAQ data are used for 1993-2005. If trades

are out of sequence or they are recorded before the open or after the closing time, such

trades are expunged. Quotes established before the opening of the market or after the

close are also excluded. To minimize possible signing errors in processing order flows, if
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a trade occurs exactly at the quote mid-point, we discard the trade, as in Sadka (2006),

before running regressions to estimate the price-impact parameters. We find that about

5% of the trades from the intradaily databases are transacted at the quote mid-points.4

To survive in the sample, stocks should have at least 110 trades per month (on average

5 trades per day) for each firm.

Table I summarizes the intradaily order flow data processed in order to estimate the

price-impact parameters. The total number of trades (and matched quotes) used in this

study is slightly larger than two billion over the sample period (276 months), excluding

trades executed exactly at the quote mid-points. By construction, the minimum number

of monthly trades (and matched quotes) is 110 for each firm, given our inclusion require-

ments specified above. Shares of a typical firm traded 3,636.5 times on average within a

month (excluding the trades executed at the quote mid-points), but we find that some

firms such as Chevron Corporation (ticker symbol: CVX) and Exxon Mobil Corporation

(ticker symbol: XOM) had extremely frequent trades in recent months. For instance,

the number of monthly trades in shares of Chevron Corporation is as large as 173,471

in October 2005. The table also exhibits that the pooled number of firms used over the

sample period (i.e., firm-month observations) is 443,453.

In Table II, we report the sign, statistical significance, and descriptive statistics for

the price-impact parameters estimated using the dollar volume-based order flows as de-

lineated in Section I. Each of the lambdas shown in Table II is defined as follows:

λK0 : The price-impact parameter estimated based on Kyle (1985) (multiplied by 10
6)

using intradaily dollar order flows available within each month for each stock.

λK : The Winsorized parameter of λK0 at the 0.5th and 99.5th percentiles (i.e., λ
K
0 ’s

less than the 0.5 percentile value or greater than the 99.5 percentile value in each month

are set equal to the 0.5th and 99.5th percentile values, respectively).

λGH0 : The price-impact parameter estimated based on Glosten and Harris (1988)

(multiplied by 106) using intradaily dollar order flows available within each month for

4For example, 5.3% of the total trades in 2002 occur exactly at the quote mid-points. When a trade
occurs exactly at the quote mid-point, we also try to classify the trade using an alternative method
called a tick test. That is, if a trade occurs at the quote mid-point, it is signed using the previous
transaction price: buyer-initiated if the sign of the last non-zero price change is positive, and vice versa.
This method does not change our main results.

13



each stock.

λGH : The Winsorized parameter of λGH0 at the 0.5th and 99.5th percentiles.

λFV0 : The price-impact parameter estimated based on Foster and Viswanathan (1993)

(multiplied by 106) using intradaily dollar order flows available within each month for

each stock.

λFV : The Winsorized parameter of λFV0 at the 0.5th and 99.5th percentiles.

λS0 : The price-impact parameter estimated based on Sadka (2006) (multiplied by 10
6)

using intradaily dollar order flows available within each month for each stock.

λS: The Winsorized parameter of λS0 at the 0.5th and 99.5th percentiles.

We expect that the estimated price-impact parameters will be positive and statisti-

cally significant in most cases. Panel A in Table II shows that indeed 99.8% of Kyle

(1985) lambdas are positive and 97.2% of them are both positive and statistically signif-

icant at the 5% level. Given that the other three types of lambdas are estimated by the

models that decompose trading costs into several components or use unexpected order

flows, it is natural to observe that the proportion of positive and significant lambdas

decreases. Especially, as for the lambdas estimated based on the Sadka (2006) model,

which decomposes trading costs into four components and uses unexpected order flows,

93.4% of them are positive while 67.2% are both positive and significant.

Panel B in Table II reports the time-series average values of monthly means, medians,

standard deviations (STD), and other descriptive statistics for our price-impact parame-

ters. The mean values of the statistics are first computed cross-sectionally each month

and then averaged in the time-series over the sample period. A noteworthy aspect is

that the four non-Winsorized lambdas (λK0 , λ
GH
0 , λFV0 , and λS0 ) are highly leptokurtic

as well as significantly skewed to the left. The large kurtoses of the lambdas also imply

that sample distributions of the four measures exhibit many extreme observations. To

alleviate the influence of extreme observations on the empirical results, Hasbrouck (1999,

2005, 2006) and Chordia, Huh, and Subrahmanyam (2008) apply square-root transfor-

mation to illiquidity measures while others prefer logarithmic transformation. However,

neither transformation is feasible for our price-impact parameters, because some of them

are negative as we see in Panel A. For this reason, as our illiquidity measures we use the

14



price-impact parameters Winsorized at the 0.5th and 99.5th percentiles for the empirical

analyses in the next sections. As we see in Panel B, the skewnesses and kurtoses of the

corresponding Winsorized parameters (λK , λGH , λFV , and λS) are substantially reduced

by the procedure. Another feature is that the magnitude of the Winsorized lambdas

decreases monotonically as the estimation model decomposes trading costs into several

components and/or uses unexpected order flows. Thus, the average value of λS is the

smallest while that of λK is the largest out of the four illiquidity measures.

To examine the time-series behavior of our four illiquidity measures, in Figure 1 we

plot the value-weighted series of the Winsorized price-impact parameters over the sample

period. As we see in Figure 1(a), value-weighted λK of NYSE stocks remains high in the

initial part of the sample period. However, it exhibits a decreasing time trend in general,

suggesting that market liquidity has improved since the early 1980s. In Figures 1(b), the

trend of the value-weighted λS is comparable to that of λK , but the absolute level in this

measure is much lower. We observe some big spikes around the months of, for instance,

the 1987 stock market crash. For brevity, we do not report the graphs for λGH and λFV ,

but their trends are qualitatively similar, with the levels being in between those of the

two graphs plotted in Figure 1.

B. Other Definitions and Descriptive Statistics

The three dependent variables (EXSRET, FF3EXSRET1, and FF3EXSRET2) defined in

Section II for the Fama and MacBeth (1973) regressions are obtained or estimated using

the CRSP monthly file, and the three FF factors are available from Kenneth French’s

website. We also use firm characteristics in the regressions as control variables. The

probable control variables and other related variables are defined as follows:

MV : The market value defined as the month-end stock price times the number of

shares outstanding (in $million) in the previous month (as of month t− 1).

SIZE : The natural logarithm of MV.

BM_w : The Winsorized value (at the 0.5th and 99.5th percentiles) of a book-to-

market ratio (BM = BV/MV), where the book value (BV) is defined as common equity

plus deferred taxes in $million.
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BTM : The natural logarithm of BM_w. Following Fama and French (1992), we fill

monthly BM_w (and hence BTM) values for July of year y to June of year y + 1 with

the value computed using the accounting data at the end of year y − 1, assuming a lag
of six months before the annual accounting numbers are known to investors.

MOM1 : The compounded holding period return of a stock over the most recent 3

months (from month t− 1 to month t− 3).

MOM2 : The compounded holding period return over the next recent 3 months (from

month t− 4 to month t− 6).

MOM3 : The compounded holding period return over the 3 months from month t− 7
to month t− 9.

MOM4 : The compounded holding period return over the 3 months from month t− 9
to month t− 12. For each of the above four momentum variables to exist, a stock should
have all three consecutive monthly returns over the corresponding three-month period.

Later in Section V, we run a horse race to compare the effects of our four illiquidity

measures with those of three other alternative illiquidity measures commonly used in the

literature. The alternative measures to be analyzed in our study are notated and defined

as follows:

Amihud: The Winsorized (at the 0.5th and 99.5th percentiles) illiquidity measure

of Amihud (2002). We estimate this measure each month as the average of |r|/DV OL,

where r is the daily stock return and DVOL is the daily dollar volume in $100,000.

Roll_Gibbs: The Winsorized (at the 0.5th and 99.5th percentiles) market risk-

adjusted effective bid-ask spread of Roll (1984), estimated at an annual frequency using

the Gibbs sampler. This measure was obtained from Joel Hasbrouck’s website.

PS: TheWinsorized (at the 0.5th and 99.5th percentiles) illiquidity measure of Pástor

and Stambaugh (2003). We estimate this measure by running monthly regressions using

the CRSP daily data whose transaction records are kept for at least 15 days within a

month (see Section V for details).

The variables related to the book-to-market ratio are constructed using the CRSP and

CRSP/Compustat Merged (CCM) files. Other firm characteristic and related variables

(MV, SIZE, and MOM1-MOM4) are also extracted from the CRSP monthly file. The
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two alternative illiquidity measures, Amihud and PS, are estimated using the CRSP

daily file. The average number of component stocks used each month in the Fama-

MacBeth (1973) cross-sectional regressions for NYSE stocks is 1,578.1. In those cases

where accounting variables and other data are available only on a yearly basis, we keep

the relevant values constant for 12 months in the regressions.5

Table III reports the time-series average values of monthly means, medians, standard

deviations (STD), and other descriptive statistics for characteristic variables. To obtain

the values in the table, the mean value of each statistic is first computed cross-sectionally

each month and then the time-series is averaged over the sample period. As we see in

the table, the average market value (MV) is $3.19 billion, and the book-to-market ratio

(BM_w) is 0.74 on average for NYSE stocks over the sample period. Both variables tend

to be left-skewed. As for the momentum variables (MOM1-MOM4), the returns of the

distant past are likely to be higher than those of the recent past.

Next, we examine the average correlation coefficients between our explanatory vari-

ables in Table IV.6 The table shows that our four illiquidity measures are highly correlated

with each other: A maximum of 99.6% between λGH and λFV and a minimum of 77.1%

between λK and λS. The illiquidity measures are negatively correlated with the momen-

tum variables, suggesting that good past price performance of a stock tends to contribute

to the improvement in liquidity of that stock. The correlation coefficients between the

book-to-market ratio and the illiquidity measures are positive, although not so strong.

We would expect larger firms (with greater breadth of ownership) to be more liquid

than smaller ones. As we see in Table IV, indeed SIZE and the four illiquidity measures

are highly negatively correlated: the grand average of the cross-sectional correlation

coefficients ranges from −45% to −57%. A preliminary test shows, however, that at the
individual (month or firm) level the coefficients of time-series correlation (for the whole

sample period for each firm) between SIZE and the illiquidity measures are often higher

than −65%, while those of cross-sectional correlation (each month) are often higher than
5The data series available only on a yearly basis are the variables related to the book-to-market ratio

(BM_w and BTM) and the market risk-adjusted effective bid-ask spread of Roll (1984) estimated using
the Gibbs sampler (Roll_Gibbs).

6To save space, we do not report the correlation coefficients between the three types of excess returns
to be used as a left-hand side variable in the regressions. They are strongly correlated (coefficients
greater than 94%).
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−60%. We have realized that this causes a multicollinearity problem when we include

SIZE in the regressions (see Section IV and Table A1 later). Therefore, SIZE (as a firm

characteristic variable) will not be used in subsequent regression analyses.

C. Gallant, Rossi, and Tauchen’s (1992) Adjustments

Some of our time-series are non-stationary. This creates the potential problem that the

time-series average of the cross-sectional coefficients as in Fama and MacBeth (1973) may

not converge to the population estimates. According to results from the Dickey-Fuller

unit-root tests and our own intuition, the obvious candidates for non-stationarity are our

illiquidity measures (λK, λGH , λFV , and λS), the three alternative illiquidity measures

(Amihud, Roll_Gibbs, and PS), and some of the firm characteristic variables (BTM and

SIZE). To eliminate non-stationarity, we adjust these data series in two steps along the

lines of Gallant, Rossi, and Tauchen (1992) before conducting cross-sectional regressions.

Calendar effects and trends are removed from the means and the variances of the above

data series over the sample period for each of all the component stocks. As adjustment

regressors, we use eleven dummy variables for months (January-November) of the year

as well as the linear and quadratic time-trend variables (t and t2).

In the first stage, we regress each of the series to be adjusted on the set of the

adjustment regressors for each firm over the sample period as in the mean equation:

κ = x0ψ + ξ, (17)

where κ represents one of the above series to be adjusted, and x is a vector of ones and

the adjustment regressors (11 monthly dummies, t, and t2). In the second stage, we take

the residuals from the mean equation to construct the following variance equation:

log(ξ2) = x0θ + �. (18)

This regression standardizes the residuals from the above mean equation. Then we finally

can obtain the adjusted series for each firm by the following linear transformation:

κadj = a+ b{bξ/ exp(x0θ/2)}, (19)
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where a and b are chosen so that the sample means and variances of κ and κadj are

the same. This linear transformation makes sure that the units of adjusted and unad-

justed series are equivalent, facilitating interpretation of our empirical results in the next

sections. After the Gallant, Rossi, and Tauchen (1992) (GRT)-adjustments, the Dickey-

Fuller tests show no evidence of a unit root in the vast majority of the component stocks

over the sample period.7

IV. Empirical Results

A. Features of the Portfolios Formed on Illiquidity and Firm
Size

Before moving on to regression analyses, we report the average values of firm size, illiquid-

ity, and monthly returns for the 25 portfolios formed by sorting on illiquidity (measured

by λGH) and firm size (measured by MV). For this purpose, each month we first sort sam-

ple stocks by λGH in ascending order and split them into five portfolios with the equal

number of stocks. Then, each of the five portfolios is again sorted by firm size (MV) and

split into five portfolios, resulting in the 25 portfolios.8 Next, the cross-sectional average

values of firm size, illiquidity, and market value (MV)-weighted returns are computed

each month for each of the 25 portfolios, and then the time-series averages of the three

variables are reported in Table V.

It is reasonable to observe in Panel A that average firm size (within a given firm-size

group) is decreasing as illiquidity increases. Panel B also shows that average illiquidity

(within a given λGH group) is mostly decreasing as firm size increases (except for the

most liquid group).

We see in the upper part of Panel C that for a given firm-size group the value-

weighted average return tends to increase (although not monotonic) with illiquidity. The

7For each GRT-adjusted variable, the unit root hypothesis is rejected for more than 95% of the sample
stocks. Specific percentages are available on request. When the GRT-adjusted variables are used in the
cross-sectional regressions over the next two sections, such variables will be indicated by superscript “a”.

8In forming the 25 portfolios, we use λGH as a representative illiquidity measure because the Glosten
and Harris (1988) model decomposes trading costs into several components. However, using any of the
four illiquidity measures leads to similar results.
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t-values demonstrate that monthly portfolio returns are all significantly different from

zero. In particular, the bottom part of Panel C shows that the average returns in all of

the five differential (Illiqid − Liquid) portfolios are positive and four cases of them are

statistically different from zero at the 5% level. This suggests that illiquidity is priced for

NYSE stocks and this illiquidity pricing is not driven completely by a few small firms.

Another aspect is that in illiquidity quintile 5, the return shows a decreasing pattern

(more precisely, a flipped J-curve) as firm size increases. For illiquidity quintiles 1-4,

however, the return in a given illiquidity group is likely to increase with firm size, which

is consistent with the result documented by Brennan and Subrahmanyam (1996).9

To get a feel about the impact of illiquidity on returns, we also report in Table VI the

intercept (notated as FF3 Alpha) and t-statistic from the time-series regression of the

portfolio return (in excess of the one-month T-bill rate) on the Fama-French 3 factors

using the time series of the value-weighted portfolio return in each of the 25 portfolios.

The upper part of Panel A shows that while the value-weighted portfolio returns over and

above those predicted by the FF 3-factor model (i.e., FF3 Alpha) for the two smaller-

sized groups tend to be negative, the abnormal returns for the other three size groups

(firm-size quintiles 3-5) or the most illiquid group (illiquidity quintile 5) are positive and

mostly statistically different from zero at 5%. For a given firm-size group, the abnormal

return (FF3 Alpha) tends to increase (although not monotonic) with illiquidity.

In the lower part of Panel A, we report the five FF3 Alphas from the time-series

regressions of the return differences [between the most illiquid portfolio (Illiquid) and

the most liquid portfolio (Liquid) within a given firm-size group] on the FF 3 factors,

together with their t-statistics. The t-statistics indicate that the abnormal returns in all

of the five differential (Illiqid − Liquid) portfolios are positive and statistically different

from zero at the 5% level. This again supports the notion that illiquidity measured by

the price-impact parameters is priced in the cross-section of stock returns.

Following Fama and French (1993), we test a hypothesis in Panel B by employing

the statistic based on Gibbons, Ross, and Shanken (GRS) (1989). The null hypothesis

for the GRS test is, ‘HDiff
0 : the FF3 Alphas for the five differential (Illiqid − Liquid)

portfolios are jointly zero.’ The GRS statistic is defined as follows. Let there beM time-

9See Panel (A) in Table I of their paper.

20



series observations, G portfolios, and L − 1 factors (excluding the intercept). Further,
let X denote the matrix of regressors. Then the test statistic is given by

¡
A0Σ−1A

¢M − L−G+ 1

G(M − L)ω1,1
,

where A is the column vector of FF3 Alphas, Σ is the variance-covariance matrix of the

residuals from the time-series regressions, and ω1,1 is the diagonal element of (X 0X)−1

corresponding to the intercept. Under the null hypothesis, this statistic follows an F -

distribution with G and M − L−G + 1 degrees of freedom. As the F -statistic and the

corresponding p-value suggest in Panel B, the null hypothesis is strongly rejected.

Of course, the portfolio analyses are preliminary in a sense that they do not account

for other characteristics that may affect stock returns. Moreover, portfolio returns av-

eraged across stocks may hide important aspects underlying the data at the individual

level, thereby obscuring the impact of illiquidity. We address these issues in a regression

framework in the next subsection.

B. Cross-Sectional Regressions

We have observed in Tables V-VI that within a given firm-size group the average of

value-weighted portfolio return as well as the abnormal return is likely to increase with

illiquidity, suggesting that illiquidity is a priced factor. In this section, we formally test

whether our illiquidity measures have any impact on returns. As in Brennan, Chor-

dia, and Subrahmanyam (1998), our test involves the following cross-sectional regression

estimated at the monthly frequency:

R̃∗jt = c0t + φtλ
i
jt +

NX
n=1

cntZnjt + ẽ0jt, i = K, GH, FV, or S, (20)

where R̃∗jt represents either the risk-unadjusted excess return (EXSRET) or one of the two

risk-adjusted excess returns (FF3EXSRET1 and FF3EXSRET2) defined and estimated

in Section II, λijt is one of our four illiquidity measures (λ
K , λGH , λFV , and λS) estimated
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in Section I, and Znjt denotes firm characteristic n for stock j in month t.10 As Eq.(20)

indicates, we use individual stocks’ price-impact parameters (as opposed to portfolio

average values) in the regressions. This is to reduce data snooping biases, as Brennan,

Chordia, and Subrahmanyam (1998) point out, and at the same time not to conceal

possibly important information within portfolio averages (Roll, 1977). Considering that

the average number of observations in the intradaily order flows used each month for

each firm to estimate the monthly price-impact parameters is 3,636.5 (see Table I), the

estimation errors in the price-impact parameters may not be overwhelming. To reduce

the measurement error problem, however, we also use portfolio average price-impact

parameters as a robustness check later in the next subsection.

Avramov and Chordia (2006) show that a constant-beta version of the Fama and

French (1993) 3-factor model cannot adequately capture the predictive ability of firm

characteristics in stock returns. Thus, we control for characteristics (Znjt) such as book-

to-market equity (BTM) and past returns (MOM1-MOM4) when we examine the impact

of our illiquidity measures on FF3-adjusted returns in Eq.(20). As mentioned earlier,

however, we do not use SIZE as a control variable in the regressions because it induces

multicollinearity with our illiquidity measures.11

Now we report the standard Fama-MacBeth statistics (the time-series average of the

estimated coefficients from the regression equation above and its t-statistic) in Tables VII

and VIII.12 Along with the average coefficients and t-statistics, we also list the average

10In Eq.(20), monthly subscript “t” is denoted as contemporaneous. Note, however, that all the
explanatory variables are constructed with past data, relative to the dependant variable, which is based
on the month-end price in month t. For example, λit is estimated with intradaily order flows from the
begining of the first trading day to the end of the last trading day in month t, BTM is six-month lagged
as defined in Section III, SIZE is log(MV), where MV is the market value of month t − 1, and the
momentum variables are basically the returns of past months.
11To show how SIZE causes multicollinearity with our illiquidity measures, in Table A1 we report four

different regression specifications for each of the four different illiquidity measures using FF3EXSRET1
as a dependent variable. We observe in Panel A, for example, that illiquidity (measured by GRT-adjusted
λK) is strongly positively related to stock returns (see Specification 1) while (GRT-adjusted) SIZE is
strongly negatively related to returns (see Specification 2). However, when both λK and SIZE are
included together in the regressions (see Specifications 3 and 4), the sign of the loading on λK reverses
to negativity. There is no exception for the other three illiquidity measures (Panels B-D). Therefore, we
exclude SIZE in the regression analyses all throughout the paper.
12Since the dependent variable in the cross-sectional regressions is the monthly stock return as in

the original study of Fama and MacBeth (1973), which is close to being serially uncorrelated, we find
no evidence of statistically significant autocorrelations in the time series of the estimated coefficients
(the absolute values of the first-order serial correlations in the coefficient series were lower than 10%).
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of the adjusted R2 values from the individual regressions (Avg R-sqr) and the average

number of companies used in the regression each month over the sample period (Avg

Obs). For some nonstationary variables, we use the GRT-adjusted series (indicated by

superscript “a”) for the cross-sectional regressions.

The regression results with the two illiquidity measures estimated using raw order

flows (λK and λGH) are presented in Table VII, while those with the other two lambdas

estimated using unexpected order flows (λFV and λS) appear in Table VIII. As we see

in Table VII, the average number of component stocks used in the monthly regressions

for NYSE stocks ranges from 1,513.9 to 1,578.1, depending on data availability of the

variables. Avg R-sqr is about 2.9-4.5%. The explanatory power of the regressions is

higher with the unadjusted excess returns (EXSRET) than with the risk-adjusted returns

(FF3EXSRET1, FF3EXSRET2). This suggests that the Fama-French model has some

ability to price stocks in the cross-section. Given that FF3EXSRET2 requires more

strict conditions in estimation (e.g., past return series of at least 24 months in each

month), Table VII shows that the average number of component stocks is smaller in the

last regression specification (FF3EXSRET2) than in the first two specifications. The

patterns shown in Table VIII are similar to those in Table VII.

We first discuss the results from the Fama-MacBeth regressions of EXSRET on illiq-

uidity estimated based on Kyle (1985), λK , as well as other firm characteristics that are

known to be associated with returns, namely, BTM and the four momentum variables

(MOM1-MOM4). The second column of Panel A in Table VII shows that the average

coefficient of λK is positive and statistically significant at the 1% level after controlling

for other firm characteristics, confirming the hypothesis that stocks with higher illiquid-

ity provide higher (excess) returns. Consistent with the prior literature, the coefficient of

BTM is positive and statistically significant. The last two momentum variables are also

positively related to returns.

We now consider whether the relations observed above are maintained when the

Therefore, we report the standard Fama-MacBeth t-statistic instead of the Newey and West (NW) (1987,
1994) t-statistic throughout the paper. An unreported table equivalent to Table VII which includes both
types of t-statistics shows that the levels of t-values are very similar to each other. (As suggested by NW
in choosing bandwidth parameter N (= L + 1) for the Bartlett kernel to compute the NW standard
errors, we let lag length L be equal to the integer portion of 4(T/100)2/9, where T is the number of
observations in the estimated coefficient series.) The table is available upon request.
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dependent variable is risk-adjusted using the FF factors. The estimates of illiquidity and

characteristic rewards (bφ and bcn) for returns adjusted by the first method in Section II
(FF3EXSRET1) are presented in the next column of Panel A. By risk-adjusting, the

coefficient of MOM2 becomes statistically significant. However, the key relations are

essentially unchanged. λK continues to be strongly positively related to risk-adjusted

returns. The book-to-market ratio shows a similar pattern. Overall, BTM plays an

important role in predicting stock returns in the NYSE market. The coefficients of the

momentum variables (except for MOM1) imply that better price performance in the

past tends to provide higher returns in the current month. This finding confirms the

continuation in returns documented by Jegadeesh and Titman (1993).

In the last column of Panel A, we report the estimates of illiquidity and characteristic

rewards (bφ and bcn) for excess returns (FF3EXSRET2), which are now risk-adjusted using
rolling estimates of betas as described in Section II. First, the impact of λK on risk-

adjusted returns is slightly higher than the result with FF3EXSRET1. BTM continues

to have an impact on excess returns. With FF3EXSRET2, the coefficient of MOM1 turns

negative, but MOM2 and MOM3 are positively related to returns.

Now we examine in Panel B the results with the illiquidity measure estimated based

on the Glosten and Harris (1988) model, where trading costs are decomposed into two

elements. While the roles of the firm characteristic variables are similar to those in Panel

A, the impact of λGH is now much stronger. To gauge the effect of illiquidity on the

stock return in the FF3EXSRET2 specification, we find that an increase in illiquidity

(λGH) by one standard deviation results in higher monthly (excess) returns of 0.25%.

The magnitude of the additionally required monthly returns is economically significant,

given that Chordia, Huh, and Subrahmanyam (2007) document that the average monthly

(raw) return is 1.19% for 1,647.2 NYSE/AMEX stocks over the past 39.5 years.13

Next, we investigate in Table VIII how the effects of illiquidity and other firm char-

acteristics on returns change when we estimate the illiquidity measures based on Foster

and Viswanathan (1993) and Sadka (2006), who use unexpected order flows. We see in

13If we conduct regressions using the price-impact parameters without the GRT-adjustments, the av-
erage coefficients are 85-96% larger and the t-values are 31.1-36.3% higher. In the regression specification
with the dependent variable being FF3EXSRET1 as in Panel B of Table VII, for instance, when we use
the parameter (λGH) without the GRT-adjustment, the average coefficient is 0.543 (vs. 0.281 with the
GRT-adjustment) and the t-statistic is 7.63 (vs. 5.60 with the adjustment).
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Panel A of Table VIII that the coefficients of the Foster-Viswanathan lambda, λFV , are

also statistically different from zero at any conventional level after accounting for the

effects of the firm characteristics. As observed before in Table VII, BTM has a similar

impact on returns. The momentum effects are also similar to those in Table VII. As

for the illiquidity measure based on Sadka (2006), who decomposes trading costs into

four components and employs unexpected order flows, it is reasonable to see that the

coefficients of λS and their t-values in Panel B are smallest among the last three peers.

However, the Sadka lambda is also statistically significant at the 1% level. The impacts

of the other variables are comparable to those reported in Panel A.14

C. Robustness Checks

C.1. Using Portfolio Average Price-impact Parameters

In Eq.(20), we have avoided the measurement error problem in the loadings on the FF

3 factors by using one of the two types of risk-adjusted returns as a dependent variable.

But λijt is an explanatory variable that is estimated from the time-series regression. Given

that the average number of transactions used within a month to estimate the monthly

price-impact parameters is large enough (3,636.5 data points on average each month for

each firm), the estimation errors in the price-impact parameters may not be substantial.

Nonetheless, this error-in-variable problem could still be a concern when we use the

price-impact parameters of individual stocks. In the spirit of Fama and French (1992),

therefore, we now examine whether our empirical results are robust to using the portfolio

average price-impact parameters.

To obtain the portfolio average price-impact parameters, each month the component

stocks are first split into 10 portfolios (with the equal number of stocks) after being sorted

in ascending order by firm size (MV) and then each of the 10 portfolios is again split into

14Spiegel and Wang (SW) (2005) document that cost-based illiquidity measures do not tend to be
priced after controlling for the idiosyncratic risk. In line with their study, we have estimated the idio-
syncratic risk measure (termed as SIGMA) against the Fama-French 3 factors using the data from the
past 60 months (at least 24 months). Including SIGMA in Eq.(20), we then conduct the same type of
regression analysis equivalent to Tables VII-VIII . The result shows that the coefficients of SIGMA are
positive but insignificant. However, our four illiquidity measures remain significant at any conventional
level even after controlling for SIGMA. Full results are available from the author.
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10 portfolios after being sorted by each of the four GRT-adjusted price-impact parameters

(λK, λGH , λFV , and λS), resulting in 100 portfolios for each parameter in each month.

Then the portfolio average lambda is computed for each portfolio and this average value

is assigned to the component stocks of that portfolio. The resulting portfolio average

price-impact parameters corresponding to λK, λGH , λFV , and λS are denoted as λKp ,

λGHp , λFVp , and λSp , respectively.

The regression analyses with the portfolio average lambdas are contained in Table

IX. For brevity, we do not report the results using the unadjusted return (EXSRET) as

a dependent variable. LAM_PAV G in the table stands for one of the four portfolio

average lambdas. Comparing the results in Panels A and B of Table IX with those in

Table VII, we see that the size of the loadings on the two portfolio average lambdas, λKp
and λGHp , increases slightly but their t-values become smaller, relative to those of λK and

λGH . Regardless of how returns are risk-adjusted, however, both λKp and λGHp continue

to be positive and statistically significant at any conventional level. The relations of the

other variables to returns are essentially the same.

The comparison of Panels C and D in Table IX with the relevant panels in Table VIII

presents qualitatively similar patterns for the other two measures, λFVp and λSp . In any

case, the coefficients of the portfolio average parameters are statistically significant at the

1% level. As for the other variables, the differences are minimal. On balance, using the

portfolio average price-impact parameters does not significantly change our key results.

Based on this finding, therefore, we will continue to report the regression results using

the individual price-impact parameters in the remaining analyses.15

C.2. Using Quote Mid-point Returns

A recent study by Bessembinder and Kalcheva (2006) argues that empirical pricing tests

using the returns calculated based on the observed closing prices might induce microstruc-

ture biases because of the bid-ask bounce, suggesting that asset-pricing tests with quote

mid-point returns can reduce this problem. To address this issue, we compute quote

15To obtain the portfolio average price-impact parameters, we also used book-to-market equity (BM-
w) as a sorting variable, instead of firm size (MV). The results using book-to-market equity are very
similar to those using firm size. The table is available upon request.
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mid-point returns using the monthly closing quote mid-point prices after matching the

intradaily trades and quotes via the Lee and Ready (1991) algorithm, which is described

in Section I. We then risk-adjust the mid-point returns (in excess of the one-month T-

bill rate) according to the two methods as before. The sample period is: 276 months

(198301-200512) when the risk-adjustment in returns is performed by the first method

to obtain FF3EXSRET1; and 252 months (198501-200512) when the risk-adjustment is

performed by the second method to obtain FF3EXSRET2.16

The cross-sectional regression results with the mid-point (excess) returns are shown

in Table X. To save space, the results from the specification that uses the unadjusted

excess return (EXSRET) will no longer be reported throughout. LAM denotes one of

the four price-impact parameters (λK , λGH , λFV , and λS). One aspect we recognize in

Panels A-D is that the adjusted R2’s (Avg R-sqr) range from 0.8% to 1.1%, which are

much lower than those reported in Tables VII-VIII. The other is that by using quote

mid-point returns, the impacts of the explanatory variables on returns are weakened in

general. For example, the book-to-market and momentum effects all phase out.17

An interesting feature in Table X is that while the sensitivity of the mid-point returns

to the four illiquidity measures increases, the level of significance decreases substantially

compared to that in Tables VII-VIII. However, the coefficients of the illiquidity measures

are likely to be significant at 1-5% (except for two cases). The lower t-values might result

from the elimination of the bid-ask bounce effect as well as from the narrower sample.

C.3. Using Share Order Flows

Apart from the two different tests above using the portfolio average lambdas and the

quote mid-point returns, we have already employed the four different types of price-

impact parameters (λijt, i = K, GH, FV, and S) as well as the three different types of

excess returns (EXSRET, FF3EXSRET1, and FF3EXSRET2) to ensure the robustness

16Recall that the risk-adjustment using the secong method (60-month rolling regressions) requires a
return series of at least (past) 24 monthly data points each month for each firm. Thus, we lose the first
24 months. Also note that for expositional convenience we use the same notations as before for the two
risk-adjusted returns (FF3EXSRET1 and FF3EXSRET2), although the returns used here are different
(quote mid-point returns).
17When firm size (SIZE) is included in the regressions, it is strongly negatively related to quote mid-

point returns. However, the sign of the loadings on the illiquidity measures reverses as before.
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of our results.18 Now we briefly discuss the effects of our choices in order flows when

we estimate the illiquidity measures. As pointed out in Section I, the price-impact pa-

rameters estimated with dollar volume-based order flows are used as the primary basis

for our main analyses. Then, will our key findings reported in Tables VII-VIII change

if the price-impact parameters are estimated with share volume-based order flows? The

unreported tables show that, by replacing the measures estimated using dollar order flows

with those using share order flows, the size of the t-values for the illiquidity measures de-

creases slightly (about 10-15%). Given the generally large levels of the t-values, however,

it does not affect very much the main features observed in Tables VII-VIII. In the analy-

ses equivalent to the two tables, we find that the coefficients of the four corresponding

illiquidity measures are all positive and statistically significant at any conventional level,

with the key relations of the other variables being maintained.

Thus far, we have demonstrated that the four illiquidity measures continue to be

priced in the cross-section of stock returns, regardless of using: 1) portfolio average

illiquidity measures; 2) quote mid-point returns; or 3) share order flows to estimate the

price-impact parameters. However, two more questions still remain to be answered: (i)

Do the price-impact parameters estimated using the intradaily order flows perform better

than the other commonly used (il)liquidity measures in the finance literature? (ii) Do the

price-impact parameters continue to be priced after accounting for the effects of other

alternative (il)liquidity measures? These issues are resolved in the next section.

V. A Horse Race with Alternative Measures

A. Selection of Alternative Measures and their Relations to the
Price-impact Parameters

Although it has become possible to process order flows and estimate the price-impact

parameters for a broad sample of stocks as well as for a long period of time, it is still

18As mentioned earlier, we additionally obtained a “purged” estimator of Black et al. (1972) for each
of the explanatory variables in the regressions of FF3EXSRET1 and FF3EXSRET2. The results were
very similar to those of the “raw” estimator and are not reported. The results imply that the estimation
errors in factor loadings are not correlated with the vector of explanatory variables. These results are
available from the authors upon request.

28



computationally challenging. On the other hand, there are a number of other (il)liquidity

measures that have been used in the asset-pricing or microstructure literature. Some of

them are available with low costs and less computational burden because they can be

estimated or constructed from daily or lower frequency databases. We now select some

of commonly used alternative measures available with low costs and investigate how our

price-impact parameters estimated from the high frequency databases compare to those

alternatives.

As Hasbrouck (2005) admits, estimating the measures using high-frequency data may

be limited to the relatively small and recent data samples because of data availability or

computational difficulties. Merton (1980) also suggests that the accuracy in estimating

first moments hinges upon the length of the data sample but not the sampling frequency.

It is also relevant to recognize the computational economy of liquidity measures that can

be constructed from data of daily or lower frequency. As such, given the issues described

above in selecting alternative measures for comparison purposes, we limit our choices to

the measures that can be estimated using the CRSP daily file.

First, we consider Amihud’s (2002) illiquidity measure, which is defined as |r|/DV OL,

where r is the daily stock return and DVOL is the daily dollar volume (in $100,000).

For monthly regressions, we compute each month the average of the daily estimates

of illiquidity within a month. Roughly speaking, this measure (notated as Amihud in

our analysis) is similar to Kyle’s (1985) lambda, which is one of the four price-impact

parameters considered in this study. However, the Amihud measure is distinct from the

Kyle lambda in the sense that Amihud captures the absolute return impact of unsigned

volume, while the Kyle measure is the price impact of signed volume (order flows). Given

the fact that the Amihud measure has been used widely in recent literature, however, we

include Amihud as one of the competing illiquidity measures.

Attempting to answer the question of how well high-frequency measures can be prox-

ied using daily data, Hasbrouck (2005) suggests that the market risk-adjusted effective

cost of Roll (1984), estimated using the Gibbs sampler, is one of appropriate CRSP-

based proxies for a TAQ-based effective cost. We thus consider this measure (notated as

Roll_Gibbs) in our study.19

19This measure is described in Hasbrouck (2006), who denotes it as c_BMA.

29



Lastly, if a stock is not perfectly liquid, signed volume may induce adjustments in

stock prices that initially overshoot and subsequently revert to the true values. Therefore,

we estimate a reversal measure of illiquidity each month for each stock using the CRSP

daily file as in Pástor and Stambaugh (2003) who estimate γ from the regression equation,

rej,d+1,t = a+ brj,d,t + γsign(rej,d,t)DVOLj,d,t + ςj,d+1,t,

where rj,d,t is the raw return and rej,d,t is the excess return (over the CRSP value-weighted

index return) of stock j at day d within month t (we require at least 15 days of data per

month in the CRSP daily file to estimate γ). In many cases, γ is negative, implying that

stock prices often reverse on the following day. A stock with a larger absolute value (|γ|)
of it is assumed to be more illiquid. We denote |γ| as PS.

The two illiquidity measures (Amihud and PS), are estimated each month and the

Roll_Gibbs measure is available from Joel Hasbrouck’s website at an annual frequency.

For consistency in comparisons, the three alternative measures chosen above are alsoWin-

sorized each month at the 0.5th and 99.5th percentiles before conducting the correlation

and regression analyses below.

In Table XI, we report correlation between our price-impact parameters and the

three alternative illiquidity measures. Our four price-impact parameters are most highly

correlated with Amihud (37-54%), followed by PS. Especially, we find that correlation

of Roll_Gibbs with the price-impact parameters ranges from 28.8% to 41.1%. This

demonstrates that, contrary to the argument by Hasbrouck (2005), Roll_Gibbs is at

best a noisy proxy for a TAQ-based effective cost, justifying the merits of estimating the

price-impact parameters using high-frequency databases such as the TAQ. The table also

shows that Amihud is more highly correlated with PS and Roll_Gibbs than with our

price-impact parameters.

B. Cross-Sectional Regressions with Alternative Illiquidity Mea-
sures

In this subsection, we conduct a horse race between one of our four price-impact pa-

rameters and one (or all) of the three alternative measures considered in the previous

30



subsection. Our goal is to test whether the effects of our illiquidity measures on returns

are comparable to those of the other alternative measures and, going one step further,

to check whether each of the price-impact parameters still has an incremental impact on

returns after accounting for the effects of the three alternative measures.

First, we run the regressions with each of the three alternative measures by replacing

λijt in Eq.(20) with one of Amihud, Roll_Gibbs, and PS. Since Roll_Gibbs is at an

annual frequency, we keep the annual values of this measure constant over the twelve

months within each year for the monthly regressions. We report the results in Table XII.

ALT in the table stands for one of the three alternative measures.20

As the correlation coefficients in Table XI suggest, Panel A of Table XII shows that

Amihud is strongly positively related to returns. The impact of Amihud on returns

is comparable to that of our four price-impact parameters reported in Tables VII-VIII.

However, the impact of Roll_Gibbs in Panel B has the wrong sign (negative) and sta-

tistically insignificant. This is surprising, given that this measure is highly correlated

with Amihud. As Hasbrouck (2006) indicates, the limitation of Roll_Gibbs stems from

the fact that it does not explicitly incorporate the price-impact effects of trading volume

or order flows, which may be endogenous with price dynamics. Moreover, the illiquid-

ity effect of asymmetric information is not likely to be captured by the bid-ask spread,

but by the price-impact of a trade. The negative sign on Roll_Gibbs is consistent with

Eleswarapu and Reinganum (1993) and Chordia, Huh, and Subrahmanyam (2008). Panel

C shows that the impact of PS on returns is positive but marginal.21

Next, we run a horse race between one of our four price-impact parameters and all the

three competing measures together. For this purpose, we augment Eq.(20) by including

three more variables as in the following equation,

R̃∗jt = c0t + φtλ
i
jt +

3X
s=1

ϕstALTsjt +
NX
n=1

cntZnjt + ẽ0jt, i = K, GH, FV, or S, (21)

where ALTsjt (s = 1, 2, and 3) denotes one of the three alternative illiquidity measures

20Note that the three alternative measures are GRT-adjusted for each firm over the sample period
before conducting the cross-sectional regressions in order to eliminate nonstationarity.
21This result is consistent with Hasbrouck (2005) (see his Table 5). Unlike this study, however, Pástor

and Stambaugh (2003) use their measure to price illiquidity risk, rather than the level of illiquidity itself.

31



(Amihud, Roll_Gibbs, and PS).

As shown in Panel A of Table XIII, by including the additional illiquidity measures

in the regressions, the number of average component stocks decreases but the adjusted

R2 increases, compared to the results in Panel A of Table VII. We also observe in Panel

A that λK remains to be priced even after controlling for the three alternative measures.

The effect of Amihud is similar to that of Panel A in Table XII, although there are

some differences in the size of the coefficients or t-values. The effect of Roll_Gibbs is

negative and marginally significant, but PS plays no role. With the additional illiquidity

measures, the book-to-market effect is maintained. While MOM1 is negatively related to

returns, the impacts of the other momentum variables become weakened. Panels B-D of

Table XIII report the analogs of Panel A using the other three illiquidity measures (λGH ,

λFV , and λS). We find that the effects of these three price-impact parameters continue

to be positive and statistically significant at the 1% level. The other variables show the

patterns similar to those in Panel A.

To sum up, our empirical tests provide solid evidence that illiquidity measured by the

four price-impact parameters is a priced attribute in the cross-section of stock returns,

even after controlling for the alternative measures. In addition, while estimating the

price-impact measures is most onerous, the unambiguously consistent relations of the

parameters to returns, together with the strong levels of their statistical significance

throughout a variety of experiments, indicate that the price-impact parameters are among

the most reliable proxies for illiquidity in stock markets.

VI. Conclusion

A number of empirical proxies for (il)liquidity have been proposed in the literature,

which links trading frictions to asset prices. However, these measures have been subject

to controversy because they have achieved equivocal results when answering the question

of whether (il)liquidity is related to asset returns. Moreover, many of the measures

have often been constructed from low frequency databases, which may conceal some

interesting dynamics in the aggregation procedures. In cases where illiquidity measures

are estimated from high frequency databases, the coverage has not been broad or long

enough because of limited data availability or computational burden. As a result, some
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theory-based illiquidity measures have been derived and tested. But there is a debate

about the appropriateness of some empirical proxies used as inputs to these theoretical

illiquidity measures.

With these issues in mind, we choose rather a direct and intuitive approach to mea-

suring illiquidity. Specifically, we estimate a set of price-impact parameters based on

the four different models using the intradaily order flows. The order flows are processed

through the Lee and Ready (1991) algorithm from the ISSM and TAQ databases. The

coverage is comprehensive and long enough, spanning the past 23 years (276 months) for

more than 1,500 NYSE-listed stocks.

Our empirical analyses lend strong support to the notion that illiquidity measured by

the price-impact parameters is priced in the cross-section of returns, even after accounting

for the effects of risk factors, firm characteristics, and other illiquidity proxies prevalent

in the literature. Given the consistent relations of our illiquidity measures to returns, the

results also suggest that the price-impact parameters estimated using the high-frequency

order flow data are more effective proxies for illiquidity, compared with other alternative

measures constructed from data of daily or lower frequency.
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Table I 

Summary of Intra-Daily Order Flow Data Used to Estimate the Price-Impact Parameters for NYSE-Listed Stocks  
This table reports the summary of intra-daily order flow data used to estimate price-impact parameters (or lambdas) for NYSE-
listed stocks. To obtain the order flow data, each trade is classified as a buyer- or seller-initiated trade according to the Lee and 
Ready (1991) algorithm using trades and quotes data from the Institute for the Study of Securities Markets (ISSM: 1983-1992) 
and the NYSE Trades and Automated Quotations (TAQ: 1993-2005) databases. In order to match trades and quotes, any quote 
less than five seconds prior to the trade is ignored and the first one at least five seconds prior to the trade is retained (a five-
second rule) for the years 1983 to 1998. For the last seven years (1999-2005), a two-second rule is applied. Then the trades are 
signed as follows. If a trade occurs above the prevailing quote mid-point, it is classified as buyer-initiated and vice versa. If a 
trade occurs exactly at the quote mid-point, the trade is discarded (hence such a trade is not counted in this table). Only NYSE 
stocks are included in the sample. To survive in the sample, stocks should have at least 110 trades per month (on average 5 
trades per day). The sample period is the past 276 months (23 years: 198301-200512).   

      

Summary of Intra-Daily Order Flow Data Used to Estimate Price-Impact Parameters  

Total Number of Trades (and Matched Quotes) Used over the Sample Period (198301-200512):   
    

2,000,884,544  

Minimum Number of Monthly Trades (and Matched Quotes) per Firm:                                   110  

Maximum Number of Monthly Trades (and Matched Quotes) per Firm:   173,471*  

Average Number of Monthly Trades (and Matched Quotes) per Firm:                              3,636.5  

Pooled Number of Firms Used over the 276 Months (Firm-month Observations):   
    

443,453  

*The number of trades (per month) in shares of Chevron Corporation in October 2005.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table II 

Sign, Statistical Significance, and Descriptive Statistics of the Price-Impact Parameters Estimated for NYSE-Listed Stocks  
This table reports the sign and statistical significance of the estimated price-impact parameters (Panel A) and the descriptive 
statistics (average Mean, Median, Standard Deviation (STD), Coefficient of Variation (CV), Skewness, and Kurtosis) for the 
parameters (Panel B). The price-impact parameters are estimated based on the four different models using the intradaily order flow 
data processed via the Lee and Ready (1991) algorithm. Each price-impact parameter is defined as follows: K

0λ : the price-impact 

parameter estimated based on Kyle (1985) (multiplied by 106) using intradaily dollar order flows available within each month for 
each stock; Kλ : the Winsorized parameter of K

0λ  at the 0.5th and 99.5th percentiles; GH
0λ : the price-impact parameter estimated 

based on Glosten and Harris (1988) (multiplied by 106) using intradaily dollar order flows available within each month for each 
stock; GHλ : the Winsorized parameter of GH

0λ  at the 0.5th and 99.5th percentiles; FV
0λ : the price-impact parameter estimated based 

on Foster and Viswanathan (1993) (multiplied by 106) using intradaily dollar order flows available within each month for each 
stock; FVλ : the Winsorized parameter of FV

0λ  at the 0.5th and 99.5th percentiles; S
0λ : the price-impact parameter estimated based 

on Sadka (2006) (multiplied by 106) using intradaily dollar order flows available within each month for each stock; Sλ : the 

Winsorized parameter of S
0λ  at the 0.5th and 99.5th percentiles. To survive in the sample, stocks should have at least 110 trades per 

month (on average 5 trades per day). In Panel B, the mean values of each statistic are first calculated cross-sectionally each month 
and then the time-series averages of those values are reported here. The sample period is the past 276 months (23 years: 198301-
200512) for NYSE stocks. The average number of component stocks used each month is 1,578.1.  

       

Panel A: Sign and Significance of the Estimated Price-Impact Parameters  
    % of  % of Positive & Significant % of  

Estimation Method  Notation  Positive Lambdas Lambdas (at 5%) Negative Lambdas 

Kyle (1985)  
K
0λ   99.78% 97.19% 0.22% 

Glosten and Harris (1988)  
GH
0λ   97.97% 85.24% 2.03% 

Foster and Viswanathan (1993)  
FV
0λ   97.68% 83.99% 2.32% 

Sadka (2006)   
S
0λ     93.37% 67.17% 6.63% 

        

Panel B: Descriptive Statistics for the Price-Impact Parameters 
Price-Impact 
Parameter  Mean Median STD CV Skewness Kurtosis 

             K
0λ   1.027 0.254 7.359 456.51 14.46 432.01 

             Kλ   0.817 0.254 1.425 177.24 3.43 14.68 
GH
0λ   0.599 0.111 6.206 677.39 15.46 496.09 
GHλ   0.417 0.111 0.843 202.56 3.99 19.86 
FV
0λ   0.609 0.108 6.829 726.89 15.76 513.22 
FVλ   0.413 0.108 0.844 204.65 4.02 20.08 

            S
0λ   0.288 0.082 3.211 1277.29 3.11 357.86 

            Sλ    0.305 0.082 0.640 210.88 3.72 17.60 
 

 
 
 
 
 
 



 

 
Table III 

Descriptive Statistics of Other Key Variables 
This table reports descriptive statistics (Mean, Median, Standard Deviation (STD), Coefficient of Variation (CV), Skewness, and 
Kurtosis) for the key characteristic-related variables to be used in the Fama-MacBeth (1973) cross-sectional regressions. Each 
variable is defined as follows: MV: the market value defined as the previous month-end stock price times the number of shares 
outstanding (in $million); SIZE: natural logarithm of MV; BM_w: the Winsorized value (at the 0.5th and 99.5th percentiles) of a 
book-to-market ratio (BM = BV/MV), where the book value (BV) is defined as common equity plus deferred taxes in $million; 
BTM: natural logarithm of BM_w; MOM1: compounded holding period return of a stock over the most recent 3 months (from 
month t-1 to month t-3); MOM2: compounded holding period return over the next recent 3 months (from month t-4 to month t-
6); MOM3: compounded holding period return over the 3 months from month t-7 to month t-9; MOM4: compounded holding 
period return over the 3 months from month t-9 to month t-12. The sample period is the past 276 months (23 years: 198301-
200512) for NYSE stocks. The values of each statistic are first calculated cross-sectionally each month and then the time-series 
averages of those values are reported here. The average number of component stocks used in a month to compute the statistics 
for each variable is 1,578.1.   

                

Variables  Mean Median STD CV Skewness Kurtosis 

MV  3189.32 677.30 10259.28 302.46 9.30 127.92 

SIZE  6.44 6.43 1.71 26.64 0.07 -0.12 

BM_w  0.74 0.64 0.55 73.47 2.69 14.99 

BTM  -0.55 -0.46 0.73 -163.27 -0.85 2.25 

MOM1  0.022 0.028 0.191 -1679.40 -0.49 8.23 

MOM2  0.023 0.029 0.185 665.27 -0.37 6.99 

MOM3  0.024 0.029 0.182 425.98 -0.29 6.36 

MOM4   0.025 0.030 0.181 -240.27 -0.20 6.00 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table IV 

Correlations between Key Variables 
This table reports the average correlations between the key explanatory variables for NYSE stocks over the 276 months (23 years: 
198301-200512). The cross-sectional correlation coefficients are first calculated each month and then the time-series averages of 
those values over the sample periods are reported here. The definitions of the variables are as follows: Kλ : the price-impact 

parameter estimated based on Kyle (1985) using intradaily dollar order flows available within each month, multiplied by 106, and 
then Winsorized at the 0.5th and 99.5th percentiles; GHλ : the price-impact parameter estimated based on Glosten and Harris (1988) 

using intradaily dollar order flows available within each month, multiplied by 106, and then Winsorized at the 0.5th and 99.5th 
percentiles; FVλ : the price-impact parameter estimated based on Foster and Viswanathan (1993) using intradaily dollar order flows 

available within each month, multiplied by 106, and then Winsorized at the 0.5th and 99.5th percentiles; Sλ : the price-impact 

parameter estimated based on Sadka (2006) using intradaily dollar order flows available within each month, multiplied by 106, and 
then Winsorized at the 0.5th and 99.5th percentiles; SIZE: natural logarithm of MV, which is the market value defined as the 
previous month-end stock price times the number of shares outstanding (in $million); BTM: natural logarithm of BM_w, which is 
the Winsorized value (at the 0.5th and 99.5th percentiles) of a book-to-market ratio (BM = BV/MV), where the book value (BV) is 
defined as common equity plus deferred taxes in $million; MOM1: compounded holding period return of a stock over the most 
recent 3 months (from month t-1 to month t-3); MOM2: compounded holding period return over the next recent 3 months (from 
month t-4 to month t-6); MOM3: compounded holding period return over the 3 months from month t-7 to month t-9; MOM4: 
compounded holding period return over the 3 months from month t-9 to month t-12. The values of each statistic are first calculated 
cross-sectionally each month and then the time-series averages of those values are reported here. The average number of 
component stocks used in a month to compute the statistics for each variable is 1,578.1. 

                        

    Kλ   GHλ  FVλ   Sλ SIZE BTM MOM1 MOM2 MOM3 MOM4 
Kλ   1          
GHλ   0.936 1         
FVλ   0.931 0.996 1        
Sλ   0.771 0.802 0.803 1       

SIZE  -0.569 -0.499 -0.494 -0.451 1      

BTM  0.043 0.030 0.030 0.030 -0.156 1     

MOM1  -0.051 -0.017 -0.017 -0.036 0.104 0.051 1    

MOM2  -0.063 -0.028 -0.028 -0.047 0.106 0.043 0.038 1   

MOM3  -0.061 -0.030 -0.030 -0.043 0.103 0.012 0.050 0.029 1  

MOM4   -0.058 -0.029 -0.029 -0.037 0.094 -0.028 0.041 0.043 0.025 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table V 

Average of Firm Size, Price-Impact Parameters, and Value-Weighted Monthly Returns of the 25 Portfolios Formed  
by Sorting on Illiquidity and Firm Size 

This table reports the average of firm size, price-impact parameters, and value-weighted monthly returns for the 25 portfolios formed 
by sorting on illiquidity and firm size. The component stocks are first split into 5 portfolios (with the equal number of stocks) after 
being sorted in ascending order by illiquidity ( GHλ ) and then each of the 5 portfolios is again split into 5 portfolios after being sorted 

by firm size (MV), resulting in 25 portfolios each month. GHλ  is the price-impact parameter estimated based on Glosten and Harris 

(1988) using intradaily dollar order flows available within each month, multiplied by 106, and then Winsorized at the 0.5th and 99.5th 
percentiles. MV is the market value (firm size) defined as the previous month-end stock price times the number of shares outstanding 
(in $million). Panel A contains the average of firm size (MV) (the time-series average of the cross-sectional means), while Panel B 
does the average of price-impact parameters for each portfolio. The upper part of Panel C contains the time-series average of value-
weighted cross-sectional mean returns (monthly) for each portfolio, together with their t-statistics (italicized). The lower part of Panel 
C shows the time-series average returns for the five differential (Illiquid - Liquid) portfolios [each of which contains a time-series of 
return differences between the highest illiquidity portfolio (Illiquid) and the lowest illiquidity portfolio (Liquid) within a given firm-
size group], together with their t-statistics to test the null hypothesis that the time-series average of the return differences equals zero. 
The sample period is the past 276 months (23 years: 198301-200512) for NYSE stocks. The average number of component stocks in 
each portfolio in a month is 63.41.  

       

Average of Firm Size, Price-Impact Parameters, and Value-Weighted Returns 
  Firm-Size (MV) Group 

Illiquidity ( GHλ ) Group  1 Small 2 3 4 5 Big 

   Panel A: Average of Firm Size (MV) 
1 Liquid  388.24 1520.81 3526.89 7959.54 37269.18 
2  349.83 968.98 1814.32 3331.97 10223.15 
3  185.54 470.06 816.03 1373.93 4089.80 
4  88.03 211.32 367.16 621.93 1854.58 
5 Illiquid   30.43 74.77 129.54 236.29 859.11 

   Panel B: Average of Price-Impact Parameters ( GHλ  ) 

1 Liquid  -0.011 0.008 0.012 0.013 0.012 
2  0.050 0.049 0.048 0.046 0.042 
3  0.122 0.120 0.116 0.111 0.104 
4  0.345 0.328 0.314 0.300 0.276 
5 Illiquid   2.475 1.743 1.421 1.239 1.090 

   Panel C: Average of Value-Weighted Returns 
1 Liquid  0.0142 0.0138 0.0153 0.0147 0.0162 
  4.49 4.95 5.96 6.02 6.57 
2  0.0097 0.0131 0.0167 0.0176 0.0197 
  2.86 4.40 5.53 6.33 7.39 
3  0.0094 0.0135 0.0156 0.0172 0.0205 
  2.50 4.13 5.29 6.02 7.38 
4  0.0096 0.0145 0.0166 0.0189 0.0198 
  2.42 4.17 5.19 6.72 6.84 
5 Illiquid  0.0241 0.0198 0.0199 0.0202 0.0207 
    4.55 5.08 5.86 6.87 7.93 
       
Illiquid - Liquid  0.0098 0.0060 0.0046 0.0055 0.0046 
    2.48 2.12 1.90 2.70 2.14 

 
 
 
 
 
 
 



 

 
Table VI 

Intercepts (Abnormal Returns, FF3 Alphas) from the Time-series Regressions of Returns on the Fama-French 3 Factors for 
the 25 Portfolios Formed by Sorting on Illiquidity and Firm Size 

This table reports the intercepts (abnormal returns, termed as FF3 Alphas), together with the t-statistics (italicized), for the 25 
portfolios formed by sorting on illiquidity and firm size. The component stocks are first split into 5 portfolios (with the equal number 
of stocks) after being sorted in ascending order by illiquidity ( GHλ ) and then each of the 5 portfolios is again split into 5 portfolios 

after being sorted by firm size (MV), resulting in 25 portfolios each month. Then the cross-sectional mean return (value-weighted) is 
calculated each month for each portfolio. GHλ  is the price-impact parameter estimated based on Glosten and Harris (1988) using 

intradaily dollar order flows available within each month, multiplied by 106, and then Winsorized at the 0.5th and 99.5th percentiles. 
MV is the market value (firm size) defined as the previous month-end stock price times the number of shares outstanding (in 
$million). The 25 FF3 Alphas contained in the upper part of Panel A are the intercepts from the time-series regressions of the portfolio 
return (in excess of the one-month T-bill rate) on the Fama-French 3 factors. The values italicized in the second row of each illiquidity 
group in the upper part of Panel A are t-statistics from the time-series regressions. The five FF3 Alphas contained in the lower part of 
Panel A are the intercepts from the time-series regressions of the return difference [between the highest illiquidity portfolio (Illiquid) 
and the lowest illiquidity portfolio (Liquid) within a given firm-size group] on the Fama-French 3 factors, together with their t-
statistics from the regressions. Panel B reports the GRS-test result for the null hypothesis, ‘ DiffH0

: the FF3 Alphas for the five (Illiquid 

- Liquid) portfolios are jointly zero.’ The F-statistic is computed based on Gibbons, Ross, and Shanken (1989) and the corresponding 
p-value is also reported for statistical inference. The sample period is the past 276 months (23 years: 198301-200512) for NYSE 
stocks. The average number of component stocks in each portfolio in a month is 63.41.  

           

 Panel A: FF3 Alphas from the Time Series of Value-Weighted Returns 

  Firm-Size (MV) Group 

Illiquidity ( GHλ ) Group  1 Small   2   3   4   5 Big 

1 Liquid  -0.0003  -0.0002  0.0023  0.0026  0.0061 

  -0.18  -0.11  1.98  2.79  9.58 

2  -0.0059  -0.0010  0.0025  0.0046  0.0086 

  -3.88  -0.73  1.85  4.62  8.87 

3  -0.0065  -0.0009  0.0022  0.0037  0.0087 

  -3.32  -0.57  1.80  2.89  7.90 

4  -0.0060  -0.0006  0.0023  0.0059  0.0074 

  -2.85  -0.40  1.61  4.51  5.04 

5 Illiquid  0.0090  0.0053  0.0065  0.0071  0.0097 

    2.43   2.60   3.69   5.15   6.51 

Illiquid - Liquid  0.0093  0.0055  0.0042  0.0045  0.0036 

    2.46   2.32   2.25   3.15   2.34 

Panel B: GRS Test for Five (Illiquid - Liquid) Portfolios 

Null Hypothesis  F-statistic  p-value 
DiffH0

: FF3 Alphas for five (Illiquid - Liquid) portfolios are 
              jointly zero   4.25   0.0009 

 
 
 
 
 
 



 

 
Table VII 

Results of Monthly Cross-sectional Regressions: with Price-Impact Parameters Based on Kyle (1985, Kλ ) and Glosten and Harris (1988, GHλ ) 

This table reports the monthly Fama-MacBeth (1973)-type cross-sectional regressions using Kλ (in Panel A) and GHλ (in Panel B) for NYSE stocks over the 276 months (23 years: 198301-200512). 

The dependent variable is EXSRET, FF3EXSRET1, or FF3EXSRET2 in each panel. The definitions of the variables are as follows: EXSRET: the monthly risk-unadjusted excess return, i.e., the 
monthly return less the risk-free rate proxied by the one-month T-bill rate; FF3EXSRET1: the risk-adjusted excess return using the Fama-French (FF) 3 factors, i.e., the constant term plus the residual 
from the time-series regression of the excess return on the FF 3 factors using the entire sample range of the data; FF3EXSRET2: the risk-adjusted excess return using the Fama-French (FF) 3 factors 
with factor loadings being estimated from the 5-year rolling regressions, i.e., *

iR  computed each month with the current month data from the equation, 

]ˆˆˆ[)( 321
* HMLSMBMKTRRR fii βββ ++−−= , after the factor loadings ( 321 ,,, βββα ) are first estimated for each month using the time-series data of the past 60 months (at least 24 months) 

in the monthly regression, εβββα ++++=− HMLSMBMKTRR fi 321
, where fi RR , , and 

mR  are the individual stock return, the risk-free rate, and the market index return, respectively, 

while MKT, SMB, and HML  are FF 3 factors; Kλ : the price-impact parameter estimated based on Kyle (1985) using intradaily dollar order flows available within each month, multiplied by 106, and 

then Winsorized at the 0.5th and 99.5th percentiles; GHλ : the price-impact parameter estimated based on Glosten and Harris (1988) using intradaily dollar order flows available within each month, 

multiplied by 106, and then Winsorized at the 0.5th and 99.5th percentiles; BTM: natural logarithm of BM_w, which is the Winsorized value (at the 0.5th and 99.5th percentiles) of a book-to-market ratio 
(BM = BV/MV), where the book value (BV) is defined as common equity plus deferred taxes in $million and the market value (MV) is defined as the previous month-end stock price times the 
number of shares outstanding (in $million); MOM1: compounded holding period return of a stock over the most recent 3 months (from month t-1 to month t-3); MOM2: compounded holding period 
return over the next recent 3 months (from month t-4 to month t-6); MOM3: compounded holding period return over the 3 months from month t-7 to month t-9; MOM4: compounded holding period 
return over the 3 months from month t-9 to month t-12. To remove nonstationarity, the Gallant, Rossi, and Tauchen (GRT) (1993) procedure has been applied to Kλ , GHλ , and BTM for each firm 

over the sample period before conducting the cross-sectional regressions (GRT-adjusted variables are indicated by superscript “a”). The values in the first row for each explanatory variable are the 
time-series averages of coefficients obtained from the month-by-month cross-sectional regressions, and the values italicized in the second row of each variable are t-statistics computed based on 
Fama-MacBeth (1973). The coefficients are all multiplied by 100. Avg R-sqr is the average of adjusted R-squared. Avg Obs is the monthly average number of companies used in the cross-sectional 
regressions. The average number of component stocks used each month in the regressions is 1,513.9-1,578.1. Coefficients significantly different from zero at the significance levels of 1% and 5% are 
indicated by ** and *, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
(Table VII continued) 

                                          

Panel A: with Lambdas Based on Kyle (1985)  Panel B: with Lambdas Based on Glosten and Harris (1988) 

Expla. Variables  EXSRET  FF3EXSRET1  FF3EXSRET2  Expla. Variables  EXSRET  FF3EXSRET1  FF3EXSRET2 

Intercept  1.014 **  0.290 **  0.341 **  Intercept  1.019 **  0.292 **  0.349 ** 

  4.16   3.01   3.18     4.18   3.07   3.30  
,Kλ a  0.143 **  0.149 **  0.159 **  

,GHλ a  0.266 **  0.281 **  0.298 ** 

  3.52   4.34   4.40     4.42   5.60   5.50  

BTMa  0.392 **  0.319 **  0.306 **  BTMa  0.396 **  0.320 **  0.310 ** 

  6.54   7.27   6.47     6.58   7.29   6.54  

MOM1  -0.493   -0.578   -0.838 *  MOM1  -0.528   -0.614   -0.878 * 

  -1.18   -1.73   -2.23     -1.25   -1.83   -2.32  

MOM2  0.562   0.738 *  0.849 **  MOM2  0.534   0.708 *  0.817 * 

  1.57   2.56   2.58     1.48   2.44   2.47  

MOM3  0.749 *  0.808 *  0.839 *  MOM3  0.737 *  0.799 *  0.831 * 

  2.04   2.56   2.37     1.99   2.53   2.33  

MOM4  0.994 **  0.939 **  0.588   MOM4  0.978 **  0.914 **  0.561  

  3.01   3.52   1.88     2.93   3.39   1.78  

                     

Avg R-sqr  0.045   0.030   0.033   Avg R-sqr  0.044   0.029   0.032  

Avg Obs   1577.9     1576.7     1513.8     Avg Obs   1578.1     1577.0     1513.9   
 
 



 

 
Table VIII 

Results of Monthly Cross-sectional Regressions: with Price-Impact Parameters Based on Foster and Viswanathan (1993, FVλ ) and Sadka (2006, Sλ ) 

This table reports the monthly Fama-MacBeth (1973)-type cross-sectional regressions using FVλ  (in Panel A) and Sλ  (in Panel B) for NYSE stocks over the 276 months (23 years: 198301-200512). 

The dependent variable is EXSRET, FF3EXSRET1 or FF3EXSRET2 in each panel. The definitions of the variables are as follows: EXSRET: the monthly risk-unadjusted excess return, i.e., the monthly 
return less the risk-free rate proxied by the one-month T-bill rate; FF3EXSRET1: the risk-adjusted excess return using the Fama-French (FF) 3 factors, i.e., the constant term plus the residual from the 
time-series regression of the excess return on the FF 3 factors using the entire sample range of the data; FF3EXSRET2: the risk-adjusted excess return using the Fama-French (FF) 3 factors with factor 
loadings being estimated from the 5-year rolling regressions, i.e., *

iR  computed each month with the current month data from the equation, ]ˆˆˆ[)( 321
* HMLSMBMKTRRR fii βββ ++−−= , after 

the factor loadings ( 321 ,,, βββα ) are first estimated for each month using the time-series data of the past 60 months (at least 24 months) in the monthly regression, 

εβββα ++++=− HMLSMBMKTRR fi 321
, where fi RR , , and 

mR  are the individual stock return, the risk-free rate, and the market index return, respectively, while MKT, SMB, and HML  

are FF 3 factors; FVλ : the price-impact parameter estimated based on Foster and Viswanathan (1993) using intradaily dollar order flows available within each month, multiplied by 106, and then 

Winsorized at the 0.5th and 99.5th percentiles; Sλ : the price-impact parameter estimated based on Sadka (2006) using intradaily dollar order flows available within each month, multiplied by 106, and 

then Winsorized at the 0.5th and 99.5th percentiles; BTM: natural logarithm of BM_w, which is the Winsorized value (at the 0.5th and 99.5th percentiles) of a book-to-market ratio (BM = BV/MV), where 
the book value (BV) is defined as common equity plus deferred taxes in $million and the market value (MV) is defined as the previous month-end stock price times the number of shares outstanding (in 
$million); MOM1: compounded holding period return of a stock over the most recent 3 months (from month t-1 to month t-3); MOM2: compounded holding period return over the next recent 3 months 
(from month t-4 to month t-6); MOM3: compounded holding period return over the 3 months from month t-7 to month t-9; MOM4: compounded holding period return over the 3 months from month t-9 
to month t-12. To remove nonstationarity, the Gallant, Rossi, and Tauchen (GRT) (1993) procedure has been applied to FVλ , Sλ , and BTM for each firm over the sample period before conducting the 

cross-sectional regressions (GRT-adjusted variables are indicated by superscript “a”). The values in the first row for each explanatory variable are the time-series averages of coefficients obtained from 
the month-by-month cross-sectional regressions, and the values italicized in the second row of each variable are t-statistics computed based on Fama-MacBeth (1973). The coefficients are all multiplied 
by 100. Avg R-sqr is the average of adjusted R-squared. Avg Obs is the monthly average number of companies used in the cross-sectional regressions. The average number of component stocks used 
each month in the regressions is 1,513.3-1,577.4. Coefficients significantly different from zero at the significance levels of 1% and 5% are indicated by ** and *, respectively.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
(Table VIII continued) 

                                          

Panel A: with Lambdas Based on Foster and Viswanathan (1993)  Panel B: with Lambdas Based on Sadka (2006) 

Expla. Variables  EXSRET  FF3EXSRET1  FF3EXSRET2  Expla. Variables  EXSRET  FF3EXSRET1  FF3EXSRET2 

Intercept  1.018 **  0.292 **  0.351 **  Intercept  1.057 **  0.325 **  0.384 ** 

  4.18   3.07   3.32     4.34   3.42   3.60  
,FVλ a  0.270 **  0.284 **  0.298 **  

,Sλ a  0.203 **  0.241 **  0.257 ** 

  4.21   5.28   5.12     2.64   3.74   3.68  

BTMa  0.398 **  0.322 **  0.312 **  BTMa  0.399 **  0.323 **  0.312 ** 

  6.61   7.35   6.60     6.58   7.31   6.52  

MOM1  -0.522   -0.605   -0.868 *  MOM1  -0.511   -0.590   -0.848 * 

  -1.24   -1.80   -2.29     -1.22   -1.77   -2.26  

MOM2  0.546   0.720 *  0.822 *  MOM2  0.536   0.721 *  0.829 * 

  1.51   2.48   2.48     1.49   2.48   2.51  

MOM3  0.750 *  0.810 *  0.843 *  MOM3  0.701   0.766 *  0.800 * 

  2.03   2.56   2.37     1.91   2.44   2.26  

MOM4  1.004 **  0.937 **  0.586   MOM4  1.014 **  0.955 **  0.608  

  3.03   3.50   1.86     3.04   3.55   1.93  

                     

Avg R-sqr  0.044   0.029   0.032   Avg R-sqr  0.044   0.029   0.032  

Avg Obs   1577.4     1576.3     1513.3     Avg Obs   1577.4     1576.4     1513.3   



 

 
Table IX 

Results of Monthly Cross-sectional Regressions Using Portfolio Average Price-Impact Parameters: K
pλ , GH

pλ , FV
pλ , and S

pλ  

This table reports the monthly Fama-MacBeth (1973)-type cross-sectional regressions using the portfolio average price-impact parameters for NYSE stocks over the 276 months (23 years: 198301-
200512). To obtain the portfolio average price-impact parameters (or lambdas), each month the component stocks are first split into 10 portfolios (with the equal number of stocks) after being sorted in 
ascending order by firm size (MV) and then each of the 10 portfolios is again split into 10 portfolios after being sorted by each of the four GRT-adjusted price-impact parameters ( Kλ , GHλ , FVλ , Sλ ), 

resulting in 100 portfolios for each price-impact parameter in each month. Then the portfolio average lambda is computed for each portfolio and this average value is assigned to the component stocks in 
the portfolio. Kλ , GHλ , FVλ , and Sλ  are defined as in the previous tables and the corresponding portfolio average price-impact parameters are denoted as K

pλ , GH
pλ , FV

pλ , and S
pλ , respectively. The 

dependent variable is FF3EXSRET1 or FF3EXSRET2 in each panel. The definitions of the other variables are as follows: FF3EXSRET1: the risk-adjusted excess return (in excess of the risk-free rate 
proxied by the one-month T-bill rate) using the Fama-French (FF) 3 factors, i.e., the constant term plus the residual from the time-series regression of the excess return on the FF 3 factors using the 
entire sample range of the data; FF3EXSRET2: the risk-adjusted excess return using the Fama-French (FF) 3 factors with factor loadings being estimated from the 5-year rolling regressions, i.e., *

iR  

computed each month with the current month data from the equation, ]ˆˆˆ[)( 321
* HMLSMBMKTRRR fii βββ ++−−= , after the factor loadings ( 321 ,,, βββα ) are first estimated for each month 

using the time-series data of the past 60 months (at least 24 months) in the monthly regression, εβββα ++++=− HMLSMBMKTRR fi 321
, where fi RR , , and 

mR  are the individual stock 

return, the risk-free rate, and the market index return, respectively, while MKT, SMB, and HML  are FF 3 factors; LAM_PAVG: one of the four portfolio average price-impact parameters (lambdas); 
BTM: natural logarithm of BM_w, which is the Winsorized value (at the 0.5th and 99.5th percentiles) of a book-to-market ratio (BM = BV/MV), where the book value (BV) is defined as common equity 
plus deferred taxes in $million and the market value (MV) is defined as the previous month-end stock price times the number of shares outstanding (in $million); MOM1: compounded holding period 
return of a stock over the most recent 3 months (from month t-1 to month t-3); MOM2: compounded holding period return over the next recent 3 months (from month t-4 to month t-6); MOM3: 
compounded holding period return over the 3 months from month t-7 to month t-9; MOM4: compounded holding period return over the 3 months from month t-9 to month t-12. To remove 
nonstationarity, the Gallant, Rossi, and Tauchen (GRT) (1993) procedure has been applied to Kλ , GHλ , FVλ , and Sλ  for each firm over the sample period prior to computing the portfolio averages. 

BTM is also GRT-adjusted before conducting the cross-sectional regressions (GRT-adjusted variables are indicated by superscript “a”). The values in the first row for each explanatory variable are the 
time-series averages of coefficients obtained from the month-by-month cross-sectional regressions, and the values italicized in the second row of each variable are t-statistics computed based on Fama-
MacBeth (1973). The coefficients are all multiplied by 100. Avg R-sqr is the average of adjusted R-squared. Avg Obs is the monthly average number of companies used in the cross-sectional regressions. 
The average number of component stocks used each month in the regressions is 1,512.4-1,573.4. Coefficients significantly different from zero at the significance levels of 1% and 5% are indicated by ** 
and *, respectively.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

(Table IX continued) 
                                                  

  Panel A: LAM_PAVG = K
pλ   Panel B: LAM_PAVG = GH

pλ   Panel C: LAM_PAVG = FV
pλ   Panel D: LAM_PAVG = S

pλ  

Expla. Variables  FF3EXSRET1  FF3EXSRET2  FF3EXSRET1  FF3EXSRET2  FF3EXSRET1  FF3EXSRET2  FF3EXSRET1  FF3EXSRET2 

Intercept  0.278 **  0.334 **  0.281 **  0.339 **  0.285 **  0.344 **  0.318 **  0.377 ** 

  2.85   3.08   2.93   3.18   2.97   3.23   3.31   3.51  

LAM_PAVGa  0.162 **  0.164 **  0.299 **  0.305 **  0.286 **  0.288 **  0.260 **  0.263 ** 

  4.32   4.12   5.22   4.97   5.02   4.70   3.63   3.40  

BTMa  0.328 **  0.312 **  0.329 **  0.314 **  0.329 **  0.315 **  0.334 **  0.319 ** 

  7.48   6.56   7.47   6.59   7.48   6.61   7.54   6.63  

MOM1  -0.576   -0.841 *  -0.619   -0.881 *  -0.605   -0.868 *  -0.589   -0.848 * 

  -1.72   -2.24   -1.83   -2.33   -1.79   -2.29   -1.75   -2.25  

MOM2  0.746 **  0.866 **  0.714 *  0.833 *  0.727 *  0.839 *  0.734 *  0.854 ** 

  2.58   2.62   2.45   2.50   2.49   2.52   2.51   2.57  

MOM3  0.842 **  0.874 *  0.817 **  0.855 *  0.826 **  0.867 *  0.790 *  0.829 * 

  2.67   2.47   2.58   2.40   2.61   2.43   2.50   2.33  

MOM4  0.933 **  0.579   0.919 **  0.564   0.938 **  0.584   0.944 **  0.594  

  3.48   1.85   3.39   1.78   3.49   1.86   3.49   1.88  

                         

Avg R-sqr  0.030   0.033   0.029   0.033   0.029   0.032   0.029   0.032  

Avg Obs   1573.1     1512.9     1573.4     1513.1     1572.7     1512.4     1572.8     1512.5   
 
 
 



 

Table X 
Results of Monthly Cross-sectional Regressions Using Quote Mid-point Returns 

This table reports the monthly Fama-MacBeth (1973)-type cross-sectional regressions using quote mid-point returns for NYSE stocks. The sample period is: 276 months (23 years: 198301-200512) 
when the risk-adjustment in returns is performed by the first method; and 252 months (21 years: 198501-200512) when the risk-adjustment in returns is performed by the second method. Quote mid-
point returns are calculated using the monthly closing quote mid-point prices after matching the intradaily trades and quotes according to the Lee and Ready (1991) algorithm. The same notations are 
used for the two dependent variables as before: FF3EXSRET1 and FF3EXSRET2. Kλ , GHλ , FVλ , and Sλ  are defined as in the previous tables. The definitions of the other variables are as follows: 

FF3EXSRET1: the risk-adjusted excess mid-point return (in excess of the risk-free rate proxied by the one-month T-bill rate) using the Fama-French (FF) 3 factors, i.e., the constant term plus the 
residual from the time-series regression of the excess mid-point return on the FF 3 factors using the entire sample range of the data; FF3EXSRET2: the risk-adjusted excess mid-point return using the 
Fama-French (FF) 3 factors with the factor loadings being estimated from the 5-year rolling regressions, i.e., *

iR  computed each month with the current month data from the equation, 

]ˆˆˆ[)( 321
* HMLSMBMKTRRR fii βββ ++−−= , after the factor loadings ( 321 ,,, βββα ) are first estimated for each month using the time-series data of the past 60 months (at least 24 months) 

in the monthly regression, εβββα ++++=− HMLSMBMKTRR fi 321
, where fi RR , , and 

mR  are the individual stock’s mid-point return, the risk-free rate, and the market index return, 

respectively, while MKT, SMB, and HML  are FF 3 factors; LAM: one of the four price-impact parameters (lambdas); BTM: natural logarithm of BM_w, which is the Winsorized value (at the 0.5th and 
99.5th percentiles) of a book-to-market ratio (BM = BV/MV), where the book value (BV) is defined as common equity plus deferred taxes in $million and the market value (MV) is defined as the 
previous month-end stock price times the number of shares outstanding (in $million); MOM1: compounded holding period return of a stock over the most recent 3 months (from month t-1 to month t-3); 
MOM2: compounded holding period return over the next recent 3 months (from month t-4 to month t-6); MOM3: compounded holding period return over the 3 months from month t-7 to month t-9; 
MOM4: compounded holding period return over the 3 months from month t-9 to month t-12. To remove nonstationarity, the Gallant, Rossi, and Tauchen (GRT) (1993) procedure has been applied 
to Kλ , GHλ , FVλ ,  Sλ , and BTM for each firm over the sample period before conducting the cross-sectional regressions (GRT-adjusted variables are indicated by superscript “a”). The values in the 

first row for each explanatory variable are the time-series averages of coefficients obtained from the month-by-month cross-sectional regressions, and the values italicized in the second row of each 
variable are t-statistics computed based on Fama-MacBeth (1973). The coefficients are all multiplied by 100. Avg R-sqr is the average of adjusted R-squared. Avg Obs is the monthly average number of 
companies used in the cross-sectional regressions. The average number of component stocks used each month in the regressions is 1,467.5-1,558.2. Coefficients significantly different from zero at the 
significance levels of 1% and 5% are indicated by ** and *, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

(Table X continued) 
                                                  

  Panel A: LAM = Kλ   Panel B: LAM = GHλ   Panel C: LAM = FVλ   Panel D: LAM = Sλ  

Expla. Variables  FF3EXSRET1  FF3EXSRET2  FF3EXSRET1  FF3EXSRET2  FF3EXSRET1  FF3EXSRET2  FF3EXSRET1  FF3EXSRET2 

Intercept  -0.246   -0.397   -0.207   -0.386   -0.227   -0.408   -0.162   -0.370  

  -0.66   -0.88   -0.54   -0.86   -0.60   -0.91   -0.43   -0.84  

LAMa  0.267   0.279 **  0.398 *  0.523 **  0.452 **  0.584 **  0.362   0.596 ** 

  1.83   2.69   2.25   3.14   2.58   3.32   1.56   2.98  

BTMa  0.123   0.130   0.135   0.128   0.134   0.125   0.137   0.126  

  0.32   0.42   0.35   0.41   0.35   0.40   0.36   0.40  

MOM1  0.819   -0.492   0.763   -0.551   0.771   -0.532   0.767   -0.512  

  0.56   -0.38   0.52   -0.42   0.53   -0.41   0.53   -0.39  

MOM2  2.077   -0.003   2.031   -0.072   2.068   -0.044   2.054   -0.013  

  0.81   0.00   0.77   -0.05   0.79   -0.03   0.79   -0.01  

MOM3  -0.072   -0.785   -0.152   -0.829   -0.137   -0.820   -0.164   -0.825  

  -0.06   -0.63   -0.13   -0.66   -0.12   -0.66   -0.15   -0.66  

MOM4  -0.566   1.407   -0.490   1.366   -0.477   1.378   -0.451   1.438  

  -0.35   1.39   -0.32   1.35   -0.31   1.37   -0.29   1.44  

                         

Avg R-sqr  0.008   0.011   0.008   0.011   0.008   0.011   0.008   0.011  

Avg Obs   1558.0     1467.7     1558.2     1467.9     1557.7     1467.5     1557.7     1467.5   
 
 



 

 
Table XI 

Relations of the Price-Impact Parameters to Alternative Measures 
This table reports the monthly average correlations between the four price-impact parameters and other (il)liquidity measures for 
NYSE stocks over the past 276 months (23 years: 198301-200512. The cross-sectional correlation coefficients are first calculated each 
month and then the time-series averages of those values over the sample periods are reported here. The definitions of the measures are 
as follows: Kλ : the price-impact parameter estimated based on Kyle (1985) using intradaily dollar order flows available within each 

month, multiplied by 106, and then Winsorized at the 0.5th and 99.5th percentiles; GHλ : the price-impact parameter estimated based on 

Glosten and Harris (1988) using intradaily dollar order flows available within each month, multiplied by 106, and then Winsorized at 
the 0.5th and 99.5th percentiles; FVλ : the price-impact parameter estimated based on Foster and Viswanathan (1993) using intradaily 

dollar order flows available within each month, multiplied by 106, and then Winsorized at the 0.5th and 99.5th percentiles; Sλ : the 

price-impact parameter estimated based on Sadka (2006) using intradaily dollar order flows available within each month, multiplied 
by 106, and then Winsorized at the 0.5th and 99.5th percentiles; Amihud: the Winsorized (at the 0.5th and 99.5th percentiles) illiquidity 
measure of Amihud (2002) estimated each month as the average of |r|/DVOL, where r is the daily stock return and DVOL is the daily 
dollar volume in $100,000; Roll_Gibbs: the Winsorized (at the 0.5th and 99.5th percentiles) market risk-adjusted effective bid-ask 
spread of Roll (1984) estimated using the Gibbs sampler, which is of annual frequency obtained from the web site of Joel Hasbrouck; 
PS: the Winsorized (at the 0.5th and 99.5th percentiles) illiquidity measure ( ||γ ) of Pastor and Stambaugh (2003), in which γ  is 

estimated from the regression equation, 
tdjtdj

e
tdjtdj

e
tdj DVOLrsignbrar ,1,,,,,,,,1, )( ++ +++= ςγ , where rj,d,t is the raw return and 

e
tdjr ,,
 is the excess return (over the CRSP value-weighted index return) of stock j at day d within month t (we require at least 15 days 

of data per month in the CRSP daily file to estimate γ ). The average number of component stocks used in a year is 1,578.1. 
                  

   
Kλ  GHλ   FVλ  Sλ  Amihud Roll_Gibbs PS 

Kλ   1       
GHλ   0.936 1      
FVλ   0.931 0.996 1     
Sλ   0.771 0.802 0.803 1    

Amihud  0.539 0.451 0.447 0.374 1   

Roll_Gibbs  0.411 0.286 0.283 0.288 0.626 1  

PS   0.430 0.358 0.355 0.302 0.656 0.477 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table XII 

A Horse Race with Each of the Three Alternative (Il)liquidity Measures Separately for NYSE Stocks 
This table runs a horse race in the monthly Fama-MacBeth (1973)-type cross-sectional regressions for comparison purposes using 3 alternative (il)liquidity measures for NYSE stocks over the past 
276 months (23 years: 198301-200512). Each of Panels A-C reports the regression results comparable to Panels A and B in Tables VI-VII using one of the 3 alternative measures: Amihud, 
Roll_Gibbs, and TURN. The dependent variable is FF3EXSRET1 or FF3EXSRET2 in each panel. The definitions of the variables are as follows: FF3EXSRET1: the risk-adjusted excess return (in 
excess of the risk-free rate proxied by the one-month T-bill rate) using the Fama-French (FF) 3 factors, i.e., the constant term plus the residual from the time-series regression of the excess return 
on the FF 3 factors using the entire sample range of the data; FF3EXSRET2: the risk-adjusted excess return using the Fama-French (FF) 3 factors with factor loadings being estimated from the 5-
year rolling regressions, i.e., *

iR  computed each month with the current month data from the equation, ]ˆˆˆ[)( 321
* HMLSMBMKTRRR fii βββ ++−−= , after the factor loadings 

( 321 ,,, βββα ) are first estimated for each month using the time-series data of the past 60 months (at least 24 months) in the monthly regression, 

εβββα ++++=− HMLSMBMKTRR fi 321
, where fi RR , , and 

mR  are the individual stock return, the risk-free rate, and the market index return, respectively, while MKT, SMB, and 

HML  are FF 3 factors; ALT: one of the three alternative (il)liquidity measures; Amihud: the Winsorized (at the 0.5th and 99.5th percentiles) illiquidity measure of Amihud (2002) estimated each 
month as the average of |r|/DVOL, where r is the daily stock return and DVOL is the daily dollar volume in $100,000; Roll_Gibbs: the Winsorized (at the 0.5th and 99.5th percentiles) market risk-
adjusted effective bid-ask spread of Roll (1984) estimated using the Gibbs sampler, which is of annual frequency obtained from the web site of Joel Hasbrouck; PS: the Winsorized (at the 0.5th and 
99.5th percentiles) illiquidity measure ( ||γ ) of Pastor and Stambaugh (2003), in which γ  is estimated from the regression equation, tdjtdj

e
tdjtdj

e
tdj DVOLrsignbrar ,1,,,,,,,,1, )( ++ +++= ςγ , 

where rj,d,t is the raw return and e
tdjr ,,
 is the excess return (over the CRSP value-weighted index return) of stock j at day d within month t (we require at least 15 days of data per month in the CRSP 

daily file to estimate γ ); BTM: natural logarithm of BM_w, which is the Winsorized value (at the 0.5th and 99.5th percentiles) of a book-to-market ratio (BM = BV/MV), where the book value 
(BV) is defined as common equity plus deferred taxes in $million and the market value (MV) is defined as the previous month-end stock price times the number of shares outstanding (in $million); 
MOM1: compounded holding period return of a stock over the most recent 3 months (from month t-1 to month t-3); MOM2: compounded holding period return over the next recent 3 months (from 
month t-4 to month t-6); MOM3: compounded holding period return over the 3 months from month t-7 to month t-9; MOM4: compounded holding period return over the 3 months from month t-9 
to month t-12. For monthly regressions, we keep the annual values of Roll_Gibbs constant over the 12 months within each year. To remove nonstationarity, the Gallant, Rossi, and Tauchen (GRT) 
(1993) procedure has been applied to Amihud, Roll_Gibbs, PS, and BTM for each firm over the sample period before conducting the cross-sectional regressions (GRT-adjusted variables are 
indicated by superscript “a”). The values in the first row for each explanatory variable are the time-series averages of coefficients obtained from the month-by-month cross-sectional regressions, 
and the values italicized in the second row of each variable are t-statistics computed based on Fama-MacBeth (1973). The coefficients are all multiplied by 100. Avg R-sqr is the average of adjusted 
R-squared. Avg Obs is the monthly average number of companies used in the cross-sectional regressions. The average number of component stocks used each month in the regressions is 1,197.4-
1,577.0. Coefficients significantly different from zero at the significance levels of 1% and 5% are indicated by ** and *, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
(Table XII continued) 

                                      

  Panel A: ALT = Amihud  Panel B: ALT = Roll_Gibbs  Panel C: ALT = PS 

Expla. Variables  FF3EXSRET1  FF3EXSRET2  FF3EXSRET1  FF3EXSRET2  FF3EXSRET1  FF3EXSRET2 

Intercept  0.339 **  0.394 **  0.404 **  0.473 **  0.383 **  0.443 ** 

  3.62   3.76   3.38   3.81   4.05   4.19  

ALTa  4.723 **  5.352 **  -1.458   -3.903   1.014   1.046  

  2.98   3.50   -0.12   -0.31   1.69   1.67  

BTMa  0.323 **  0.309 **  0.417 **  0.393 **  0.334 **  0.322 ** 

  7.39   6.54   8.67   7.59   7.59   6.78  

MOM1  -0.462   -0.727   -1.164 **  -1.476 **  -0.533   -0.809 * 

  -1.38   -1.94   -3.32   -3.73   -1.58   -2.14  

MOM2  0.809 **  0.926 **  0.421   0.491   0.703 *  0.811 * 

  2.79   2.80   1.40   1.44   2.40   2.45  

MOM3  0.875 **  0.911 *  0.362   0.435   0.756 *  0.799 * 

  2.76   2.56   1.17   1.30   2.38   2.23  

MOM4  1.001 **  0.663 *  0.736 **  0.424   0.909 **  0.558  

  3.72   2.11   2.83   1.36   3.38   1.77  

                   

Avg R-sqr  0.031   0.034   0.031   0.034   0.029   0.033  

Avg Obs   1576.8     1513.8     1234.7     1197.4     1577.0     1514.0   
 
 



 

 
Table XIII 

A Horse Race with All the (Il)liquidity Measures Together for NYSE Stocks 
This table runs a horse race in the monthly Fama-MacBeth (1973)-type cross-sectional regressions using one of the four price-impact parameters ( Kλ , GHλ , FVλ , and Sλ ) together with the 3 

alternative (il)liquidity measures for NYSE stocks over the past 276 months (23 years: 198301-200512). Kλ , GHλ , FVλ , and Sλ  are defined as in the previous tables. The dependent variable is 

FF3EXSRET1 or FF3EXSRET2 in each panel. The definitions of the other variables are as follows: FF3EXSRET1: the risk-adjusted excess return (in excess of the risk-free rate proxied by the 
one-month T-bill rate) using the Fama-French (FF) 3 factors, i.e., the constant term plus the residual from the time-series regression of the excess return on the FF 3 factors using the entire sample 
range of the data; FF3EXSRET2: the risk-adjusted excess return using the Fama-French (FF) 3 factors with factor loadings being estimated from the 5-year rolling regressions, i.e., *

iR  computed 

each month with the current month data from the equation, ]ˆˆˆ[)( 321
* HMLSMBMKTRRR fii βββ ++−−= , after the factor loadings ( 321 ,,, βββα ) are first estimated for each month 

using the time-series data of the past 60 months (at least 24 months) in the monthly regression, εβββα ++++=− HMLSMBMKTRR fi 321
, where fi RR , , and 

mR  are the individual 

stock return, the risk-free rate, and the market index return, respectively, while MKT, SMB, and HML  are FF 3 factors; LAM: one of the four price-impact parameters (lambdas); Amihud: the 
Winsorized (at the 0.5th and 99.5th percentiles) illiquidity measure of Amihud (2002) estimated each month as the average of |r|/DVOL, where r is the daily stock return and DVOL is the daily 
dollar volume in $100,000; Roll_Gibbs: the Winsorized (at the 0.5th and 99.5th percentiles) market risk-adjusted effective bid-ask spread of Roll (1984) estimated using the Gibbs sampler, which 
is of annual frequency obtained from the web site of Joel Hasbrouck; PS: the Winsorized (at the 0.5th and 99.5th percentiles) illiquidity measure ( ||γ ) of Pastor and Stambaugh (2003), in which 

γ  is estimated from the regression equation, tdjtdj
e

tdjtdj
e

tdj DVOLrsignbrar ,1,,,,,,,,1, )( ++ +++= ςγ , where rj,d,t is the raw return and e
tdjr ,,
 is the excess return (over the CRSP value-weighted 

index return) of stock j at day d within month t (we require at least 15 days of data per month in the CRSP daily file to estimate γ ); BTM: natural logarithm of BM_w, which is the Winsorized 
value (at the 0.5th and 99.5th percentiles) of a book-to-market ratio (BM = BV/MV), where the book value (BV) is defined as common equity plus deferred taxes in $million and the market value 
(MV) is defined as the previous month-end stock price times the number of shares outstanding (in $million); MOM1: compounded holding period return of a stock over the most recent 3 months 
(from month t-1 to month t-3); MOM2: compounded holding period return over the next recent 3 months (from month t-4 to month t-6); MOM3: compounded holding period return over the 3 
months from month t-7 to month t-9; MOM4: compounded holding period return over the 3 months from month t-9 to month t-12. For monthly regressions, we keep the annual values of 
Roll_Gibbs constant over the 12 months within each year. To remove nonstationarity, the Gallant, Rossi, and Tauchen (GRT) (1993) procedure has been applied to Kλ , GHλ , FVλ , Sλ , Amihud, 

Roll_Gibbs, PS , and BTM for each firm over the sample period before conducting the cross-sectional regressions (GRT-adjusted variables are indicated by superscript “a”). The values in the first 
row for each explanatory variable are the time-series averages of coefficients obtained from the month-by-month cross-sectional regressions, and the values italicized in the second row of each 
variable are t-statistics computed based on Fama-MacBeth (1973). The coefficients are all multiplied by 100. Avg R-sqr is the average of adjusted R-squared. Avg Obs is the monthly average 
number of companies used in the cross-sectional regressions. The average number of component stocks used each month in the regressions is 1,198.9-1,236.2. Coefficients significantly different 
from zero at the significance levels of 1% and 5% are indicated by ** and *, respectively.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
(Table XIII continued) 

                                                  

  Panel A: LAM = Kλ    Panel B: LAM = GHλ   Panel C: LAM = FVλ   Panel D: LAM = Sλ  

Expla. Variables  FF3EXSRET1  FF3EXSRET2  FF3EXSRET1  FF3EXSRET2  FF3EXSRET1  FF3EXSRET2  FF3EXSRET1  FF3EXSRET2 

Intercept  0.364 **  0.431 **  0.347 **  0.421 **  0.352 **  0.424 **  0.374 **  0.443 ** 

  2.97   3.38   2.86   3.32   2.89   3.34   3.06   3.45  

LAMa  0.097 **  0.094 *  0.210 **  0.196 **  0.207 **  0.193 **  0.208 **  0.201 ** 

  2.70   2.55   3.85   3.57   3.77   3.50   3.20   2.93  

Amihuda  4.307 **  4.995 **  3.750 *  4.644 **  3.702 *  4.488 **  4.458 **  5.203 ** 

  3.14   3.29   2.36   2.71   2.29   2.60   3.13   3.37  

Roll_Gibbsa  -20.429   -22.664   -17.723   -20.689   -17.866   -20.267   -19.501   -22.142  

  -1.67   -1.73   -1.42   -1.56   -1.43   -1.53   -1.58   -1.69  

PSa  0.729   0.770   0.911   0.883   0.916   0.890   0.779   0.762  

  0.60   0.61   0.66   0.64   0.66   0.64   0.72   0.69  

BTMa  0.385 **  0.370 **  0.384 **  0.370 **  0.389 **  0.375 **  0.387 **  0.373 ** 

  7.77   7.00   7.77   7.04   7.88   7.13   7.82   7.05  

MOM1  -1.153 **  -1.460 **  -1.150 **  -1.453 **  -1.160 **  -1.467 **  -1.127 **  -1.438 ** 

  -3.31   -3.73   -3.31   -3.71   -3.33   -3.75   -3.24   -3.68  

MOM2  0.493   0.550   0.476   0.534   0.466   0.518   0.491   0.546  

  1.64   1.61   1.59   1.57   1.55   1.52   1.64   1.60  

MOM3  0.286   0.301   0.292   0.305   0.297   0.310   0.285   0.301  

  0.93   0.87   0.95   0.87   0.96   0.89   0.93   0.87  

MOM4  0.708 **  0.403   0.691 **  0.395   0.687 **  0.393   0.727 **  0.430  

  2.72   1.29   2.65   1.27   2.63   1.26   2.78   1.37  

                         

Avg R-sqr  0.042   0.046   0.042   0.046   0.042   0.046   0.042   0.046  

Avg Obs   1236.2     1199.0     1236.2     1199.0     1236.1     1198.9     1236.2     1199.0   
 
 



 

Figure 1. Trends of the Value-Weighted Price-Impact Parameters for NYSE Stocks  
The following graphs show the trends of the price-impact parameters for NYSE stocks over the past 276 months (23 years: 198301-
200512). Each of the two graphs is a time-series plot of the monthly cross-sectional [market-value (MV) weighted] average of the 
price-impact parameters over the sample period. The price-impact parameters of individual stocks are all multiplied by 106 and then 
Winsorized each month at the 0.5th and 99.5th percentiles before computing the MV-weighted cross-sectional averages. Figure 1(a) is 
for the price-impact parameter estimated based on Kyle (1985), Kλ and Figure 1(b) is for that based on Sadka (2006), Sλ .  The 
average number of component stocks used in each month is 1,587.1.  

Value-weighted Lambda (Kyle, 1985)
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Value-weighted Lambda (Sadka, 2006)
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Table A1 

Results of Monthly Cross-sectional Regressions: Different Specifications With or Without SIZE 
This table reports the four different specifications of the monthly Fama-MacBeth (1973)-type cross-sectional regressions with or without SIZE for NYSE stocks over the 276 months (23 years: 
198301-200512). In Panels A, B, C, and D, the price-impact parameter used is the one estimated based on Kyle (1985, Kλ ), Glosten and Harris (1988, GHλ ), Foster and Viswanathan (1993, 

FVλ ), and Sadka (2006, Sλ ), respectively. The dependent variable is FF3EXSRET1 or FF3EXSRET2 in each panel. The definitions of the variables are as follows: FF3EXSRET1: the risk-

adjusted excess return using the Fama-French (FF) 3 factors, i.e., the constant term plus the residual from the time-series regression of the excess return on the FF 3 factors using the entire sample 
range of the data; FF3EXSRET2: the risk-adjusted excess return using the Fama-French (FF) 3 factors with factor loadings being estimated from the 5-year rolling regressions, i.e., *

iR  computed 

each month with the current month data from the equation, ]ˆˆˆ[)( 321
* HMLSMBMKTRRR fii βββ ++−−= , after the factor loadings ( 321 ,,, βββα ) are first estimated for each month 

using the time-series data of the past 60 months (at least 24 months) in the monthly regression, εβββα ++++=− HMLSMBMKTRR fi 321
, where fi RR , , and 

mR  are the individual 

stock return, the risk-free rate, and the market index return, respectively, while MKT, SMB, and HML  are FF 3 factors; Kλ : the price-impact parameter estimated based on Kyle (1985) using 

intradaily dollar order flows available within each month, multiplied by 106, and then Winsorized at the 0.5th and 99.5th percentiles; GHλ : the price-impact parameter estimated based on Glosten 

and Harris (1988) using intradaily dollar order flows available within each month, multiplied by 106, and then Winsorized at the 0.5th and 99.5th percentiles; FVλ : the price-impact parameter 

estimated based on Foster and Viswanathan (1993) using intradaily dollar order flows available within each month, multiplied by 106, and then Winsorized at the 0.5th and 99.5th percentiles; Sλ : 

the price-impact parameter estimated based on Sadka (2006) using intradaily dollar order flows available within each month, multiplied by 106, and then Winsorized at the 0.5th and 99.5th 
percentiles; SIZE: natural logarithm of MV, where MV is the market value defined as the previous month-end stock price times the number of shares outstanding (in $million); BTM: natural 
logarithm of BM_w, which is the Winsorized value (at the 0.5th and 99.5th percentiles) of a book-to-market ratio (BM = BV/MV), where the book value (BV) is defined as common equity plus 
deferred taxes in $million and the market value (MV) is defined as the previous month-end stock price times the number of shares outstanding (in $million); MOM1: compounded holding period 
return of a stock over the most recent 3 months (from month t-1 to month t-3); MOM2: compounded holding period return over the next recent 3 months (from month t-4 to month t-6); MOM3: 
compounded holding period return over the 3 months from month t-7 to month t-9; MOM4: compounded holding period return over the 3 months from month t-9 to month t-12. To remove 
nonstationarity, the Gallant, Rossi, and Tauchen (GRT) (1993) procedure has been applied to Kλ , GHλ , FVλ , Sλ , SIZE, and BTM for each firm over the sample period before conducting the 

cross-sectional regressions (GRT-adjusted variables are indicated by superscript “a”). The values in the first row for each explanatory variable are the time-series averages of coefficients obtained 
from the month-by-month cross-sectional regressions, and the values italicized in the second row of each variable are t-statistics computed based on Fama-MacBeth (1973). The coefficients are all 
multiplied by 100. Avg R-sqr is the average of adjusted R-squared. Avg Obs is the monthly average number of companies used in the cross-sectional regressions. The average number of component 
stocks used each month in the regressions is 1,505.8-1,598.3. Coefficients significantly different from zero at the significance levels of 1% and 5% are indicated by ** and *, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
(Table A1 continued: Panels A and B) 

                                                      

Panel A: with Lambdas Based on Kyle (1985)  Panel B: with Lambdas Based on Glosten and Harris (1988) 

   Dep Var = FF3EXSRET1     Dep Var = FF3EXSRET1 

Expla. Variables  1  2  3  4  Expla. Variables  1  2  3  4 

Intercept  0.232 **  1.447 **  2.668 **  2.860 **  Intercept  0.225 **  1.447 **  2.189 **  2.431 ** 

  2.99   6.60   12.23   14.09     2.96   6.60   9.86   12.16  
,Kλ a  0.167 **     -0.395 **  -0.386 **  

,GHλ a 
 0.333 **     -0.484 **  -0.492 ** 

  4.34      -12.06   -11.48     6.04      -10.72   -10.69  

SIZEa     -0.200 **  -0.344 **  -0.383 **  SIZEa     -0.200 **  -0.287 **  -0.333 ** 

     -6.84   -12.45   -16.41        -6.84   -9.97   -14.22  

BTMa           0.094 *  BTMa           0.102 * 

           2.10              2.30  

MOM1           -0.178   MOM1           -0.157  

           -0.52              -0.46  

MOM2           1.253 **  MOM2           1.296 ** 

           4.18              4.32  

MOM3           1.402 **  MOM3           1.465 ** 

           4.47              4.70  

MOM4           1.423 **  MOM4           1.465 ** 

           5.16              5.32  
                           

Avg R-sqr  0.005   0.005   0.009   0.036   Avg R-sqr  0.004   0.005   0.007   0.035  

Avg Obs   1597.7     1521.2     1520.7     1506.0     Avg Obs   1598.3     1521.2     1521.2     1506.1   
 



 

 
(Table A1 continued: Panels C and D) 

                                                      

Panel C: with Lambdas Based on Foster and Viswanathan (1993)  Panel D: with Lambdas Based on Sadka (2006) 

   Dep Var = FF3EXSRET1     Dep Var = FF3EXSRET1 

Expla. Variables  1  2  3  4  Expla. Variables  1  2  3  4 

Intercept  0.229 **  1.447 **  2.215 **  2.450 **  Intercept  0.271 **  1.447 **  2.188 **  2.384 ** 

  3.01   6.60   9.89   12.23     3.59   6.60   10.17   12.43  
,FVλ a  0.313 **     -0.501 **  -0.507 **  

,Sλ a  0.276 **     -0.706 **  -0.68 ** 

  5.59      -11.27   -11.18     3.87      -6.37   -6.55  

SIZEa     -0.200 **  -0.290 **  -0.335 **  SIZEa     -0.200 **  -0.286 **  -0.326 ** 

     -6.84   -10.01   -14.28        -6.84   -10.23   -14.42  

BTMa           0.103 *  BTMa           0.109 * 

           2.31              2.50  

MOM1           -0.163   MOM1           -0.193  

           -0.47              -0.56  

MOM2           1.302 **  MOM2           1.246 ** 

           4.34              4.17  

MOM3           1.466 **  MOM3           1.426 ** 

           4.70              4.60  

MOM4           1.469 **  MOM4           1.437 ** 

           5.35              5.18  
                           

Avg R-sqr  0.004   0.005   0.007   0.035   Avg R-sqr  0.003   0.005   0.007   0.034  

Avg Obs   1597.1     1521.2     1520.7     1505.8     Avg Obs   1597.2     1521.2     1520.6     1505.8   
 


