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Abstract 

 

The assumption of dynamic replication in no-arbitrage option pricing models does not hold in 

practice due to discreteness of trading hours as well as trading costs, which suggests the 

potential presence of preference-driven risk premiums. In this paper, we empirically show that 

discretely hedged S&P 500 index option portfolios are exposed to covariance and coskewness 

risk with the market portfolio. Using the three-moment CAPM of Kraus and Litzenberger 

(1976), we find that the rate of return of the portfolio significantly loads on the two risk factors, 

and their risk premiums are significantly positive. The equilibrium model complements the 

prevailing approach of the no-arbitrage framework, and reveals that the volatility smile is linked 

to investors’ preference on the unhedged market risks. 
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Options are redundant in the sense that they can be dynamically replicated by the underlying 

asset and riskless bonds. In their seminal paper, Black and Scholes (1973) first show that, to 

preclude arbitrage opportunities, the value of an option should be identical to the cost of 

dynamic replication. Since then, the no-arbitrage option pricing framework of Black and 

Scholes has been widely accepted by both academics and practitioners. One challenge to the 

Black-Scholes model is the well-documented volatility smile. For example, Dumas, Fleming, 

and Whaley (1998) report that, after the October 1987 market crash, the implied volatility 

function of S&P 500 options is negatively sloped across the strike price. To improve upon this 

weakness in the Black-Scholes model, a series of no-arbitrage option pricing models are 

developed.1

Recently, Bollen and Whaley (2004) present evidence that, while movement of option price 

may not be fully understood using no-arbitrage framework, supply and demand can play a role 

in determining the option price. Under excessive net buying pressure, the supply curve in the 

options market is not horizontal since writing an option incurs various hedging costs and 

volatility risk exposure. They empirically show that price movement of options are related to the 

 These option pricing models improve the Black-Scholes model by assuming more 

realistic stochastic processes of the underlying asset such as stochastic volatility or jumps. 

However, many empirical tests reveal that no-arbitrage option pricing models are not very 

successful in explaining the volatility smile, nor are they consistent with one another. Bakshi, 

Cao and Chen (1997) report that while incorporating stochastic volatility and jumps can 

improve pricing performance on S&P 500 options, the fitted parameters take on rather 

unrealistic values. Chernov and Ghysels (2000) find a small negative correlation estimated from 

S&P 500 index and its options using the stochastic volatility model, while Bakshi, Cao and 

Chen (1998) and Pan (2002) report that the correlation is extremely negative when analyzing 

different sample periods with the same model. Using S&P 500 futures options data in the post-

crash period, Bates (2000) finds that the inclusion of a jump component in the stochastic 

volatility model can improve pricing performance, but the parameters are implausible to 

rationalize the observed data. 

                                           
1 See Cox and Ross (1976) for the constant-elasticity-of-variance model, Merton (1976), Ball and Torous 
(1983, 1985), Bates (1991) for the jump diffusion model, Hull and White (1987), Scott (1987), Melino 
and Turnbull (1990, 1995), Stein and Stein (1991), Heston (1993) for the stochastic volatility model, 
Bates (1996, 2000), Scott (1997) for the stochastic volatility and jump diffusion model, and Bates (2000), 
Duffie, Pan, and Singleton (2000), and Eraker, Johannes and Polson (2003) for the jump in volatility 
model. 
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net buying pressure, and argue that limits to arbitrage of dynamic replication can permit the 

relation. It is astonishing that the options market works at least partially in the direction of 

supply and demand like other equilibrium markets. 

If Bollen and Whaley (2004) are correct, then the next step is to determine what drives 

supply and demand in the options market. Can an equilibrium model that depends on investor 

preference be applied to the options market? We focus on the point that the dynamic replication 

of options cannot be successful in practice since the assumptions of Black and Scholes (1973) 

do not hold in the real world. More specifically, perfect dynamic replication is impossible due to 

discreteness of trading hours as well as enormous transaction costs. Thus, the discretely hedged 

option position is no longer risk-free, and the options market is incomplete—particularly at 

night, during the window from the market close to market open. As Bollen and Whaley point 

out, “the results of these limits to arbitrage is that market prices can diverge from model values, 

and the no-arbitrage band within which prices can fluctuate can be quite wide, allowing price to 

be affected by supply and demand considerations (p713).” 

In this paper, we show that the returns of calls, puts, and zero-beta straddles on S&P 500 

index can be explained in an extended capital asset pricing framework in which not only 

variance of investor’s portfolio but also skewness and kurtosis are taken into account. Also, we 

empirically test whether average returns of discretely hedged option portfolios can be explained 

by systematic risks. The systematic risks are covariance and coskewness with the excess market 

return. Under the assumption of no-arbitrage models, betas to the excess market return 

(covariance risk) and its square (coskewness risk) must be zero. If it is found that the average 

returns reflect the appropriate premiums on the covariance and coskewness risks, we can 

conclude that the option prices are not preference-free and the equilibrium model complements 

the prevailing approach of the no-arbitrage framework. Testing this hypothesis is also important 

because the shape of the implied volatility curve is directly related to the cross-sectional 

variation in average hedge returns; thus, we indirectly test the hypothesis that the negatively 

sloped implied volatility curve is linked to investor preference on the systematic risks.  

To examine the distributional characteristics of a discrete delta hedge, we perform an 

empirical simulation using S&P 500 index options. Specifically, we construct a hedge portfolio 

that consists of writing an option on the market portfolio and buying or selling the delta shares 

of the underlying asset as a hedge. Since we do not know the exact diffusion process that the 

underlying stock price follows, the delta values are computed using three alternative models: the 
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Black-Scholes model, the stochastic volatility model of Heston (1993) and the jump diffusion 

model of Bates (1991). The hedge portfolio is rebalanced at multiple discrete time intervals over 

the life of the option. At the expiration of the option, the final payoff of the option is subtracted 

from the value of the hedge portfolio. The rate of return on the hedge portfolio, referred to as 

“hedge return,” can be interpreted as the deviation from perfect replication.  

We find that standard deviation and skewness of the simulated hedge return systematically 

deviate from zero. More surprisingly, the hedge return covaries with the excess market return 

and the squared excess market return, strongly depending on the strike price. The hedge 

portfolios of out-of-the-money options show a higher covariance than those of in-the-money 

options, and the hedge portfolios of high strike options show a higher coskewness than those of 

low strike options.  

If discretely hedged option portfolios are exposed to covariance and coskewness risks, 

investors in the options market consider those risks and the option price should reflect an 

appropriate risk premium. According to the three-moment capital asset pricing model (CAPM 

hereafter) proposed by Kraus and Litzenberger (1976), an asset with positive covariance or 

negative coskewness with the market portfolio must provide a positive risk premium. Harvey 

and Siddique (2000) conduct an empirical analysis on the stock market using the three-moment 

CAPM, and Dittmar (2002) further extend the standard CAPM by considering cokurtosis of 

assets.  

We apply the three-moment CAPM using the standard two-step regression procedure, 

which consists of a time-series regression and a cross-sectional regression. For empirical 

purposes, we propose the Negative coskewness Minus Positive coskewness (NMP) portfolio 

return as the factor that captures coskewness risk. The NMP portfolio return is defined as the 

difference in returns between the hedge portfolios of put options with the lowest strikes that 

exhibit negative coskewness and the hedge portfolios of call options with the highest strikes that 

exhibit positive coskewness. Thus, the NMP portfolio return represents the spread of risk 

premiums between a portfolio that is subtracting skewness from a broader portfolio and a 

portfolio that is adding skewness. 

The time-series regression results show that the hedge returns of S&P 500 index options 

significantly load on the excess market return and the NMP portfolio return. From the cross-

sectional regression, the covariance and coskewness risks command premiums of 5.8% and 

2.5%, respectively, when the Black-Scholes model is used to compute delta values of one-
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month-to-expiration options. The risk premiums are also statistically significant when the 

stochastic volatility model or the jump diffusion model is used. Various goodness-of-fit tests 

confirm that the excess market return and the NMP portfolio return can explain the cross-

sectional variation in average hedge returns of S&P 500 index options. 

The rest of the paper is organized as follows. In Section I, we describe the sample data and 

the empirical distribution of hedge portfolios. Section II presents the related three-moment asset 

pricing framework. Section III reports the results of the time-series regression and the cross-

sectional regression. Section IV offers some concluding remarks and direction for future 

research. 

 

I. Sample Description 

 

The purpose of this section is to describe the option sample used in this research and to 

present the general characteristics of both unhedged and (discretely) hedged option returns 

during the sample period. 

 

A. Data 

In this research, we use options on the S&P 500 index from IVY OptionMetrics. The 

sample is focused on the most recent decade from January 1996 to September 2008. We choose 

S&P 500 index options because they are the most actively traded European options on a proxy 

of the market portfolio. The options with time to maturity longer than 30 days and shorter than 

100 days are collected once a week, mostly on Fridays at the market close. The related S&P 500 

index price, its dividend yield and the risk-free interest rate are drawn from the same source. To 

proxy the market portfolio, we use the NYSE/AMEX/NASDAQ value-weighted index.  

To filter out undesirable data, we apply a set of screening rules. First, option quotes less 

than $3/8 are dropped from our sample. These quotes may be too small relative to the minimum 

tick size to reflect the true value of options. Second, options with zero open interest are 

excluded from the sample; prices of low liquidity may show a deviation from the true value. 

Third, option quotes that violate the lower arbitrage bound are excluded since it is impossible to 

calculate implied volatility for these options. Finally, the options with an absolute delta below 

5% or above 95% are excluded. 

We categorize the sample into ten moneyness groups, five for each of call and put options. 
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Following Bollen and Whaley (2004), moneyness of an option is defined as its delta. The typical 

measure of moneyness that is the strike price divided by the spot price cannot assess the 

likelihood that an option in in-the-money at expiration since it heavily depends on volatility and 

time to expiration. On the contrary, delta values better account for the probability since it 

incorporates volatility and time to expiration. The delta value of each option is computed using 

the Black-Scholes model and the realized volatility over the most recent 60 trading days. 

Table 1 presents description of the sample. Breakpoints of five moneyness groups are 

reported at the top of the table. For example, moneyness group 1 (M = 1) for call option is 

comprised of the options with delta value above 75% and below 95%. The mean delta value of 

the group is reported in the middle of Panel A, 86.14%. For both the call and put options, the 

lowest moneyness group (M = 1) corresponds to the options with the lowest strike prices, while 

the highest moneyness group (M = 5) corresponds to the options with the highest strike prices. 

Panel A shows the number of observations, average daily trading volume per contract, average 

delta value, average ratio of the strike price divided by the underlying index, average implied 

volatility (IV), and average implied volatility over realized volatility (RV) for each moneyness 

group of call options while Panel B presents those statistics for put options.   

As shown in Table 1, for call options, the at-the-money options (M = 3) are the most 

actively traded with average daily trading volume per contract of 6,776, followed by the out-of-

the-money options (M = 4). For put options, the out-of-the-money options (M = 1 and 2) show 

the greatest trading volume on average (9,353 and 8,699, respectively), followed by the at-the-

money options. This is consistent with the option sample of Bollen and Whaley (2004) during 

the period from January 1995 through December 2000.  

At the bottom of the each Panel, implied volatilities and realized volatilities are reported. 

The implied volatilities are computed from the midpoint of bid–ask spread at the market close 

using the Black-Scholes formula. The general shape of the implied volatility function across 

moneyness groups is negatively sloped and convex. This is similar to the implied volatility 

functions estimated in Dumas, Fleming and Whaley (1998) and Bakshi, Cao and Chen (1997). 

Also, the excess implied volatilities over realized volatilities are generally positive. Specifically, 

they are all positive for put options, while some are slightly negative for call options. 

Considering realized volatility as proxy of true volatility, S&P 500 index options in the sample 

period are overpriced relative to the Black-Scholes assumptions. This finding is also similar to 

Bollen and Whaley (2004). Therefore, the option sample from January 1996 through September 
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2008 is comparable to those from previous studies. 

 

[Insert Table 1 about Here] 

 

B. Returns of Calls, Puts, and Zero-Beta Straddles 

Coval and Shumway (2001) theoretically show that a call option on market index should 

have a positive expected return that is increasing in the strike price. On the contrary, a put 

option, which usually protects market risks, should have an expected return below the risk-free 

rate and increasing in the strike price. Their empirical evidence using weekly SPX option 

returns from January 1990 to October 1995 and daily OEX option returns from January 1986 to 

October 1995 confirms their argument. However, they find that both call and put options earn 

far too low returns to be rationalized in the standard CAPM framework, suggesting that some 

factors besides market risk drive the risk premiums of option contracts. 

Following Coval and Shumway (2001), we compute weekly returns of S&P 500 index call 

and put options and present their descriptive statistics in Panel A and B of Table 2, respectively. 

We record the mean, median, minimum, and maximum weekly returns for each of five 

moneyness groups. To fairly compare the option returns across five moneyness groups, the 

weeks when any of five moneyness groups have no observation are excluded. Since the options 

quotes of deep out-of-the-money options are frequently omitted during the sample period, only 

the options with absolute delta values between 35% and 75% are reported to prevent excessive 

exclusion. After the exclusion, the sample is reduced to 535 weeks in time-series. The returns 

are in weekly percentage forms, and the t-statistics test the null hypothesis that the returns are 

zero. 

Looking at mean returns of S&P 500 index calls and puts in Panel A and B of Table 2, we 

see that call options earn positive average returns while put options have returns that are 

negative. For example, the at-the-money call options earn more than four percent per week on 

average, and average return of the at-the-money put options is almost -7.5% per week. Also, 

both call and put returns are increasing monotonically in the strike price, and they are all 

statistically significant at the one percent confident level. These results are in accordance with 

the argument of Coval and Shumway (2001). Not surprisingly, the median, minimum, and 

maximum statistics demonstrate a substantial degree of positive skewness.  

Table 2 also includes the average Black-Scholes betas for each moneyness group of call and 
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put options. We calculate the betas with the Black-Scholes formula as follows: 
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where N[·] is the cumulative normal distribution function, and βS and q are the beta and the 

continuous dividend yield of the underlying index. We use the realized volatility over the past 

60 trading days as a proxy of the true volatility. The Black-Scholes betas of both call and put 

options are, as expected, quite large and increasing across strike prices. The call betas are 

positive, ranging from 14.6 for the lowest strikes to 25.4 for the highest strikes. The put betas 

are negative and range from -16.8 to -14.8. However, considering the estimated betas, the option 

returns appear to be far too low to be consistent with the standard CAPM. Assuming market risk 

premium of 0.42% per week during the sample period, average return of the at-the-money call 

options should be around eight percent per week on average, while the at-the-money put options 

should lose -7.5% per week on average. Given their substantial comovement with the 

underlying index, call and put options might be expected to earn far greater returns than they 

actually do. 

We also measure the weekly returns of S&P 500 zero-beta straddle positions across 

moneyness groups in Panel C of Table 2. The straddle positions are constructed by combining 

call and put options with weights that the betas of the positions are zero. Specifically, the weight 

θ of the straddle’s value in call options is: 

 

( ) pcv rrr θθ −+= 1         (2) 

( ) 01 =−+ pc βθθβ  

 

where rv, rc, and rp are the straddle return, the call return, and put return, respectively. We use 

the Black-Scholes betas computed from Equation (1) to identify the call and put betas in 

Equation (2). The zero-beta straddles are divided into five moneyness groups on the delta values 
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of the call options in the positions. 

According to the standard CAPM, zero-beta straddles should have expected returns equal to 

the risk-free rate. However, Panel C of Table 2 shows that average returns of zero-beta straddle 

positions are invariably negative. At-the-money straddles lose two percent per week on average 

with the lower strike straddles losing more. All the negative returns are highly statistically 

significant. These negative straddle returns are consistent with the evidence in Coval and 

Shumway (2001), and strongly suggest that there are additional factors that explain the risk 

premiums of option contracts. 

Frequently mentioned risk factor other than market beta risk in the options market is 

volatility risk, which is additional risk factor in the stochastic volatility model such as Heston 

(1993). Since straddles have large, positive volatility betas, they allow investors to hedge 

volatility risk and, thus, are considered as a less risky asset. Thus, if there is a risk premium for 

volatility risk, expected returns of zero-beta straddles will be less than the risk-free rate. 

Recently Bakshi and Kapadia (2003) find that the delta-hedged S&P 500 index option portfolios 

significantly underperform zero and the underperformance is consistent with a negative 

volatility risk premium. A negative volatility risk premium implies that index options can play a 

role to hedge against the market portfolio. On the contrary, Branger and Schlag (2001) argue 

that tests based on option hedging errors cannot detect additional priced risk factors or identify 

the sign of their market prices of risk correctly due to discretization error and model mis-

specification. Furthermore, many researches including Bakshi, Cao and Chen (1997, 1998), 

Chernov and Ghysels (2000), Pan (2002) report conflicting results on the stochastic volatility 

model. In the following sections, we propose additional risk factors in the options market rather 

than volatility risk and investigate these issues in greater details. 

 

C. Discretely Hedged Option Portfolios 

The main idea of Black and Scholes (1973) is that one can remove all of the portfolio’s 

market risk by holding an option contract and continuously hedging it with the underlying asset. 

The expected return on the portfolio should be equal to the risk-free interest rate. In practice, 

however, continuous hedging is impossible due to discreteness of trading hours as well as 

enormous transaction costs. Consequently, the discretely hedged portfolio is no longer risk-free 

and the options market is incomplete, particularly overnight from market close to market open. 

In this sense, the assumption of dynamic replication in no-arbitrage option pricing models may 
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not capture all the risk factors included in option contracts. In this subsection, we present 

empirical distribution of the rate of return on discretely hedged option portfolios. 

We define a hedge portfolio as a portfolio of a short position in an option contract plus an 

appropriated amount of the underlying asset as a hedge. The appropriated amount is equal to the 

delta of the option. Constructing a hedge portfolio of call options involves writing a call option 

and buying the underlying stocks so that the hedge portfolio is delta-neutral. Similarly, a hedge 

portfolio of put options consists of short positions in a put option and the underlying stocks. The 

hedge portfolio is rebalanced at multiple discrete time intervals over the life of the option. The 

interval does not have to be equally spaced. We assume that the delta is revised at each trading 

day by changing the number of shares in the underlying stocks. At the expiration of the option, 

the final payoff of the option is subtracted from the value of the hedge portfolio. We define 

hedge return as the rate of return on the hedge portfolio as follows: 
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where St and Ct are the underlying stock price and option price on day t, respectively, Dt is the 

dividend payout from the underlying stock on day t, ∆t is the delta of the option on day t and r is 

the risk-free interest rate that is assumed to be constant over the life over the option. The 

subscripts 0 and T represent the time when the option is written and expired, respectively. The 

terminal payoff of call option on day T is CT = max(ST – K, 0), while that of put options is CT = 

max(K – ST, 0). 

The first term in the numerator of Equation (3) is the gain or loss on the pure option 

position. The option premium collected at the outset is assumed to be accrued at the risk-free 

interest rate until the expiration of the option. The second term is the accumulated mark-to-

market gains and losses from adjusting the delta each day, which are also accrued at the risk-

free interest rate day-by-day. The denominator is the cost of the position at inception. Note that 

the hedge return is in the form of an excess return since all the costs or proceeds are financed at 

the risk-free interest rate. 

If revisions of delta occur continuously in time, the hedge return must be degenerated at 
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zero since the hedging scheme is risk-free and completely financed at the risk-free interest rate. 

In practice, it is impossible to revise the hedge portfolio continuously since the trading hours are 

discontinuous from the market close to market open, and because the rebalances are costly. Thus, 

the moments of the hedge return can deviate from zero. In this sense, the hedge return can be 

interpreted as a measure of deviation from perfect replication. 

We compute hedge returns of S&P 500 index options using Equation (3). The hedge return 

not only measures deviations incurred by discrete rebalancing, but also includes errors induced 

by possible misspecification of the option pricing model. Unfortunately, we do not know the 

true option pricing model nor decompose the hedge return into discrete rebalancing errors and 

model errors. Instead, we employ three different option pricing models to compute the hedge 

returns: the Black-Scholes model, the stochastic volatility model of Heston (1993) and the jump 

diffusion model of Bates (1991). 

The Black-Scholes model is the simplest and most widely used by market practitioners, but 

it assumes constant volatility—an assumption that does not conform to evidence from the 

options market. According to Rubinstein (1994), Dumas, Fleming and Whaley (1998) and Ait-

Sahalia and Lo (1998), after the 1987 crash, S&P 500 index options with low strike prices show 

significantly higher implied volatilities than those with high strike prices, which is referred to as 

the “volatility smile.” Bakshi, Kapadia and Madan (2003) find that a negatively sloped implied 

volatility curve is related to a negative risk-neutral skewness. Alternatively, the stochastic 

volatility model and jump diffusion model assume a more complex and – hopefully – more 

realistic stochastic process for the underlying stock return. While the negatively sloped volatility 

skew frequently observed in the options market is an anomaly under the Black-Scholes model, 

advanced models can generate implied volatility function of various shapes and can potentially 

explain the volatility smile. By comparing the hedge returns computed using these three option 

pricing models, we could find the difference in hedging performance between the models. 

Each option pricing model requires a set of its own parameter values. For the Black-

Scholes model, the realized volatility is used to calculate the delta values. For the stochastic 

volatility model, five parameters are calibrated by minimizing the sum of squared differences 

(SSD) between the market implied volatilities and the model implied volatilities as follows:2

                                           
2 While Bakshi, Cao and Chen (1997) minimize difference in option prices, we minimize difference in 
implied volatilities. Since ITM options generally have higher prices than OTM options, the estimation 
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where IVMarket and IVModel denote the market implied volatility and the model implied volatility, 

respectively, v0 is the current variance rate of the underlying stock, and κv, θv, σv and ρ are the 

speed of reversion, long-run mean of the variance rate, volatility of variance rate, instantaneous 

correlation between the Brownian motions from the underlying index and the variance rate, 

respectively, and n is the number of options available in the options market at the time of 

calibration. The parameters of the jump diffusion model are estimated in the same way. 

On each expiration date, the parameters of each model are estimated using all available 

options. The same parameter values are used to revise the portfolios for the remaining trading 

days until the options mature and the hedge portfolios are closed. We do this to fix the 

information set that investors in the options market have at the date when hedge portfolios are 

created. Table 3 presents the mean and standard deviation of parameter values. In Panel A, the 

average realized volatility is 16.32%, which is much less than the average implied volatility of 

24.24%. In Panel B, the average parameter values of the stochastic volatility model, κv, θv, σv, ρ 

and 0v are, respectively, 5.43, 0.05, 0.58, -0.70 and 0.18. The estimates show values similar 

to the results of Bakshi, Cao and Chen (1997, 2000) except that the speed of mean reversion, κv, 

is quite high.3

Table 4 describes the distributional characteristics of empirical hedge returns of different 

option types, expiration groups and moneyness groups. The expiration group, T, consists of 

 Panel C presents the estimated parameters of the jump diffusion model. The 

expected jump size, μJ, is shown to be negative on average in accordance with the negatively 

sloped implied volatility curve. The jump frequency per year, λJ, is estimated to be 3.06 on 

average. 

                                                                                                                            
scheme employed by Bakshi, Cao and Chen assigns more weights to ITM options than OTM options. 
However, we are in favor of assigning an equal weight to each option since volatilities are all of 
comparable magnitude. 
3 The estimate of the speed of mean reversion is 1.15 for the period from June 1998 to May 1991 in 
Bakshi, Cao and Chen (1997) and 2.18 from March 1994 to August 1994 in Bakshi, Cao and Chen (2000). 
The difference between our estimate and theirs exists because we exclude options with terms to maturity 
longer than three months. However, the difference in the mean reversion estimate does not change our 
empirical results. 
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options with T months to expiration. Panels A, B and C refer to hedge portfolios where the 

Black-Scholes model, the stochastic volatility model, and the jump diffusion model are used to 

compute delta values, respectively. For each hedge portfolio, we present mean, standard 

deviation and skewness of hedge returns in the third, fourth, and fifth columns, respectively. The 

standard deviation of call hedge return increases with the moneyness group while that of put 

hedge return decreases with the moneyness group. Although skewness is not well ordered, the 

DOTM calls (M = 5) show positive skewness while the DOTM puts (M = 1) demonstrate 

negative skewness. 

The sixth column presents the beta to the excess market return. The market beta is 

computed from a univariate time-series regression of hedge return on the excess market return. 

It is particularly interesting that most market betas are positive and statistically significant at the 

5% confidence level. This confirms that, contrary to the notion of dynamic replication, daily 

rebalanced hedge portfolios are exposed to the market risk. This holds true even if the stochastic 

volatility model or the jump diffusion model is used. The market betas appear to be important 

since the market betas tend to increase with average hedge returns. Thus, we can deduce that an 

equilibrium model in which investors’ preferences are taken into account can help to explain 

what no-arbitrage models cannot fully explain. The size of the market beta is typically less than 

one. In other words, the market risk of an option can be dramatically reduced by daily delta 

hedging, although it cannot be eliminated. Also, hedge returns of put options show higher 

market betas when the Black-Scholes model is used. This can be interpreted as the stochastic 

volatility model or the jump diffusion model being more effective at removing the market risk 

than the Black-Scholes model. 

Next, three measures of coskewness are reported: beta to the squared excess market return, 

standardized unconditional coskewness and beta to the return of NMP portfolio. Like the market 

beta, beta to the squared excess market returns is computed from univariate regressions. 

Following Harvey and Siddique (2000), standardized unconditional coskewness is defined as 

 

Standardized Unconditional Coskewness = 
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where εi,t are residuals from regressing hedge return i on the market return, and rM,t are the 
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excess market returns. Beta to the squared excess market return and standardized unconditional 

coskewness measure the contribution of hedge portfolio i to the skewness of a broader portfolio. 

A negative value means that the hedge portfolio i adds negative skewness to the broader 

portfolio. Since positive skewness is preferred over negative skewness, the risk premiums of the 

two coskewness measures should be negative. 

Looking at Table 3, beta to the squared excess market return and standardized 

unconditional coskewness seem to increase from moneyness group 1 to moneyness group 5. 

However, they are not well ordered and are rarely statistically significant at the 5% or 10% 

confidence level. The confidence level for standardized unconditional coskewness is computed 

by generating the bootstrap statistic 10,000 times. The bootstrap interval endpoints are given by 

the acceleration and bias-correction percentiles of bootstrap distribution. 

 

[Insert Table 4 about Here] 

 

We define the return of the NMP portfolio as the difference in the average returns between 

hedge portfolios of put options with the highest strikes (M = 5) and hedge portfolios of call 

options with the lowest strikes (M = 1). According to the previous two coskewness measures, 

the hedge portfolio of put options with the highest strikes exhibit the lowest coskewness and is 

most negative, while the hedge portfolio of call options with the lowest strikes exhibits the 

highest coskewness is most positive. Thus, other things being equal, the risk premium of the 

former portfolio should be higher than the risk premium of the latter portfolio. The return on the 

NMP portfolio represents the spread of risk premium between a portfolio that is subtracting 

skewness and a portfolio that is adding skewness, which is the reason we use the term NMP 

(Negative skewness Minus Positive skewness). 

Beta to the NMP return has several advantages to the other two coskewness measures. First, 

it is analogous to the Fama-French factors and the systemic skewness in Harvey and Siddique 

(2000); a higher factor loading is associated with a higher expected return.4

                                           
4 Our measure is different from that of Harvey and Siddique (2000) in that we construct the NMP 
portfolio from the options market, while they form the systematic skewness based on the past rakings of 
coskewness from the stock market. 

 Second, most 

loadings on the NMP return are statistically significant and well-ordered in strike price. For one-

month-to-expiration hedge portfolios in Panel B, the loadings decrease monotonically from 
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0.049 to -0.446 for calls, and from 0.448 to -0.036 for puts. Compared to the beta to the NMP 

return, the previous two coskewness measures appear to be noisy. Third, when the market beta 

is controlled, beta to the NMP return can explain the cross-sectional difference in average hedge 

returns. For example, consider the two-month-to-expiration call hedge return in moneyness 

group 5 and two-month-to-expiration put hedge return in moneyness group 1 in Panel B. While 

their market betas are close to each other – 0.228 versus 0.233 – their mean returns are quite 

different – 1.039% versus 3.224%. This difference in means appears to be related to the 

difference in beta of the NMP factor – -0.301 versus 0.606.  

We also compute cross-sectional correlation between average hedge returns and portfolio- 

specific risk variables, although we do not tabulate the results. These variables include beta to 

the excess market return, beta to the squared excess market return, standardized unconditional 

coskewness and beta to the NMP return. For each variable, the correlation is computed for each 

of the three expiration groups and three option pricing models. The nine correlations are then 

simply averaged. The average correlations are 0.869, -0.647, -0.544 and 0.813 for the four 

variables respectively. The market beta and beta to the NMP return show higher correlations in 

absolute value than the other two variables. Moreover, seven out of nine correlations between 

the market beta and average hedge returns are statistically significant, while eight out of nine 

correlations between the NMP beta and average hedge returns are statistically significant. 

In summary, the empirical distribution of discretely rebalanced hedge portfolios exhibits 

deviations from perfect dynamic replication. Specifically, average hedge returns tend to co-

move with loadings on the excess market return and the NMP return. While it is not surprising 

that unhedged option returns have large market betas, the non-zero moments and co-moments of 

the hedge portfolios suggest that no-arbitrage models cannot fully describe option returns and 

additional systematic risks related to market return must be considered. In the next section, we 

formally test higher-moment CAPM in the options market to determine whether or not the 

market beta and higher-moment betas can explain the cross-sectional variation in average 

hedged and unhedged option returns. 

 

 

II. Pricing Test Using Higher-Moment CAPM 

 

In this section, we present an extended capital asset pricing model in which not only 
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variance of investor’s portfolio but also skewness and kurtosis are considered. Then, we 

examine the performance of the asset pricing framework on hedged and unhedged option 

portfolios. The test follows the standard two-step procedure of a time-series regression and a 

cross-sectional regression, originally developed by Fama and MacBeth (1973). If the two 

systematic risk factors explain the cross-sectional variation in average hedge returns, we can 

conclude that option prices reflect investors’ preferences on those factors, and the equilibrium 

model complements the prevailing approach of using no-arbitrage frameworks to price options. 

It is important to note that the shape of the implied volatility curve is directly related to the 

cross-sectional variations in average hedge returns. Thus, our model indirectly tests the 

hypothesis that the negatively sloped implied volatility curve is linked to investors’ preferences 

regarding systematic risks. In addition, we extend Bollen and Whaley (2004). Bollen and 

Whaley provide evidence that, due to the limits to arbitrage, the option price can be influenced 

by supply and demand in the market. They argue that positive net buying pressure of put options 

on the S&P 500 index can be related to the negatively sloped implied volatility curve. We 

specify the risk factors that drive supply and demand in the options market and investigate the 

relation between the risk factors and the implied volatility curve. 

 

A. Three- and Four-Moment Capital Asset Pricing Model 

The rate of return on an asset can be analyzed in the framework of mean, variance and 

skewness tradeoff. Arrow (1971) argues that desirable utility functions must show positive but 

decreasing marginal utility of wealth and non-increasing absolute risk aversion. Aversion to 

variance and negative skewness are general characteristics of utility functions with decreasing 

marginal utility of wealth and non-increasing absolute risk aversion. Thus, in a market in which 

the participants have one of those utility functions, a higher expected return is required for an 

asset with a higher variance, a lower skewness or both.  

A formal framework for assessing the relationship between the mean, variance and 

skewness of an asset return is investigated by Kraus and Litzenberger (1976). Kraus and 

Litzenberger extend the original version of the capital asset pricing model (CAPM) of Sharpe 

(1964) and Lintner (1965), and develop a three-moment CAPM in which investors consider not 

only the variance of their portfolios but also the skewness. They expand a utility function 

defined over the unconditional mean, standard deviation and the third root of skewness in a 

Taylor series, and derive a stochastic discount factor that is a quadratic function of the excess 
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market return. The quadratic stochastic discount factor prices coskewness of an asset with the 

excess market return as well as covariance. Harvey and Siddique (2000) explain the cross-asset 

variation in average stock returns in the conditional coskewness model. Following the notation 

of Harvey and Siddique, the conditional three-moment CAPM is 
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The coefficients λ1,t and λ2,t are the same across all the assets and are statistically different from 

zero. Equation (6) can be rewritten as follows: 
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where At and Bt are functions of the variance and skewness of the excess market return, and 

covariance and coskewness with the excess market return, respectively. At and Bt are analogous 

to beta in the traditional CAPM.  

Kimball (1993) augments the three-moment CAPM by using the restriction of decreasing 

absolute prudence. Samuelson (1963) proves that if a risk-averse agent had already accepted a 

bet with a negative expected payoff, she should be unwilling to take another independent bet 

with a negative expected payoff. Under this restriction, the fourth-order derivative of standard 

utility function should be negative and the pricing kernel, mt+1, is a cubic polynomial of the 

market return. 
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mt+1 = d0 + d1RM,t+1 + d2R2
M,t+1 + d3R3

M,t+1     (8) 

 

 

A cubic pricing kernel is consistent with a model in which investors have preference over the 

first four moments of returns. Dittmar (2002) finds that incorporating cubic market returns 

substantially improves upon the pricing kernel’s ability to describe the cross section of stock 

returns.  

 

B. Time-Series Analysis 

The first-pass time-series regression estimates the loadings on the excess market return, the 

squared excess market return, and the cubic excess market return. The regression equation is 

 

Ri,t = αi + βi,M RM,t + βi,SM R2
M,t + βi,CM R3

M,t + εi,t     (9) 

 

where RM,t is the excess market return at time t and βs signify loadings to the corresponding risk 

factor of the return, Ri. Table 5 reports loadings on the excess market return and its square and 

cubic from time-series regression of unhedged option returns. The t-statistics are corrected for 

autocorrelation and heteroskedasticity using the Newey-West estimator with five legs and are 

reported below the corresponding loadings. The dependant variables are weekly returns of calls, 

puts, and zero-beta straddles in Panel A, B, and C, respectively. 

In Panel A and B of Table 5, the market betas are large in absolute value and statistically 

significant. Especially, the estimates of market betas are quite similar in magnitude to the Black-

Scholes betas reported in Table 2. Not surprisingly, the market loadings of zero-beta straddles 

are relatively low, although they are statistically significant. As Coval and Shumway (2001) 

indicate, the market loadings alone cannot fully explain the option returns. Besides the market 

loading, the loadings on the squared and cubic excess market returns are also quite large and 

statistically significant. Thus, coskewness and cokurtosis are important risk factors in the 

options market. However, the loadings on cubic excess market returns do not show the expected 

sign. For example, they should be positive and increasing in the strike price for call options. The 

reason why the loadings are negative is that excess market return and its cubic are highly 

positively correlated with simple correlation coefficient of 70.1% during the sample period. 

From a univariate time-series regression of call returns on the cubic excess market return, its 
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loadings are estimated to be positive and increasing in the strike price. 

In Table 5, we also test the joint significance of the regression intercepts and present the F-

statistics of Gibbons, Ross and Shanken (1989) and their corresponding p-values in percentage 

form. The statistic is 21.47 and, thus, the hypothesis that the regression intercepts are jointly 

zero is rejected. The corresponding p-values are equal to or less than 0.01%. 

 

[Insert Table 5 about Here] 

 

Next, we conduct the time-series regression of hedge returns on the excess market return 

and NMP return as follows. As discussed in Section II, the NMP return is used as a proxy of 

coskewness risk. 

 

Ri,t = αi + βi,M RM,t + βi,NMP RNMP,t + εi,t      (10) 

 

where RNMP,t is the NMP portfolio return at time t. Table 6 reports loadings on the excess market 

return and the NMP return computed in time-series regression for hedge portfolios of one-

month-to-expiration options. The results for hedge portfolios of longer-term options will be 

discussed later. The dependant variable, which is a time series of hedge returns, is computed 

using the Black-Scholes model in Panel A, the stochastic volatility model in Panel B and the 

jump diffusion model in Panel C. The size of the loadings is less than one, ranging from 0.018 

to 0.246, implying that the market risks are substantially reduced by delta hedging. All the 

market loadings are positive and statistically significant at the 5% confidence level. The 

loadings increase in moneyness group for call options, and decrease for put options. In other 

words, hedge portfolios of OTM options are exposed to a greater market risk than hedge 

portfolios of ATM options and, in turn, hedge portfolios of ITM options.  

The loadings on the NMP return decrease in moneyness group. In general, the hedge 

portfolios of low moneyness groups (M = 1 or 2) have positive loadings on the NMP return, 

while the hedge portfolios of high moneyness groups (M = 4 or 5) have negative loadings. In 

the middle (M = 3), the loadings are close to zero. These mid-group loadings are not statistically 

significant at the 5% confidence level, i.e., their exposures to the coskewness risk are zero. 

However, many of the NMP betas from low and high moneyness groups are statistically 

significant. The F-statistics of Gibbons, Ross and Shanken (1989) are presented in the last 
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column of Table 6. As shown in all three panels, the hypothesis that the regression intercepts are 

jointly zero is rejected. The corresponding p-values are equal to or less than 0.01%. The same 

tests are conducted for the loadings on the excess market return and the NMP return, and are 

reported separately in Panel A of Table 9. The F-statistics are over 100, indicating that both the 

loadings on the excess market return and the NMP return are jointly significant. Thus, the 

excess market return and the NMP return are relevant in the sense that hedge portfolios 

significantly load on them. 

 

[Insert Table 6 about Here] 

 

C. Cross-Sectional Analysis 

The objective of the second-pass cross-sectional regression is to test whether the loadings 

estimated from the time-series regression are important determinants of average options returns. 

If they are, there should be a significant price of risk associated with each factor. Specifically, 

we examine the following cross-sectional regression specification: 

 

tiCMiCMSMiSMMiMti eβββR ,,,,0,
ˆˆˆ ++++= γγγγ      (11) 

 

where β̂ stands for the exposure to the corresponding factor estimated from the time-series 

regression and γ stands for the reward for bearing the risk of the corresponding factor. In each 

regression, the dependent variable is the time-series average of unhedged option returns. 

Result of cross-sectional regression presented in Table 7 shows that the loadings on the 

excess market return are the most important cross-sectional determinant of average unhedged 

option returns. The t-statistics, which is corrected for the errors-in-variables problem following 

Shanken (1992), indicate that the hypothesis H0: γM = 0 is strongly rejected. The risk premium 

related to the excess market return is estimated as 3.5% to 5.6%. Moreover, loadings on the 

excess market return can explain most of the cross-sectional variation in the average option 

returns. The adjusted R2 which is computed following Jagannathan and Wang (1996) is more 

than 98%. The loadings on the squared and cubic excess market return are also statistically 

significant in the presence of market loadings. Under the errors-in-variables correction, the t-

statistics for the hypotheses, H0 : γSM = 0 and H0 : γCM = 0 are -2.2 and 4.5.  
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[Insert Table 7 about Here] 

 

Table 8 presents result of cross-sectional regression to test whether the loadings on the 

excess market return and the NMP return are important determinants of average hedge returns. 

The regression equation is: 

 

tiNMPiNMPMiMti eββR ,,,0,
ˆˆ +++= γγγ       (12) 

 

Like the regression results of unhedged option returns, the loadings on the excess market return 

are the most important cross-sectional determinant of average hedge returns. From all three 

panels, the t-statistics indicate that the hypothesis H0: γM = 0 is strongly rejected. Also, loadings 

on the excess market return can explain most of the cross-sectional variation in the average 

hedge returns. The adjusted R2 are 99.24%, 88.83% and 88.81 when hedge returns are computed 

using the Black-Scholes model, the stochastic volatility model and the jump diffusion model, 

respectively. 

The loadings on the NMP return are also statistically significant in the presence of market 

loadings. Under the errors-in-variables correction, the t-statistics for the hypotheses, H0 : γM = 0 

and H0 : γNMP = 0 are 2.518 and 2.887 in Panel A, 3.884 and 1.928 in Panel B and 3.642 and 

2.775 in Panel C. The risk premium related to the excess market return is estimated to be higher 

than the risk premium related to the NMP return. In Panel A, the risk premium for bearing one 

unit of the market covariance risk is 5.8% while the price for one unit of the coskewness risk is 

2.5%. These premiums are estimated as 6.2% and 1.0% in Panel B and 4.5% and 1.4% in Panel 

C. 

 

[Insert Table 8 about Here] 

 

D. Goodness-of-Fit Test 

Goodness-of-fit tests from various viewpoints are reported in this subsection to determine 

whether the higher-moment CAPM works in the options market in the correct way. First, we test 

the hypothesis that the intercept of each cross-sectional regression is zero. Hedge returns are, by 
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nature, in the form of excess returns. Thus, if the regression specification of Equation (12) is 

correct, the hypothesis that the intercept γ0 is zero should not be rejected. Table 8 shows that 

most intercepts are not significantly different from zero irrespective of option pricing models, 

implying that the hypothesis is not rejected. Also, Table 7 shows that the intercept is not 

different from zero with the t-statistic of 0.15, when average unhedged option returns are 

regressed on the loadings on excess market return, squared and cubic excess market returns. 

Second, comparing adjusted R2 measures reveals a difference between the Black-Scholes 

model and the other models. The adjusted R2 is much higher in Panel A than in Panels B and C 

of Table 8. It can be deduced that a greater portion of cross-sectional variation in average hedge 

returns is explained by the systematic risks when the Black-Scholes model is used to hedge the 

S&P 500 index options rather than when the stochastic volatility model or the jump diffusion 

model is used. This can be interpreted as evidence that using the advanced models can reduce 

the amount of exposure to systematic risks. 

Third, we test the hypothesis that the pricing errors from the cross-sectional regression are 

jointly zero, and report the corresponding χ2-statistics in the last column of Table 7. The χ2-

statistics and their corresponding p-values (below the statistics and in percentage form) show 

that the pricing errors are jointly insignificant when average unhedged option returns are 

regressed on the loadings on excess market return, squared and cubic excess market returns. For 

hedge portfolios, the p-values for testing the hypothesis are 11.74%, 7.75% and 6.82% in Panels 

A, B and C in Table 8, respectively. Thus, this χ2-test confirms that the higher-moment capital 

asset pricing framework properly spans the options market. 

Another way to verify goodness of fit across the option pricing models is to compare the 

fitted expected return of each hedge portfolio against its realized average return. The fitted 

expected return is computed using the estimated parameter values from Equations (11) and (12) 

for unhedged and hedged option portfolios, respectively. The realized average return is the time-

series average of the option returns. If the fitted expected return and the realized average return 

for each portfolio are the same, then their plot should lie on a 45-degree line through the origin. 

Panels A, B and C of Figure 1 demonstrate the fitted expected returns on the vertical axis versus 

realized average returns on the horizontal axis for naked option contracts. Each two-digit 

numbers represents a separate option returns. The first digit refers to option position (1 for call, 

2 for put, and 3 for zero-beta straddle), while the second digit refers to moneyness group (1 for 

the lowest strike price and 5 for the highest). For example, portfolio 21 indicates the DOTM put 
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option. Under the four-moment CAPM in Panel C of Figure 1, the option portfolios are closer to 

45 degree line than under the three-moment CAPM in Panel B and, in turn, than under the 

standard CAPM in Panel A. 

 

 

[Insert Figure 1 about Here] 

 

Figure 2 show the fitted expected returns on the vertical axis versus realized average returns 

on the horizontal axis for ten hedge portfolios of one-month-to-expiration options. Panel A 

differs from Panels B and C in that portfolio 21 is depicted at the upper right corner in Panel A. 

This means that delta hedging by the stochastic volatility model and the jump diffusion model 

dramatically reduce the exposure of hedge portfolios of DOTM put options to the excess market 

return and the NMP portfolio return. However, pricing error tends to increase if the advanced 

models are employed. For example, the hedge portfolios of DOTM and OTM options (21, 22 

and 15) in Panels B and C deviate from the 45-degree line further than in Panel A. In addition, 

the root mean squared errors are 0.08%, 0.15% and 0.2% from Panels A, B and C, respectively. 

In summary, various goodness of fit tests confirm that the higher-moment capital asset pricing 

framework can properly explain the cross-sectional variation in average returns of S&P 500 

index options.  

 

[Insert Figure 2 about Here] 

 

III. Robustness 

 

A. Longer-Term Options 

So far, we have focused on hedge portfolios of one-month-to-expiration options and drawn 

a conclusion that the three-moment CAPM works for the portfolios. An interesting extension is 

to apply the model to other assets and test if the model still works. The natural candidates for 

“other assets” are hedge portfolios of the same S&P 500 options with longer terms to expiration. 

Since longer-term options have different characteristics from the shorter-term options (for 

example, due to volatility term structure), it is worthwhile to test whether the higher-moment 

CAPM also works for hedge portfolios of longer-term options. Thus, we repeat the two-step 
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regression procedure for two-month-to-expiration options and three-month-to-expiration options. 

A drawback in examining the longer-term options is that the time-series length of hedge returns 

is short, and we should keep in mind that this may have an adverse impact on time-series 

estimates of loadings on the risk factors. 

Table 9 summarizes the results of the time-series regression and cross-sectional regression 

for hedge portfolios of longer-term options. Panel A of Table 9 reports the number of significant 

loadings on the excess market returns and the NMP return from the time-series regression at the 

5% confidence level. Although the length of hedge returns of longer-term options is shorter than 

the length of hedge returns of one-month-to-expiration options, the number of significant 

loadings is not very different. The Gibbons-Ross-Shanken F-statistics and their corresponding 

p-values in percentage form show that the corresponding factor loadings are jointly significant. 

 

[Insert Table 9 about Here] 

 

Panel B of Table 9 presents factor risk premiums from the cross-sectional regression using 

the full-sample factor loadings computed in the time-series regression. The overall results are 

similar to the results of the cross-sectional regression for hedge returns of one-month-to-

expiration options in Table 8. The risk premiums of the excess market return and the NMP 

return are positive and statistically significant at the 5% confidence level after the errors-in-

variables adjustment. The intercepts of the cross-sectional regressions are generally insignificant, 

but they are higher when the Black-Scholes model is employed than when the stochastic 

volatility model or jump diffusion model is used, which is similar to the results in Table 8. In 

addition, the adjusted R2 measures are quite high, ranging from 81.92% to 97.44%. 

One caveat of the cross-sectional regression result for hedge portfolios of longer-term 

options is that the hypothesis that the pricing errors in each regression are jointly zero is 

strongly rejected in many cases. Using the Black-Scholes model for hedge portfolios of two-

month-to-expiration options, the χ2-statistics and their corresponding p-values are 21.13 and 

0.36%, respectively, implying that three-moment CAPM is rejected. For hedge portfolio of 

three-month-to-expiration options, the p-value for the joint test is less than 1% regardless of 

hedge models. 

Panels D through I of Figure 2 present plots of the fitted expected returns versus the 

average realized returns for longer-term options, which are similar to Panels A, B and C. When 
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the Black-Scholes model is used, the hedge portfolio of DOTM put options is located in the far 

upper right of Panels D and G, and in the middle of the plot when the advanced models are used. 

The root mean squared errors for longer-term options are generally greater than those for 

shorter-term options. To summarize, the excess market return and the NMP portfolio return are 

significant determinants of the hedge returns of longer-term options; however, the loadings on 

the two factors cannot fully explain the cross-sectional variation in average hedge returns. 

 

B. Finite Sample Distribution of Loadings and Risk Premiums 

We are concerned that the results we have obtained thus far may be biased or imprecise due 

to the small sample size in the first-pass time-series regression. Therefore, to evaluate the 

empirical evidence on three-moment CAPM over hedge returns, we present a finite sample 

distribution of loadings and the adjusted R2 for hedge returns with a one-month horizon. The 

similar finite sample distribution for hedge portfolios of longer-term options can be obtained 

from the authors upon request. 

The procedure to generate the finite sample distribution is as follows. Under the null 

hypothesis that the estimated factor loadings and risk premiums are true, we simulate 10,000 

time-series of hedge returns using the bootstrap method. 

 
*
,,,,,

*
,

ˆˆ
titNMPNMPitMMiiti εRβRβαR +++=      (13) 

 

where β̂ s are the estimated factor loadings from the time-series regression reported in Table 5, 

and *
tε  stands for the bootstrapped residual. To recover the dependence structure of the 

estimated residuals in the re-sampled residuals, we use the stationary bootstrap proposed by 

Politis and Romano (1994). The stationary bootstrap calls for re-sampling blocks of random 

length where the length of each block has a geometric distribution. Politis and Romano show 

that the bootstrap sample generated by this re-sampling scheme is stationary. The average block 

length for the stationary bootstrap is computed based on Politis and White (2004), and is 1.92. 

The simulated returns are used to estimate a new set of factor loadings, factor risk premiums 

and cross-sectional adjusted R2s. In this way, the finite sample distributions of the betas, the 

cross-sectional risk premiums and the adjusted R2s are generated. 

Panel A of Table 10 reports the finite sample distributions of the simulated betas, along with 
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the betas estimated under the null model. The two-digit number located on the right of each 

model indicates a separate hedge portfolio with the first digit referring to option type (1 for call 

and 2 for put) and the second digit referring to moneyness group. For every hedge portfolio, the 

loadings on the excess market return and the systematic skewness factor are unbiased; the 50% 

critical value of the distribution is very close to the value estimated under the null model. The 

mean difference between the true value and the 50% critical value is 1.9% of the true value for 

the market beta and -1.2% for the NMP beta. Furthermore, the distributions of the simulated 

loadings appear almost symmetric. The distance from the 50% critical value to the 2.5% critical 

value is similar to the distance from the 50% critical value to the 97.5% critical value. 

 

[Insert Table 10 about Here] 

 

Panel B of Table 10 reports the finite sample distributions of the risk premiums and the 

adjusted R2s in the cross-sectional regression. The null hypothesis that the risk premiums on the 

excess market return and the NMP return are equal to zero is strongly rejected at the 5% 

confidence level from their finite sample distributions; none of the 5% confidence intervals 

include zero. The adjusted R2s are also far from zero, but their finite sample distribution displays 

a downward bias due to the sampling error in the estimated betas. In summary, the finite sample 

distributions confirm the fact that there are significant risk premiums associated with the excess 

market return and the NMP portfolio return in the S&P 500 index options market. 

 

IV. Conclusion 

 

We have shown that the distribution of the rate of return of discretely hedged option 

portfolio exhibits a deviation from perfect dynamic replication. Specifically, the hedge returns 

are exposed to covariance and coskewness risk with the market portfolio. The co-moments 

differ widely depending on moneyness of the option hedged. The average hedge returns tend to 

co-move with loadings on the excess market return and the NMP portfolio return. The NMP 

portfolio return is defined to proxy the systematic coskewness risk.  

A formal test using the three-moment CAPM and the standard two-pass regression is 

conducted on hedge portfolios of S&P 500 index options over a period of 138 months from 

January 1996 to June 2007. We find evidence from the time-series regression that the excess 
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market return and the NMP factor are relevant in the sense that hedge portfolios significantly 

load on them. From the cross-sectional regression on hedge returns of one-month-to-expiration 

options, the excess market return and the NMP portfolio return can explain the cross-sectional 

variation in average hedge returns and command a risk premium of 5.8% and 2.5%, respectively, 

when the Black-Scholes model is used to compute the delta values. Various goodness-of-fit tests 

and the finite sample distributions of factor loadings and risk premiums confirm that there are 

significant risk premiums associated with the excess market return and the NMP portfolio 

returns in the S&P 500 index options market. Since the cross-sectional variation in the average 

hedge returns of options with different strike prices are directly related to the volatility skew, we 

can conclude that investors’ preferences on systematic risk play a role in determining the 

negatively sloped implied volatility function. 

The empirical issues addressed in this article can also be tested for individual stock options. 

The shape of the implied volatility function of stock options is known to differ from that of 

index options. Whether hedge portfolios of stock options also are exposed to the market risk or 

whether the loadings on other risk factors, such as the Fama-French factors, can be significant in 

the stock options market is questionable. These are left for further research. 
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Table 1 
Sample Description of S&P 500 Index Options 
This table presents sample description of S&P 500 index options collected on every Fridays from January 1996 
through September 2008. The options with time to maturity shorter than 30 days or longer than 100 days and 
absolute delta values below 5% or above 95% are removed. Both the call and put options are divided into five 
moneyness groups based on the delta values. Breakpoints of five moneyness groups are reported at the top of the 
table. The delta value of each option is computed using the Black-Scholes model and the realized volatility over 
the most recent 60 trading days. The lowest moneyness group (M = 1) comprises options with the lowest strikes 
while the highest moneyness group (M = 5) comprises options with the highest strikes. Panel A shows the 
number of observations, average daily trading volume per contract, average delta value, average ratio of the 
strike price divided by the underlying index, average implied volatility (IV), and average implied volatility over 
realized volatility (RV) for each moneyness group of the call options while Panel B presents those statistics for 
the put options. Implied volatilities are computed from the midpoint of the bid–ask spread at the market close 
using the Black-Sholes formula. The delta values and volatilities are shown in the percentage form. 

  Moneyness Groups (M) 
  1  2  3  4  5  

 Call delta  (75, 95] (60, 75] (40, 60] (25, 40] (5, 25] 
 Put delta  (-5, -25] (-25, -40] (-40, -60] (-60, -75] (-75, -95] 
  Panel A: Call Options       
 Obs  7,138  4,158  5,653  4,132  7,060  
 Trading volume  3,862  5,968  6,776  6,477  5,959  
 Mean delta  86.14  67.47  50.12  32.43  14.22  
 K/S  0.93  0.97  1.01  1.04  1.09  
 IV  23.21  20.88  19.17  17.54  15.99  
 IV-RV  5.92  3.23  1.51  0.02  -1.37  
  Panel B: Put Options       
 Obs  7,141  4,169  5,653  3,926  3,383  
 Trading volume  9,353  8,699  6,327  3,538  2,246  
 Mean delta  -13.89  -32.51  -49.84  -67.35  -83.75  
 K/S  0.93  0.98  1.01  1.04  1.08  
 IV  23.06  20.77  19.13  17.69  18.18  
 IV-RV  5.77  3.13  1.47  0.27  0.49  
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Table 2 
Weekly Returns of S&P 500 Index Call and Put Options 
This table presents descriptive statistics for weekly returns of S&P 500 index calls (Panel A), puts (Panel B), and 
zero-beta straddle positions (Panel C). The sample period is 661 weeks from January 1996 through September 
2008. The options with time to maturity shorter than 30 days or longer than 100 days are removed. The options 
are divided into five moneyness groups based on the delta values, and breakpoints of each moneyness group are 
reported at the top of the table. The delta value of each option is computed using the Black-Scholes model and 
the realized volatility over the most recent 60 trading days. The lowest moneyness group (M = 1) comprises 
options with the lowest strikes while the highest moneyness group (M = 5) consists of options with the highest 
strikes. The straddle positions are constructed by combining call and put options with such weights that the 
betas of the positions are zero. The zero-beta straddles are divided based on the delta values of the call options 
in the positions. To fairly compare the returns across five moneyness groups, the weeks when any of five 
moneyness groups have no observation are excluded. To prevent excessive exclusion, options with absolute 
delta values between 35% and 75% are reported. After the exclusion, the sample is reduced to 535weeks. BS β 
denotes the option beta computed using the Black-Scholes model. The returns are in weekly percentage forms, 
and the t-statistics test the null hypothesis that the returns are zero. 

  Moneyness Groups 
  1  2  3  4  5  

Call delta (65, 75] (55, 65] (45, 55] (35, 45] (25, 35] 
Put delta (-25, -35] (-35, -45] (-45, -55] (-55, -65] (-65, -75] 

  Panel A: Call Options   
Mean return 3.443  3.769  4.162  4.447  4.971  
t-Statistic (2.973) (2.842) (2.731) (2.504) (2.331) 
Median 2.449  1.546  1.120  0.112  -1.807  
Minimum -63.000  -68.159  -72.999  -77.501  -82.005  
Maximum 91.656  116.514  155.221  171.494  271.831  
Mean BS β 14.610  16.238  18.202  20.964  25.418  

  Panel B: Put Options   
Mean return -9.510  -8.431  -7.497  -6.663  -5.835  
t-Statistic (-6.022) (-5.649) (-5.33) (-5.013) (-4.728) 
Median -16.256  -13.552  -12.320  -10.609  -8.606  
Minimum -72.735  -71.801  -68.549  -68.692  -62.824  
Maximum 166.243  154.829  142.130  129.841  113.705  
Mean BS β -16.813  -17.164  -16.838  -16.088  -14.847  

  Panel C: Zero-Beta Straddles   
Mean return -2.611  -2.234  -1.989  -1.920  -1.866  
t-Statistic (-7.982) (-7.14) (-6.075) (-5.412) (-4.649) 
Median -3.814  -3.194  -2.959  -3.113  -3.344  
Minimum -17.515  -16.901  -19.019  -21.508  -23.383  
Maximum 46.181  40.503  51.526  49.877  65.955  
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Table 3 
Calibrated Model Parameters 
This table presents the estimated parameters for the Black-Scholes model, the stochastic volatility model and the 
jump diffusion model. The sample period is 138 months from January 1996 to June 2007. At each expiration day, 
a set of call and put options with absolute delta values above 2% and below 98% are collected from the market. 
The parameters of a given model are estimated by minimizing the sum of the squared differences between the 
market implied volatilities and the model implied volatilities for the collected options. The average values of 
parameters are reported with their standard deviations. Panel A reports average realized volatility (RV) next to 
the average implied volatility (IV) computed by the Black-Scholes model. In Panel B, the parameters of the 
stochastic volatility model, κv, θv, σv, ρ and 0V are the speed of reversion, the long-run mean of volatility, the 
volatility of variance rate, the correlation between the underlying index and the volatility process and the current 
level of the variance rate, respectively. For the jump diffusion model in Panel C, the parameters μJ, σJ and λJ are 
the expected jump size, the standard deviation of the logarithm of one plus the percentage jump size and the 
frequency of the jumps per year, respectively. The average value of root mean squared errors (RMSE) is also 
reported in the last column of Panel B and Panel C. 
Panel A: Black-Scholes Model         
  RV IV         
Mean 0.1632  0.2424          
Stdev 0.0641  0.0804          
Panel B: Stochastic Volatility Model         
  κv θv σv ρ 0V  RMSE 
Mean 5.4348  0.0528  0.5823  -0.6995  0.1821  0.0698  
Stdev 4.2462  0.0271  0.1822  0.1429  0.0754    
Panel C: Jump Diffusion Model         
  μJ σJ λJ 0V   RMSE 
Mean -0.2104  0.1626  0.7722  0.1304   0.0441  
Stdev 0.1038  0.0716  1.0993  0.0322     
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Table 4 
Descriptive Statistics on Discretely Hedged Option Portfolios 
This table describes distributional characteristics of hedge portfolios of options in various expiration groups (T) and moneyness groups (M). The rate of return on hedge 
portfolios are computed using the Black-Scholes model (Panel A), the stochastic volatility model (Panel B) and the jump diffusion model (Panel C). The rate of return on 
the market portfolio (RM) is the value-weighted NYSE/AMEX/NASDAQ index. Skewness of return i is the third central moment around the mean divided by cubic 
standard deviation. The βs are computed from univariate regressions of the portfolio return on the risk factor. Standardized unconditional coskewness is defined 

as ]var[]var[]E[ 2
,,

2
,, tMtitMti rr εε , where εi.t are residuals from regressing the excess return i on the market return and rM.t is the excess market return. Significance levels 

for skewness and standardized unconditional coskewness are computed by generating the bootstrap statistic 10,000 times. The bootstrap interval endpoints are given by 
the acceleration and bias-correction percentiles of bootstrap distribution. The rate of return on the NMP portfolio (RNMP) is defined as the difference in the rate of returns 
between the put options with the lowest strikes (M = 1), which exhibit negative systematic coskewness, and the call options with the highest strikes (M = 5), which exhibit 
positive systematic coskewness. The sample period is from January 1996 to September 2008. 
    Call Options   Put Options 
            Standardized              Standardized   
         β to β to Unconditional β to        β to β to Unconditional β to   
T M Mean Stdev Skewness RM - Rf (RM - Rf)2  Coskewness RNMP   Mean Stdev Skewness RM - Rf (RM - Rf)2  Coskewness RNMP 

1 

1  0.205  0.626  -2.561**  0.047**  -0.311**  -0.123**   0.056**    3.928  9.850  -3.603**  0.806**  -6.137**  -0.310**   1.048**  
2  0.272  0.806  -1.832**  0.053**  -0.089**  0.050**   0.050**    1.133  3.031  -2.573**  0.236**  -0.941**  -0.048**   0.250**  
3  0.319  1.162  -1.639**  0.052**  0.083**  0.102**   0.025**    0.544  1.304  -1.771**  0.075**  -0.103**  0.091**   0.062**  
4  0.276  2.024  -2.711**  0.070**  0.209**  0.100**   -0.014**    0.259  0.782  -1.399**  0.038**  0.001**  0.130**   0.012**  
5  0.843  3.017  1.785**  0.123**  0.320**  0.111**   -0.046**    0.115  0.492  -3.180**  0.020**  -0.010**  0.093**   0.000**  

                                  

2 

1  0.372  0.987  -2.765**  0.059**  0.103**  -0.148**   0.050**    5.474  15.031  -3.631**  0.929**  0.199**  -0.234**   0.816**  
2  0.606  1.204  -1.460**  0.064**  0.237**  -0.039**   0.036**    1.998  4.873  -3.030**  0.293**  0.613**  -0.128**   0.155**  
3  0.852  1.424  -0.737**  0.073**  0.290**  -0.024**   0.020**    1.155  1.849  -0.842**  0.103**  0.288**  -0.083**   0.043**  
4  0.777  2.683  -2.104**  0.166**  0.906**  0.049**   0.005**    0.570  1.228  -1.759**  0.076**  0.222**  -0.088**   0.014**  
5  1.369  3.500  0.966**  0.291**  1.634**  0.085**   -0.016**    0.162  0.884  -3.216**  0.056**  0.303**  0.048**   0.001**  

                                  

3 

1  0.588  1.254  -2.007**  0.074**  -0.135**  0.014**   0.063**    6.685  17.200  -3.483**  1.065**  -2.838**  -0.064**   0.997**  
2  0.872  1.443  -0.077**  0.063**  -0.033**  0.090** 0.042**    2.392  4.372  -1.879**  0.277**  -0.559**  -0.003**   0.180**  
3  1.209  1.587  -0.474**  0.045**  0.010**  0.083**   0.024**    1.422  2.148  -1.696**  0.071** -0.010**  0.082**   0.044**  
4  1.726  1.698  0.929**  0.092**  0.018**  0.173**   0.021**    1.012  1.151  -0.837**  0.050**  -0.087**  0.015**   0.018**  
5  1.905  4.423  2.930**  0.194**  0.010**  0.124**   -0.034**    0.511  0.606  0.177**  0.038**  -0.033**  0.109**   0.006**  
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    Call Options   Put Options 
             Standardized              Standardized   
         β to β to Unconditional β to        β to β to Unconditional β to   
T M Mean Stdev Skewness RM - Rf (RM - Rf)2  Coskewness RNMP   Mean Stdev Skewness RM - Rf (RM - Rf)2  Coskewness RNMP 
Panel B: Stochastic Volatility Model                 

1 

1  0.194  0.555  -2.150** 0.033**  -0.265**  -0.134**   0.049**    1.901  3.846  -2.462**  0.284**  -2.170**  -0.158**   0.448**  
2  0.273  0.819  -2.192** 0.058**  -0.269**  -0.048**   0.059**    1.083  2.710  -2.393**  0.210**  -1.236**  -0.100**   0.257**  
3  0.282  1.055  -1.302** 0.087**  -0.160**  0.060**   0.013**    0.658  1.621  -1.512**  0.139**  -0.542**  -0.027**   0.075**  
4  0.215  1.549  -0.656** 0.121**  0.000**  0.127**   -0.064**   0.268  0.988  -0.701**  0.089**  -0.192**  0.051**   -0.015**  
5  0.873  3.614  1.152** 0.177**  0.378**  0.124**   -0.446**    0.136  0.633  -0.192**  0.041**  -0.075**  0.046**   -0.036**  

                                 

2 

1  0.404  0.753  -3.185** 0.027**  0.041**  -0.091**   0.078**    3.224  5.395  -4.218**  0.233**  0.153**  -0.140**   0.606**  
2  0.576  1.236  -1.479** 0.066**  0.161**  -0.096**   0.080**    1.897  3.935  -1.575**  0.221**  0.391**  -0.134**   0.272**  
3  0.766  1.554  -0.703** 0.129**  0.392**  -0.119**   0.062**    1.284  2.621  -1.159**  0.187**  0.498**  -0.122**   0.139**  
4  0.718  2.387  0.589** 0.232**  1.144**  0.040**   0.002**    0.701  1.840  -0.734**  0.174**  0.584**  -0.113**   0.046**  
5  1.039  3.886  1.681** 0.228**  0.593**  -0.099**   -0.301**    0.233  1.174  0.266**  0.109**  0.607**  0.096**   -0.012**  

                                 

3 

1  0.608  0.958  -2.037** 0.046**  -0.093**  -0.002**   0.072**    4.170  5.598  -2.579**  0.306**  -0.758**  -0.039**   0.577**  
2  0.859  1.375  -1.175** 0.073**  -0.151**  -0.006**   0.080**    2.476  4.076  -2.127**  0.261**  -0.745**  -0.087**   0.350**  
3  1.086  1.684  -1.379** 0.076**  -0.094**  0.048**   0.038**    1.679  2.946  -1.996**  0.130**  -0.195**  0.030**   0.118**  
4  1.501  2.027  0.625** 0.135**  0.075**  0.268**   0.009**    1.279  1.938  -0.864**  0.109**  -0.138**  0.061**   0.043**  
5  1.675  4.459  2.711** 0.182**  0.216**  0.179**   -0.377**    0.746  1.320  1.116**  0.080**  0.005**  0.189**   -0.035**  

Panel C: Jump Diffusion Model                 

1 

1  0.209  0.674  -3.182**  0.042**  -0.401**  -0.187**   0.091**    2.186  5.223  -2.995**  0.378**  -3.408**  -0.203**   0.847**  
2  0.271  0.855  -2.042**  0.079**  -0.267**  -0.005**   0.075**    1.440  3.896  -2.435**  0.350**  -1.801**  -0.086**   0.483**  
3  0.215  1.130  -1.388**  0.093**  0.056**  0.159**   0.001**    0.600  1.872  -1.279**  0.185**  -0.310**  0.083**   0.090**  
4  0.287  1.780  -1.523**  0.094**  0.185**  0.130**   -0.065**    0.227  1.013  -0.872**  0.074**  0.007**  0.120**   -0.015**  
5  0.905  2.572  2.142**  0.132**  0.252**  0.125**   -0.177**    0.135  0.596  -2.116**  0.025**  -0.008**  0.056**   -0.022**  

                                  

2 

1  0.393  0.873  -3.761**  0.028**  -0.011**  -0.127**   0.101**    3.171  5.793  -4.354**  0.171**  -0.519**  -0.183**   0.746**  
2  0.565  1.323  -2.024**  0.078**  0.182**  -0.112**   0.056**    1.961  4.358  -1.873**  0.237**  0.336**  -0.146**   0.233**  
3  0.758  1.548  -0.161**  0.133**  0.539**  -0.040**   0.015**    1.329  2.698  -0.984**  0.217**  0.719**  -0.094**   0.072**  
4  0.774  2.471  -0.537**  0.213**  1.092**  0.048**   -0.054**    0.645  1.742  -0.316**  0.160**  0.667**  -0.035**   -0.006**  
5  1.321  3.302  1.820**  0.312**  1.744**  0.101**   -0.214**    0.190  1.117  -1.707**  0.086**  0.405**  0.013**   -0.033**  

                                  

3 

1  0.589  1.043  -2.398**  0.050**  -0.137**  -0.050**   0.100**    3.959  5.478  -2.635**  0.280**  -0.998**  -0.116**   0.671**  
2  0.811  1.417  -1.135**  0.077**  -0.143**  0.011**   0.084**    2.319  4.229  -1.744**  0.278**  -0.911**  -0.133**   0.385**  
3  1.128  1.637  -1.278**  0.071**  0.011**  0.130**   0.028**    1.593  2.973  -2.077**  0.113**  -0.060**  0.076**   0.100**  
4  1.532  1.921  1.053**  0.127**  0.239**  0.405**   -0.014**    1.177  1.728  -0.618**  0.093**  0.009**  0.164**   0.033**  
5  1.457  3.538  2.975**  0.163**  0.030**  0.141**   -0.288**    0.659  1.039  0.986**  0.065**  0.041**  0.250**   -0.038**  

** and * denote t-statistics significant at the 5% and 10% confidence levels, respectively. 
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Table 5 
Loadings on the Market Return, the Squared Market Return, and the Cubic Market 
Return from Time-Series Regressions of Unhedged Option Returns 
This table reports loadings on the excess market return, RM, the squared excess market return, and the cubic 
excess market return computed in a time-series regression for weekly calls, puts, and zero-beta straddles of five 
moneyness groups. The sample size is 535 weeks from January 1996 through September 2008 after removing 
the weeks when any of five moneyness groups have no observation. The t-statistics are reported below the 
corresponding loadings and are corrected for autocorrelation and heteroskedasticity using the Newey-West 
estimator with five legs. The last column reports the Gibbons-Ross-Shanken F-statistics and their corresponding 
p-values (%) testing the joint significance of the regression intercepts. The R2s from each time series regression 
are reported in percentage form. 

Moneyness     Beta to Beta to Beta to     
Group Delta α RM - Rf (RM - Rf)2 (RM - Rf)3 R2 (%) GRS 

    Panel A: Call Options         

1  (65, 75] -0.03  13.56  22.93  -1169.99  85.50  20.61  
(-5.53) (25.53) (2.91) (-6.3)   (<0.01)  

2  (55, 65] -0.03  15.32  34.82  -1295.13  84.84    
(-6.17) (24.95) (3.68) (-5.74)     

3  (45, 55] -0.04  17.41  50.36  -1534.08  83.13    
(-6.66) (23.69) (4.48) (-5.26)     

4  (35, 45] -0.06  19.77  74.45  -1704.35  81.41    
(-7.52) (22.15) (5.6) (-4.62)     

5  (25, 35] -0.08  22.35  110.51  -1776.36  76.64    
(-8.01) (19.36) (6.69) (-3.52)     

    Panel B: Put Options         

1  (-25, -35] -0.07  -17.54  90.47  654.34  85.10    
(-9.98) (-27.26) (5.74) (2.42)     

2  (-35, -45] -0.05  -16.84  74.34  782.14  85.32    
(-8.41) (-26.66) (4.88) (2.82)     

3  (-45, -55] -0.04  -16.15  60.35  876.46  86.17    
(-7.25) (-27.33) (4.64) (3.52)     

4  (-55, -65] -0.03  -15.39  48.26  906.06  86.49    
(-5.95) (-27.1) (4.36) (4.01)     

5  (-65, -75] -0.02  -14.31  36.80  874.75  86.42    
(-4.66) (-26.09) (3.87) (4.2)     

    Panel C: Zero-Beta Straddles       

1  (65, 75] -0.05  -1.04  56.38  -279.95  37.05    
(-15.22) (-5.25) (8.58) (-2.76)     

2  (55, 65] -0.04  -0.38  55.42  -296.42  31.55    
(-14.37) (-2) (8.24) (-2.91)     

3  (45, 55] -0.04  -0.01  56.20  -349.74  27.97    
(-13.39) (-0.06) (8.21) (-3.36)     

4  (35, 45] -0.04  0.03  57.72  -355.46  25.00    
(-12.22) (0.11) (7.55) (-3)     

5  (25, 35] -0.04  -0.25  58.25  -337.58  20.44    
(-10.94) (-0.79) (6.61) (-2.47)     
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Table 6 
Loadings on the Market Return and the NMP Return from Time-Series Regressions of 
Discretely Hedged Option Portfolios 
This table reports loadings on the excess market return, RM, and the NMP portfolio return, RNMP, computed in a 
time-series regression for hedge portfolios of options with one month to expiration. The NMP portfolio return is 
defined as the difference in the rate of returns between the put options with the lowest strikes (M = 1) and the 
call options with the highest strikes (M = 5). The returns of hedge portfolios are calculated using the Black-
Scholes model (Panel A), the stochastic volatility model (Panel B) and the jump diffusion model (Panel C). The 
t-statistics are also reported below the corresponding loadings and are corrected for autocorrelation and 
heteroskedasticity using the Newey-West estimator with five legs. The sample size is from January 1996 to 
September 2008. The last column reports the Gibbons-Ross-Shanken F-statistics and their corresponding p-
values (%) testing the joint significance of the regression intercepts. The R2s from each time series regression 
are reported in percentage form. 

  Call Options   Put Options   

M α βM βNMP R2 (%)   α βM βNMP R2 (%) GRS 
  Panel A: Black-Scholes Model   

1  0.000)  0.018)  0.052)  54.49    0.008)  0.246)  0.993)  75.55  4.11  
  (0.559)  (3.267)  (4.145)      (1.154)  (3.479)  (6.488)    (0.01)  

2  0.001)  0.028)  0.044)  26.82    0.004)  0.109)  0.225)  46.70    
  (1.214)  (2.131)  (2.579)      (1.268)  (2.556)  (3.965)      

3  0.002)  0.043)  0.016)  4.73    0.004)  0.046)  0.051)  16.23    
  (1.681)  (2.140)  (0.610)      (2.272)  (2.129)  (1.805)      

4  0.003)  0.089)  -0.034)  3.12    0.002)  0.036)  0.004)  4.59    
  (1.561)  (2.912)  (-0.934)      (2.749)  (2.528)  (0.259)      

5  0.010)  0.171)  -0.084)  7.35    0.001)  0.023)  -0.005)  3.47    
  (2.535)  (5.110)  (-1.444)      (2.715)  (3.031)  (-0.872)      
  Panel B: Stochastic Volatility Model 

1  0.001)  0.028)  0.047)  28.44    0.013)  0.241)  0.426)  48.53  4.76  
  (2.364)  (3.153)  (3.239)      (4.575)  (4.680)  (5.344)    (<0.01) 

2  0.002)  0.052)  0.055)  24.35    0.007)  0.186)  0.240)  37.20    
  (2.308)  (4.331)  (3.091)      (3.393)  (4.917)  (5.133)      

3  0.002)  0.087)  0.006)  16.53    0.005)  0.133)  0.063)  22.22    
  (2.068)  (5.149)  (0.332)      (3.585)  (5.511)  (2.728)      

4  0.002)  0.129)  -0.076)  21.60    0.002)  0.091)  -0.023)  21.23    
  (1.371)  (6.219)  (-2.777)      (2.497)  (6.510)  (-1.631)      

5  0.012)  0.224)  -0.466)  53.30    0.001)  0.045)  -0.040)  20.99    
  (4.537)  (4.540)  (-7.946)      (2.430)  (5.162)  (-2.767)      
  Panel C: Jump Diffusion Model   

1  0.001)  0.022)  0.085)  48.68    0.012)  0.189)  0.803)  71.09  4.51  
  (1.538)  (2.879)  (3.214)      (3.399)  (4.638)  (6.064)    (<0.01) 

2  0.002)  0.065)  0.060)  33.08    0.008)  0.251)  0.424)  49.25    
  (1.883)  (4.954)  (2.191)      (2.494)  (4.260)  (3.927)      

3  0.002)  0.098)  -0.022)  17.15    0.004)  0.173)  0.049)  25.83    
  (1.525)  (5.745)  (-0.868)      (2.546)  (5.435)  (1.244)      

4  0.003)  0.115)  -0.093)  12.42    0.002)  0.082)  -0.034)  15.28    
  (1.872)  (5.194)  (-2.460)      (2.154)  (6.275)  (-1.608)      

5  0.010)  0.184)  -0.221)  23.69    0.001)  0.032)  -0.029)  8.94    
  (3.439)  (5.680)  (-2.295)      (2.632)  (3.831)  (-1.987)      
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Table 7 
Cross-Sectional Regressions with Market, Squared and Cubic Market Loadings 
This table presents cross-sectional regressions using the weekly returns on calls, puts, and zero-beta straddles. 
The sample size is 535 weeks from January 1996 through September 2008 after removing the weeks when any 
of five moneyness groups have no observation. The full-sample factor loadings, which are the independent 
variables in the regressions, are computed in one multiple time-series regression. The dependent variables in the 
regressions are the returns of calls, puts, and straddle positions. The t-statistics are reported below the 
corresponding loadings. Since the coefficient estimates, γM , γSM, γCM, and γQM, which are the premiums market, 
squared market, cubic market, and quartic market returns, are too small, they are presented after being 
multiplied by 102, 104, 106, and 108, respectively. The adjusted R2 follows Jagannathan and Wang (1996) and is 
reported in percentage form. The t-statistics adjust for errors-in-variables and follows Shanken (1992). The last 
column reports χ2-statistics and their corresponding p-values (%) for the test that the pricing errors in the 
regression are jointly zero. 

γ0 γM (x102) γSM (x104) γCM (x106) Adj. R2 χ2 
-0.023)  0.400)      98.16  92.55)  

(-5.751) (4.023)       (0.00) 
-0.006)  0.350)  -2.380)    99.52  58.00)  

(-3.945) (3.438) (-3.263)     (0.00) 
0.003)  0.557)  -1.846)  30.676)  99.89  16.44)  

(0.149) (5.006) (-2.159) (4.463)   (12.57) 
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Table 8 
Cross-Sectional Regressions with Market Loadings and NMP Factor Loadings 
This table presents cross-sectional regressions using the rate of returns on ten hedge portfolios with one-month 
horizons. The full-sample factor loadings, which are the independent variables in the regressions, are computed 
in one multiple time-series regression. The returns of hedge portfolios, which are the dependent variables in the 
regressions, are computed using the Black-Scholes model (Panel A), the stochastic volatility model (Panel B) 
and the jump diffusion model (Panel C). Each panel reports results for the standard CAPM, three-moment 
CAPM and a combination of the three-moment CAPM and Fama-French model. The NMP portfolio returns, 
RNMP, is defined as the difference in the rate of returns between the put options with the lowest strikes (M = 1) 
and the call options with the highest strikes (M = 5). The adjusted R2 follows Jagannathan and Wang (1996) and 
is reported in percentage form. The t-statistics adjust for errors-in-variables and follows Shanken (1992). The 
last column reports χ2-statistics and their corresponding p-values (%) for the test that the pricing errors in the 
regression are jointly zero. Each panel examines the sample period from January 1996 to September 2008. The 
intercept is in percentage form. 

γ0 γM γNMP Adj. R2 χ2 
Panel A: Black-Scholes Model    

0.058)  0.048)    99.24  13.99)  
(0.434)  (3.245)      (8.19)  
0.006)  0.058)  0.025)  99.38  11.52)  

(0.074)  (2.518)  (2.887)    (11.74)  
Panel B: Stochastic Volatility Model     

-0.235)  0.066)    88.83  12.10)  
(-1.862)  (3.801)      (14.67)  
-0.193)  0.062)  0.010)  90.11  12.79)  

(-2.126)  (3.884)  (1.928)    (7.75)  
Panel C: Jump Diffusion Model     

-0.108)  0.052)    88.81  11.57)  
(-0.722)  (3.351)      (17.16)  
-0.045)  0.045)  0.014) 88.02  13.16)  

(-0.810)  (3.642)  (2.775)   (6.82)  
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Table 9 
Longer-Term Options 
This table summarizes results of the time-series and cross-sectional regressions for hedge portfolios of options 
with two and three months to expiration. The returns of hedge portfolios are computed using the Black-Scholes 
model, the stochastic volatility model and the jump diffusion model. Panel A reports the number of loadings on 
the excess market returns and the NMP portfolio return from time-series regression that are significant at the 5% 
confidence level. The NMP portfolio return is defined as the difference in the rate of returns between the put 
options with the lowest strikes (M = 1) and the call options with the highest strikes (M = 5). The F-statistics and 
their corresponding p-values (%) test the joint significance of the corresponding loadings. Panel B reports factor 
risk premiums from cross-sectional regressions using the full-sample factor loadings computed in the time-series 
regression. The adjusted R2 follows Jagannathan and Wang (1996) and is reported in percentage form. The t-
statistics adjust for errors-in-variables and follows Shanken (1992). The χ2-statistics and their corresponding p-
values (%) for testing the hypothesis that the pricing errors in the model are jointly zero are also reported. The 
sample period is from January 1996 to September 2008. 
Panel A: Loadings on the Skewness Factors from Time-Series Regression at the 5% confidence level 
        T = 1   T = 2   T = 3 

Model       α βM βNMP   α βM βNMP   α βM βNMP 

Black-
Scholes 
Model 

# of 
Significant 
Loadings  

  
4 10 4 

  
7 8 3 

  
8 7 5 

      

χ2 test 
  4.11  >100 >100   5.20  >100 >100   7.17  >100 >100 
  (0.01)  (<0.01)  (<0.01)    (0.01)  (<0.01)  (<0.01)    (<0.01)  (<0.01)  (<0.01)  

Stochastic 
Volatility 

Model 

# of 
Significant 
Loadings  

  
9  10  8  

  
7  10  6  

  
9  10 4 

      

χ2 test 
  4.76  >100 >100   3.28  >100 >100   4.11  >100 >100 
  (<0.01)  (<0.01)  (<0.01)    (0.30)  (<0.01)  (<0.01)    (0.14)  (<0.01)  (<0.01)  

Jump 
Diffusion 

Model 

# of 
Significant 
Loadings  

  
6  10  7  

  
9  10  6  

  
9  9 6 

      

χ2 test 
  4.51  >100 >100   3.57  >100 >100   6.55  >100 >100 
  (<0.01)  (<0.01)  (<0.01)    (0.16)  (<0.01)  (<0.01)    (<0.01)  (<0.01)  (<0.01)  

 
Panel B: Cross-Sectional Regressions with the Market and Skewness Factor Loadings 
  T = 2   T = 3 

Model γ0 γM γNMP Adj. R2 χ2    γ0 γM γNMP Adj. R2 χ2  

Black-Scholes 
Model 

0.003)  0.042)  0.047)  97.11  21.13)    0.006)  0.067)  0.041)  96.26  33.95)  

(1.851)  (2.623)  (1.970)    (0.36)    (3.301)  (2.283)  (1.635)    (<0.01)  

Stochastic 
Volatility Model 

-0.001)  0.060)  0.027)  81.92  9.19)    0.001)  0.104)  0.029)  92.11  21.54)  

(-1.268)  (3.026)  (2.874)    (23.94)    (0.391)  (3.253)  (2.395)    (0.30)  

Jump Diffusion 
Model 

-0.002)  0.058)  0.023)  97.44  8.55)    0.003)  0.085)  0.027)  83.83  40.01)  

(-1.603)  (3.504)  (2.473)    (28.66)    (1.423)  (3.342)  (2.486)    (<0.01) 
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Table 10 
Finite Sample Distribution of Factor Loadings and Risk Premiums 
This table presents the finite sample distributions of the factor loadings, risk premiums and adjusted R2s for 
hedge portfolios of options with one-month horizons. Using the stationary bootstrap, 10,000 time-series of 
hedge portfolio returns are generated under the null hypothesis that the estimated factor loadings and risk 
premiums are true. The average block length for the stationary bootstrap is computed based on Politis and White 
(2001), and is 1.92. The simulated returns are used to estimate a new set of factor loadings, factor risk premiums 
and cross-sectional adjusted R2s. Panel A reports the finite sample distribution of the simulated betas along with 
the betas estimated under the null model. Panel B reports the small sample distribution of the risk premiums and 
the adjusted R2s. 

Panel A: Time-Series Regression 
    βM   βNMP 

Model   Null 2.5 10 50 90 97.5   Null 2.5 10 50 90 97.5 

Black- 
Scholes 
Model 

11 0.018  0.007  0.011  0.018  0.026  0.031    0.052  0.022  0.033  0.051  0.067  0.074  
12 0.028  0.004  0.013  0.030  0.047  0.057    0.044  0.002  0.019  0.043  0.066  0.080  
13 0.043  0.007  0.021  0.046  0.072  0.087    0.016  -0.045  -0.021  0.014  0.048  0.067  
14 0.089  0.026  0.051  0.093  0.135  0.156    -0.034  -0.138  -0.092  -0.034  0.006  0.026  
15 0.171  0.097  0.125  0.180  0.237  0.268    -0.084  -0.268  -0.186  -0.082  -0.021  0.006  
21 0.246  0.095  0.152  0.251  0.349  0.408    0.993  0.635  0.764  0.978  1.174  1.259  
22 0.109  0.029  0.058  0.112  0.170  0.201    0.225  0.085  0.138  0.223  0.297  0.334  
23 0.046  0.006  0.021  0.049  0.077  0.091    0.051  -0.012  0.012  0.049  0.089  0.114  
24 0.036  0.010  0.019  0.037  0.055  0.065    0.004  -0.033  -0.017  0.003  0.020  0.030  
25 0.023  0.007  0.013  0.024  0.034  0.039    -0.005  -0.024  -0.015  -0.005  0.001  0.004  

                              

Stochastic 
Volatility 

Model 

11 0.028  0.011  0.017  0.029  0.042  0.049    0.047  0.014  0.025  0.046  0.062  0.071  
12 0.052  0.034  0.040  0.052  0.070  0.080    0.055  0.013  0.027  0.054  0.076  0.086  
13 0.087  0.063  0.071  0.088  0.110  0.120    0.006  -0.041  -0.022  0.006  0.029  0.043  
14 0.129  0.098  0.108  0.130  0.158  0.173    -0.076  -0.165  -0.128  -0.075  -0.042  -0.030  
15 0.224  0.128  0.158  0.221  0.307  0.360    -0.466  -0.595  -0.547  -0.468  -0.403  -0.360  
21 0.241  0.144  0.177  0.242  0.320  0.366    0.426  0.288  0.338  0.423  0.531  0.618  
22 0.186  0.128  0.145  0.187  0.242  0.276    0.240  0.150  0.182  0.239  0.296  0.334  
23 0.133  0.098  0.109  0.135  0.169  0.185    0.063  0.009  0.029  0.064  0.095  0.117  
24 0.091  0.069  0.076  0.092  0.112  0.123    -0.023  -0.064  -0.048  -0.022  -0.005  0.004  
25 0.045  0.029  0.034  0.045  0.060  0.069    -0.040  -0.080  -0.064  -0.039  -0.023  -0.019  

                              

Jump 
Diffusion 

Model 

11 0.022  0.006  0.011  0.022  0.033  0.039    0.085  0.031  0.048  0.085  0.117  0.130  
12 0.065  0.043  0.050  0.065  0.083  0.093    0.060  0.003  0.022  0.061  0.093  0.107  
13 0.098  0.068  0.078  0.099  0.122  0.136    -0.022  -0.079  -0.058  -0.021  0.011  0.028  
14 0.115  0.069  0.085  0.117  0.149  0.169    -0.093  -0.185  -0.151  -0.092  -0.046  -0.027  
15 0.184  0.111  0.136  0.185  0.237  0.268    -0.221  -0.442  -0.362  -0.215  -0.102  -0.064  
21 0.189  0.095  0.127  0.188  0.250  0.283    0.803  0.503  0.611  0.810  0.967  1.029  
22 0.251  0.149  0.184  0.251  0.328  0.372    0.424  0.194  0.270  0.424  0.561  0.622  
23 0.173  0.119  0.138  0.175  0.216  0.238    0.049  -0.040  -0.009  0.050  0.103  0.127  
24 0.082  0.057  0.066  0.083  0.101  0.112    -0.034  -0.086  -0.066  -0.034  -0.006  0.007  
25 0.032  0.013  0.020  0.032  0.043  0.048    -0.029  -0.063  -0.051  -0.029  -0.012  -0.005  

Panel B: Cross-Sectional Regression                 
    Null 2.5 10 50 90 97.5         

Black- 
Scholes 
Model 

γ0 0.000  -0.001  -0.001  0.000  0.002  0.003          
γM 0.058  0.019  0.029  0.053  0.084  0.104          

γNMP 0.025  0.008  0.014  0.026  0.039  0.047          
Adj. R2 99.38  92.79  95.99  98.58  99.46  99.70          

                        

Stochastic 
Volatility 

Model 

γ0 -0.002  -0.003  -0.002  -0.002  -0.001  0.000          
γM 0.062  0.033  0.041  0.060  0.082  0.097          

γNMP 0.010  0.003  0.005  0.010  0.015  0.018          
Adj. R2 90.11  60.16  74.12  88.34  95.03  97.06          

                        

Jump 
Diffusion 

Model 

γ0 0.000  -0.002  -0.001  0.000  0.001  0.002          
γM 0.045  0.012  0.022  0.043  0.069  0.085          

γNMP 0.014  0.002  0.006  0.014  0.022  0.025          
Adj. R2 88.02  58.17  71.03  87.34  95.54  97.51          
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Figure 1 
Fitted Expected Returns Versus Average Realized Returns for Naked Options 
Each panel in this figure shows realized average returns (%) on the horizontal axis and fitted expected returns 
(%) on the vertical axis for weekly returns of S&P 500 index options positions. For each hedge portfolio, the 
realized average return is the time-series average of the option return and the fitted expected return is the fitted 
value for the expected return found using the standard CAPM (Panel A), the three-moment CAPM (Panel B), 
and four-moment CAPM (Panel C). Each two-digit number in the figure represents a separate portfolio. The first 
digit refers to the option type (1 for call, 2 for put and 3 for zero-beta straddle) while the second digit refers to 
the moneyness group (1 for the lowest strike price and 5 for the highest). The straight line is the 45-degree line 
from the origin. The sample period is from January 1996 to September 2008. 
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Figure 2 
Fitted Expected Returns Versus Average Realized Returns for Discretely Hedged Option 
Portfolios 
Each panel in this figure shows realized average returns (%) on the horizontal axis and fitted expected returns 
(%) on the vertical axis for ten hedge portfolios of different option types and moneyness groups. The returns on 
hedge portfolios are computed using the Black-Scholes model, the stochastic volatility model and the jump 
diffusion model. For each hedge portfolio, the realized average return is the time-series average of the portfolio 
return and the fitted expected return is the fitted value for the expected return found using the three-moment 
CAPM. Each two-digit number in the figure represents a separate portfolio. The first digit refers to the option 
type (1 for call and 2 for put) while the second digit refers to the moneyness group (1 for the lowest strike price 
and 5 for the highest). The straight line is the 45-degree line from the origin. The sample period is from January 
1996 to September 2008. 
 

 

 

 
 

Panel I: Jump Diffusion Model (T=3) 

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

111213
1415

21
22

23
24

25

Realized Average Returns (%)

Fi
tte

d 
E

xp
ec

te
d 

R
et

ur
ns

 (%
)

RMSE =0.34%

 

Panel H: Stochastic Volatility Model (T=3) 
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Panel G: Black-Scholes Model (T=3) 
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Panel F: Jump Diffusion Model (T=2) 
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Panel E: Stochastic Volatility Model (T=2) 
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Panel D: Black-Scholes Model (T=2) 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

111213
14

15

21

22

232425

Realized Average Returns (%)

Fi
tte

d 
E

xp
ec

te
d 

R
et

ur
ns

 (%
)

RMSE =0.22%

 

Panel C: Jump Diffusion Model (T=1) 
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Panel B: Stochastic Volatility Model (T=1) 
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Panel A: Black-Scholes Model (T=1) 
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