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Abstract

This study presents the efficiency and practical model liin method to use lots’ of
affine jump-diffusion models in real option market and iteg\va useful guideline to trader
in the situation of selecting a model. A general affine juniffugion model which have
three dynamics of asset price, variance of asset returruamgl intensity is constructed and
based on the general model twelve different affine jumpadiéin models are reconstructed.
To calibrate twelve different affine jump-diffusion modéte multi-basin particle swarm
intelligence method is proposed which consists of thrgesgiconquer the local minimum
problem and show that it can resolve it. To verify the efficienof the proposed method we
use S&P 500 index option prices. It is found that the optitidramethod calibrate the
parameter set well and jumps should be included to have acalitation performance.

Key words: Option markets, Affine jump-diffusion models, Optimizatimethod.

I *Department of Industrial and Management Engineering, Rphiniversity of Science
and Technology, Pohang, Kyungbuk 790-784, Korea. Erjelvookl @postech.ac.kr

Preprint submitted to Elsevier 12 July 2011



1 Introduction

Black and Scholes developed the methodology for pricingpaptfor the first time
in 1973, which is the well-known Black and Scholes (B-S) mokiethe B-S model
the dynamics of log stock prices follows a geometric Browmaotion with con-
stant drift and diffusion parameters. According to numerempirical evidences,
it is clear that the B-S model can not explain the propertfesption prices in real
markets such as the "volatility smile”, that is, the optiavith different strikes and
time-to-maturities have different Black-Scholes imphedatilities (Balland, 2002;
Cont & Fonseca, 2002; Dumas et al., 1998)[2,8,11]). To erplee smile effects
many option pricing models have been developed and the modalbe classified
into non-parametric and parametric method. Non-parametethod does not have
pre-assumed models and usually uses learning algorithchsssneural networks.
Hutchinson (1994)[17] and Gencay (2001)[14] show the narametric method
performs well with respect to out-of-sample error and heggrror. However it
has serious drawbacks in that it cannot applied to pricirtg-dapendent exotic
options because of its lack of underlying dynamics. To usta&d intrinsic prop-
erties of asset returns and volatility smile effects of é@dption prices and obtain
more realistic models of stock prices, researches havepegpvarious models in a
parametric way such as exponential Lévy models and affmejdiffusion models
(Christopher, 2003[10]).

In this paper affine jump-diffusion models are treated istezly. Among affine
jump-diffusion models most popular model was developed bgtbh (1993)[16].
However stochastic volatility models have a serious draklrathat it cannot han-
dle short-term smiles properly. At the same time the stodcgss which adds
jumps to the dynamic of stock price has been developed tarobtare realistic
models of stock prices. Jump-diffusion models can explanvolatility "smile” ef-
fect. They have disadvantages of producing increasinigeatrtoney-forward term
structure, because jump models shifts up the overall Wityd&vel. Including jumps
in the stochastic volatility model can conquer those draskbaf each models and
proposed by Bates (1996)[4]. It can be constructed the gfiime-diffusion mod-
els which include a stochastic jump intensity rate in theeBanodel, which is
presented by Fang (2000)[13]. It's very challenging mod&hough the perfor-
mance of this model is not known. Through the empirical evags of the proposed
method it is checked the performance of the model.

To calculate option prices of the affine jump-diffusion misdbe FFT approach is
most widely used. Due to the singularity of the payoff fuantatv = 0 we can
not directly apply the FFT approach. Carr and Madan (1999)j&kes it possible
introducing an damping parameter for the first time. Whemoogarices are quoted
on the market, a market-consistent risk-neutral pricingleh@ can not be obtained
only by an econometric analysis of the time series of the dyidg but by looking
at prices of contingent claims today & 0). One choose a risk-neutral model



such as to reproduce the prices of traded options, cafledel calibration, and
then uses this model to price exotic, illiquid or OTC optiamsl to compute hedge
ratios. To conduct model calibration several methods pegon parametric and
nonparametric way. Cont (2004)[9] proposed nonparameticto calibrate Levy
measures using relative entropy. Bakshi (1997) [1] progpgsarametric way to
calibrate stochastic volatility models dividing the tinterhaturity and moneyness
space. Schoutens (2004) [26] insists they can calibrategirreal option prices.
Since model calibration is known as ill-posewerse problem the calibration
results have lots of local minima and can be very differepieteling on the initial
parameter set and optimization methods in a non-smoothamalteal market data
have a noise, it’'s impossible to calibrate option pricedgutly. However, most
paper does not consider those problems seriously.

In this article, Twelve different affine jump-diffusion meld which have three dy-
namics which are the asset price, the volatility of the asstern and the jump
intensity are reconstructed and the new optimization nekttunich has best per-
formance to calibrate complex financial models robustlgreposed. With the pro-
posed method a parameter set of affine jump-diffusion mddedalibrated using
model-generated option prices and S&P 500 index optiorepfiar presenting em-
pirical evidences. Itis found that it can solve the ill-pdg®/erse problems and cal-
ibrate the parameter set well with the proposed method dmaegéimp-diffusion
models including jump have better performance without it.

The article is structured as follows: affine jump-diffusioodels are reviewed and
a brief overview of the Carr-Madan’s FFT method in the secfoln the section 3
it is presented new optimization method which consists iiddlsteps. To check the
robustness of the proposed method it is conducted simulaiibh model-generated
option prices in section 4. With the robustness of the methedeal market option
prices, which are S&P 500 index option prices, are used. Hsertion of the
S&P 500 index option prices are explained and the calibmatesults of affine
jump-diffusion models are shown in the section 5. The lastiee 6 draws the
conclusions and gives final comments.

2 Affine Jump-Diffusion Models

The most widely used continuous models for asset dynameshar affine jump
diffusion models. This section briefly reviews these modeld reconstruct them
using the unified notations.

Consider first the following affine jump-diffusion modelstlvthree dynamics un-



der risk-neutral measur@:

dsS
o= (= = )t + oW, + (e~ DANG,

dvy = k(0 — vy)dt + &/, dWS, 1)
N = ka(ny = At + & Nd .

(i) For the asset price dynamicS; is the asset pricey; is the variance of asset
return,r is the risk-free (domestic) interest ratgis the continuous dividend yield
(foreign interest rate)WS and W2 are correlated standard Wiener processes un-
der Q with constant correlatiop, defined byCov(dW 3, dW.S) = pdt. N$ is a
Poisson process und@rwith a stochastic intensity,, J is a random jump size in
the logarithm of the asset price with a probability densitydtion (PDF) given by
w(J). ny = Ele? — 1] is set to make the discounted asset process a martinggle. (ii
For the variance dynamics,is the mean-reverting rate,is the long-term mean
variance( is the volatility of volatility. (iif) For the jump intensit dynamics s

is the mean-reverting rate, is the long-term mean rat€, is volatility of jump

rate intensity, a Wiener proceg®’ is independent of’3 andIW.5. It is also as-
sumed that jump processes are independent of Wiener pescééste that under
risk-neutral measur®, E2(dS) = (r — q)SdL.

Using the martingale pricing, option value can be represkas an integral of a
discounted probability density times the payoff functiod ghe Feynman-Kac the-
orem is applied to derive the PIDE satisfied by the value ofgion. Variables are

changed fromS to x = In S and from¢ to 7 = T — t. Applying Feynman-Kac

theorem for the price dynamics (1), it is obtained that tHaevaf a European-style
claim denoted byf(x,v, A\, 7) satisfies the following partial integro-differential
equation (PIDE)

0 1 0 0
_a_£+(r—q—§v—)\u )8—f+2va—£+,{(n )af+ g2 8_];
0? 0
ot Do N LT L [T wasise ) - @)= s

f(z,u,X,0) =g(e", K)
(2)

whereg is the payoff function.

2.1 Solutionsto Moment Generating Function

One of the nice property for the affine jump-diffusion modslshat their option
pricing formulas can be easily obtained with the aid of thenmant generating



function (MGF). The MGG (u, z, v, A, 7) associated with the log of the terminal
asset price:(7) = In S(7) in the stochastic differential equation (1) is defined by
G(u,z,v,\,T) = EQ[e“x(T)] = ¢ RO eur(r )] 3)

and can be considered as a contingent claim that pay$’gff* at timer. Again
through Feynman-Kac theorem tb&wu, =, v, A, 7) of (1) can be achieved by solv-
ing the following PIDE.

1 1 1
-G+ (r—q-— gv~ AMg)Gy + §UGm +k(n—v)G, + §§QUGW
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+ )\/ (+J) = Glo(NdJ =0,  Glu,z,0,\,0) = ',

By the method of indetermined coefficients guessing of ane@fiormG = eA(M+BMv+C(TA
PIDE (4) can be solved in closed-form as follows.

Proposition 1 The solution to PIDE (4) is given by

G(u,z,v,\,7) = exp{zu+ (r — q)Tu + A(u, 7) + B(u,7)v 4+ C(u,7) + D(u, 7)A\} (5)

where
Yo e T 1—e "

Alw,7) = =g 047+ 21n( 2;‘1 ) BluT) = —(u =)o ¢ =
Ag(u,7) = —(kT + e — 1)n(u2;u ), Bi(u,7) = —(1 —€e"7) (u ;mu )

__Ram X- + x4 7 1—e
Clw) & g e 2 28 ) Dlu.m) = QA(U)X_ + xqpe~
Ca(u,7) = (kAT + ™7 — 1)7)>\A(u)’ Dy(u,7)=(1-— e_"“”)M,

R R\

e = F(m = plu) + ¢, ¢ =\ (k = plu)? + E2u—u?),
X+ = Frir + € €= /k] — 265A(u),
A(u) = /Oo eo(N)d] — 1 — pgu, ;= /Oo edw(J)dJ — 1.

where A = A;, B = Bgand C = Cy, D = Dy in case of deterministic volatility
and jump intensity, respectively.

The following table summarize the detailed parameterseétfine jump-diffusion
models according to the dynamics of the variance and jungnsgity and jump
size distribution that follows log-normal distributiog@onst, Deter, Stoch, Vol and
Inten mean Constant, Deterministic, Stochastic, Volatility &mensity.



Table 1
Summary of the Moment generating functions under Affine HDiffusion Models

Model Model Description Moment Generating Function
CVNJ | Const Vol No Jump A(u,7) =0, B(u,7) = —(u — u?)7/2,
C(u,7)=0,D(u,7) =0
CVCI | Const Vol Const Inten A(u,7) =0, B(u, 1) = —(u — u?)7/2,
C(u,7) =0,D(u,7) = 7A(u)
CVDI | Const Vol Deter Inten A(u,7) =0, B(u, 1) = —(u — u?)7/2,
Clu,7) = (kAT + e FAT — 1)%0‘),D(u,7) =(1- e‘NAT)AISz)
CVSI | Const Vol Stoch Inten A(u,7) =0, B(u,7) = —(u — u2)7/2,
Clu7) = — S e + 2In(XEE D)) D(u, ) = (1 - ema7) A
DVNJ | Deter Vol No Jump Afu,7) = —(s7 + e — 1) 20D By o) = (1 — 7))
C(u,7)=0,D(u,7) =0
DVCI | Deter Vol Const Inten Au,7) = —(k7T + e FT — 1)““2;1{“2),3(1;,7) =—(1- e—"”)%,
C(u,7) =0,D(u,7) = 7A(u)
DVDI | Deter Vol Deter Inten Au,7) = —(k7T + e (T — 1)““2;1{“2), B(u,7) = —(1— e—"”)%,
Clu,m) = (ka1 + e="a7 — 1)AMW Dy 7y = (1 - emram) A0
—KT 77(“*“2) —KT (“*zz)
DVSI | Deter Vol Stoch Inten Au,7) = —(kT+ € - 1)r5—,Bu,7) = -1 —e ") 5,
Cu,7) = — ”22:” [X+7 + 21n(7x’+);§re )], D(u, 1) = (1 — e*“x"')_Ah_(Z)
—_+ -7 _e—CT
SVNJ | Stoch Vol Nodump | A(u,7) = = &3 [ 7 + 2In(X=EE )] Blu, 7) = —(u - ) e
C(u,7)=0,D(u,7) =0
Y_+pype ST _e—CT
SVCI | Stoch Vol Const Inten| A(u, ) = — & [47 + 2In(F=5E )], B(u, 7) = —(u - uQ)W,
C(u,7) =0,D(u,7) = 7A(u)
Y_Fipype ST —e— ST
SVDI | Stoch Vol Deter Inten| A(u,7) = —%[w+’r + QIH(%)L B(u,7) = —(u— U2)#+E’<”
Cu,7) = (ka1 + e 7 = AW Py, 1) = (1 = e~mam) S
svsI | Stoch Vol Stoch Inten| A(u, 7) = — 5247 + 2In(Y=2 "N Blu, 7) = —(u — u2)—L=e—T _
T T 2 AT = Y_Foie )
Cu, 1) = ——A—uég [X+7 + 21n(7x’+);§re )], D(u, 1) = (1 — e*"x"')_Ah_(Z)
Other parameters i = F(k — p€u) + ¢, ¢ = \/(H — p&u)? + &2(u — u?)
X+ = FLx € €= Hi - 25,2\/\(“)
A(u) = erau+8®u?/2 1y (el +83/2 1) (log-normal)

2.2 Option Pricing formulas

During the last decade, Fourier transform has been exelyswnployed to express
option pricing formula under the affine jump-diffusion méxléNext three widely-
used Fourier transform methods for option pricing are surnred ([16,4,6,21]).
Here itis assumed that the characteristic funcioft) defined byd,(z) = E[e?**7] =
G(iz) (whereG is the moment generating function (MGF)) is analytic andrizted
in the strip0 < J(z) < 1 wherezy = In Sy andk = In K to guarantee the exis-
tence of the Fourier transform.

e The Black-Scholes-style FormulaThe current value of European call and put



options are given by

Call, = e 1TV G PF — e " T-DKPS. (6)
Put, = e "TOKP; — e~ T=05,Pr. (7)
where
1 1 oW 1 1 gy P2 (2
7>1+:—+—/ Relx,i(z)]dz, Py _—+—/ Rel z ]dz
2 12 2 wJo
1 1 o) 11 e
A s LGl L1 R iz
2  wJo 12 2 7w Jo

and®(l (z) = e~ (=dT=Dp (2 — i)e ™k and®?) (z) = &, (z)e **. Here
P represents a deltd), andP; represents the real possibility for exercising
an option.P; is also equal to the value of a digital call option, so the Blac
Scholes-style formula is widely used for many exotic suuetembedded with
digital options.

Lewis’ Characteristic Formula: The current value of European call and put
options are given by

—r(T'-1) K foo Q(U)
_ =gty _ € R / _ 2\
Call; = e ; R luz 1/4] du. (8)
—r(T—t) K oo C?(’U,)
Puts — @0 ¢ H / e\ )
ut; = e ; R w4 1/4 du (9)

whereQ(u) := e~ (CuH/2IM K (g — z%) = e~ (CRHDIME Qo 1 %)
Carr-Madan’s Formula: Let« be a positive constant such that theh moment
of the stock price exists. The European call option pric& afaturity and strike
price K is then given by

—ak

Clk,T) =< / T i () d. (10)

2T —00

wherek = In(K) and

e Td,(u— (a+ 1)i)
a?+a—u?+i2a+1)u

Yr(2) =

The delta is then given by

—ak

= ;Stﬂ- /_'::O e_ivk(iu + (Oé + 1))’17Z)T(U)d1) (11)

Now to compute (10) folV-log strike levels: ranging from—bto b, i.e.

ky = —b+0u(u—1), for u=1,..,N, 6 =2b/N,



The fast Fourier transform (FFT) method is applied to (10ichis anO (N In N)
algorithm for computing

N 27'r
Z N U=D=D a5y for u=1,...,N,

whereN is a power of 2. Using the Simpson’s rule for the integral paiftL0)
where the upper limit for the integration is set to be/d, and settingh =
27 /(Noy) andv; = h(j — 1), the following equation is obtained:

efak:u

CT(/{Zu Ze wjk“Q/JT U]) for u = 1, ,N

e—aku N

Ze—zN(] 1)(u— 1)[ im(j— 1wT( ) ]

Among the three transform methods, Carr-Madan’s Fouransiorm method is
shown to be very efficient in pricing several options with aene maturity.

3 The Proposed Method

The proposed method is composed of three steps. The firsssaggradient-based
local-searching step. The second step is to look for a scg-lninimum from the

local minimum of the first step. The third phase is to find thabgl optimal value

based on the particle swarm optimization starting from tiglscal minimum. We

will look for the parameter set which satisfies the CalilmatProblem.

Calibration Problem (Least squares calibration) Given a parameter séf), the
observed priceg’; of call options for maturitied; and strikeskK;,7 € I, find a
parameter vectat which minimizes

N
argminQeeQZwi|Ce(7},Ki) — i (22)
i—1

whereC? denotes the dollar adjusted call option price ghid the set of martingale
measuresw; is the weight of the difference of the option prices. In thegosed
method we will sef-Y | w;|C/(T;, K;) — C;|> as f(0)

Implied volatilities can be used to measure the differebeteeen model and mar-
ket instead of option prices. However, it takes lots of timd & is inefficient be-
cause implied volatilities are calculated in each stepoime parameter values of
optimization procedure implied volatilities are unstalience option prices are
used to calibrate the parameter set of affine jump-diffusiodels.



3.1 Sepl: Local Search Phase

In Step | we look for a (1st order) local minimum. We constractjeneralized
negative gradient system represented by

do -
o = —eradg f(0) = —R(6) "V /(0). (13)
where R(0) is a positive definite symmetric matrix for @l € R". Such anR is
called aRiemannian metric on R".

Many local search algorithms can be seen as a discretizddnmeptation of pro-
cess (13) depending on the choiceif)). We assume that s twice differentiable
to assure the existence of a unique solution (or trajectifry): R — R for each
initial conditionf(0). Note that it can be shown that the trajecta(y) is defined on
all ¢ € R for any initial conditiond(0) under a suitable re-parametrization. A state
vectord satisfying the equatioR f(#) = 0 is called an equilibrium point (or criti-
cal point) of system (13). We say that an equilibrium pdimif (13) is hyperbolic
if the Hessian off at#, denoted byH ((9), has no zero eigenvalues (i.&;(f) is
positive definite). Note that all the eigenvalues of the B&aoof a gradient system
are real since they are symmetric matrices. A hyperbolidiegum pointis called
a (asymptotically) stable equilibrium point (or an attagif all the eigenvalues of
its corresponding Jacobian are positive. A hyperbolicldgyiim pointé is called
an index-k equilibrium point if the Jacobian of the hyperbelquilibrium point has
exactlyk negative eigenvalues. The basin of attraction of a stahlgilequm point
0, is similarly defined as

A(bs) :={0(0) € R" : tliglo 0(t) = 6,}.

The basin of attractioml(x;) is an open and connected set. One nice property
of this formulation is that every local minimum of the optiation problem (12)
corresponds to a (asymptotically) stable equilibrium poinsystem (13). Hence,
looking for the local minima of (12) can be achieved via laggtcorresponding
stable equilibrium points of (13). Another nice propertyhat all the generalized
gradient system have the equilibrium points at the samditawith the same
type. Due to convenient properties we can design a compugtdly efficient algo-
rithm to find stable equilibrium points of (13), and thus finddl optimal solutions

of (12).

With numerically integrating system (13) or by a steepestegnt method we can
simply implement Step |. However, since we are primarilyaamned with finding
a stable equilibrium point, which is a limit point of a trajery, rather than the
trajectory itself, we can choose any robust local searcbrihgn if it can locate a
local minimum nearby an initial guess. From the ‘locality’search in step I it is



important not to take too large steps initially for the limasch employed by a local
search method to avoid jumping out of the current basin cdetibn.

3.2 Sepll: Discrete Sup-Local Search Step

One important issue is how to escape from a local minimumeh $and move on
toward another neighboring local minimum. We can constaugptaphG = (V, E)
describing the connections between the local minima wighfollowing elements:

1. The verticesV’ of G are local minimad}, ..., 67 of (12), wherep is the total
number of stable equilibrium points.

2. The edgéeZ of G can only connect two local minima adjacent to each ot#fer;
is connected with#” if, and only if, 6’ is adjacent toc.

The original optimization problem (12) can now be transfedinto the following
combinatorial optimization problem

min f(6,) (14)

OseLl

whereL! is the set of all the local minima. Utilizing the concept of@ighboring
local minimum, Step Il uses a discrete local search stravegg' to solve prob-
lem (14). Specifically, we first construct a user-defined meeghood\ where the
neighborhoodV(6,) C L' of 6, € L' is defined as the set of multiple neighboring
local minima adjacent to (or neat). With respect to the neighborhogdd, we will
call a pointd* € £ a sup-local minimum iff (0*) < f(y,) whenevety, € N (,).
Then we perform a discrete local search strategy to locai@-dogal minimum.

We may apply the following direct strategy to locate a newiniy local minimum
adjacent to a given local minimum: In order to escape frontallminimum, say,,

we first move in reverse time frofy to an index-1 equilibrium point, say. Then,
starting fromé;, we advance time to move towards an adjacent local minimum,
sayy,. The latter step can also be implemented using a local sedgohthm as in
Step I. The former step, although it is hard to conduct diyestd takes lots of time,
can also be achieved by using some of the techniques sudge$29]. However
this direct strategy can be inefficient since we are only eamed with locating an
adjacent local minimum and do not need to find an exact indeguilibrium point,
which is computationally intensive.

Indirect strategy can be used to speed up the search of reigglhocal minimum:
Choose an initial straight rag(\), emanated fronr(0) = x, and follow the ray
r(A), with increasing\, (or employ a mixed cubic and quadratic interpolation line
search algorithm) until it arrives at its first local minimyor it hits the boundary
of search space) of(r(-)). (The objective functiory would increase, pass a local

10



maximum, and reach a local minimum along the ray.) Startinghfthe estimated
point, locate a neighboring local minimum using a local sealgorithm as in Step
l.

3.3 Seplll: PSO-based Global Search Step

When the random-generated particles fall off at a sup-lseaimum through Step
II, one important issue is how to escape from a local minimuaoh find the global
minimum. In this multi-dimensional case, we employed thdigia swarm opti-
mization method, starting from the obtained points at Skep |

Particle swarm Optimization(PSO) is an efficient stocleagitimization technique
developed by Kennedy and Eberhart (1995) [18,19]. Itis §ifbpsed on the move-
ment and intelligence of swarms. The sketchy concept of R3Rat particles in a
space cooperate to find the optimal, and each particle hagtbeities and moves
toward the global optimum with remembering the past locetidn other words,
each patrticle shares the global best value in one neighbdrspace, and adjusts
each velocity and location. The Step Il follows severapste

(1) Adjust a population size of particles with the number bfained particles
in Step Il and initialize velocities on the multi-dimensgm the space of
parameter sets which is consisty 6f.

(2) For each particle, evaluate tizalibration Problem which is the objective
function of the parameters in each Lévy model.

(3) Calculate the each particlgisrsonal best (pbest) through comparing the cur-
rent value of fitness evaluation with the particlplest. If the current value
is smaller tharpbest then change thebest into the current value, and also
change th@best position into the current position in the Lévy model’s para
eter space.

(4) Compare the current fitness with tigbobal best (gbest) which means the
smallest value among the population’s previous best. Ifctiveent value is
smaller thargbestthen set thgbest equal to the current value and switch the
gbest position into the current position in the Lévy model’'s pasder space.

(5) Change the velocity of the particle by the following etijoia 15:

o =K x [w * Vi + a1 % T(M’Ld() * (pij - xij)

+ ag x rand() * (pg; — ij)] (15)
for 7=1,..5
2
K = (16)
12 — 0 — V2 — 4o

where K is constriction function af, anda, as equation 16 used the follow-
ing conditiony = a1 +as, ¢ > 4, andw means ’'Inertia weight’ and is linearly

11



decreased from 0.9 to 0.4 during iterations. Inertia weightas used for im-
provement of performance by the better adjusting movemmsheéiminating
the maximum velocity constraints. The use of the constnictactor K andy
has guaranteed of sufficient convergence of PSO algorithiuid simulation,
we setK = 0.709, ¢ = 4.1, anda; = as = 2.1.

(6) Move to the position of the particle according to equato and loop to step
2) and repeat until a criterion is satisfied.

xij = xij + Uija fOT ] = 1, ceey 5 (17)

(7) After calibrating the parameter set we check a perfogeanf the calibration
result by calculating the average mean squared errord. W@<alculate a
mean squared error as follows:

(18)

whereC! is theith real option value(” is theith estimated option value
andn is the total number of data set. Then we average mean squaced e
conducting several times.

4 Model Robustness Test

In this section, the stability of the multi-basin particleasm intelligence method
is verified through calibrating a parameter set of affine jtdiffusion models with

model-generated option prices data. Through this sedtisrchecked whether the
proposed method finds well the true parameter set of the ngetedrated option
prices or not. To calibrate a parameter set of affine jumfusitbn models Carr-
Madan’s method is applied and simple integration methodsh ss Trapezoidal
rule, Simpson’s rule and Boole’s rule, is utilized due to dogiidistant spacing of
grid in the integration domain of the Carr-Madan’s methodu&sian integration
method which is an advance numerical integration methochoahbe applied since
the grid points in the Gaussian integration method are pfeed. Simpson’ rule
is used to implement the Carr-Madan’s method.

Model-generated option prices are generated witlsN¥J andSVSI from a given
true parameter set. The initial stock price is $gt,= 100, risk free interest rate,
r = 0.03, and time to maturities; = 0.1,0.3,0.5,0.7, 1. The control parameters
are also fixed, such as damping paramater 1.6 and the weight of the difference
of the option pricesv; = 1, for simplicity. The proposed method is applied to
this model-generated option prices to calibrate a paranseteof theSVNJ and
SVSI. Table 2 shows some results of Phase | and Phase 8VdiJ starting from
randomly chosen 30 initial parameter set and Table 3 preésemesults oEVSI.

12



Table 2

Parameter calibration result of the Phase | & Phase Il 8¥iNJ: Estimated Resultlis
the calibration results of Phase | aBdtimated Result2is the calibration results of Phase
1.

Parameter o K n 13 p
True Parameter Set  0.04 3 0.02 0.6 -0.7
Initial Parameter Se{ 0.9199 | 0.7090 | 0.0848 | 0.8843 0.5650

Estimated Resultl | 0.04 3 0.02 0.6 -0.7
Estimated Result2 | 0.04 3 0.02 0.6 -0.7
True Parameter Set  0.04 3 0.02 0.6 -0.7

Initial Parameter Set 0.8160 | 0.1203 | 0.5884 0.4094 0.3584
Estimated Resultl | 0.0263 | 3.8503 | 0.0187 0.6962 -0.6940
Estimated Result2 | 0.04 3 0.02 0.6 -0.7
True Parameter Set  0.04 3 0.02 0.6 -0.7
Initial Parameter Set 0.9628 | 0.8298 | 0.2295 0.9946 0.2092
Estimated Resultl | 0.0651 | 0.0475 | 0.2837 | 4.2531e-7| 0.1977
Estimated Result2 | 0.04 3 0.02 0.6 -0.7
True Parameter Set  0.04 3 0.02 0.6 -0.7
Initial Parameter Sef 0.1241 | 0.3791 | 0.6405 0.9820 -0.9298
Estimated Resultl | 0.0190 | 4.5204 | 0.0184 | 0.9903 | -8.1886
Estimated Result2 | 0.04 3 0.02 0.6 -0.7

Table 3
Parameter calibration result of the Phase | V@8WSI: Estimated Resultlis the calibration

results of Phase |.
Parameter o K n 13 p K I A W %

True Parameter Setf 0.04 | 0.06 | 0.5 0.5 -0.7 | -0.2 1 0.4 -0.06 | 0.1
Initial Parameter Sef 0.42 | 0.69 | 0.14 | 0.31 | -0.55| 0.54 | 0.76 | 0.44 | 0.55 | 0.72
Estimated Resultl | 0.14 | -0.06 | 0.5 | 0.15| -0.99 | 0.72 | 0.19 | 0.001 | 0.43 | 1.02
Estimated Result2 | 0.04 | 0.06 | 0.5 | 05 | -0.7 | -0.2 1 04 | -0.06 | 0.1
True Parameter Setf 0.04 | 0.06 | 0.5 0.5 -0.7 | -0.2 1 0.4 -0.06 | 0.1
Initial Parameter Sef 0.94 | -0.03 | 0.58 | 0.07 | -0.49 | 0.10 | 0.72 | 0.34 | 0.06 | 0.32
Estimated Resultl1 | 0.06 | -0.04 | 0.11 | 0.05 | -1.25 | 0.15 | 1.25 | 0.03 | 0.09 | 4e-6
Estimated Result2 | 0.04 | 0.06 | 0.5 0.5 -0.7 | -0.2 1 0.4 -0.06 | 0.1
True Parameter Setf 0.04 | 0.06 | 0.5 0.5 -0.7 | -0.2 1 0.4 -0.06 | 0.1
Initial Parameter Set 0.38 | -0.85 | 0.13 | 0.88 | -0.06 | 0.18 | 0.75| 0.31 | -0.78 | 0.13
Estimated Resultl | 0.05 | -0.16 | 0.09 | 1.25 | -0.07 | 0.25 | 0.47 | 0.28 | -0.92 | 0.25
Estimated Result2 | 0.04 | 0.06 | 0.5 0.5 -0.7 | -0.2 1 0.4 -0.06 | 0.1
True Parameter Setf 0.04 | 0.06 | 0.5 0.5 -0.7 | -0.2 1 0.4 -0.06 | 0.1
Initial Parameter Set 0.5 | -0.56 | 0.68 | 0.14 | 0.22 | 0.55| 0.29 | 0.89 | -0.66 | 0.72
Estimated Resultl | 0.24 | -0.59 | 1.14 | 0.15 0.3 0.24 | 043 | 0.08 | -0.93 | 0.72
Estimated Result2 | 0.04 | 0.06 | 0.5 | 05 | -0.7 | -0.2 1 04 | -0.06 | 0.1

Through Table 2 and 3 it can be checked there are lots of locahma after Phase
I. Almost every paper finishes the model calibration with $#h& and uses the
calibrated parameter set, which is a local minimum, to exalthe model’s perfor-
mance without a serious consideration. It can be a sericadgn since there are
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lots of local minima. It is checked through Fig 1.
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Fig. 1. The calibration results for the option prices (lefinpls) and implied volatilities
(right panels) of th&&VNJ: The panels in the 1st and the 2nd rows represent the cadibrat
results of phase | (i.e. one of the 1st order local minima) aimake | & 1l (i.e. one of the
sup-local minima) of the proposed method. The panels in the@v represents the cali-
bration results (i.e. a global minimum) of the whole threag#s of the proposed method.
Red star stands for the model-generated option prices aplitthvolatilities whereas the
blue circle stands for the option prices and implied vatas with calibration result.

Fig. 1 presents the calibration results of the proposed odetlith the option prices
and implied volatilities of theSVNJ. As shown in the figure, the calibrated sup-
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local minima through phase [&Il often match closely to theiop prices (the left
panel in the 2nd row in Fig. 1) whereas the (1st) local minirbtamed in phase
| can not capture the option prices well (the left panel in iseérow in Fig. 1).
However, the sup-local minima still mismatch with the ingplivolatility despite of
its seemingly perfect option price match (the right paneghs2nd row in Fig. 1).
The parameter set calibrated after the whole phases of tip@ged method shows
the perfect match to both option prices and implied volati.

To fix local minimum problem and find a best parameter set thiendigation method
which consists of three phases is proposed. After phaseéhydirst order local
minima converges to the true parameter set with the proposstiod. Through
model-generated option prices it is shown that the proposetthod works well
and finds the true parameter set well, although the affine jdiffigsion model has
many parameters.

5 Empirical Results

With the stability of the multi-basin particle swarm inigénce method, most well-
known S&P 500 index European option prices which are tradetthé Chicago

Board Options Exchange for the empirical analysis are ahd&& P 500 index op-
tion prices and other informations, which are strike pri¢tesling volumes, option
expiration dates, stock prices and implied volatilitieie aollected from Thom-
son Datastream. We use the option prices of 2007. Unlike hgeteerated option
prices, real market option prices reflect noise, therebypdimating model cali-

bration. Hence, we apply the proposed global calibratiothowto the European
S&P 500 index option prices to determine whether the cdltmaesult accurately
explains the observed properties of option data. To conelxferiments, we first
eliminate outlier data through the following steps.

(1) Exclude options where the expiration date is less thaay8,d&ince the implied
volatility changes rapidly with a small fluctuation of thetmm prices and
expiration date less than 6 days can cause biases due wtyqui

(2) Choose the expiration dates which have more than 1CGgtrikes with non-
zero contracts traded.

(3) Eliminate the options with their prices less than thetrinsic values, since
this is an obvious arbitrage opportunity.

we conduct numerical analysis with the option prices afteppcessing. The log
strikes spaced equidistantly in the Carr-Madan’s methocceaise a problem since
the real market option prices the strike prices are not gspageidistantly. Hence
applying the Carr-Madan’s method directly to real marketarpprices is impossi-
ble. To solve it we interpolate option prices through thedtitkes. Since the shapes
of the option prices are different according to the time tduriies and it's hard
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to define a certain function, we use the cubic spline intefjpmh method. First the
parameter set of twelve affine jump-diffusion models ishralied using the S&P
500 index option prices of May 18th, 2007 and then mean squam®rs(MSE)
is calculated to show the performance of the calibrationlte$he mean squared
error is computed as follows:

1M 4
€= (Ci-Ciy (19)
N =1
where C" is theith real option value(" is theith estimated option value and
N is the total number of data set. Then mean squared erroryvaraged through

repeating several times. Following table 4 and 5 show thregion result oPhase
| andPhase Il with the twelve affine jump-diffusion models.

Table 4
Parameter calibration result &hase Iwith S&P 500 index option prices on May 18th,
2007

Parameter | CVNJ cvel cvDI cvsl DVNJ DVCI
vo 0.1208 | 0.1208 0.1240 0.1208 0.1119 0.1058
A 1.8097e-15| 2.738e-16| 1.1387e-12 1.0121e-13
K -0.7322 4.6718
n 1.6105e-14|  0.0181
3
P
fix 0.0124 | 0.7734
™ 2.5953 | 9.2105e-17
I3 0.8685
[y 0.0162 0.4158 -0.1359 -2.4473
S5y 0.4436 0.2271 0.0589 3.2872

MSE 14.2281| 14.2281 | 13.8581 | 14.2281 | 13.0222 | 12.6110

Parameter | DVDI DVSI SVNJ svcl SVDI svsl
vo 0.0763 | 0.0902 0.0936 0.1375 0.1065 0.1253
A 0.7493 | 0.4811 1.8702e-18|  0.0410 0.1114
K -0.3741 | 0.1398 0.0238 0.1600 -0.0143 -0.3555
n 0.0073 | 3.0883e-14| 0.4242 0.2424 1.3134 | 1.0410e-04
¢ 0.3024 1.2080 0.0192 1.8820
P 0.7363 -0.2062 -0.0304 0.0840

fox -1.0652 |  0.0028 1.7372 0.0164
™ 0.0964 | 0.2367 1.0954 0.0195
I3 0.0969 1.2350
1y -0.1006 | -0.1655 3.0778 -0.1776 -0.5269
S5y 0.0570 | 7.3793e-04 0.7938 0.0578 0.3108
MSE 21435 | 7.8961 | 70.2466 | 15.7114 2.7642 25.6224

Through Table 4 and 5 it is shown that the calibration resuittained by phase
| have a poor performance comparing with the calibratiomltesafter conduct-
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Table 5
Parameter calibration result Bhase 11l with S&P 500 index option prices on May 18th,
2007

Parameter CVNJ CVClI CVDI CvslI DVNJ DVCI

vg 0.1208 0.0794 0.0788 | 0.0916 | 0.0958 | 0.0802
A 0.6367 0.5085 | 0.4654 0.6371
K 10.9951 | 1.5010
U 0.0169 | 0.0057
3
P

K 18.8525| 0.1039

3N 0.7179 | 0.0072

&x 0.0960

w -0.1255 -0.1212 | -0.1734 -0.1261
g 0.0644 0.0604 | 5.04e-9 0.0644

MSE 14.2281 1.8390 1.7196 | 1.3718 | 12.6083| 1.8318
Parameter | DVDI DVSI SVNJ | svcl | svDI svsl

vg 0.0843 0.0915 0.1067 | 0.0947 | 0.0956 | 0.0952
A 0.9250 0.4681 0.6564 | 0.4209 | 0.1127
K 2.8898 0.0238 6.0755 | 2.8649 | 1.5100 | 7.3500
n 5.361e-04| 5.807e-12| 0.0228 | 0.0177 | 0.0341 | 0.0233
13 0.6257 | 0.3009 | 0.3388 | 0.6625
p -0.7686 | -0.8913 | -0.7413 | -0.8041

K 2.5906 0.1018 -5.1275 | -0.0381
I\ 2.2474 0.0074 0.1850 | 10.8942

I3\ 0.0984 8.1461

w -0.0762 -0.1725 -0.0553 | -0.1515| -0.050

g 0.0611 1.803e-7 0.1049 | 0.0298 | 0.2867

MSE 1.3764 1.3717 1.0130 | 0.9608 | 0.8898 | 0.9285

ing all phases. Although the calibration results obtainggbase | do not have
meaningful information, the final parameter set of the peggbmethod do have.
Since option prices do not sensitive#pit can be calibrated fixing the within a
certain range of proposed method. The initial variancesséareturnf) of twelve
affine jump-diffusion models are similar in a range from 8% 286. In general, the
correlationp) between the asset and the variance of asset return is veegati it
is shown that the correlations between them are negative0076 to -0.89. In ev-
ery models, mean jump sizef) is a negative value, which means the frequency of
negative jump is more often than positive jump or the neggtimp size is bigger
than the positive jump size. Since the standard deviatjpiof the jump size is very
small, the distribution gathers around the mean value. Asittimber of parameters
increases, the quality of calibration is getting bet@v.NJ, which is same with
the Black-Scholes model, has the worst performance amoalyavaffine jump-
diffusion models. The best in-sample fit is tA&DI which has stochastic volatility
and deterministic intensity.
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The option prices and implied volatilities are calculatathvthe calibration result
of Table 5 and are compared with real option prices and irdphaatilities to
show the the performance of the Multi-basin Particle Swantalligence Method.
Following Fig 2 and 3 show the simulation result®¥C| andSVSI.
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Fig. 2. The option prices and implied volatilities of t8&CI with the calibration result:
red star stands for the real S& P 500 index option prices amdigah volatilities and blue

circle is the option prices and implied volatilities of t8&Cl.
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Fig. 3. The option prices and implied volatilities of t84/Sl with the calibration result:
red star stands for the real S& P 500 index option prices amdiech volatilities and blue
circle is the option prices and implied volatilities of tB&SI.

Through Fig 2 and 3 it is shown that the calibration result@spnt the real option
prices well andSVSI captures the implied volatility smile well at a short matyri
comparing with theSVCI.
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6 Conclusion

In this paper, the global optimization method which corssiét3 phases is proposed
to calibrate parameter set of twelve different affine juniffudion models which
have three dynamics, the asset price, the variance of asget and the jump inten-
sity, and compare the performance with the model-geneoygdn prices and real
S&P 500 index option prices. It is shown that the multi-bgsnticle swarm intel-
ligence method works significantly well to calibrate affienjp-diffusion models
through model-generated option prices. With the calibratesult of S&P 500 in-
dex option prices on May 18th, 2007 it is found that the patanseare calibrated
reasonably. Through the empirical results several impofeatures are found: First
traders should not pay attention to use 1st order local mimgrsince it causes a
wrong option price. However it is found that local minimunoplem can be solved
with the proposed method. Second complex model can not betoerbest model.
Third, to describe real market option prices well it is shawat the jumps should
include. Examining the calibration performance of affinepidiffusion models
with option prices of different markets are left for furttetudies.
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