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Abstract

This study presents the efficiency and practical model calibration method to use lots’ of
affine jump-diffusion models in real option market and it gives a useful guideline to trader
in the situation of selecting a model. A general affine jump-diffusion model which have
three dynamics of asset price, variance of asset return and jump intensity is constructed and
based on the general model twelve different affine jump-diffusion models are reconstructed.
To calibrate twelve different affine jump-diffusion modelsthe multi-basin particle swarm
intelligence method is proposed which consists of three steps to conquer the local minimum
problem and show that it can resolve it. To verify the efficiency of the proposed method we
use S&P 500 index option prices. It is found that the optimization method calibrate the
parameter set well and jumps should be included to have a goodcalibration performance.
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1 Introduction

Black and Scholes developed the methodology for pricing options for the first time
in 1973, which is the well-known Black and Scholes (B-S) model. In the B-S model
the dynamics of log stock prices follows a geometric Brownian motion with con-
stant drift and diffusion parameters. According to numerous empirical evidences,
it is clear that the B-S model can not explain the properties of option prices in real
markets such as the ”volatility smile”, that is, the optionswith different strikes and
time-to-maturities have different Black-Scholes impliedvolatilities (Balland, 2002;
Cont & Fonseca, 2002; Dumas et al., 1998)[2,8,11]). To explain the smile effects
many option pricing models have been developed and the models can be classified
into non-parametric and parametric method. Non-parametric method does not have
pre-assumed models and usually uses learning algorithms such as neural networks.
Hutchinson (1994)[17] and Gencay (2001)[14] show the non-parametric method
performs well with respect to out-of-sample error and hedging error. However it
has serious drawbacks in that it cannot applied to pricing path-dependent exotic
options because of its lack of underlying dynamics. To understand intrinsic prop-
erties of asset returns and volatility smile effects of traded option prices and obtain
more realistic models of stock prices, researches have proposed various models in a
parametric way such as exponential Lévy models and affine jump-diffusion models
(Christopher, 2003[10]).

In this paper affine jump-diffusion models are treated intensively. Among affine
jump-diffusion models most popular model was developed by Heston (1993)[16].
However stochastic volatility models have a serious drawback in that it cannot han-
dle short-term smiles properly. At the same time the stock process which adds
jumps to the dynamic of stock price has been developed to obtain more realistic
models of stock prices. Jump-diffusion models can explain the volatility ”smile” ef-
fect. They have disadvantages of producing increasing at-the-money-forward term
structure, because jump models shifts up the overall volatility level. Including jumps
in the stochastic volatility model can conquer those drawbacks of each models and
proposed by Bates (1996)[4]. It can be constructed the affinejump-diffusion mod-
els which include a stochastic jump intensity rate in the Bates model, which is
presented by Fang (2000)[13]. It’s very challenging model,although the perfor-
mance of this model is not known. Through the empirical evidences of the proposed
method it is checked the performance of the model.

To calculate option prices of the affine jump-diffusion models the FFT approach is
most widely used. Due to the singularity of the payoff function atv = 0 we can
not directly apply the FFT approach. Carr and Madan (1999)[6] makes it possible
introducing an damping parameter for the first time. When option prices are quoted
on the market, a market-consistent risk-neutral pricing modelQ can not be obtained
only by an econometric analysis of the time series of the underlying but by looking
at prices of contingent claims today (t = 0). One choose a risk-neutral model
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such as to reproduce the prices of traded options, calledmodel calibration, and
then uses this model to price exotic, illiquid or OTC optionsand to compute hedge
ratios. To conduct model calibration several methods proposed in parametric and
nonparametric way. Cont (2004)[9] proposed nonparametricway to calibrate Lèvy
measures using relative entropy. Bakshi (1997) [1] proposed parametric way to
calibrate stochastic volatility models dividing the time to maturity and moneyness
space. Schoutens (2004) [26] insists they can calibrate perfectly real option prices.
Since model calibration is known as ill-posedinverse problem, the calibration
results have lots of local minima and can be very different depending on the initial
parameter set and optimization methods in a non-smooth way,and real market data
have a noise, it’s impossible to calibrate option prices perfectly. However, most
paper does not consider those problems seriously.

In this article, Twelve different affine jump-diffusion models which have three dy-
namics which are the asset price, the volatility of the assetreturn and the jump
intensity are reconstructed and the new optimization method, which has best per-
formance to calibrate complex financial models robustly, isproposed. With the pro-
posed method a parameter set of affine jump-diffusion modelsis calibrated using
model-generated option prices and S&P 500 index option prices for presenting em-
pirical evidences. It is found that it can solve the ill-posed inverse problems and cal-
ibrate the parameter set well with the proposed method and affine jump-diffusion
models including jump have better performance without it.

The article is structured as follows: affine jump-diffusionmodels are reviewed and
a brief overview of the Carr-Madan’s FFT method in the section 2. In the section 3
it is presented new optimization method which consists of three steps. To check the
robustness of the proposed method it is conducted simulation with model-generated
option prices in section 4. With the robustness of the methodthe real market option
prices, which are S&P 500 index option prices, are used. The description of the
S&P 500 index option prices are explained and the calibration results of affine
jump-diffusion models are shown in the section 5. The last section 6 draws the
conclusions and gives final comments.

2 Affine Jump-Diffusion Models

The most widely used continuous models for asset dynamics are the affine jump
diffusion models. This section briefly reviews these modelsand reconstruct them
using the unified notations.

Consider first the following affine jump-diffusion models with three dynamics un-
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der risk-neutral measureQ:

dSt
St

= (r − q − λtµJ)dt+
√
υtdW

Q
St + (eJt − 1)dNQ

St,

dυt = κ(η − υt)dt+ ξ
√
υtdW

Q
υt,

dλt = κλ(ηλ − λt)dt+ ξλ
√

λtdW
Q
λt.

(1)

(i) For the asset price dynamics,St is the asset price,υt is the variance of asset
return,r is the risk-free (domestic) interest rate,q is the continuous dividend yield
(foreign interest rate),WQ

St andWQ
υt are correlated standard Wiener processes un-

derQ with constant correlationρ, defined byCov(dWQ
St, dW

Q
υt) = ρdt. NQ

St is a
Poisson process underQ with a stochastic intensityλt, J is a random jump size in
the logarithm of the asset price with a probability density function (PDF) given by
̟(J). µJ = E[eJ − 1] is set to make the discounted asset process a martingale. (ii)
For the variance dynamics,κ is the mean-reverting rate,η is the long-term mean
variance,ξ is the volatility of volatility. (iii) For the jump intensity dynamics,κλ
is the mean-reverting rate,ηλ is the long-term mean rate,ξλ is volatility of jump
rate intensity, a Wiener processdWQ

λt is independent ofWQ
St andWQ

υt. It is also as-
sumed that jump processes are independent of Wiener processes. Note that under
risk-neutral measureQ, EQ(dS) = (r − q)Sdt.

Using the martingale pricing, option value can be represented as an integral of a
discounted probability density times the payoff function and the Feynman-Kac the-
orem is applied to derive the PIDE satisfied by the value of an option. Variables are
changed fromS to x = lnS and fromt to τ = T − t. Applying Feynman-Kac
theorem for the price dynamics (1), it is obtained that the value of a European-style
claim denoted byf(x, υ, λ, τ) satisfies the following partial integro-differential
equation (PIDE)

− ∂f

∂τ
+ (r − q − 1

2
υ − λµJ)

∂f

∂x
+

1

2
υ
∂2f

∂x2
+ κ(η − υ)

∂f

∂υ
+

1

2
ξ2υ

∂2f

∂υ2

+ ρξυ
∂2f

∂x∂υ
+ κλ(ηλ − λ)

∂f

∂λ
+

1

2
ξ2λλ

∂2f

∂λ2 + λ
∫ ∞

−∞
̟(J)dJ [f(x+ J)− f(x)] = rf

f(x, υ, λ, 0) = g(ex, K)

(2)

whereg is the payoff function.

2.1 Solutions to Moment Generating Function

One of the nice property for the affine jump-diffusion modelsis that their option
pricing formulas can be easily obtained with the aid of the moment generating
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function (MGF). The MGFG(u, x, υ, λ, τ) associated with the log of the terminal
asset pricex(τ) = lnS(τ) in the stochastic differential equation (1) is defined by

G(u, x, υ, λ, τ) = EQ[eux(τ)] = e−rτEQ[erτeux(τ)]. (3)

and can be considered as a contingent claim that pays offerτ+ux at timeτ . Again
through Feynman-Kac theorem theG(u, x, υ, λ, τ) of (1) can be achieved by solv-
ing the following PIDE.

−Gτ + (r − q − 1

2
υ − λµJ)Gx +

1

2
υGxx + κ(η − υ)Gv +

1

2
ξ2υGυυ

+ ρξυGxυ + κλ(ηλ − λ)Gλ +
1

2
ξ2λλGλλ

+ λ
∫ ∞

−∞
[G(x+ J)−G]̟(J)dJ = 0, G(u, x, υ, λ, 0) = eux.

(4)

By the method of indetermined coefficients guessing of an affine-formG = eA(τ)+B(τ)υ+C(τ)λ

PIDE (4) can be solved in closed-form as follows.

Proposition 1 The solution to PIDE (4) is given by

G(u, x, υ, λ, τ) = exp{xu+ (r − q)τu+ A(u, τ) +B(u, τ)υ + C(u, τ) +D(u, τ)λ} (5)

where

A(u, τ) = −κη
ξ2

[ψ+τ + 2 ln(
ψ− + ψ+e

−ζτ

2ζ
)], B(u, τ) = −(u− u2)

1− e−ζτ

ψ− + ψ+e−ζτ
,

Ad(u, τ) = −(κτ + e−κτ − 1)
η(u− u2)

2κ
, Bd(u, τ) = −(1 − e−κτ )

(u− u2)

2κ

C(u, τ) = −κληλ
ξ2λ

[χ+τ + 2 ln(
χ− + χ+e

−ǫτ

2ξ
)], D(u, τ) = 2Λ(u)

1− e−ǫτ

χ− + χ+e−ǫτ
,

Cd(u, τ) = (κλτ + e−κλτ − 1)
ηλΛ(u)

κλ
, Dd(u, τ) = (1− e−κλτ )

Λ(u)

κλ
,

ψ± = ∓(κ− ρξu) + ζ, ζ =
√

(κ− ρξu)2 + ξ2(u− u2),

χ± = ∓κλ + ǫ, ǫ =
√

κ2λ − 2ξ2λΛ(u),

Λ(u) =
∫ ∞

−∞
eJu̟(J)dJ − 1− µJu, µJ =

∫ ∞

∞
eJ̟(J)dJ − 1.

where A = Ad, B = Bd and C = Cd, D = Dd in case of deterministic volatility
and jump intensity, respectively.

The following table summarize the detailed parameters of the affine jump-diffusion
models according to the dynamics of the variance and jump intensity and jump
size distribution that follows log-normal distribution.Const, Deter, Stoch, Vol and
Inten mean Constant, Deterministic, Stochastic, Volatility andIntensity.

5



Table 1
Summary of the Moment generating functions under Affine Jump-Diffusion Models

Model Model Description Moment Generating Function

CVNJ Const Vol No Jump A(u, τ) = 0, B(u, τ) = −(u− u2)τ/2,

C(u, τ) = 0, D(u, τ) = 0

CVCI Const Vol Const Inten A(u, τ) = 0, B(u, τ) = −(u− u2)τ/2,

C(u, τ) = 0, D(u, τ) = τΛ(u)

CVDI Const Vol Deter Inten A(u, τ) = 0, B(u, τ) = −(u− u2)τ/2,

C(u, τ) = (κλτ + e−κλτ − 1)
ηλΛ(u)
κλ

,D(u, τ) = (1− e−κλτ )
Λ(u)
κλ

CVSI Const Vol Stoch Inten A(u, τ) = 0, B(u, τ) = −(u− u2)τ/2,

C(u, τ) = −
κληλ
ξ2
λ

[χ+τ + 2 ln(
χ
−

+χ+e
−ǫτ

2ξ
)], D(u, τ) = (1− e−κλτ )

Λ(u)
κλ

DVNJ Deter Vol No Jump A(u, τ) = −(κτ + e−κτ − 1)
η(u−u2)

2κ
, B(u, τ) = −(1 − e−κτ )

(u−u2)
2κ

,

C(u, τ) = 0, D(u, τ) = 0

DVCI Deter Vol Const Inten A(u, τ) = −(κτ + e−κτ − 1)
η(u−u2)

2κ
, B(u, τ) = −(1 − e−κτ )

(u−u2)
2κ

,

C(u, τ) ≡ 0, D(u, τ) = τΛ(u)

DVDI Deter Vol Deter Inten A(u, τ) = −(κτ + e−κτ − 1)
η(u−u2)

2κ
, B(u, τ) = −(1 − e−κτ )

(u−u2)
2κ

,

C(u, τ) = (κλτ + e−κλτ − 1)
ηλΛ(u)
κλ

,D(u, τ) = (1− e−κλτ )
Λ(u)
κλ

DVSI Deter Vol Stoch Inten A(u, τ) = −(κτ + e−κτ − 1)
η(u−u2)

2κ
, B(u, τ) = −(1 − e−κτ )

(u−u2)
2κ

,

C(u, τ) = −
κληλ
ξ2
λ

[χ+τ + 2 ln(
χ
−

+χ+e
−ǫτ

2ξ
)], D(u, τ) = (1− e−κλτ )

Λ(u)
κλ

SVNJ Stoch Vol No Jump A(u, τ) = −
κη
ξ2

[ψ+τ + 2 ln(
ψ
−
+ψ+e

−ζτ

2ζ
)], B(u, τ) = −(u− u2) 1−e−ζτ

ψ
−
+ψ+e

−ζτ ,

C(u, τ) = 0, D(u, τ) = 0

SVCI Stoch Vol Const Inten A(u, τ) = −
κη
ξ2

[ψ+τ + 2 ln(
ψ
−
+ψ+e

−ζτ

2ζ
)], B(u, τ) = −(u− u2) 1−e−ζτ

ψ
−
+ψ+e

−ζτ ,

C(u, τ) ≡ 0, D(u, τ) = τΛ(u)

SVDI Stoch Vol Deter Inten A(u, τ) = −
κη
ξ2

[ψ+τ + 2 ln(
ψ
−
+ψ+e

−ζτ

2ζ
)], B(u, τ) = −(u− u2) 1−e−ζτ

ψ
−
+ψ+e

−ζτ ,

C(u, τ) = (κλτ + e−κλτ − 1)
ηλΛ(u)
κλ

,D(u, τ) = (1− e−κλτ )
Λ(u)
κλ

SVSI Stoch Vol Stoch Inten A(u, τ) = −
κη
ξ2

[ψ+τ + 2 ln(
ψ
−
+ψ+e

−ζτ

2ζ
)], B(u, τ) = −(u− u2) 1−e−ζτ

ψ
−
+ψ+e

−ζτ ,

C(u, τ) = −
κληλ
ξ2
λ

[χ+τ + 2 ln(
χ
−

+χ+e
−ǫτ

2ξ
)], D(u, τ) = (1− e−κλτ )

Λ(u)
κλ

Other parameters ψ± = ∓(κ− ρξu) + ζ, ζ =
√

(κ− ρξu)2 + ξ2(u− u2)

χ± = ∓κλ + ǫ, ǫ =
√

κ2
λ
− 2ξ2

λ
Λ(u)

Λ(u) = eµJu+δ
2u2/2 − 1− u(eµJ+δ2

J
/2 − 1) (log-normal)

2.2 Option Pricing formulas

During the last decade, Fourier transform has been exclusively employed to express
option pricing formula under the affine jump-diffusion models. Next three widely-
used Fourier transform methods for option pricing are summarized ([16,4,6,21]).
Here it is assumed that the characteristic functionΦx(·) defined byΦx(z) = E[eizxT ] =
G(iz) (whereG is the moment generating function (MGF)) is analytic and bounded
in the strip0 ≤ ℑ(z) ≤ 1 wherexT = lnST andk = lnK to guarantee the exis-
tence of the Fourier transform.

• The Black-Scholes-style Formula:The current value of European call and put
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options are given by

Callt = e−q(T−t)StP+
1 − e−r(T−t)KP+

2 . (6)

Putt = e−r(T−t)KP−
2 − e−q(T−t)StP−

1 . (7)

where

P+
1 =

1

2
+

1

π

∫ ∞

0
Re

[

Φ(1)
x (z)

iz

]

dz, P+
2 =

1

2
+

1

π

∫ ∞

0
Re

[

Φ(2)
x (z)

iz

]

dz

P−
1 =

1

2
− 1

π

∫ ∞

0
Re

[

Φ(1)
x (z)

iz

]

dz, P−
2 =

1

2
− 1

π

∫ ∞

0
Re

[

Φ(2)
x (z)

iz

]

dz

andΦ(1)
x (z) = e− lnSt−(r−q)(T−t)Φx(z − i)e−izk andΦ(2)

x (z) = Φx(z)e
−izk. Here

P+
1 represents a delta,∆, andP+

2 represents the real possibility for exercising
an option.P+

2 is also equal to the value of a digital call option, so the Black-
Scholes-style formula is widely used for many exotic structure embedded with
digital options.

• Lewis’ Characteristic Formula: The current value of European call and put
options are given by

Callt = ex(t)−q(T−t) − e−r(T−t)K

π

∫ ∞

0
ℜ

[

Q(u)

u2 + 1/4

]

du. (8)

Putt = e−r(T−t)K − e−r(T−t)K

π

∫ ∞

0
ℜ

[

Q(u)

u2 + 1/4

]

du. (9)

whereQ(u) := e−(−iu+1/2) lnKΦx(−u − i1
2
) = e−(−iu+1/2) lnKG(−iu+ 1

2
).

• Carr-Madan’s Formula: Letα be a positive constant such that theα-th moment
of the stock price exists. The European call option price ofT maturity and strike
priceK is then given by

C(k, T ) =
e−αk

2π

∫ +∞

−∞
e−ivkψT (v)dv. (10)

wherek = ln(K) and

ψT (z) =
e−rTΦx(u− (α+ 1)i)

α2 + α− u2 + i(2α + 1)u
.

The delta is then given by

∆ =
e−αk

2Stπ

∫ +∞

−∞
e−ivk(iu+ (α + 1))ψT (v)dv. (11)

Now to compute (10) forN-log strike levelsk ranging from−b to b, i.e.

ku = −b+ δk(u− 1), for u = 1, ..., N, δk = 2b/N,
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The fast Fourier transform (FFT) method is applied to (10) which is anO(N lnN)
algorithm for computing

w(u) ≈
N
∑

j=1

e−i
2π
N

(j−1)(u−1)x(j) for u = 1, ..., N,

whereN is a power of 2. Using the Simpson’s rule for the integral partin (10)
where the upper limit for the integration is set to be2π/δk and settingh =
2π/(Nδk) andvj = h(j − 1), the following equation is obtained:

CT (ku) ≈
e−αku

π

N
∑

j=1

e−ivjkuψT (vj)h, for u = 1, ..., N

≈ e−αku

π

N
∑

j=1

e−i
2π
N

(j−1)(u−1)[eiπ(j−1)ψT (vj)h]

Among the three transform methods, Carr-Madan’s Fourier transform method is
shown to be very efficient in pricing several options with thesame maturity.

3 The Proposed Method

The proposed method is composed of three steps. The first stepis a gradient-based
local-searching step. The second step is to look for a sup-local minimum from the
local minimum of the first step. The third phase is to find the global optimal value
based on the particle swarm optimization starting from the sup-local minimum. We
will look for the parameter set which satisfies the Calibration Problem.

Calibration Problem (Least squares calibration) Given a parameter set(θ), the
observed pricesCi of call options for maturitiesTi and strikesKi, i ∈ I, find a
parameter vectorθ which minimizes

argminQθ∈Q

N
∑

i=1

ωi|Cθ(Ti, Ki)− Ci|2 (12)

whereCθ denotes the dollar adjusted call option price andQ is the set of martingale
measures.ωi is the weight of the difference of the option prices. In the proposed
method we will set

∑N
i=1 ωi|Cθ(Ti, Ki)− Ci|2 asf(θ)

Implied volatilities can be used to measure the differencesbetween model and mar-
ket instead of option prices. However, it takes lots of time and it is inefficient be-
cause implied volatilities are calculated in each step. In some parameter values of
optimization procedure implied volatilities are unstable. Hence option prices are
used to calibrate the parameter set of affine jump-diffusionmodels.
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3.1 Step I: Local Search Phase

In Step I we look for a (1st order) local minimum. We constructa generalized
negative gradient system represented by

dθ

dt
= −gradRf(θ) ≡ −R(θ)−1∇f(θ). (13)

whereR(θ) is a positive definite symmetric matrix for allθ ∈ ℜn. Such anR is
called aRiemannian metric onℜn.

Many local search algorithms can be seen as a discretized implementation of pro-
cess (13) depending on the choice ofR(θ). We assume thatf is twice differentiable
to assure the existence of a unique solution (or trajectory)θ(·) : ℜ → ℜn for each
initial conditionθ(0). Note that it can be shown that the trajectoryθ(·) is defined on
all t ∈ ℜ for any initial conditionθ(0) under a suitable re-parametrization. A state
vectorθ̄ satisfying the equation∇f(θ̄) = 0 is called an equilibrium point (or criti-
cal point) of system (13). We say that an equilibrium pointθ̄ of (13) is hyperbolic
if the Hessian off at θ̄, denoted byHf(θ̄), has no zero eigenvalues (i.e.,Hf(θ̄) is
positive definite). Note that all the eigenvalues of the Jacobian of a gradient system
are real since they are symmetric matrices. A hyperbolic equilibrium point is called
a (asymptotically) stable equilibrium point (or an attractor) if all the eigenvalues of
its corresponding Jacobian are positive. A hyperbolic equilibrium point θ̄ is called
an index-k equilibrium point if the Jacobian of the hyperbolic equilibrium point has
exactlyk negative eigenvalues. The basin of attraction of a stable equilibrium point
θs is similarly defined as

A(θs) := {θ(0) ∈ ℜn : lim
t→∞

θ(t) = θs}.

The basin of attractionA(xs) is an open and connected set. One nice property
of this formulation is that every local minimum of the optimization problem (12)
corresponds to a (asymptotically) stable equilibrium point of system (13). Hence,
looking for the local minima of (12) can be achieved via locating corresponding
stable equilibrium points of (13). Another nice property isthat all the generalized
gradient system have the equilibrium points at the same locations with the same
type. Due to convenient properties we can design a computationally efficient algo-
rithm to find stable equilibrium points of (13), and thus find local optimal solutions
of (12).

With numerically integrating system (13) or by a steepest-descent method we can
simply implement Step I. However, since we are primarily concerned with finding
a stable equilibrium point, which is a limit point of a trajectory, rather than the
trajectory itself, we can choose any robust local search algorithm if it can locate a
local minimum nearby an initial guess. From the ‘locality’ of search in step I it is
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important not to take too large steps initially for the line search employed by a local
search method to avoid jumping out of the current basin of attraction.

3.2 Step II: Discrete Sup-Local Search Step

One important issue is how to escape from a local minimum of Step I and move on
toward another neighboring local minimum. We can constructa graphG = (V,E)
describing the connections between the local minima with the following elements:

1. The verticesV of G are local minimaθ1s , ..., θ
p
s of (12), wherep is the total

number of stable equilibrium points.
2. The edgeE of G can only connect two local minima adjacent to each other;θis

is connected withθjs if, and only if, θis is adjacent toxjs.

The original optimization problem (12) can now be transformed into the following
combinatorial optimization problem

min
θs∈L1

f(θs) (14)

whereL1 is the set of all the local minima. Utilizing the concept of a neighboring
local minimum, Step II uses a discrete local search strategyon L1 to solve prob-
lem (14). Specifically, we first construct a user-defined neighborhoodN where the
neighborhoodN (θs) ⊂ L1 of θs ∈ L1 is defined as the set of multiple neighboring
local minima adjacent to (or near)θs. With respect to the neighborhoodN , we will
call a pointθ∗ ∈ L1 a sup-local minimum iff(θ∗) ≤ f(ys) wheneverys ∈ N (θs).
Then we perform a discrete local search strategy to locate a sup-local minimum.

We may apply the following direct strategy to locate a neighboring local minimum
adjacent to a given local minimum: In order to escape from a local minimum, sayθs,
we first move in reverse time fromθs to an index-1 equilibrium point, sayθ1. Then,
starting fromθ1, we advance time to move towards an adjacent local minimum,
sayys. The latter step can also be implemented using a local searchalgorithm as in
Step I. The former step, although it is hard to conduct directly and takes lots of time,
can also be achieved by using some of the techniques suggested in [20]. However
this direct strategy can be inefficient since we are only concerned with locating an
adjacent local minimum and do not need to find an exact index-1equilibrium point,
which is computationally intensive.

Indirect strategy can be used to speed up the search of neighboring local minimum:
Choose an initial straight rayr(λ), emanated fromr(0) = xs and follow the ray
r(λ), with increasingλ, (or employ a mixed cubic and quadratic interpolation line
search algorithm) until it arrives at its first local minimum(or it hits the boundary
of search space) off(r(·)). (The objective functionf would increase, pass a local
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maximum, and reach a local minimum along the ray.) Starting from the estimated
point, locate a neighboring local minimum using a local search algorithm as in Step
I.

3.3 Step III: PSO-based Global Search Step

When the random-generated particles fall off at a sup-localminimum through Step
II, one important issue is how to escape from a local minimum and find the global
minimum. In this multi-dimensional case, we employed the particle swarm opti-
mization method, starting from the obtained points at Step II.

Particle swarm Optimization(PSO) is an efficient stochastic optimization technique
developed by Kennedy and Eberhart (1995) [18,19]. It is simply based on the move-
ment and intelligence of swarms. The sketchy concept of PSO is that particles in a
space cooperate to find the optimal, and each particle has thevelocities and moves
toward the global optimum with remembering the past locations. In other words,
each particle shares the global best value in one neighborhood space, and adjusts
each velocity and location. The Step III follows several steps.

(1) Adjust a population size of particles with the number of obtained particles
in Step II and initialize velocities on the multi-dimensions in the space of
parameter sets which is consists of(θ).

(2) For each particle, evaluate theCalibration Problem which is the objective
function of the parameters in each Lévy model.

(3) Calculate the each particle’spersonal best (pbest) through comparing the cur-
rent value of fitness evaluation with the particle’spbest. If the current value
is smaller thanpbest then change thepbest into the current value, and also
change thepbest position into the current position in the Lévy model’s param-
eter space.

(4) Compare the current fitness with theglobal best (gbest) which means the
smallest value among the population’s previous best. If thecurrent value is
smaller thangbestthen set thegbest equal to the current value and switch the
gbest position into the current position in the Lévy model’s parameter space.

(5) Change the velocity of the particle by the following equation 15:

vij =K ∗ [w ∗ vij + a1 ∗ rand() ∗ (pij − xij)

+ a2 ∗ rand() ∗ (pgj − xij)] (15)
for j = 1, ..., 5

K =
2

|2− ϕ−√
ϕ2 − 4ϕ| (16)

where K is constriction function ofa1 anda2 as equation 16 used the follow-
ing conditionϕ = a1+a2,ϕ > 4, andw means ’Inertia weight’ and is linearly
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decreased from 0.9 to 0.4 during iterations. Inertia weightw was used for im-
provement of performance by the better adjusting movement and eliminating
the maximum velocity constraints. The use of the constriction factorK andϕ
has guaranteed of sufficient convergence of PSO algorithm. In our simulation,
we setK = 0.709, ϕ = 4.1, anda1 = a2 = 2.1.

(6) Move to the position of the particle according to equation 6, and loop to step
2) and repeat until a criterion is satisfied.

xij = xij + vij, for j = 1, ..., 5 (17)

(7) After calibrating the parameter set we check a performance of the calibration
result by calculating the average mean squared errors. First we calculate a
mean squared error as follows:

ǫ =
n
∑

i=1

(C i
o − C i

e)
2

n
(18)

whereC i
o is the ith real option value,C i

e is the ith estimated option value
andn is the total number of data set. Then we average mean squared errors
conducting several times.

4 Model Robustness Test

In this section, the stability of the multi-basin particle swarm intelligence method
is verified through calibrating a parameter set of affine jump-diffusion models with
model-generated option prices data. Through this section it is checked whether the
proposed method finds well the true parameter set of the model-generated option
prices or not. To calibrate a parameter set of affine jump-diffusion models Carr-
Madan’s method is applied and simple integration methods, such as Trapezoidal
rule, Simpson’s rule and Boole’s rule, is utilized due to theequidistant spacing of
grid in the integration domain of the Carr-Madan’s method. Gaussian integration
method which is an advance numerical integration method cannot be applied since
the grid points in the Gaussian integration method are pre-defined. Simpson’ rule
is used to implement the Carr-Madan’s method.

Model-generated option prices are generated with theSVNJ andSVSI from a given
true parameter set. The initial stock price is set,S0 = 100, risk free interest rate,
r = 0.03, and time to maturities,τ = 0.1, 0.3, 0.5, 0.7, 1. The control parameters
are also fixed, such as damping parameterα = 1.6 and the weight of the difference
of the option pricesωi = 1, for simplicity. The proposed method is applied to
this model-generated option prices to calibrate a parameter set of theSVNJ and
SVSI. Table 2 shows some results of Phase I and Phase III ofSVNJ starting from
randomly chosen 30 initial parameter set and Table 3 presentthe results ofSVSI.
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Table 2
Parameter calibration result of the Phase I & Phase III withSVNJ: Estimated Result1is
the calibration results of Phase I andEstimated Result2is the calibration results of Phase
III.

Parameter σ κ η ξ ρ

True Parameter Set 0.04 3 0.02 0.6 -0.7

Initial Parameter Set 0.9199 0.7090 0.0848 0.8843 0.5650

Estimated Result1 0.04 3 0.02 0.6 -0.7

Estimated Result2 0.04 3 0.02 0.6 -0.7

True Parameter Set 0.04 3 0.02 0.6 -0.7

Initial Parameter Set 0.8160 0.1203 0.5884 0.4094 0.3584

Estimated Result1 0.0263 3.8503 0.0187 0.6962 -0.6940

Estimated Result2 0.04 3 0.02 0.6 -0.7

True Parameter Set 0.04 3 0.02 0.6 -0.7

Initial Parameter Set 0.9628 0.8298 0.2295 0.9946 0.2092

Estimated Result1 0.0651 0.0475 0.2837 4.2531e-7 0.1977

Estimated Result2 0.04 3 0.02 0.6 -0.7

True Parameter Set 0.04 3 0.02 0.6 -0.7

Initial Parameter Set 0.1241 0.3791 0.6405 0.9820 -0.9298

Estimated Result1 0.0190 4.5204 0.0184 0.9903 -8.1886

Estimated Result2 0.04 3 0.02 0.6 -0.7

Table 3
Parameter calibration result of the Phase I withSVSI: Estimated Result1is the calibration
results of Phase I.

Parameter σ κ η ξ ρ κλ ηλ λ µJ δJ

True Parameter Set 0.04 0.06 0.5 0.5 -0.7 -0.2 1 0.4 -0.06 0.1

Initial Parameter Set 0.42 0.69 0.14 0.31 -0.55 0.54 0.76 0.44 0.55 0.72

Estimated Result1 0.14 -0.06 0.5 0.15 -0.99 0.72 0.19 0.001 0.43 1.02

Estimated Result2 0.04 0.06 0.5 0.5 -0.7 -0.2 1 0.4 -0.06 0.1

True Parameter Set 0.04 0.06 0.5 0.5 -0.7 -0.2 1 0.4 -0.06 0.1

Initial Parameter Set 0.94 -0.03 0.58 0.07 -0.49 0.10 0.72 0.34 0.06 0.32

Estimated Result1 0.06 -0.04 0.11 0.05 -1.25 0.15 1.25 0.03 0.09 4e-6

Estimated Result2 0.04 0.06 0.5 0.5 -0.7 -0.2 1 0.4 -0.06 0.1

True Parameter Set 0.04 0.06 0.5 0.5 -0.7 -0.2 1 0.4 -0.06 0.1

Initial Parameter Set 0.38 -0.85 0.13 0.88 -0.06 0.18 0.75 0.31 -0.78 0.13

Estimated Result1 0.05 -0.16 0.09 1.25 -0.07 0.25 0.47 0.28 -0.92 0.25

Estimated Result2 0.04 0.06 0.5 0.5 -0.7 -0.2 1 0.4 -0.06 0.1

True Parameter Set 0.04 0.06 0.5 0.5 -0.7 -0.2 1 0.4 -0.06 0.1

Initial Parameter Set 0.5 -0.56 0.68 0.14 0.22 0.55 0.29 0.89 -0.66 0.72

Estimated Result1 0.24 -0.59 1.14 0.15 0.3 0.24 0.43 0.08 -0.93 0.72

Estimated Result2 0.04 0.06 0.5 0.5 -0.7 -0.2 1 0.4 -0.06 0.1

Through Table 2 and 3 it can be checked there are lots of local minima after Phase
I. Almost every paper finishes the model calibration with Phase I and uses the
calibrated parameter set, which is a local minimum, to evaluate the model’s perfor-
mance without a serious consideration. It can be a serious problem since there are
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lots of local minima. It is checked through Fig 1.
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Fig. 1. The calibration results for the option prices (left panels) and implied volatilities
(right panels) of theSVNJ: The panels in the 1st and the 2nd rows represent the calibration
results of phase I (i.e. one of the 1st order local minima) andphase I & II (i.e. one of the
sup-local minima) of the proposed method. The panels in the 3rd row represents the cali-
bration results (i.e. a global minimum) of the whole three phases of the proposed method.
Red star stands for the model-generated option prices and implied volatilities whereas the
blue circle stands for the option prices and implied volatilities with calibration result.

Fig. 1 presents the calibration results of the proposed method with the option prices
and implied volatilities of theSVNJ. As shown in the figure, the calibrated sup-
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local minima through phase I&II often match closely to the option prices (the left
panel in the 2nd row in Fig. 1) whereas the (1st) local minima obtained in phase
I can not capture the option prices well (the left panel in the1st row in Fig. 1).
However, the sup-local minima still mismatch with the implied volatility despite of
its seemingly perfect option price match (the right panel inthe 2nd row in Fig. 1).
The parameter set calibrated after the whole phases of the proposed method shows
the perfect match to both option prices and implied volatilities.

To fix local minimum problem and find a best parameter set the optimization method
which consists of three phases is proposed. After phase III every first order local
minima converges to the true parameter set with the proposedmethod. Through
model-generated option prices it is shown that the proposedmethod works well
and finds the true parameter set well, although the affine jump-diffusion model has
many parameters.

5 Empirical Results

With the stability of the multi-basin particle swarm intelligence method, most well-
known S&P 500 index European option prices which are traded in the Chicago
Board Options Exchange for the empirical analysis are chosen. S& P 500 index op-
tion prices and other informations, which are strike prices, trading volumes, option
expiration dates, stock prices and implied volatilities, are collected from Thom-
son Datastream. We use the option prices of 2007. Unlike model-generated option
prices, real market option prices reflect noise, thereby complicating model cali-
bration. Hence, we apply the proposed global calibration method to the European
S&P 500 index option prices to determine whether the calibration result accurately
explains the observed properties of option data. To conductexperiments, we first
eliminate outlier data through the following steps.

(1) Exclude options where the expiration date is less than 6 days, since the implied
volatility changes rapidly with a small fluctuation of the option prices and
expiration date less than 6 days can cause biases due to liquidity.

(2) Choose the expiration dates which have more than 10 strike prices with non-
zero contracts traded.

(3) Eliminate the options with their prices less than their intrinsic values, since
this is an obvious arbitrage opportunity.

we conduct numerical analysis with the option prices after preprocessing. The log
strikes spaced equidistantly in the Carr-Madan’s method can cause a problem since
the real market option prices the strike prices are not spaced equidistantly. Hence
applying the Carr-Madan’s method directly to real market option prices is impossi-
ble. To solve it we interpolate option prices through the logstrikes. Since the shapes
of the option prices are different according to the time to maturities and it’s hard
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to define a certain function, we use the cubic spline interpolation method. First the
parameter set of twelve affine jump-diffusion models is calibrated using the S&P
500 index option prices of May 18th, 2007 and then mean squared errors(MSE)
is calculated to show the performance of the calibration result. The mean squared
error is computed as follows:

ǫ =
1

N

N
∑

i=1

(C i
o − C i

e)
2 (19)

whereC i
o is the ith real option value,C i

e is the ith estimated option value and
N is the total number of data set. Then mean squared errors are averaged through
repeating several times. Following table 4 and 5 show the calibration result ofPhase
I andPhase III with the twelve affine jump-diffusion models.

Table 4
Parameter calibration result ofPhase Iwith S&P 500 index option prices on May 18th,
2007

Parameter CVNJ CVCI CVDI CVSI DVNJ DVCI

υ0 0.1208 0.1208 0.1240 0.1208 0.1119 0.1058

λ 1.8097e-15 2.738e-16 1.1387e-12 1.0121e-13

κ -0.7322 4.6718

η 1.6105e-14 0.0181

ξ

ρ

κλ -0.0124 0.7734

ηλ 2.5953 9.2105e-17

ξλ 0.8685

µJ 0.0162 0.4158 -0.1359 -2.4473

δJ 0.4436 0.2271 0.0589 3.2872

MSE 14.2281 14.2281 13.8581 14.2281 13.0222 12.6110

Parameter DVDI DVSI SVNJ SVCI SVDI SVSI

υ0 0.0763 0.0902 0.0936 0.1375 0.1065 0.1253

λ 0.7493 0.4811 1.8702e-18 0.0410 0.1114

κ -0.3741 0.1398 0.0238 0.1600 -0.0143 -0.3555

η 0.0073 3.0883e-14 0.4242 0.2424 1.3134 1.0410e-04

ξ 0.3024 1.2080 0.0192 1.8820

ρ 0.7363 -0.2062 -0.0304 0.0840

κλ -1.0652 0.0028 1.7372 0.0164

ηλ 0.0964 0.2367 1.0954 0.0195

ξλ 0.0969 1.2350

µJ -0.1006 -0.1655 3.0778 -0.1776 -0.5269

δJ 0.0570 7.3793e-04 0.7938 0.0578 0.3108

MSE 2.1435 7.8961 70.2466 15.7114 2.7642 25.6224

Through Table 4 and 5 it is shown that the calibration resultsobtained by phase
I have a poor performance comparing with the calibration results after conduct-
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Table 5
Parameter calibration result ofPhase III with S&P 500 index option prices on May 18th,
2007

Parameter CVNJ CVCI CVDI CVSI DVNJ DVCI

υ0 0.1208 0.0794 0.0788 0.0916 0.0958 0.0802

λ 0.6367 0.5085 0.4654 0.6371

κ 10.9951 1.5010

η 0.0169 0.0057

ξ

ρ

κλ 18.8525 0.1039

ηλ 0.7179 0.0072

ξλ 0.0960

µJ -0.1255 -0.1212 -0.1734 -0.1261

δJ 0.0644 0.0604 5.04e-9 0.0644

MSE 14.2281 1.8390 1.7196 1.3718 12.6083 1.8318

Parameter DVDI DVSI SVNJ SVCI SVDI SVSI

υ0 0.0843 0.0915 0.1067 0.0947 0.0956 0.0952

λ 0.9250 0.4681 0.6564 0.4209 0.1127

κ 2.8898 0.0238 6.0755 2.8649 1.5100 7.3500

η 5.361e-04 5.807e-12 0.0228 0.0177 0.0341 0.0233

ξ 0.6257 0.3009 0.3388 0.6625

ρ -0.7686 -0.8913 -0.7413 -0.8041

κλ 2.5906 0.1018 -5.1275 -0.0381

ηλ 2.2474 0.0074 0.1850 10.8942

ξλ 0.0984 8.1461

µJ -0.0762 -0.1725 -0.0553 -0.1515 -0.050

δJ 0.0611 1.803e-7 0.1049 0.0298 0.2867

MSE 1.3764 1.3717 1.0130 0.9608 0.8898 0.9285

ing all phases. Although the calibration results obtained by phase I do not have
meaningful information, the final parameter set of the proposed method do have.
Since option prices do not sensitive toκ, it can be calibrated fixing theκ within a
certain range of proposed method. The initial variances of asset return(υ) of twelve
affine jump-diffusion models are similar in a range from 8% to12%. In general, the
correlation(ρ) between the asset and the variance of asset return is negative and it
is shown that the correlations between them are negative from -0.76 to -0.89. In ev-
ery models, mean jump size(µJ) is a negative value, which means the frequency of
negative jump is more often than positive jump or the negative jump size is bigger
than the positive jump size. Since the standard deviation(δJ) of the jump size is very
small, the distribution gathers around the mean value. As the number of parameters
increases, the quality of calibration is getting better.CVNJ, which is same with
the Black-Scholes model, has the worst performance among twelve affine jump-
diffusion models. The best in-sample fit is theSVDI which has stochastic volatility
and deterministic intensity.
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The option prices and implied volatilities are calculated with the calibration result
of Table 5 and are compared with real option prices and implied volatilities to
show the the performance of the Multi-basin Particle Swarm Intelligence Method.
Following Fig 2 and 3 show the simulation result ofSVCI andSVSI.
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Fig. 2. The option prices and implied volatilities of theSVCI with the calibration result:
red star stands for the real S& P 500 index option prices and implied volatilities and blue
circle is the option prices and implied volatilities of theSVCI.
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Fig. 3. The option prices and implied volatilities of theSVSI with the calibration result:
red star stands for the real S& P 500 index option prices and implied volatilities and blue
circle is the option prices and implied volatilities of theSVSI.

Through Fig 2 and 3 it is shown that the calibration result represent the real option
prices well andSVSI captures the implied volatility smile well at a short maturity
comparing with theSVCI.
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6 Conclusion

In this paper, the global optimization method which consists of 3 phases is proposed
to calibrate parameter set of twelve different affine jump-diffusion models which
have three dynamics, the asset price, the variance of asset return and the jump inten-
sity, and compare the performance with the model-generatedoption prices and real
S&P 500 index option prices. It is shown that the multi-basinparticle swarm intel-
ligence method works significantly well to calibrate affine jump-diffusion models
through model-generated option prices. With the calibration result of S&P 500 in-
dex option prices on May 18th, 2007 it is found that the parameters are calibrated
reasonably. Through the empirical results several important features are found: First
traders should not pay attention to use 1st order local minimum, since it causes a
wrong option price. However it is found that local minimum problem can be solved
with the proposed method. Second complex model can not become the best model.
Third, to describe real market option prices well it is shownthat the jumps should
include. Examining the calibration performance of affine jump-diffusion models
with option prices of different markets are left for furtherstudies.
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