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Abstracts

This study is on the forecasting performance of three range volatility

estimators with ARMA, GARCH, and 2-regime SETAR fiters using the KOSPI

200 daily opening, highest, lowest, and closing prices. RMSE has been used

as an evaluation criterion. The results of this analysis can be summarized as

follows: First, three range volatility estimators showed relatively inferior

forecasting performance in volatile period but relatively superior one in stable

period. Second, Parkinson, and Garman and Klass volatility estimators had

much better forecasting performance with a linear ARMA filter while Rogers

and Satchell volatility estimator did with nonlinear GARCH and 2-regime

SETAR filters. Third, a linear ARMA filter contributed to produce superior

forecasting performance with Parkinson, and Garman and Klass volatility

estimators while a nonlinear 2-regime SETAR filter did with Rogers and

Satchell volatility estimator which was designed to reflect trend into price

process. It is not surprising that a GARCH filter presented always-not-bad

forecasting performance regardless of market conditions and the type of

range volatility estimators.
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. IntroductionⅠ

The volatility of various asset returns is an important factor in option

pricing, asset allocation strategies, risk management and so on. This can

make scholars and experts who concern financial markets to have quite a

strong interest in how to measure and forecast volatility. Volatility can

be conventionally estimated as the standard deviation of returns which

are calculated with close prices during a certain period of time. This

measurement cannot be the best option due to the noise added to true

volatility despite the convenience of measurement(Andersen and

Bollerslev, 1998).

One of alternative volatility measurements was proposed by

Parkinson(1980). He designed his own volatility estimator in the name of

‘range variance’ from the very concept of range(maximum-minimum, that

is, the highest price-the lowest price), and proved that it was 2.5 to 5

times efficient than conventional volatility measure. Garman and

Klass(1980) also proposed their own volatility estimator which corrected

Parkinson volatility estimator's downward bias problem caused by discrete

trading in the same year. Rogers and Satchell(1991) made a revolution in

this field. They included the trend in price process to design much more

realistic volatility estimator. These three range volatility estimators were

evaluated 5 to 14 times efficient than conventional one(Vipul and Jacob,

2007). They have another benefit of informational content due to the use

of the open, high, low, and close prices in the calculation of volatility

estimators other than the efficiency.

The use of high and low prices along with open and close ones is not

common in academia but in technical analysis of asset prices open, close,

high, and low prices are broadly used in the form of

open-close-high-low bar charts. These charts are the starting point of

graphic/quantitative analysis(Lildholdt, 2002).
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This study is to evaluate the forecasting performance of three range

volatility estimators using a realized volatility as a benchmark. Three

range volatility estimators including Parkinson, Garman and Klass, and

Rogers and Satchell volatility estimators were calculated by their own

formulas with log-transformed price series of the KOSPI 200 daily open,

high, low, and close price series from January 3, 2000 to June 30, 2011.

The entire sample was divided into 5 sub-samples after detecting 4

structural change points through the dynamic programming algorithm

proposed by Bai and Perron(2003) for more detailed analysis. I used two

different kinds of forecasting filters like a linear ARMA(AutoRegressive

Moving Average)(1,1) model and nonlinear GARCH(1,1) and 2-regime

SETAR(Self-Exciting Threshold AutoRegressive) models. RMSE(Root Mean

Square Error) was used as the comparison criterion on the forecasting

performance of three range volatility estimators.

Just few previous studies can be found on this topic.

Vipul and Jacob(2007) compared three range volatility estimators with

historical volatility estimator in terms of forecasting performance by using

two-scale realized volatility proposed by Zhang et al.(2005) as a

benchmark. They used Indian Nifty index high-frequency data from

January 1, 2001 to December 30, 2005. The same range volatility

estimators but somewhat different forecasting filters were used in

comparison of those of my study. RW(Random Walk), MA(Moving

Average), EWMA(Exponentially Weighted Moving Average),

AR(AutoRegressive), GJR-GARCH models were chosen as forecasting

filters in their analysis. They evaluated the forecasting performance of all

four volatility estimators(three range volatility estimators and one

historical volatility estimator) with two different criteria. The former was

MSE(Mean Squared Error) with respect to efficiency and the latter was

MRB(Mean Relative Bias) with respect to bias. The results of their

analysis present that range volatility estimators are superior to historical

volatility estimator in terms of short-run and long-run forecasting
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performance.

Jacob and Vipul(2008) changed their focus of analysis from high

frequency level to much lower frequency level, daily data which have

much higher accessibility. They used the same realized volatility and

comparison criteria as their previous study but only linear forecasting

filters such as AR(AutoRegressive), MA(Moving Average),

EWMA(Exponentially Weighted Moving Average), ARMA(AutoRegressive

Moving Average) models. Their study reached the same conclusions as

their previous study in spite of using different frequency data. This can

lead people in financial field to use range volatility estimators more often

with much stronger confidence of their forecasting performance.

Kim and Park(2009) applied the framework of the two previous studies

to Korean stock markets. They used KOSPI 200 tick-by-tick data from

January 2, 2006 to May 10, 2008 and limited the scope of forecasting

filters to linear ones like AR(AutoRegressive), MA(Moving Average), and

ARMA(AutoRegressive Moving Average) models. It is noted that three

range volatility estimators tend to show quite different forecasting

performance according to the condition of sub-samples. They first

seperated the entire sample into two sub-samples by the result of Zivot

and Andrews' unit root test. While three range volatility estimators

showed better forecasting performance in relatively stable sub-sample,

historical volatility estimator did in relatively volatile sub-sample. One

surprising finding was Rogers and Satchell volatility estimator presented

remarkably superior forecasting performance to the other two range

volatility estimators and historical volatility estimator. The reason of this

striking result could be the design of Rogers and Satchell volatility

estimator, that is, to incorporate trend into price process for making

different market conditions structured in this volatility estimator.

This study is organized as follows. How to measure three range

volatility estimators and realized volatility is explained in section 2.

Three forecasting filters are introduced in section 3. The comparison
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criterion of forecasting performance, RMSE(Root Mean Square Error) is

presented in section 4. The data to be used in this study are described

in section 5. Analysis methodologies and their application results are

presented in section 6. Section 7 concludes this study.

. Volatility estimatorsⅡ

1. Range volatility estimators

1.1 Parkinson volatility estimator

Parkinson(1980) proposed a range volatility estimator as an alternative

to conventional volatility estimators. He introduced the concept of ‘range

variance’ instead of estimating the variance of stock's returns to measure

the true volatility. The range as the difference between the highest price

and the lowest price was incorporated in the formula of his volatility

estimator. Building on the work of Feller(1951), Parkinson showed that,

under the assumption of a lognormal diffusion, his volatility estimator

tended to have 2.5 to 5 times smaller standard error than conventional

volatility estimators. Beckers(1983) wrote that Parkinson's range volatility

estimator would be downward-biased due to the approximation of the

true high and low values of a Brownian motion by the high and low

values of a random walk.

The range volatility estimator Parkinson suggested is as follows.

 
  ln 




 
  



  
 (1)

where  and  are the log-transformed high and low prices during the

trading day  respectively and  is the number of trading days.

Daily data were used in this study so Parkinson volatility estimator was

corrected in the case of    like equation (2).
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 
  ln 


  

 (2)

1.2 Garman and Klass volatility estimator

Garman and Klass(1980) pointed out that Parkinson volatility estimator

could be downward biased due to discrete trading through simulation

from the idea that true high and low prices could not be observed in

reality. They added open and close prices into the formula of their

volatility estimator other than high and low ones which were inputs of

Parkinson volatility estimator like equation (3).


  

 
  



  
         

     
 

(3)

where  ,  ,  ,  are the log-transformed high, low, open and close

prices during the trading day  respectively and  is the number of

trading days.

The efficiency gain from including open and close prices was

remarkable: MSE(Mean Squared Error) decreased by 30% compared with

Parkinson's volatility estimator but these two volatility estimators can

face overestimation problem caused by not including trend in price

process. This matter can be much serious when financial markets have a

clear trend of boom or bust.

Daily data were used in this study so Garman and Klass volatility

estimator was corrected in the case of    like equation (4).


    

        

     


(4)
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1.3 Rogers and Satchell volatility estimator

Rogers and Satchell(1991) developed their own volatility estimator by

including trend in it to settle with the overestimation problem of

Parkinson, and Garman and Klass volatility estimators like equation (5).


  

 
  



      (5)

where  ,  ,  ,  are the log-transformed high, low, open and close

prices during the trading day  respectively and  is the number of

trading days.

Daily data were used in this study so Rogers and Satchell volatility

estimator was corrected in the case of    like equation (6).

 
        (6)

2. The measurement of realized volatility

RMSE(Root Mean Square Error) was used as an evaluation criterion on

the forecasting performance of range volatility estimators in this study.

The predicted value of a certain range volatility estimator and the

realized volatility one are used as inputs of RMSE like equation (20). I

separated the entire sample into two parts, the first two thirds and the

latter one third of it. To find out the exact specification of the fittest

forecasting filter, the first two thirds of the entire sample was used for

estimation. After getting the specification of three different forecasting

filters including ARMA(AutoRegressive Moving Average), GARCH and

2-regime SETAR models, I applied specific specification of three

forecasting filters to -length rolling window in the latter one third of

the entire sample to get the estimates of parameters. At last, a

one-step-ahead forecast, the ( )th predicted value of range volatility



- 8 -

estimators was calculated with inputs of observations and parameter

estimates. I applied the same logic to the measurement of realized

volatility as an input of the calculation of RMSE(Root Mean Square Error)

so used -length rolling window to calculate realized volatility like

equation (7), which helped solve out noise matter as well.

 



 
  

   

 
 (7)

where  is a realized volatility and  is the length of rolling window.






is a multiplier to transform daily volatility into yearly one in the

case of 250 trading days.  is the ex post average returns during the

following  days from a specific day.  is the returns based on close

price of  day.

. Forecasting filtersⅢ

Three different forecasting filters were used in this study. I chose

them for the following reasons. The same data, KOSPI 200, was used in

the previous study of mine(Kim and Park, 2009), but the frequency of

data and the type of forecasting filters are different. While only linear

models including AR(AutoRegressive), MA(Moving Average), and

ARMA(AutoRegressive Moving Average) models were used as forecasting

filters on KOSPI 200 tick-by-tick data in Kim and Park(2009), the two

nonlinear models including GARCH and 2-regime SETAR(Self-Exciting

Threshold AutoRegressive) models were added as forecasting filters on

KOSPI 200 daily data in this study. It is noted that it can be the first

time to use a regime-shift model as a forecasting filter so how it helps

improve the forecasting performance of range volatility estimators can be

the main concern.
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1. ARMA(AutoRegressive Moving Average) model: ARMA(1,1)

The specification of ARMA(1,1) model is as follows.

           (8)

The assumption on parameters,   (stationarity condition) and

  (invertibility condition) should be met in this model.

2. GARCH model: GARCH(1,1)

GARCH model is known to be fitted to the data which is characteristic

of fat tails or leptokurtosis. The descriptive statistics of three range

volatility estimators in this study show this character so GARCH model

can be expected to be a good candidate as a forecasting filter. The

specification of GARCH(1,1) model is as follows.


     

   
 (9)

The weak stationarity condition of this model,    , should be met

and  should be greater than zero in unconditional variance,

    
  at all times.

Range-based ML(Maximum Likelihood) estimates were calculated

compared to the conventional return-based ML estimation technique. The

family of Normal-GARCH models can be defined by

   , ∼∋ 

   

(10)

(11)

where ∙ denotes a deterministic function and  the information set

as of time ,

        ⋯

and  is a parameter vector. As an example, this model nests the
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popular GARCH(1,1) model of Bollerslev(1986)


    

  
 (12)

where  ′′    .
For doing range-based ML estimation, we assume that four different

intradaily prices for the Normal-GARCH model are governed by a

Brownian motion on a unit interval.

 ,  ≤ ≤  (13)

We can define the normalized high , the normalized low , and the

normalized close  relative to the open price by

 


≤ ≤ 
 

  


≤ ≤ 
 

   

(14)

(15)

(16)

where   denotes the log-price of asset  on day  at time .

Estimation of Normal-GARCH models are typically performed by

Maximum Likelihood. The conditional likelihood function is

  ⋯    
    



   

where     denotes the density function for a normally

distributed variable  with mean  and standard deviation .  is

computed recursively via equation (11). Estimation proceeds by

maximizing ln  of the likelihood function above, where presample values

of 
 are set to the unconditional sample variance. We denote

return-based ML-estimates of a Normal-GARCH by
∼
,

 
 

     
 


  ln 

 


  ln



 (17)

In words, the ML procedure chooses the parameter vector  that makes
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the observed daily returns, 's, most probable. So the standard deviation

on day  is inferred from the daily return . Our idea is to incorporate

information on daily high's and low's in addition to the daily return .

Specifically, we are going to include information on daily high's and low's

in the density for :

  ⋯     ⋯    ⋯    
    



     

where       denotes the joint density of the normalized

close , the normalized high , and the normalized low , for a

diffusion process with diffusion coefficient  and drift . We denote

ML-estimates based on open, high, low and close prices of a

Normal-GARCH model by ,

 
 

     
 ln        (18)

3. 2-regime self-exciting threshold autoregressive model:

2-regime SETAR(2)

2-regime SETAR model belongs to threshold models proposed by

Tong(1978) and has a great virtue that the parameter estimation can be

made linearly by regimes but the entire model still has nonlinearity.

If  follows 2-regime SETAR(2) model with    as a threshold

variable, the specification of 2-regime SETAR(2) model is as follows.

  
 

   
   

     

  


   
    

    ≥ 
(19)

where    is a threshold variable and  is a threshold value which can

be estimated with data. Although this model is composed of two linear

AR models, it can be classified as a nonlinear model with 2 regimes as a

whole.
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. The evaluation criterion on forecasting performanceⅣ

RMSE(Root Mean Square Error) were used as an evaluation criterion on

forecasting performance of three range volatility estimators. The formula

to calculate RMSE is as follows.

RMSE E  t  t (20)

where   is the square root of range volatility estimates and  is the

realized volatility value calculated by equation (7).

. DataⅤ

This study is to compare the forecasting performance of three range

volatility estimators by sub-samples and forecasting filters. For this

analysis, the raw data, KOSPI 200 daily open, high, low, close price

series were downloaded from FnGuide version 3.0. Parkinson, Garman

and Klass, and Rogers and Satchtell volatility estimators were calculated

by equations of (2), (4), and (6) after log-transformation of raw data

series. Return series based on close prices were calculated for getting

realized volatility as well. These four time series were the dataset for

this study. Sample period covers January 3, 2000 to June 30, 2011.

. Empirical analysisⅥ

1. Structural change point detection and the division of entire

sample period into several sub-sample periods

For more detailed analysis, I divided the entire sample into several

sub-samples by structural change point detection method. Although Qu

and Perron(2007) method could be effectively used due to multiple
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number of time series in this study, I applied Bai and Perron(2003)

method to each volatility estimator time series just because three range

volatility estimators had their own characteristics and level of evolution.

The stationarity test was done on each time series of the entire

sample before the application of Bai and Perron(2003) method. The most

frequently used unit root tests, ADF(Augmented Dickey-Fuller) and

PP(Phillips-Perron) ones were performed. Test results showed that all

three range volatility estimator series were stationary so Bai and

Perron(2003) method could be applied to them.

<Table 1 > Stationarity test on the entire sample
The stationarity of time series under the study should be met before the application of Bai

and Perron(2003)'s structural change point detection method. ADF(Augmented Dickey-Fuller)

and PP(Phillips-Perron) unit root test results show that three range volatility estimator

series are all stationary. The null hypothesis of these two unit root tests is that ‘this time

series has one unit root,’ that is, ‘it is not stationary.’ The null hypothesis has been

rejected even at 1% significance level.

PK GK RS

ADF test -7.838


-7.742


-7.486


PP test -1719.556


-1390.783


-1880.813


The stationarity test results presented that each range volatility

estimator series was stationary so no further steps were not needed

before the application of Bai and Perron(2003) method. The number of

structural change points were estimated by the standard of the minimum

SSR(Residual Sum of Squares) and BIC(Bayesian Information Criterion) as

a result of dynamic programming algorithm proposed by Bai and

Perron(2003).

Test results showed that 5 sub-samples were the most appropriate

from the 4 structural change points. The estimation of the number of

observations which corresponded to structural change points presented

that Parkinson, and Garman and Klass volatility estimators had exactly
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the same points but Rogers and Satchell volatility estimator did slightly

different points compared to the other volatility estimators. This results

mean that Parkinson volatility estimator, and Garman and Klass volatility

estimator can be grouped in contrast with Rogers and Satchell volatility

estimator.

<Table 2> Structural change point detection: Bai and Perron(2003)
The stationarity test results presented that each range volatility estimator series was

stationary so no further steps were not needed before the application of Bai and

Perron(2003) method. The number of structural change points were estimated by the

standard of the minimum SSR(Residual Sum of Squares) and BIC(Bayesian Information

Criterion) as a result of dynamic programming algorithm proposed by Bai and Perron(2003).

The shaded areas in this table indicate the minimum cases in terms of RSS and BIC.

Panel A: Parkinson volatility estimator

0 1 2 3 4 5

RSS 0.000347 0.000331 0.000327 0.000313 0.000310 0.000399

BIC -37159.42 -37279.42 -37298.50 -37403.96 -37411.46 -37400.59

Panel B: Garman and Klass volatility estimator

0 1 2 3 4 5

RSS 0.001147 0.001098 0.001086 0.001042 0.001033 0.001031

BIC -33761.63 -33869.46 -33885.00 -33986.59 -33995.54 -33983.57

Panel A: Rogers and Satchell volatility estimator

0 1 2 3 4 5

RSS 0.000393 0.000378 0.000373 0.000359 0.000356 0.000356

BIC -36807.37 -36902.89 -36918.24 -37011.00 -37024.14 -37009.78

<Table 3> The observation numbers which correspond to structural change points
The observation numbers which corresponded to structural change points were estimated.

The estimation results showed that Parkinson, and Garman and Klass volatility estimators

had 100% identical observation numbers but Rogers and Satchell volatility estimator had

different observation number which belonged to the second change point compared to the

other volatility estimators. This results indicate that Parkinson, and Garman and Klass

volatility estimators have lots of similarity in comparison with Rogers and Satchell volatility

estimator. PK, GK, RS indicate ParKinson, Garman and Klass, Rogers and Satchell volatility

estimators, respectively.
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change point the first the second the third the fourth

PK 426 852 1915 2341

GK 426 853 1915 2341

RS 426 1110 1915 2341

<Table 4> The information on 5 sub-sample periods
Parkinson, and Garman and Klass volatility estimators have uneven numbers of observations

in sub-samples. Specifically the number of observations of the third sub-sample is more

than double compared with the number of observations of the other sub-samples. Satchell

volatility estimator says a different story. It has relatively even number of observations in

each sub-sample. SS stands for Sub-Sample in this table.

Panel A: Garman and Klass volatility estimators

SS1 SS2 SS3 SS4 SS5

period
start 2000/01/05 2001/10/04 2003/06/27 2007/10/12 2009/07/01

end 2001/09/28 2003/06/26 2007/10/11 2009/06/30 2011/06/30

obs. interval 1~425 426~851 852~1914 1915~2340 2341~2842

# of obs. 425 426 1063 426 502

ratio(%) 14.95 14.99 37.40 14.99 17.66

Panel B: Rogers and Satchell volatility estimator

SS1 SS2 SS3 SS4 SS5

period
start 2000/01/05 2001/10/04 2004/07/16 2007/10/12 2009/07/01

end 2001/09/28 2004/07/15 2007/10/11 2009/06/30 2011/06/30

obs. interval 1~425 426~1109 1110~1914 1915~2340 2341~2842

# of obs. 425 684 805 426 502

ratio(%) 14.95 24.07 28.33 14.99 17.66

2. The structure and nature of data: 5 sub-samples

The forecasting performance of three range volatility estimators was

compared with a linear ARMA(AutoRegressive Moving Average) filter and

nonlinear GARCH and 2-regime SETAR(2-regime Self-Exciting Threshold

Autoregressive) filters in this study. Hence the nature of data in 5

sub-samples needs to be exactly understood to achieve the goal of this

study.

The nature of data can be summarized as follows as in <Table 5>.
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First, the three range volatility estimator series of 5 sub-samples don't

follow a normal distribution. They have positive skewness and relatively

large kurtosis so the shape of their probability density curves is

long-tailed on the left and has a sharp top and fat tails. These two

statistics tend to be the greatest in the fourth sub-sample.

Second, the average volatility level is the highest in the first

sub-sample and the lowest in the fifth sub-sample. The first and fourth

sub-samples can be classified as relatively higher volatility group and the

second, third, and fifth sub-samples can be classified as relatively lower

volatility group by this standard.

Third, in terms of standard deviation the fourth sub-sample is the most

volatile. While Parkinson, and Rogers and Satchell volatility estimators

are the least volatile in the fifth sub-sample, Garman and Klass volatility

estimator are in the third sub-sample.

Fourth, the first and fourth sub-samples can be considered as the most

volatile while the fifth sub-sample as the least volatile with respect to

the average and standard deviation of volatility.
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표< 5> The descriptive statistics on 5 sub-samples
The three range volatility estimator series of 5 sub-samples don't follow a normal

distribution. The shape of their probability density curves is long-tailed on the left and has

a sharp top and fat tails. Skewness and kurtosis tend to be the greatest in the fourth

sub-sample. The first and fourth sub-samples can be considered as the most volatile while

the fifth sub-sample as the least volatile with respect to the average and standard deviation

of volatility. The shaded areas and underlined areas in this table indicate the largest value

and the smallest one, respectively.

Panel A: Parkinson volatility estimator

SS1 SS2 SS3 SS4 SS5

mean 0.000366 0.000235 0.000104 0.000327 0.000075

max 0.002677 0.001443 0.002227 0.009178 0.001003

min 0.000022 0.000011 0.000007 0.000011 0.000008

s.d. 0.000358 0.000209 0.000138 0.000710 0.000081

# of obs. 425 426 1063 426 502

skewness 2.253 2.409 6.792 7.508 4.758

kurtosis 6.858 7.057 75.167 73.098 39.929

JB test 1167.1 1269.3 256021.2 96575.8 34551.81

Panel B: Garman and Klass volatility estimator

SS1 SS2 SS3 SS4 SS5

mean 0.000638 0.000384 0.000174 0.000581 0.000131

max 0.005028 0.002344 0.002378 0.018170 0.002089

min 0.000015 0.000029 0.000007 0.000018 0.000007

s.d. 0.000712 0.000335 0.000138 0.001301 0.000142

# of obs. 425 426 1063 426 502

skewness 2.748 2.201 4.398 8.123 6.348

kurtosis 9.893 5.950 31.323 89.324 73.197

JB test 2218.8


952.5


46448.9


142937.8


113166.9


Panel C: Rogers and Satchell volatility estimator

SS1 SS2 SS3 SS4 SS5

mean 0.000360 0.000177 0.000085 0.000335 0.000075

max 0.004607 0.001441 0.001006 0.010058 0.001182

min 0.000000 0.000000 0.000000 0.000000 0.000000

s.d. 0.000464 0.000176 0.000087 0.000732 0.000080

# of obs. 425 584 805 426 502

skewness 3.916 2.824 3.547 7.712 6.318

kurtosis 23.266 11.194 23.145 82.004 73.295

JB test 10429.1 10803.5 19415.7 120739.5 113428.8
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The three forecasting filters such as ARMA, GARCH, 2-regime SETAR

models are used in this study. It is necessary to test the stationarity of

all time series in each sub-samples before the application of these

forecasting filters. <Table 6> shows the stationarity test results.

ADF(Augmented Dickey-Fuller) and PP(Phillips-Perron) unit root tests

were performed on each range volatility estimator series of each

sub-sample. The stationarity of all range volatility estimator series in

every sub-sample was guaranteed as a result of two unit root tests as in

<Table 6>.

<Table 6> Stationarity test on 5 sub-samples
The stationarity of three range volatility estimators in each sub-sample should be checked

before the application of ARMA, GARCH, 2-regime SETAR forecasting filters.

ADF(Augmented Dickey-Fuller) and PP(Phillips-Perron) unit root tests were performed for

this purpose. The null hypothesis of these two unit root tests is that ‘this time series has

one unit root,’ that is, ‘it is not stationary.’ The null hypothesis has been rejected even at

1% significance level. Therefore the three forecasting filters can be applied to range

volatility estimator series of every sub-sample. *** in this table means the rejection of null

hypothesis at 1% significance level.

Panel A: Parkinson volatility estimator

SS1 SS2 SS3 SS4 SS5

ADF -5.383 -4.564 -6.660 -4.468 -6.561

PP -319.462 -396.939 -862.583 -191.833 -452.419

Panel B: Garman and Klass volatility estimator

SS1 SS2 SS3 SS4 SS5

ADF -6.292 -4.804 -6.425 -4.695 -6.719

PP -323.218 -450.572 -687.255 -142.111 -401.729

Panel C: Rogers and Satchell volatility estimator

SS1 SS2 SS3 SS4 SS5

ADF -6.282 -5.946 -5.379 -4.358 -6.827

PP -390.064 -637.867 -734.945 -178.409 -419.894
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3. The comparison of forecasting performance

RMSE(Root Mean Square Error) was used as an evaluation criterion on

forecasting performance of three range volatility estimators in this study.

The two inputs for the calculation of RMSE are the predicted value of

range volatility and the value of realized volatility at time  in equation

(20). The ()th predicted value of range volatility can be attained

only with the exact parameter estimates of the model which is chosen by

the standard of the highest fitness over the first two thirds of the entire

sample. Hence the most important thing in this procedure can be to find

out the exact specification of estimation models. As a result, ARMA(1,1)

model, GARCH(1,1) model, and 2-regime SETAR(2-regime Self_Exciting

Threshold AutoRegressive) model were chosen.

<Table 7> presents the values of RMSE(Root Mean Square Error) as an

evaluation criterion on the forecasting performance of three range

volatility estimators.

Analysis results can be summarized as follows.

First, RMSE(Root Mean Square Error) varied between relatively volatile

periods and relatively stable periods. In other words, the most volatile

sub-sample 4 had relatively higher RMSEs which meant relatively lower

forecasting performance while the most stable sub-sample 5 had the

smallest RMSEs which meant relatively higher forecasting performance.

The same conclusions could be reached in the case of groups, not a

single period. That is, the volatile group of sub-sample 1 and 4 showed

relatively higher RMSEs which indicated relatively lower forecasting

performance while the stable group of sub-sample 2, 3, and 5 did

relatively lower RMSEs which indicated relatively higher forecasting

performance. This is in line with Kim and Park(2009) as well.

Second, Parkinson volatility estimator, and Garkman and Klass volatility

estimator can be classified as the first generation of this kind while

Rogers and Satchell volatility estimator as the second one. There was a
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generation gap in terms of forecasting filters with which much superior

forecasting performance could be achieved. The former was the winner

when ARMA(AutoRegressive Moving Average) filter was used while the

latter was when GARCH and 2-regime SETAR(Self-Exciting Threshold

AutoRegressive) filters were used. The inclusion of trend into price

process is considered to make some synergy effects when Rogers and

Satchell volatility estimator is filtered with 2-regime SETAR(Self-Exciting

Threshold AutoRegressive) model.

Third, with respect to sub-samples, the most volatile sub-sample 4

showed the highest forecasting performance with a linear ARMA filter but

the most stable sub-sample 5 was quite different. More specifically

speaking, Parkinson volatility estimator did with a linear ARMA filter and

Garman and Klass volatility estimator did with nonlinear 2-regime SETAR

filter. This conflicting results might be caused by the characteristics of

each range volatility estimator.

Fourth, ARMA(AutoRegressive Moving Average) model was the best

functioned with Parkinson, and Garman and Klass volatility estimators but

2-regime model was with Rogers and Satchell volatility estimator in

terms of forecasting filters. One interesting thing was GARCH model was

always-not-bad forecasting performance regardless of market conditions

and the kind of range volatility estimators.
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<Table 7> The comparison of forecasting performance
by forecasting filters using RMSE

The comparative analysis on the forecasting performance of three range volatility estimators

by the criterion of RMSE can be summarized as follows. First, the volatile group of

sub-sample 1 and 4 showed relatively higher RMSEs which indicated relatively lower

forecasting performance while the stable group of sub-sample 2, 3, and 5 did relatively

lower RMSEs which indicated relatively higher forecasting performance. This is in line with

Kim and Park(2009) as well. Second, Parkinson, and Garman and Klass volatility estimators

were the winners when ARMA(AutoRegressive Moving Average) filter was used while

Rogers and Satchell volatility estimator was when GARCH and 2-regime SETAR filters were

used. The inclusion of trend into price process is considered to make some synergy effects

when Rogers and Satchell volatility estimator is filtered with 2-regime SETAR model. Third,

with respect to sub-samples, the most volatile sub-sample 4 showed the highest forecasting

performance with a linear ARMA filter but the most stable sub-sample 5 was quite

different. More specifically speaking, Parkinson volatility estimator did with a linear ARMA

filter and Garman and Klass volatility estimator did with nonlinear 2-regime SETAR filter.

This conflicting results might be caused by the characteristics of each range volatility

estimator. Fourth, ARMA(AutoRegressive Moving Average) model was the best functioned

with Parkinson, and Garman and Klass volatility estimators but 2-regime model was with

Rogers and Satchell volatility estimator in terms of forecasting filters. One interesting thing

was GARCH model was always-not-bad forecasting performance regardless of market

conditions and the kind of range volatility estimators.

Panel A: Parkinson volatility estimator

SS1 SS2 SS3 SS4 SS5

ARMA 0.020946 0.012855 0.008102 0.022096 0.002913

GARCH 0.018397 0.012975 0.008493 0.022143 0.004184

SETAR 0.020461 0.013374 0.009032 0.022775 0.003491

Panel B: Garman and Klass volatility estimator

SS1 SS2 SS3 SS4 SS5

ARMA 0.018306 0.009757 0.008151 0.018111 0.006105

GARCH 0.018397 0.009864 0.008268 0.018514 0.006985

SETAR 0.018748 0.010381 0.008755 0.019014 0.005483

Panel C: Rogers and Satchell volatility estimator

SS1 SS2 SS3 SS4 SS5

ARMA 0.020878 0.012137 0.009495 0.022983 0.003728

GARCH 0.020782 0.012892 0.009334 0.024794 0.004262

SETAR 0.020694 0.012084 0.009422 0.037268 0.003728
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. Concluding remarksⅦ

This study is to compare the forecasting performance of three range

volatility estimators including Parkinson, Garman and Klass, and Rogers

and Satchell volatility estimators with linear and nonlinear filters. The

raw data is the KOSPI 200 daily open, high, low, and close price series

which are log-transformed to be the final dataset for this study. Sample

period covers January 3, 2000 to June 30, 2011. The conventional return

series based on close prices were produced to calculate the values of

realized volatility. RMSE(Root Mean Square Erro) was used as an

evaluation criterion on the forecasting performance of three range

volatility estimators. For more detailed analysis, the entire sample was

divided into 5 sub-samples after the application of the dynamic

programming algorithm proposed by Bai and Perron(2003). The candidiate

models to be used as forecasting filters afterwards were fitted on the

two thirds of the entire sample and the specification of the models which

recorded the highest goodness of fit was attained. They included

ARMA(1,1), GARCH(1,1), and 2-regime SETAR(2) models. The

one-step-ahead forecast which was one of two inputs for the calculation

of RMSE, was calculated with observations and parameter estimates of

the above chosen models using -length rolling windows in the latter

one third of the entire sample.

The conclusions of this study can be summed up as follows.

First, range volatility estimators tend to show relatively higher

forecasting performance in relatively stable periods like sub-sample 2, 3,

and 5. This is in line with Kim and Park(2009).

Second, Parkinson, and Garman and Klass volatility estimators showed

relatively superior forecasting performance with a linear ARMA filter

while Rogers and Satchell volatility estimator did nonlinear GARCH and

2-regime SETAR filters. The inclusion of trend into price process is
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considered to make some synergy effects when Rogers and Satchell

volatility estimator is filtered with 2-regime SETAR(Self-Exciting

Threshold AutoRegressive) model.

Third, ARMA(AutoRegressive Moving Average) model was the best

functioned with Parkinson, and Garman and Klass volatility estimators but

2-regime model was with Rogers and Satchell volatility estimator in

terms of forecasting filters. One interesting thing was GARCH model was

always-not-bad forecasting performance regardless of market conditions

and the kind of range volatility estimators.
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