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1 Introduction

During past several decades, optimal consumption and investment problems have been an

essential area of research in Finance. This kind of research was pioneered by Merton (1969)

and Samuelson (1969), and they find consumption and portfolio rules of optimal investors with

a time-additive utility under the conditions of constant stock returns and volatilities. These

conventional set-up usually assumes that investors can be fully aware of return distributions

of risky assets. This assumption, however, stands in sharp contrast to evidence from several

empirical studies in Economics and Psychology.

The classical optimal consumption and investment problem assumes returns and volatili-

ties of assets are known, so it is sensitive to the choice of particular point estimates and likely

to be exposed to estimation errors. Merton (1991) and Cochrane (1997) discuss the difficulty

in estimating the expected return of risky assets, and Welch (2000) reports the absence of

consensus among researchers in Finance concerning expected risk premium of stocks. Thus,

some people say that the problem should be reformed to be robust in choosing parameters.

Meanwhile, investor’s ambiguity aversion, which is distinct from her risk aversion, was

introduced by Ellsberg (1961). He asserts that investors usually have a tendency that they

are unwilling to take a bet they do not know the distribution of outcome. Hence, it is

reasonable that investor’s preference toward risky assets might violate the expected utility

hypothesis and the ambiguity aversion should be included in modelling investor’s utility. As

a matter of fact, lots of researchers follow him and, thus, they utilize investor’s ambiguity

aversion characteristics to explain well-known economic anomalies.

Following his idea, Gilboa and Schmeidler (1989) suggest the atemporal max-min expected

utility. They consider an investor selecting a robust model of financial markets in the sense

that she chooses the worst-case scenario among certain possible scenarios during a certain

time period. They assume that each scenario can be represented by a probability measure

used in calculating the expected max-min utility. Along the line of their research, Anderson

et al. (2003) and Hansen and Sargent (2001) define and classify two robust control problems
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relative to ambiguity aversion by exploiting the concept of relative entropy. They make

use of the relative entropy as a distance measure between a reference model (or a reference

probability measure) and another model. They consider an investor who wants to find optimal

consumption and investment rules under the circumstances where (1) she can choose the worst

model of underlying assets (or a probability measure) representing the worst scenario and (2)

the candidates of the model are restricted (called the constraint robust control problem) or

the relative entropy is contained in the max-min utility as a penalty term (called the penalty

robust control problem). In particular, they assert that the latter type of robust problem can

be considered as an optimal consumption and investment problem for a risk-sensitive investor.

The penalty robust control problem do not take root in the ground of the ambiguity

aversion of Ellsberg (1961), as already addressed by some researchers such as Pathak (2007).

Roughly speaking, it is established from the psychological fact that investors concern the

statistics of the continuation value of economic risks which they can face. Therefore, investors

in the problem are assumed to be economic agents who want to minimize the value of risks they

face when they choose their optimal consumption and investment policies. Some important

results are found along this line. Maenhout (2004) find that considering the famous Equity

Premium Puzzle can be resolved by the assumption of model misspecification, and Uppal and

Wang (2003) find that the Under-diversification Puzzle also can be resolved using it.

On the other hand, it is well-known that there is a link between the two robust control

problems described above. Hansen and Sargent (2001) show that the Lagrange multiplier

theory can connect the two robust control problems. They show that the Lagrange multiplier

in the penalty robust control problem should be constant in order that the two problems are

considered as the same. However, since Maenhout (2004) and Uppal and Wang (2003) employ

Lagrange multiplier changing according to investor’s value function, it is ambiguous how we

can interpret their outstanding results in the view point of Ellsberg.

Recently, Hansen, Sargent, Turmuhambetova, and Williams (2006) (hereafter, HSTW)

suggest several types of robust control problems, which can be regarded as zero-sum games

of two players. In their models, one player wants to maximize her expected utility by con-
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structing optimal consumption and investment strategy, and the other player prevents her

from doing that by creating the worst market situation. We call the latter as an evil market

maker. HSTW address that, if we employ a new suitable state variable, there would not be

any problems (e.g. the dynamic inconsistency issue indicated by Chen and Epstein, 2002) to

construct optimal plans for the two players at the initial time. Following HSTW’s suggestion,

we employ a continuation entropy as the new state variable appropriate for our analysis.

In this paper, we introduce a modified version of the constraint robust control problem

with a new state variable in the HSTW context. This new state variable, continuation entropy,

can make us measure the confidence level of investors at any time, and also make our problem

dynamically consistent. By applying dynamic programming approach, we induce a Hamilton-

Jacobi-Bellman equation which is exactly the same with HSTW’s. The solution to the HJB

equation has an intuitive form with a function with respect to the level of initial entropy,

which can be calculated by a simple numerical scheme.

Numerical results tell us that the optimal consumption and risky investment can change

dramatically according to the change of initial entropy level. This result implies that investor’s

optimal consumption and portfolio rules can be significantly affected by the magnitude of her

pessimism toward information loss of the distribution of risky asset return in the future. In

addition, we present an explicit formula for a risk free rate in the Lucas equilibrium model

and provide some economic implications for the investors described in our paper.

This paper is organized as follows. In Section 2, we state our portfolio choice problem,

and in Section 3 we solve the problem. In Section 4 we give some examples and in Section 5

some interesting results in the Lucas equilibrium asset pricing model are presented. At last,

Section 6 concludes.

2 The Problem

A given Brownian motion {Bt} induces a probability measure P on (Ω,F). We call this

probability measure the ‘reference measure’ or ‘reference model ’ and we assume it is obtained
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from the historical market data.

We consider a financial market with a riskless asset S0
t (or a bond) and a risky asset St

(or a stock). The prices of the two assets are evolved by the following equations:

 dS0
t = rS0

t dt,

dSt = µStdt+ σStdBt,

where r is a risk-free interest rate, µ is the rate of return of the stock, and σ is the volatility

of the stock. Let ct ≥ 0 and πt be the consumption rate and the stock-to-wealth ratio of an

individual, respectively.1 Hence, the individual’s wealth process is governed by

dwt = [(r + πt(µ− r))wt − ct]dt+ wtπtσdBt, w0 = w. (1)

Now, consider an equivalent probability measure Q as a ‘perturbed measure’ or ‘perturbed

model ’ under which the process

dB̃t = dBt − htdt, ∀t ≥ 0 (2)

is an Brownian motion with a Ft-adapted process ht.
2 Then, it is well known that the

exponential martingale

zt := exp

[∫ t

0
hudBu −

∫ t

0

|hu|2

2
du

]
, ∀t ≥ 0,

is the Radon-Nikodym derivative of the perturbed probability measure Qt with respect to the

1As technical conditions, ct and πt should be Ft-adapted and satisfy the following conditions:∫ ∞
0

csds <∞ a.s., and

∫ ∞
0

|πs|2ds <∞ a.s..

2According to HSTW, the perturbed measure should be absolutely continuous with respect to the reference
measure because this mathematical condition captures the difficulty in distinguishing two models with samples
of finite length.
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reference probability measure Pt, dQt/dPt, where P̂t is the restriction of a given probability

measure P̂ on Ft .

To quantify the distance between the new probability measure Q and the reference measure

P, the relative entropy is defined by

R(Q) := E
[
δ

∫ ∞
0

exp(−δt)dQt

dPt
log

dQt

dPt
dt

]
= Eh

[
δ

∫ ∞
0

exp(−δt) log ztdt

]
,

which is the sum of the discounted entropy of Qt with respect to Pt,3 where E[·] and Eh[·]

are the expectations with respect to the probability measures P and Q, respectively. HSTW

show that

R(Q) =Eh
[∫ ∞

0
exp(−δt) |ht|

2

2
dt

]
,

by the definition of the Radon-Nikodym derivatives zt. The last equality implies that the

quantitative discrepancy between two models, Q and P, at time t is |ht|2/2.

With this relative entropy, HSTW propose two groups of robust control problems: the

penalty robust control problem and the constraint robust control problem. The second class

of robust control problem is specified through the control problem:

v(w, η) = max
(c,π)∈A(w)

min
Q∈Q(η)

Eh
[∫ ∞

0
e−δtU(ct)dt

]
,

subject to

dwt = [(r + πt(µ− r + σht))wt − ct]dt+ wtπtσdB̃t, w0 = w,

and where

A(w) = {(ct, πt)|wt ≥ 0 for all t ≥ 0},

Q(η) = {Q̂ ∈ Q|R(Q̂) ≤ η},

and Q is the set of all perturbed measures which is equivalent to the reference measure P.

3In statistics and physics, ‘entropy’ is considered as a measure of uncertainty and is also used to measure
discrepancy between prior and posterior probabilities in Bayesian statistics.
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Although the constraint robust control problem is linked to Gilboa-Schmeidler’s original idea

in a natural way, HSTW are interested in the first class of robust control problems, the penalty

problem, because the problem is more naturally expressed as an equivalent recursive problem

where dynamic programming tools can be used. We propose a new type of the robust control

problem which appears to be intuitively related to Gilboa-Schmeidler’s idea and to be easily

converted to a recursive problem.

Problem 2.1. To find

V (w, η) , max
c,π∈A(w)

min
h,g∈B(η)

Eh
[∫ ∞

0
exp(−δt) c

1−γ
t

1− γ
dt

]
,

subject to

 dwt = [(r + πt(µ− r + σht))wt − ct]dt+ wtπtσdB̃t, w0 = w,

det = (δet − h2t
2 )dt+ gtdB̃t, e0 = η,

(3)

and where

A(w) = {(ct, πt)|wt ≥ 0 for all t ≥ 0},

B(η) = {(ht, gt)|e0 = η and et ≥ 0 for all t ≥ 0}.
(4)

As HSTW does, we introduce a new state variable et, a continuation entropy,to cope up

with the dynamic inconsistency problem4: as time unfolds, the minimizing agent in robust

control is not allowed freely to choose anew from among the original time 0 potential proba-

bility distortions. We consider the continuation entropy as the measure of how the investor

is confident of the reference measure at time t; the larger value of the continuation entropy,

the less does the investor rely on the reference measure. Recall that the the entropy of Qt

with respect to Pt is |ht|2/2 and that the relative entropy is the sum of discounted entropy.

This fact implies that the drift of the continuation entropy should be δet− |ht|2/2. Thus, the

4This problem concerns Chen and Epstein (2002) and Epstein and Schneider (2003).
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dynamics for the continuation entropy is given by

det = (δet −
|ht|2

2
)dt+ gtdB̃t,

with a control variable gt for the volatility term of et.

With the continuation entropy process which could be controlled, the robust control prob-

lem can be regarded as the two player zero-sum game in which there are two player: one player

is maximizer and the other is minimizer. The maximizer player in this case, chooses the opti-

mal consumption and portfolio weights to maximize her expected utility and the other player

aims to impede the maximizing player. So the latter player is sometimes called evil agent.

3 The Solution

Before starting this section, we need the following assumption.

Assumption 3.1. The value function V(w,e) in Problem 2.1 is finite.

This assumption is delivered to the restrictions of the coefficients in state processes for

the finite value function. With the new state variable et and CRRA utility function, the

value function defined in Problem 2.1 under measurability conditions of c, π, g and h, can be

written recursively as

V (t, wt, et) = max
c,π

min
h,g

Eht

[∫ τ

t
e−δ(u−t)

c1−γu

1− γ
du+ e−δ(τ−t)V (τ, wτ , eτ )

]
, 0 ≤ t < τ.

This is the dynamic programming principle stated in Fleming and Souganidis (1989) and simi-

lar proof is also applicable. This principle leads to the following Hamilton-Jacobi-Bellman(HJB)

equation by taking dt→ 0 where τ = t+ dt.

Proposition 3.2. The value function V (w, e) in Problem 2.1 is the solution of the following
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HJB equation:

δV = max
c,π

min
g,h

( c1−γ
1− γ

+ Vw(w(r + π(µ− r + σh))− c) + Ve(δe−
h2

2
)

+
1

2
Vww(πwσ)2 +

1

2
Veeg

2 + Vewπwσg
)
. (5)

Proof. In the limit of dt→ 0, The recursive relation becomes

max
c,π

min
g,h

Eh
[
(
c1−γ

1− γ
− δV )dt+ dV

]
= 0.

By Ito’s formula, the differential of V (w, e) evolves into

dV (w, e) = Vwdw + Vede+
1

2
Vww(dw)2 +

1

2
(de)2 + Vwe(dw)(de)

=

(
Vw(w(r + π(µ− r + σh))− c) + Ve(δe−

h2

2
) +

1

2
Vww(πwσ)2

+
1

2
Veeg

2 + Vweπwσg

)
dt+ (Vw(wtπtσ) + Veg) dB̃t

Since the drift term also should be zero after taking expectation, we have

δV = max
c,π

min
g,h

(
c1−γ

1−γ + Vw(w(r + π(µ− r + σh))− c) + Ve(δe− h2

2 )

+1
2Vww(πwσ)2 + 1

2Veeg
2 + Vweπwσg

)
,

so the proof is complete. �

The following remark tells the properties of the value function which help further analysis.

Proposition 3.3. The value function defined in Problem 2.1 is strictly increasing and strictly

concave in w. In addition, it is also decreasing and convex in η.

Proof. By the property of the power utility the value function is trivially increasing in

w.

For a given ŵ and w̃, if (ĉ, π̂) ∈ B(ŵ) and (c̃, π̃) ∈ B(w̃) are solutions to each wealth dynamics

(3) with initial condition w0 = ŵ and w0 = w̃, respectively, then (θĉ + (1 − θ)c̃, θπ̂ + (1 −
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θ)π̃) ∈ B(wθ) is a solution to the wealth dynamics with initial condition w0 = wθ where

wθ = θŵ + (1− θ)w̃. This leads to

V (wθ, η) = max
c,π∈A(wθ)

min
h,g∈B(η)

Eh
[∫ ∞

0
exp (−δt) c

1−γ
t

1− γ
dt

]

≥ max
ĉ,π̂∈A(ŵ),c̃,π̃∈A(w̃)

min
h,g∈B(η)

Eh
[∫ ∞

0
exp (−δt)(θĉt + (1− θ)c̃t)1−γ

1− γ
dt

]

> max
ĉ,π̂∈A(ŵ),c̃,π̃∈A(w̃)

min
h,g∈B(η)

Eh
[
θ

∫ ∞
0

exp (−δt) ĉ
1−γ
t

1− γ
dt+ (1− θ)

∫ ∞
0

exp (−δt) c̃
1−γ
t

1− γ
dt

]

≥θ · max
ĉ,π̂∈A(ŵ)

min
h,g∈B(η)

Eh
[∫ ∞

0
exp (−δt) ĉ

1−γ
t

1− γ
dt

]

+ (1− θ) · max
c̃,π̃∈A(w̃)

min
h,g∈B(η)

Eh
[∫ ∞

0
exp (−δt) c̃

1−γ
t

1− γ
dt

]

=θV (ŵ, η) + (1− θ)V (w̃, η),

and this implies the concavity of w. The second inequality is induced by Jensen’s inequality.

For the second variable, η, we first note that for η̃ > η, B(η̃) ⊃ B(η). Then the decreasing

property in η is easily shown. This decreasing property of V (w, ·) implies the following

problem is same to the original Problem 2.1:

Problem 3.4. To find

V (w, η) = max
c,π∈A(w)

min
h,g∈B(e0),e0≤η

Eh
[∫ ∞

0
exp(−δt) c

1−γ
t

1− γ
dt

]
,

subject to

 dwt = [(r + πt(µ− r + σht))wt − ct]dt+ wtπtσdB̃t, w0 = w,

det = (δet − h2t
2 )dt+ gtdB̃t,

where

A(w) = {(ct, πt)| wt ≥ 0 for all t ≥ 0},

B(e0) = {(ht, gt)| et ≥ 0 for all t ≥ 0, with a given e0}.
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To show the convexity, Let ηθ = θη̂ + (1− θ)η̃.

V (w, ηθ) = max
c,π∈A(w)

min
h,g∈B(ηθ)

Eh
[∫ ∞

0
exp(−δt) c

1−γ
t

1− γ
dt

]

= max
c,π∈A(w)

min
h,g∈B(e0),e0≤ηθ

Eh
[∫ ∞

0
exp(−δt) c

1−γ
t

1− γ
dt

]

= max
λ∈R+

[
max

c,π∈A(w)
min

h,g∈B(e0),e0
Eh
[∫ ∞

0
exp(−δt) c

1−γ
t

1− γ
dt

]
+ λ(e0 − ηθ)

]

= max
λ∈R+

[
max

c,π∈A(w)
min

h,g∈B(e0),e0
Eh
[∫ ∞

0
exp(−δt) c

1−γ
t

1− γ
dt

]
+ θλ(e0 − η̂) + (1− θ)λ(e0 − η̃)

]

≤θ max
λ∈R+

[
max

c,π∈A(w)
min

h,g∈B(e0),e0
Eh
[∫ ∞

0
exp(−δt) c

1−γ
t

1− γ
dt

]
+ λ(e0 − η̂)

]

+ (1− θ) max
λ∈R+

[
max

c,π∈A(w)
min

h,g∈B(e0),e0
Eh
[∫ ∞

0
exp(−δt) c

1−γ
t

1− γ
dt

]
+ λ(e0 − η̃)

]

=θV (w, η̂) + (1− θ)V (w, η̃)

This completes the proof. �

From now on, the optimal controls as well as the value function are determined from the

HJB equation (5). The first order conditions (FOCs) for h and g yield, respectively, the

optimal h∗ and g∗:

h∗ =
Vw
Ve

(πwσ), g∗ = −Vew
Vee

(πwσ).

Then substituting these optimal values into the HJB equation (5) leads to the following

reduced HJB equation as

δV = max
c,π

( c1−γ
1− γ

+w(r+π(µ−r+σ
Vw(πwσ)

Ve
))Vw−cVw+δeVe+

(πwσ)2

2

(V 2
w

Ve
+Vww−

V 2
ew

Vee

))
.

The FOCs for c and π also provide us with the optimal consumption and investment strategy,

c∗ = (Vw)
− 1
γ , π∗ = − Vw(µ− r)

wσ2(Vww + V 2
w
Ve
− V 2

ew
Vee

)
.

Then the value function V (w, e) in (5) should be a solution of the following PDE (partial
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differential equation)

δV =
γ

1− γ
(Vw)

− 1−γ
γ + wrVw + δeVe −

V 2
w(µ− r)2

2σ2(Vww + V 2
w
Ve
− V 2

ew
Vee

)
. (6)

It is impossible to solve this PDE explicitly but a certain conjectural form help us to

reduce the complexity. The next theorem is our main theorem in which the value function is

represented.

Theorem 3.5. The value function V (w, e) is of the form

V (w, e) =
1

1− γ
f(e)w1−γ . (7)

Here, f(·) satisfies

δ

1− γ
f(e) =

γ

1− γ
f(e)

− 1−γ
γ + rf(e) +

δe

1− γ
f ′(e)− (µ− r)2f(e)2

2σ2
(
− γf(e) + (1− γ)

(f(e)2
f ′(e) −

f ′(e)2

f ′′(e)

)) ,
(8)

with conditions

f(0) =
(
δ + (γ − 1)r +

(γ − 1)(µ− r)2

2γσ2

)−γ
· γγ , lim

e→∞
f(e) = (δ + (γ − 1)r)−γ · γγ .

Proof. The ordinary differential equation(ODE) for f(e) can be derived by putting the

conjectured form (7) into (6).

‘e = 0’ implies that the problem in the paper is converted into a problem with no gap

between the reference measure P and new measure Q, that is, the problem is equivalent to

the Merton’s (1969) problem. This fact yields the first condition.

The second condition for the case where e =∞ is derived through the following idea: The

infinity gap between reference measure and new measure implies that the constraint (4) is
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useless anymore. Thus the problem for this case is to find the value function

max
c,π

min
h

Eh
[∫ ∞

0
exp (−δt) c

1−γ
t

1− γ
dt

]
,

subject to the wealth process (3). Then the HJB equation should be

δV = max
c,π

min
h

( c1−γ
1− γ

+ w(r + π(µ− r + σh))Vw − cVw + πwσhVw +
1

2
(πwσ)2Vww

)
.

Since h is unbounded for this case, the optimal portfolio should be zero, namely, π∗ = 0 if

there exists a solution of the HJB equation. Thus the equation can be rewritten

δV = max
c

( c1−γ
1− γ

+ wrVw − cVw
)
,

and if we guess the value function to be

V (w) =
M̃

1− γ
w1−γ ,

then M̃ is the solution to the following equation:

δM̃

1− γ
=

γ

1− γ
M̃
− 1−γ

γ + rM̃.

Thus the second condition is derived form the fact of

lim
e→∞

f(e) = M̃.

�

Since the ODE (8) also doesn’t have closed-form solution, numerical task is required.
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4 Examples

In this section we investigate how the investor’s initial confidence level on the reference

model, the initial continuation entropy value e0, affects the optimal consumption and in-

vestment strategy. With the conjectural form in Theorem 3.5, the function f(e) is shown

by Figure 1 when γ = 2, µ = 0.15, r = 0.1, δ = 0.1, and σ = 0.2.5 This says that the value
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85

90

95

100

Initial continuation entropy e

fHe
L

Figure 1: The function f(e) defined in the value function of Theorem 3.5.

function decreases in the relative entropy and if the relative entropy is large enough, the value

function converges.

The optimal consumption and portfolio can also be written using the function f(e) above.

The optimal consumption and portfolio are rewritten as

c∗(e, w) = (Vw)
− 1
γ w = (f(e))

− 1
γ w,

and

π∗(e) =
µ− r
γσ2

 f(e)

f(e)− (1−γ)f2(e)
γf ′(e) − (1−γ)f ′(e)2

γf ′′(e)

.


Since the portfolio is defined by the rate of the wealth, the optimal portfolio rate only de-

pends on the relative entropy. The optimal consumption rate also can be a function of the

relative entropy only. Figure 2 and 3 shows the optimal consumption and investment strategy

respectively with respect to the relative entropy. The thin lines in each figures 2 and 3 are

5We refer Jang et al. (2008) for the reasonable parameters.
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Figure 2: The change of optimal consumption rate depending on the relative entropy. The
blue line represents Merton’s solution.
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Figure 3: The change of optimal portfolio depending on the relative entropy. The blue line
represents Merton’s solution

the optimal consumption and portfolio rate of the classical Merton’s problem. When there is

ambiguity in the market, the consumption and portfolio are lower than those of the classical

Merton’s problem remarkably. Especially in the case of optimal portfolio, the agent reduces

his investment to almost zero. We need to verify the appropriate value of the relative entropy

in the financial market.

The other optimal controls for minimization are represented by

h∗(e, w) =
Vw
Ve

(πwσ) = (1− γ)
f(e)

f ′(e)
πσ,
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and

g∗(e, w) = −Vew
Vee

(πwσ) = −(1− γ)
f ′(e)

f ′′(e)
πσ.

Surprisingly, the optimal controls h∗ and g∗ are independent of the agent’s wealth wt and

only depends on the relative entropy. Figure 4 and 5 describe the optimal controls as the

function of the relative entropy.

0.0 0.2 0.4 0.6 0.8 1.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

Initial continuation entropy e

h*

Figure 4: The change of optimal control h∗ depending on the relative entropy.

0.0 0.2 0.4 0.6 0.8 1.0
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0.005

0.010

Initial continuation entropy e

g*

Figure 5: The change of optimal control g∗ depending on the relative entropy.

5 Equilibrium Asset Pricing

As Meanhout (2004), let’s think about the pure exchange economy of Lucas (1978). The

dividend or endowment process which is given to the representative agent is assumed to follow

16



the geometric Brwonian motion such as

dDt = µdDtdt+ σdDtdBt.

The representative agent can invest into two assets which are one risky asset St and a bond

with interest rate r. Then her gain process is also assumed to evolve

dSt +Dtdt

St
= µsdt+ σsdBt.

Therefore the representative agent’s wealth process is given by

dWt = [(r + πt(µs − r))Wt − ct] dt+ πtWtσsdBt,

so that with the conjectural form in Theorem 3.5, the optimal consumption and investment

strategy are obtained from

c∗t = (Vw)
− 1
γ = f

− 1
γ (e)Wt, (9)

and

π∗t =
(µs − r)

σ2s

{
γ + (1− γ)

(
f ′(e)2

f(e)f ′′(e) −
f(e)
f ′(e)

)} . (10)

Now we define the equilibrium of pure exchange economy.

Definition 5.1. The equilibrium (c∗, π∗, St, r) is defined by the following two conditions:

(1) c∗t = D∗t ,

(2) π∗t = 1.

In the pure exchange economy, the initial endowment or dividend is perishable so that it

should be consumed. Furthermore, since there exists only one risky asset, the total rate of

money invested in the risky asset should equal to one. We can find the price of risky asset

and the equilibrium interest rate endogenously.

17



Proposition 5.2. In the equilibrium, the excess return is governed by

dSt +Dtdt

St
− rdt =

(
f ′(e)

γf(e)
g + σd

)2

(γ + θ(e)) dt+

(
f ′(e)

γf(e)
g + σd

)
dBt, (11)

and the equilibrium interest rate is determined from

r = µd + (1 + P (e) +Q(e)σd) f(e)
− 1
γ −

(
f ′(e)

γf(e)
g + σd

)2

(γ + θ(e)) , (12)

where P (e) and Q(e) are obtained from (14) and the function θ(e) is defined by

θ(e) = (1− γ)

(
f ′(e)2

f(e)f ′′(e)
− f(e)

f ′(e)

)
.

Proof. The equilibrium conditions imply that Wt = St at equilibrium because with

c∗t = Dt and π∗t = 1 induce the following dynamics

dWt +Dtdt

Wt
= µsdt+ σsdBt.

With the optimal controls (9) and (10) in equilibrium, the wealth process is rewritten as

dWt =

r +
f(e)(µs − r)2{

γf(e) + (1− γ)
(
f ′(e)2

f ′′(e) −
f(e)2

f ′(e)

)}
σ2s

Wt − f(e)
− 1
γWt

 dt
+

 f(e)(µs − r)Wt{
γf(e) + (1− γ)

(
f ′(e)2

f ′′(e) −
f(e)2

f ′(e)

)}
σs

 dBt

Again, by the market clearing condition π∗t = 1, we have

µs − r = σ2s

(
γ + (1− γ)

(
f ′(e)2

f(e)f ′′(e)
− f(e)

f ′(e)

))
,

18



so that the wealth process becomes

dWt

Wt
=

{
r + σ2s

(
γ + (1− γ)

(
f ′(e)2

f(e)f ′′(e)
− f(e)

f ′(e)

))
− f(e)

− 1
γ

}
dt+ σsdBt.

This implies that the excess return on the gain process is derived by

dSt +Dtdt

St
− rdt = σ2s

(
γ + (1− γ)

(
f ′(e)2

f(e)f ′′(e)
− f(e)

f ′(e)

))
dt+ σsdBt. (13)

Furthermore, since c∗t = Dt = f(e)
− 1
γ St in equilibrium, by Ito’s formula, the dynamics of

the risky asset St is determined from

dSt = d
(
f(e)

1
γDt

)
= d

(
f(e)

1
γ

)
Dt + f(e)

1
γ dDt + d

(
f(e)

1
γ

)
dDt.

With the relation

d
(
f(e)

1
γ

)
=

1

γ
f(e)

1−γ
γ f ′(e)det +

1

2

(
1− γ
γ2

f(e)
1−2γ
γ f ′(e)2 +

1

γ
f(e)

1−γ
γ f ′′(e)

)
(det)

2

=

{
1

γ
f(e)

1−γ
γ f ′(e)(δe− h2

2
− gh) +

1

2

(
1− γ
γ2

f(e)
1−2γ
γ f ′(e)2 +

1

γ
f(e)

1−γ
γ f ′′(e)

)
g2
}
dt

+
1

γ
f(e)

1−γ
γ f ′(e)gdBt

, P (e)dt+Q(e)dBt, (14)

the risky asset evolves

dSt = P (e)Dtdt+Q(e)DtdBt + f(e)
1
γ µdDtdt+ f(e)

1
γ σdDtdBt +Q(e)Dtσddt

=
(
P (e) + f(e)

1
γ µd +Q(e)σd

)
Dtdt+

(
Q(e) + f(e)

1
γ σd

)
DtdBt,

so that

dSt
St

=
(
P (e) + f(e)

1
γ µd +Q(e)σd

)
f(e)

− 1
γ dt+

(
Q(e) + f(e)

1
γ σd

)
f(e)

− 1
γ dBt.
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Since Wt = St at the equilibrium, the simple comparison gives

r + σ2s

(
γ + (1− γ)

(
f ′(e)2

f(e)f ′′(e)
− f(e)

f ′(e)

))
− f(e)

− 1
γ =

(
P (e) + f(e)

1
γ µd +Q(e)σd

)
f(e)

− 1
γ ,

σs = Q(e)f(e)
− 1
γ + σd.

Then the equilibrium interest rate is characterized by

r = µd + (1 + P (e) +Q(e)σd) f(e)
− 1
γ − σ2s

(
γ + (1− γ)

(
f ′(e)2

f(e)f ′′(e)
− f(e)

f ′(e)

))
= µd + f(e)

− 1
γ +

{
f ′(e)

γf(e)
(δe− h2

2
− gh) +

1

2

(
(1− γ)f ′(e)2

γ2f(e)2
+
f ′′(e)

γf(e)

)
g2 +

f ′(e)

γf(e)
gσd

}
−
(
f ′(e)

γf(e)
g + σd

)2(
γ + (1− γ)

(
f ′(e)2

f(e)f ′′(e)
− f(e)

f ′(e)

))
(15)

We complete the proof. �

6 Conclusion

We formulate a new version of the constraint robust control problem with a continuation

entropy, which stands for the investor’s confidence level with respect to the reference model at

a certain time. Applying the dynamic programming approach, we obtain an intuitive form of

the value function under our model, which can be calculated by an iterative numerical method.

The numerical results tell us that the optimal consumption and risky investment can change

dramatically according to the change of initial continuation entropy level. Therefore, we can

conclude that investor’s optimal consumption and portfolio rules can be significantly affected

by the magnitude of her pessimism toward information loss of the distribution of risky asset

return in the future. In addition, as Maenhout (2004) does, we present an explicit formula

for a risk free rate in the Lucas equilibrium model.

Appendix
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A Log Utility Case

Log utility function is a subclass of CRRA utility function with risk aversion γ = 1.

Problem 2.1 is replaced by

Problem A.1. To find

V (w, η) , max
c,π

min
h,g

Eh
[∫ ∞

0
exp (−δt) log ctdt

]
,

subject to

 dwt = [(r + πt(µ− r + σht))wt − ct] dt+ wtπtσdB̃t, w0 = w,

det = (δet − h2t
2 )dt+ gtdB̃t, e0 = η.

Since the state variables are same as those of previous section, the HJB equation is ob-

tained from

δV = max
c,π

min
g,h

(
log c+ Vw(w(r + π(µ− r + σh))− c) + Ve(δe−

h2

2
)

+
1

2
Vww(πwσ)2 +

1

2
Veeg

2 + Vewπwσg
)
. (16)

Then we can get the exactly same optimal controls except the optimal consumption such

that

c∗ =
1

Vw
.

With these optimal controls, the HJB equation (16) leads to the following PDE

δV = − log Vw − 1 + wrVw + δeVe −
θ2

2

V 2
w

V 2
w
Ve

+ Vww − V 2
ew
Vee

, (17)

where θ = µ−r
σ .
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Now we guess the solution to this PDE has the form of

V (w, e) = A logw + f̂(e),

where A is a constant. First note that

Vw =
A

w
, Vww = − A

w2
, Ve = f̂ ′(e), Vee = f̂ ′′(e), Vwe = 0.

If we substitute the value function into the PDE, we have

δ(A logw + f̂(e)) = − log
A

w
− 1 +

A

w
wr + δef̂ ′(e)− θ2

2

(A/w)2

(A/w)2

f̂ ′(e)
− A

w2

=⇒ (δA− 1) logw = − logA− δf̂(e)− 1 +Ar + δef̂ ′(e)− θ2

2

Af̂ ′(e)

A− f̂ ′(e)

For A = 1/δ, we have an ODE for function f̂(e) such that

0 = − logA− 1 +Ar − δf̂(e) + δef̂ ′(e)− θ2

2

f̂ ′(e)/δ

1/δ − f̂ ′(e)

=⇒ 0 =
(

log δ − 1 +
r

δ

)(
1− δf̂ ′(e)

)
− δ

(
f̂(e) + ef̂ ′(e)

)(
1− δf̂ ′(e)

)
− θ2

2
f̂ ′(e) (18)

This ODE is also nonlinear and should be computed numerically.

Theorem A.2. The value function is

V (w, e) =
1

δ
logw + f̂(e),

where f̂(e) is a continuously differentiable function which is the solution to the ODE in (18)

with boundary conditions

f̂(0) =
1

δ

(
log δ +

r

δ
− 1 +

(µ− r)2

2δσ2

)
,
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lim
e→∞

f̂(e) =
1

δ

(
log δ +

r

δ
− 1
)
.

Then in the pure exchange economy defined above, the equilibrium expected excess return and

the equilibrium interest rate are derived by

dSt +Dtdt

St
− rdt = σ2d

(
1− 1

δf̂ ′(e)

)
dt+ σddBt,

r = δ + µd − σ2d

(
1− 1

δf̂ ′(e)

)
.

Proof. Similar to the power utility case, the representative agent’s optimal controls are

obtained from

c∗ =
1

Vw
, and π∗ = − Vw(µ− r)

wσ2(Vww + V 2
w
Ve
− V 2

ew
Vee

)
=

µs − r

σ2s

(
1− 1

δf̂ ′(e)

) .
Then the wealth dynamics are given by

dWt

Wt
=

r − δ +
(µs − r)2

σ2s

(
1− 1

δf̂ ′(e)

)
 dt+ σsdBt

=

(
r − δ + σ2s

(
1− 1

δf̂ ′(e)

))
dt+ σsdBt.

Since St = Wt at the equilibrium, we have

c∗t = δWt = δSt = Dt.

This implies that the dynamics of risky asset has the same as that of dividend.

Again, simple comparison gives the following two conditions:

r − δ + σ2s

(
1− 1

δf̂ ′(e)

)
= µd, σs = σd.

We complete the proof. �
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