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Abstract 
 
This article assumes general stationary processes for prices and derives the autocorrelation 
function for a general Moving Average (MA) trading rule to investigate why this rule is used. 
The result shows that the MA rule is popular because it can identify the price momentum and 
is a simple way of tracing and exploiting the price autocorrelation structure without actually 
knowing it. We focus on analyzing the impact of price momentum on the profitability of the 
MA rule because the price momentum effect tends to be stronger and longer-lived than the 
return momentum effect. 
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1 Introduction 

 

While fundamental analysts study a company’s underlying indicators of profit such as 

earnings, dividends, new products and R&D, technical analysts focus mainly on price and 

return but, unwittingly or otherwise, also examine psychological aspects in the demand for a 

company’s stock. Technicians employ many techniques, one of which is the use of charts. 

Using charts, technical analysts seek to identify price patterns and market trends in financial 

markets and attempt to exploit these patterns. Traders and portfolio managers continue to use 

technical analysis that forecast stock price movements using historical prices to formulate 

buy and sell decisions. Empirical studies report supporting evidence for the profitability of 

technical analysis, including Sweeney (1986, 1988), Brock et al. (1992), Blume et al. (1994), 

Chan, Jegadeesh, and Lakonishok (1996), Gencay (1996, 1998, 1999), Neely et al. (1997), 

Brown et al. (1998), Rouwenhorst (1998), Allen and Karjalainen (1999), Chang and Osler 

(1999), Neely and Weller (1999), Chan et al. (2000), Shleifer (2000), and Lo et al. (2000). 

These results suggest that technical analysis beat the market in risk neutral terms, hence its 

popularity.  

 One of the simplest and most widely used trading strategies based on technical analysis is 

the Moving Average (MA) rule, which is an objective rule-based trading strategy in which 

buy and sell signals are determined by the relative magnitudes of short and long term MAs. 

An objective rule-based trading system has well-defined and indisputable buy and sell signals 

following a decision rule based on past data. The MA rule often leads investors to invest with 

or against the trend, or momentum since it assumes that prices trend directionally. The 

profitability of the MA rule has been heavily investigated in the previous literature. Brook, 

Lakonishock and LeBaron (1992) suggested evidence that technical trading rules have 

predictive ability with respect to market indices in the USA in both conditional means and 

variances. Further, they showed that these results were relatively stable over their 90 year 

sample period. Hudson et al. (1996) did the same for market indices in the UK. Gunasekarage 

and Power (2000) indicated that the employment of these techniques also generates excess 

returns to investors in South Asian markets. Reitz (2006) shows that self-fulfilling 

expectations and herd behavior not only re-confirm the profitability of technical trading rules, 

but also put forward a sensible explanation as to why such rules may actually work. 

 The MA rule takes advantage of price trend, which is closely linked with the rather 

nebulous idea of price momentum. The profitability of price momentum strategies, initially 
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investigated by Jegadeesh and Titman (1993), has received the most attention among all the 

anomalies examined by Fama and French (1996). It is the fourth anomaly included in the 

Carhart four-factor model. Jegadeesh and Titman (2001) argue that their 1993 results are not 

due to data mining since the monthly momentum strategy profit is about 1% in the 1990s. 

Furthermore, Rouwenhorst (1998) confirms the robustness of this strategy by showing that 

between 1980 and 1995 an internationally diversified portfolio of past medium-term Winners 

outperformed a portfolio of medium-term Losers after correcting for risk by more than one 

percent per month. Specifically, Rouwenhorst (1998) finds significantly positive momentum 

payoffs in 12 countries that he investigated. (Price) Momentum is defined by the above 

authors as the product of the relative prices over the holding period and a past winners 

strategy is to buy the top n-th of stocks with this characteristic in a portfolio. A careful 

reading of the momentum literatures fails to find clarification over whether momentum is 

present when the price of the asset follows (a) a random walk (b) a random walk with drift or 

(c) a mean reverting process around a linear trend. The issue is further complicated by 

different treatments for prices, returns and earnings. One of the purposes of this paper is to try 

and understand the time series basis of a momentum strategy. Unlike previous momentum 

literature that focuses on the relative performance of securities in the cross-section, we 

emphasize that this paper intends to investigate momentum within asset price process. 

Moskowitz et al (2010) also look at momentum for a single asset and call it ‘time series 

momentum’. This single asset momentum focuses purely on a security’s own past process. 

We assume general stationary processes for prices and derive the autocorrelation function for 

a general MA rule. We focus on analyzing the impact of price momentum, instead of returns 

or earnings momentum, on the profitability of the MA rule because (1) most of, if not all, 

trading rules using technical analysis are based on past prices, and (2) the price momentum 

effect tends to be stronger and longer-lived than the return momentum effect. Most previous 

momentum studies typically include a large cross-section of stocks weighted by the previous 

period return. There exists another type of price trend besides the momentum discussed, 

however. Equity prices tend to show a long run market-wide trend. This can be dues to 

inflation or other economic conditions. We define this market-wide trend by the parameter, μ. 

We remove the market-wide trend from our price process in order to focus on price 

momentum only. 

 This paper presents a simple and straightforward evaluation of the MA rule with one 

investor and one asset. To evaluate the MA rule, an exact definition of momentum is required, 
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which is presented in Section 2.2 with a statistical model. We find that that there are two 

reasons why the MA rule is popular. First, the MA rule can identify the price momentum 

(trend), which comfortably confirms the results of previous momentum literature. Second, the 

MA rule is a simple way of tracing and exploiting the price autocorrelation structure without 

actually knowing it. It is very hard, if not impossible, to know the real structure of the price 

autocorrelation of an asset, and the MA rule provides a simple and clear methodology that 

can take advantage of the price autocorrelation structure. The main contribution of this paper 

is that we suggest two reasons why the technical trading strategy, or Chartism, is popular and 

this leads to price autocorrelation. If a conservatism bias exists in a market, we can confirm 

that the MA rule is profitable. A conservatism bias indicates that investors are too slow (too 

conservative) in updating their beliefs in response to recent evidence. This means that they 

might initially underreact to news about a firm, meaning that prices will fully reflect new 

information only gradually. Such a bias would give rise to momentum (price autocorrelation) 

in the stock market. Using AR (1) and MA (1) processes, we take the discussion away from 

short term price trend continuation or long term price reversal. In short, it is not just about 

buying past losers or winners but is also about identifying price trends and the autocorrelation 

structure. This paper does not intend to explain all the reasons for the predictability nor does 

it attempt to explain why arbitrage fails to eliminate mispricing.  

 The contribution of the paper is clear. Unlike previous literatures that mainly investigate 

cross sectional momentum among various equities, this paper investigates single asset price 

momentum to suggest that momentum trading strategy is popular not only because it takes 

advantage of trend within the times series data but also it amplifies the autocorrelation. This 

shows that a momentum trading strategy is essentially a simple way of conditioning on past 

price information. The paper further investigates the structural change of autocorrelation to 

identify the pattern of the amplification. This is important because such increase in 

autocorrelation is not captured by the standard risk measures such as VaR. The paper 

provides a guideline of how much amplification is occurring. The paper also provides 

theoretical justification to wide use of longer period MA for price momentum and shorter 

period MA for return momentum. 

The rest of the paper is organized as follows. Section 2 explains the trading rule and how it is 

related to price momentum. Section 3 presents the general model. Section 4 shows the 

autocorrelation structure of the trading strategy. Section 5 presents empirical evidence and 

Section 6 concludes the paper. 
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2 Trading Rule and Momentum 
 

2.1 Trading Rules Definition 
  

We employ and expand the definition of the MA oscillator by Brock et al. (1992), which 

states: “According to the moving average trading rule, buy and sell signals are generated by 

two moving averages of the level of the index – a long-period average and a short-period 

average. In its simplest form this strategy is expressed as buying (or selling) when the short-

period moving average rises above (or falls below) the long-period moving average. The idea 

behind computing moving averages it to smooth out an otherwise volatile series. When the 

short-period average exceeds the long-period moving average, a trend is considered to be 

initiated. A very popular moving average rule is 1-200, where the short period is one day and 

the long period is 200 days. While numerous variations of this rule are used in practice, we 

attempted to select several of the most popular ones: 1-50, 1-150, 5-150, 1-200, and 2-200.” 

However, we can also take into consideration the flip side of the strategy, where we buy 

when short-period MA falls below the long-period MA and we sell when the opposite 

happens. 

 Let l stands for the time period that the MA is computed for a long position and s for the 

time period that the MA is computed for a short position. Hence s > l and they overlap. 

Denote SMA as MA computed over time period s and LMA as MA computed over time 

period l. For example at time t, if s = 7 and l = 3, then SMA is computed over time t – 6 to t 

and LMA is computed over time t – 2 to t. We classify two opposite MA rules with SMA and 

LMA, MAbull(l,s) and MAbear(l,s), and define the MAbull(l,s) rule as taking a long position 

in the asset when SMA > LMA and as taking no position in the asset when the SMA < LMA 

and MAbear(l,s) rule does the opposite. 

 

Definition 1: The MAbull(l,s) and MAbear(l,s) position can be represented as 
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The logic behind the MAbull rule is well known, when a price penetrates the MA from below, 

the bull trend is believed to be established and a trader wants to take advantage of this in the 

expectation that there will be further upward movements in prices. The MAbear rule tells us 

the opposite story, short term price reversal. When the price falls enough to penetrate the MA 

from the above, this might be due to the market over-reaction; hence a trader would take a 

long position, expecting that the price would bounce immediately back. 

 
2.2 Momentum Definition and a Statistical Model 
 

It is very hard to find a formal definition of momentum that has a statistical basis. By this we 

mean a definition of momentum defined as a property or properties of a stochastic process. 

Much previous literature such as Brook et al. (1992), Barberis et al. (1998), Rowenhorst 

(1998), Daniel et al. (1998), Hong and Stein (1999) Jegadeesh and Titman (2001) and Fong 

and Yong (2005) explain momentum as an upward trend in a time series, which can be assets’ 

prices, earnings or returns. But they concentrate only on historical data and do not give 

explanations in terms of underlying processes. Technical analysts  interpret momentum in 

terms of moving averages; when the current price rises above its moving average it is 

interpreted as an upward (bullish) trend , while a downward (bearish) trend emerges when the 

current price falls below its moving average. These interpretations do not really clarify if 

momentum is related to trend or to autocorrelation; both ideas having precise definitions in a 

statistical sense. 

 We turn to the practitioner literature to see if matters are resolved. The definition of 

momentum in Wikipedia is “Momentum investing, also sometimes known as "Fair Weather 

Investing", is a system of buying stocks or other securities that have had high returns over the 

past three to twelve months, and selling those that have had poor returns over the same 

period.” And in Investopedia, momentum is defined as “An investment strategy that aims to 

capitalize on the continuance of existing trends in the market. The momentum investor 

believes that large increases in the price of a security will be followed by additional gains and 

vice versa for declining values.” Achelis (2000) defines “The Momentum Indicator is the 

ratio of today’s price compared to the price n periods ago: Momentum = (Close / Close n 
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periods ago) * 100. Therefore Momentum Investing is investing in securities with levels of 

Momentum Indicator above certain threshold.” As quoted in Schwager (1992), Richard 

Driehaus (who is widely regarded as the father of momentum investing) once said “far more 

money is made buying high and selling at even higher prices” (as opposed to “buy low sell 

high”). 

 The only definition of the above that has a clear mathematical structure is that of Achelis. 

We shall take his definition and see if it can be consistent with standard dynamic stochastic 

processes and, as a consequence, what the determinants of momentum will be. The obvious 

candidate is the log Ornstein – Uhlenbeck (log OU) process since it has been successfully 

used by many others such as Bergstrom and Lo and Wang in investigating the behaviour of 

financial asset price processes. Although our work focuses on price momentum, the same 

approach can be applied to other time series such as returns and earnings. 

 Whilst momentum is attributed to behavioural explanations, typically herding and the 

conservatism bias, we shall not look at equilibrium models with momentum investors in. On 

the basis of previous definitions, momentum manifests itself in statistical models as possibly 

either trend or autocorrelation or both. Therefore, we advocate the log Ornstein – Uhlenbeck 

model to demonstrate this. This model can be thought of as a stationary process concerning a 

trend or a random walk with drift or an explosive process about a trend. Such versatility 

should allow us to gain some insights into the properties of momentum, as defined by Achelis. 

Assume that the logarithm of the asset price ( ))(log tP  has linear trends, tm . We consider the 

process  

 

ttPtq m-= )(log:)(  
  

Assume a log price process, 

 

)1()()()( tdWdttqtdq sq +-=  

 

The solution for equation (1) is well known, 
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h is the holding period, which is always positive. In this model, ( )qh-exp  can be interpreted 

as the degree of price autocorrelation. In fact, the model admits a autoregressive (AR(1)) 

representation in which this is the autoregressive coefficient. From well-known properties of 

the AR(1) model , we know that stationarity and the existence of a steady-state solution 

require 0>q .Indeed, we can think of two different processes for equation (2) depending on 

the magnitude of the autoregressive coefficient.. First, when equation (2) is mean reverting, 

then ( ) 1exp <- qh  (i.e. positive autocorrelation) and hence 0>q . Second, when equation (2) 

is explosive, then ( ) 1exp >- qh  , there is neither stationarity nor a steady-state solution and 

hence 0<q  

 According to the definition of momentum proposed by Achelis, momentum can be 

interpreted as the sensitivity of the expected price ratio with respect to today’s price. If this 

sensitivity is positive then there is a bullish momentum and if negative there is a bearish 

momentum. 

 

Proposition 1: The derivative of conditional population momentum with respect to previous 

period’s price can be expressed as 
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The proof of Proposition 1 is in Appendix A1. This clearly shows that, for log OU, 

momentum is about autocorrelation. Equation (3) shows that when the price process is mean 

reverting, the elasticity of momentum is negative while it is positive if the price is explosive. 

This is exactly what we would anticipate. In other words, given the high past price, the future 

price is low if the price process reverts around a mean but the future price is high if the price 

process is explosive. If we were to interpret efficient markets as a log random walk with drift, 

then the elasticity would become zero. Finally, the elasticity is independent of the trend.
  

2.3 The MA Rule and Price Momentum 
 

The relationship between the MA rule and price momentum is well explained in Fong and 

Yong (2005). “In the simplest form, a MA crossover rule operates on the assumption that buy 



９ 
 

signals are generated when the current stock price crosses its moving average from below 

while sell signals are generated when the stock price crosses its moving average from above. 

The rationale for this interpretation is that a trend is said to have emerged when the stock 

price penetrates the moving average. Specifically, an upward (bullish) trend emerges when 

the price rises above its moving average, while a downward (bearish) trend emerges when the 

price falls below its moving average.” Therefore, the MAbull rule takes advantage of the 

bullish trend while the MAbear rule takes advantage of the bearish trend. MAbull strategy 

can be thought as buying a past loser because it takes a long position when the asset price is 

relatively low and liquidates the position when the asset price is relatively high. 

 

3 The Model 
 

3.1 General Model 
 

Let the de-meaned log price process ttPtq m-= )(log)(  has distribution ( )2,0~)( stq . Also 

denote the autocorrelation between )(tq  and )( htq -  as )(hAr . Since we are using log prices, 

it would be sensible to use geometric price MAs which are equivalent to arithmetic log price 

MAs. 
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Under such a framework, the return at time t is defined as 

m---=-- )1(log)(log)1()( tPtPtqtq   

 

Definition 2: The critical value is defined as 
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( ))1()1()1()()'( +-+--= stqltqtqtqtQ LL  

 

The derivation of definition 2 is in Appendix A2. Take a long position if C(s,l;t)  becomes 

more than 1 and liquidate the position if C(s,l;t) becomes less than 1. When the MA rule is 

applied based on a positive trending price process, the exit point (where the manager 

liquidates a long position due to the current price penetrating the MA from above) will 

always be higher than the entry point hence the return is always positive. However, the 

manager is simply picking up the price trend and the same return can also be made with a buy 

and hold strategy. This is less interesting. The importance of the autocorrelation within a 

financial time series is also noted in Moskowitz et al (2010), as they state “We find that 

positive auto-covariance in our futures contracts’ return drives most of the time series and 

cross-sectional momentum effects we find in the data. The contribution of the other two 

return components – serial cross-correlations and variation in mean returns – is small”. In 

order to separate the impact of momentum from the market-wide trend, we use the detrended 

log price, which also has useful statistical properties for estimation. The ‘detrended’ MA rule 

also has a simple price interpretation as shown below. Since MAbear rule is simply the 

opposite of the MAbull rule, we only look at the MAbull hereafter. However the MAbear rule 

would be useful as one of benchmarks in evaluating the profitability of MAbull rule. 

 Assuming stationarity in the second moments, the bivariate distribution of C(t) and C(t-1) 

can be expressed as, 
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where  W  is the (s × s) covariance matrix of Q(t) and CW  is (s × s) covariance matrix 

between Q(t) and Q(t-1). For now, we do not assume anything about the covariance matrix 

but simply note that the autocovariance is not zero. 

 

Lemma 1: The MAbull (l,s) rule based on a detrended log price is equivalent to buying a unit 

of an asset when 
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The derivation of Lemma 1 is in Appendix A3. C(s,l;t) becomes log normal distribution. 

 

( ))('exp);,( tQwtlsC =  ( )wwNtQw W',0~)('  

 

Although we apply this model to the price process only, the application of the model does not 

need to be restricted to price process only. It can also be applied to returns or earnings or to 

any process that would have momentum (autocorrelation / trend). This point will be discussed 

again later in the paper. 

 

3.2 The Profitability of the MA Rule 
 

Definition 3: Define )(ta  as 
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Remark 1: The unconditional and conditional probability of )(ta  taking the value of 1 

under normality in prices can be expressed as  
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where )1(Tr : the first order of the trading strategy autocorrelation and

)1()1(' 1 --=-= - tSMAqtQw tx  
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The proof of Remark 1 is in Appendix A4. 

 

Proposition 2: The h period return from the MAbull rule from time k, ),( khkrT +  can be 

expressed as 
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where ),( khkrA +  is the h period asset return from time k. If ),(),( khkrkhkrT +>+ , then 

the MA rule is profitable. This is only possible if )(ta  is more likely to take a value of 1 

when 0)( >trA . This provides with us a condition that would make the MAbull rule profitable, 

when there is a positive price trend and if one could exploit it. A positive trend means 

0)1( >Tr  and 0>x  and this makes the conditional probability of a being equal to one 

larger than 0.5 when 1-> tt qq , hence the MAbull rule is profitable. 

 Analytically analyzing equation (8) is too complicated hence simulation would be useful. 

We noted that price autocorrelation is important in determining the conditional probability of 

)(ta . Thus an assumption regarding price autocorrelation needs to be made and we assume 

that the asset price follows the AR(1) process. We use Goldman Sachs (GS) data from May 4, 

1999 to May 31, 2011 for estimation. There is no special reason for selecting such data and 

time period. The estimation is only to locate some sensible parameters. The simulation 

process is summarized in Appendix A5. This paper is concerned with price (level), which 

tends to have very high autocorrelation. Hence an investigation of high level autocorrelations 

would be more meaningful. For convenience, we examine the MA(1,10) rule. 

 

Table 1: Simulated Profitability of the MA(1,10) Rule: Simulation Results 

 
 

Annual Profit
Rho 0.9900 0.9925 0.9950 0.9975
MA bull 13.19% 13.45% 13.94% 15.09%
MA bear -15.54% -15.01% -13.92% -11.73%
Buy and Hold 1.79% 2.40% 3.55% 6.54%
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Table 1 presents the simulated results. The error terms are simulated to have a normal 

distribution. The simulated result shows that the conditioning on previous price information 

affects the profitability of the trading strategy when there is positive price autocorrelation. 

The MAbull rule outperforms the other strategies because there is a positive trend in the 

simulated log price process hence ( ) 5.01)( >= xa tprob when the asset return is positive. This 

confirms the results of previous literature including Fong and Yong (2005) and is what we 

exactly anticipated. However the result also highlights that the degree of autocorrelation 

affects the performance of the trading strategy as well.  

 The portfolio position is determined by the sign of C(t), therefore a further investigation of 

C(t) transition with respect to time would be meaningful. To gain insight into the properties 

of the MA(1, s) rule, we calculate a transition matrix. This calculates different values for the 

autocorrelation probability of C(t) that is how it changes from one sign to the other. If the 

price process was random and symmetric, this would be a quarter in all regions. 

 

Table 2: C(t) Transition Vector of the Simulated Results of the MAbull(1, 10) rule 

 
 
* R1: C(t-1) > 0 and C(t) > 0 R2: C(t-1) > 0 and C(t) < 0 
   R3: C(t-1) < 0 and C(t) > 0 R4: C(t-1) < 0 and C(t) < 0 
 

The probabilities of region 2 and 3 should be symmetric by the construction of the MA rule. 

When C(t) is in Region 1, the MAbull rule is likely to be profitable while when it is in Region 

4, the MAbear rule is likely to be profitable. When in Region 2 (3), the MAbull rule will take 

(liquidate) a position in an asset and the MAbear rule will liquidate (take) a position in an 

asset. With a positive trend and autocorrelation in price, we see that the asset is more likely to 

be in Region 1 than in Region 4, which explains why the MAbull rule makes the most profit. 

The probability of Region 1 increases as price autocorrelation increases, which also 

corresponds to what we have stated previously. The larger the magnitude of the positive 

autocorrelation, the longer the positive trend will remain, hence both the MA (both bull and 

bear) rules should be more profitable. This is also shown in Table 2. 

 

0.99 0.9925 0.995 0.9975
R1 (+, +) 44.44% 45.25% 49.60% 54.04%
R2 (+, -) 7.68% 8.89% 9.49% 7.37%
R3 (-, +) 7.58% 8.99% 9.60% 7.47%
R4 (-, -) 40.30% 36.87% 31.31% 31.11%
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4 Autocorrelation 
 

From the model, more specifically from equation (7), and the simulated results we have seen 

that price autocorrelation is an important factor in the profitability of the MA rule. Hence this 

section investigates autocorrelation of the trading strategy. 

 

4.1 General Autocorrelation Structure 
 

Let )(kr  be asset price autocorrelation in log prices between k periods. Then it can be 

expressed as 
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1)0( =Ar  and )()( kk AA -= rr  since we assume stationarity in second moments. 

 

Proposition 3: The variance for C(s,l;t) and the covariance between C(s,l;t) and C(s,l;t-m) 

can be expressed as 
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Proof of Proposition 3 is in Appendix A6. When the MA rule is practically applied, managers 

often take the shorter time period as 1 (l =1). When l = 1, it is referred to as the “MA 

crossover rule”. This case can be treated as a special case since it makes the equation 

significantly simpler by getting rid of the first of both double summation terms. 

 

Remark 2: The autocorrelation function between C(t) = w’Q(t) and C(t-m) = w’Q(t-m), 

when l = 1, can be expressed as  
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The proof of Remark 2 is omitted.  

 

4.2 Calculation Check 
 

In this section, the previous result is checked with a simulation result assuming one of the 

most popular strategies, 1 – 10 (l = 1 and s = 10) and that the autocorrelation function, )(mr , 

follows the AR(1) process. 2000 sets of 5000 observations of q(t) are simulated where 

ttqtq er +-= )1()( , ( )1,0~ Ne  and 95.0=r . LMA(t) and SMA(t) are computed from the 

simulated q(t), then subtracted to get )(' tQw . The autocorrelation of )(' tQw  is compared 

with (4) with l = 1 and s = 10 and the percentage differences are reported. 
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Table 3: Simulation vs. Theoretical Result: 
Autocorrelation of )(' tQw when l = 1 and s = 10 

 
 

Table 3 shows that our computation is correct.  

 Choosing a particular MA(l,s) rule depends upon the autocorrelation properties of prices. 

When s is fixed, ww W'  is a constant. Therefore for s > l, the sensitivity of trading strategy 

autocorrelation with respect to m is 
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Simulated AR(1) Theoretical AR(1) % Difference
wOmw[1] 0.8127 0.8131 0.0415%
wOmw[2] 0.6321 0.6325 0.0629%
wOmw[3] 0.4611 0.4619 0.1736%
wOmw[4] 0.3039 0.3051 0.3909%
wOmw[5] 0.1643 0.1658 0.9555%
wOmw[6] 0.0461 0.0479 3.8566%
wOmw[7] -0.0469 -0.0448 -4.5953%
wOmw[8] -0.1110 -0.1083 -2.4332%
wOmw[9] -0.1417 -0.1387 -2.1642%
wOmw[10] -0.1348 -0.1317 -2.3007%
wOmw[11] -0.1282 -0.1251 -2.3803%
wOmw[12] -0.1216 -0.1189 -2.2386%
wOmw[13] -0.1152 -0.1129 -1.9212%
wOmw[14] -0.1089 -0.1073 -1.5143%
wOmw[15] -0.1029 -0.1019 -0.9676%
wOmw[16] -0.0968 -0.0968 0.0307%
wOmw[17] -0.0910 -0.0920 1.1268%
wOmw[18] -0.0856 -0.0874 2.0700%
wOmw[19] -0.0808 -0.0830 2.7619%
wOmw[20] -0.0763 -0.0789 3.3288%
wOmw[21] -0.0727 -0.0749 3.0680%
wOmw[22] -0.0693 -0.0712 2.6541%
wOmw[23] -0.0661 -0.0676 2.3749%
wOmw[24] -0.0629 -0.0642 2.1334%
wOmw[25] -0.0600 -0.0610 1.7012%
wOmw[26] -0.0573 -0.0580 1.1180%
wOmw[27] -0.0546 -0.0551 0.8748%
wOmw[28] -0.0518 -0.0523 0.9222%
wOmw[29] -0.0491 -0.0497 1.2625%
wOmw[30] -0.0466 -0.0472 1.3013%
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It may well be reasonable to design optimal properties. We do not pursue this further but 

instead look at the links between the Autocorrelation Function (ACF) of the MA rule and 

some simple time series models. 

 In the next two sections, the autocorrelation structure of the 1 – 10 strategy is investigated. 

Equation (9) is computed m = 30 and Ar  incrementing from 0.05 to 0.95 with an interval of 

0.05. 

 

4.3 When ACF follows AR(1) 
 

 

(Insert Table 4) 

 

(Insert Figure 1) 

 

4.4 When ACF follows MA(1) 
 

(Insert Table 5) 

 

(Insert Figure 2) 

 

Since the tables and figures are too large to fit here, they have been placed on the following 

pages. The autocorrelation of the 1 – 10 strategy becomes 0 for m > 10. Figure 2 and 3 are 

consistent with behavioural literatures in that they show initial under-reaction and delayed 

over-reaction or price reversal. We should note that this seemingly behavioral result is driven 

without assuming any behavioral aspect in determining asset price process. This might 

suggest that such initial under reaction and price reversal might be a product of underlying 

security’s autocorrelation. This would be an interesting future research topic. 

 

4.5 The MA(l,s) vs. Price Autocorrelation 
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The benefit of calculating the AF of the MA(l,s) rule is that we can see if the imposition of 

the rule leads to an increase / decrease in autocorrelation in the money amounts associated 

with trading. To do this we need an overall measure of autocorrelation and a natural one is 

the population analogous to the Ljung-Box statistic, å¥

=
=

0
2

j jLB r . For a simple model this 

can be calculated analytically; for an AR(1) with correlation coefficient ρ, (Pt = β + ρPt-1 + νt), 

( ) 1 ;1/1 2 <-= rrLB  whilst for an MA(1), Pt = α + νt + θνt , ( ) ( ) 1 ;1/21 22 <++= qqqLB . 

This section presents relative Ljung Box statistics based on price autocorrelation, which is 

assumed to follow the AR(1) process. By investigating the statistics of the MAbull(l,s) 

autocorrelation structure we can gain a good idea of how the autocorrelation structure of the 

MAbull(l,s) rule amplifies that of the price itself. 

 Moskowitz et. al (2010) investigate the correlation structure of the momentum 

strategy to find “Time series momentum strategies are positively correlated within an asset 

class, but less so than passive long strategies.” At first glance, it looks like their result is 

contradicting our result. However, close investigation of their trading strategy reveals that it 

is consistent with our result. Their strategy is stated as follows. “We consider whether the 

excess return over the past k months is positive or negative and go long the contract if 

positive and short if negative, holding the position for h months.” This is ‘buying the past 

winner’ strategy. The MAbull rule investigated in our paper, as previously discussed, does 

exactly the opposite. Although we have not explicitly shown this, extension of our result 

should predict that the impact of the trading strategy used in Moskowitz et al (2010) would 

decrease the amount of autocorrelation, and this is what they find. Hence their result can be 

seen as a possible empirical confirmation of our theoretical result. 
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Table 4: The MA(1,10) Rule Autocorrelation Structure under AR(1) Asset Price Autocorrelation, Ar  increases from 0.05 to 0.95 and 
m = 30 

 
 
 
 
  

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
1 3.77% 8.64% 13.49% 18.32% 23.13% 27.91% 32.65% 37.35% 41.98% 46.55% 51.03% 55.40% 59.63% 63.72% 67.64% 71.36% 74.89% 78.20% 81.31%
2 -2.21% -1.72% -0.77% 0.64% 2.51% 4.82% 7.55% 10.70% 14.23% 18.12% 22.34% 26.85% 31.61% 36.58% 41.72% 46.98% 52.34% 57.77% 63.25%
3 -3.68% -3.99% -4.19% -4.23% -4.05% -3.57% -2.75% -1.54% 0.11% 2.24% 4.87% 8.04% 11.76% 16.05% 20.90% 26.34% 32.36% 38.97% 46.19%
4 -4.92% -5.44% -5.99% -6.55% -7.09% -7.55% -7.87% -7.99% -7.83% -7.30% -6.31% -4.76% -2.55% 0.42% 4.26% 9.09% 14.99% 22.10% 30.51%
5 -6.15% -6.81% -7.54% -8.36% -9.24% -10.18% -11.13% -12.06% -12.88% -13.51% -13.82% -13.68% -12.92% -11.35% -8.77% -4.94% 0.38% 7.46% 16.58%
6 -7.38% -8.17% -9.05% -10.04% -11.14% -12.34% -13.65% -15.02% -16.42% -17.76% -18.94% -19.82% -20.20% -19.84% -18.48% -15.76% -11.29% -4.62% 4.79%
7 -8.61% -9.52% -10.53% -11.63% -12.84% -14.17% -15.61% -17.15% -18.77% -20.43% -22.05% -23.51% -24.64% -25.19% -24.86% -23.22% -19.74% -13.77% -4.48%
8 -9.81% -10.77% -11.78% -12.85% -13.99% -15.22% -16.54% -17.96% -19.49% -21.11% -22.79% -24.46% -25.97% -27.13% -27.62% -26.99% -24.59% -19.59% -10.83%
9 -10.48% -11.00% -11.59% -12.24% -12.97% -13.79% -14.73% -15.80% -17.02% -18.40% -19.95% -21.63% -23.36% -24.97% -26.20% -26.57% -25.40% -21.65% -13.87%

10 -0.52% -1.10% -1.74% -2.45% -3.24% -4.14% -5.15% -6.32% -7.66% -9.20% -10.97% -12.98% -15.18% -17.48% -19.65% -21.26% -21.59% -19.49% -13.17%
11 -0.03% -0.11% -0.26% -0.49% -0.81% -1.24% -1.80% -2.53% -3.45% -4.60% -6.03% -7.79% -9.87% -12.24% -14.74% -17.01% -18.35% -17.54% -12.51%
12 0.00% -0.01% -0.04% -0.10% -0.20% -0.37% -0.63% -1.01% -1.55% -2.30% -3.32% -4.67% -6.41% -8.57% -11.05% -13.60% -15.60% -15.78% -11.89%
13 0.00% 0.00% -0.01% -0.02% -0.05% -0.11% -0.22% -0.40% -0.70% -1.15% -1.83% -2.80% -4.17% -6.00% -8.29% -10.88% -13.26% -14.21% -11.29%
14 0.00% 0.00% 0.00% 0.00% -0.01% -0.03% -0.08% -0.16% -0.31% -0.58% -1.00% -1.68% -2.71% -4.20% -6.22% -8.71% -11.27% -12.79% -10.73%
15 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.03% -0.06% -0.14% -0.29% -0.55% -1.01% -1.76% -2.94% -4.66% -6.97% -9.58% -11.51% -10.19%
16 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.03% -0.06% -0.14% -0.30% -0.61% -1.14% -2.06% -3.50% -5.57% -8.14% -10.36% -9.68%
17 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.03% -0.07% -0.17% -0.36% -0.74% -1.44% -2.62% -4.46% -6.92% -9.32% -9.20%
18 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.04% -0.09% -0.22% -0.48% -1.01% -1.97% -3.57% -5.88% -8.39% -8.74%
19 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.02% -0.05% -0.13% -0.31% -0.71% -1.48% -2.85% -5.00% -7.55% -8.30%
20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.03% -0.08% -0.20% -0.49% -1.11% -2.28% -4.25% -6.79% -7.89%
21 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.02% -0.05% -0.13% -0.35% -0.83% -1.83% -3.61% -6.12% -7.49%
22 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.03% -0.09% -0.24% -0.62% -1.46% -3.07% -5.50% -7.12%
23 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.02% -0.06% -0.17% -0.47% -1.17% -2.61% -4.95% -6.76%
24 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.04% -0.12% -0.35% -0.93% -2.22% -4.46% -6.42%
25 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.02% -0.08% -0.26% -0.75% -1.89% -4.01% -6.10%
26 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.02% -0.06% -0.20% -0.60% -1.60% -3.61% -5.80%
27 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.04% -0.15% -0.48% -1.36% -3.25% -5.51%
28 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.03% -0.11% -0.38% -1.16% -2.92% -5.23%
29 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.02% -0.08% -0.31% -0.98% -2.63% -4.97%
30 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.06% -0.25% -0.84% -2.37% -4.72%
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Table 5: The MA(1,10) Rule Autocorrelation Structure under MA(1) Asset Price Autocorrelation, Ar  increases from 0.05 to 0.95 and 
m = 30 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
1 -0.87% -0.14% 1.04% 2.65% 4.65% 6.98% 9.58% 12.41% 15.41% 18.53% 21.71% 24.92% 28.12% 31.27% 34.36% 37.37% 40.28% 43.07% 45.75%
2 -2.23% -2.27% -2.32% -2.40% -2.49% -2.59% -2.71% -2.84% -2.98% -3.13% -3.27% -3.42% -3.57% -3.71% -3.85% -3.99% -4.12% -4.25% -4.38%
3 -3.35% -3.40% -3.48% -3.59% -3.73% -3.89% -4.07% -4.27% -4.47% -4.69% -4.91% -5.13% -5.35% -5.57% -5.78% -5.99% -6.19% -6.38% -6.57%
4 -4.47% -4.53% -4.64% -4.79% -4.97% -5.19% -5.43% -5.69% -5.96% -6.25% -6.54% -6.84% -7.13% -7.42% -7.71% -7.98% -8.25% -8.51% -8.75%
5 -5.58% -5.67% -5.80% -5.99% -6.22% -6.48% -6.78% -7.11% -7.45% -7.81% -8.18% -8.55% -8.91% -9.28% -9.63% -9.98% -10.31% -10.63% -10.94%
6 -6.70% -6.80% -6.96% -7.19% -7.46% -7.78% -8.14% -8.53% -8.95% -9.38% -9.81% -10.26% -10.70% -11.13% -11.56% -11.97% -12.37% -12.76% -13.13%
7 -7.82% -7.93% -8.12% -8.38% -8.70% -9.08% -9.50% -9.95% -10.44% -10.94% -11.45% -11.97% -12.48% -12.99% -13.49% -13.97% -14.44% -14.89% -15.32%
8 -8.93% -9.07% -9.28% -9.58% -9.95% -10.38% -10.86% -11.38% -11.93% -12.50% -13.09% -13.68% -14.26% -14.84% -15.41% -15.97% -16.50% -17.01% -17.51%
9 -10.02% -10.09% -10.20% -10.35% -10.54% -10.75% -11.00% -11.26% -11.54% -11.83% -12.13% -12.43% -12.72% -13.02% -13.31% -13.59% -13.86% -14.12% -14.37%

10 -0.02% -0.10% -0.22% -0.38% -0.59% -0.83% -1.09% -1.38% -1.69% -2.01% -2.33% -2.66% -2.99% -3.31% -3.63% -3.94% -4.23% -4.52% -4.79%
11 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
12 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
13 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Figure 1: Trading Strategy Autocorrelation Structure under AR(1) Asset Price 
Autocorrelation 

 
 
x – axis: lag time period, m y – axis: autocorrelation 
 

Figure 2: Trading Strategy Autocorrelation Structure under MA(1) Asset Price 
Autocorrelation 

 
 
x – axis: lag time period, m y – axis: autocorrelation 
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Table 6: Absolute Ljung Box Statistics for Simulated Results 

 
 

Table 7: Relative Ljung Box Statistics 

 
 

Autocorrelation Asset MA(1,5) MA(1,10) MA(1,20) MA(1,50) MA(1,100)
0.05 0.0025 0.0831 0.0429 0.0228 0.0106 0.0066

0.1 0.0101 0.0957 0.0565 0.0342 0.0199 0.0150
0.15 0.0230 0.1122 0.0762 0.0516 0.0349 0.0290

0.2 0.0417 0.1322 0.1024 0.0757 0.0561 0.0490
0.25 0.0667 0.1553 0.1357 0.1072 0.0843 0.0757

0.3 0.0989 0.1810 0.1769 0.1473 0.1205 0.1100
0.35 0.1396 0.2087 0.2267 0.1976 0.1662 0.1534

0.4 0.1905 0.2380 0.2860 0.2600 0.2234 0.2078
0.45 0.2539 0.2684 0.3557 0.3375 0.2951 0.2758

0.5 0.3333 0.2996 0.4366 0.4338 0.3854 0.3614
0.55 0.4337 0.3313 0.5292 0.5540 0.5004 0.4701

0.6 0.5625 0.3630 0.6338 0.7051 0.6492 0.6108
0.65 0.7316 0.3946 0.7501 0.8962 0.8464 0.7973

0.7 0.9608 0.4258 0.8773 1.1387 1.1161 1.0529
0.75 1.2857 0.4564 1.0138 1.4457 1.5007 1.4205

0.8 1.7778 0.4863 1.1578 1.8299 2.0795 1.9862
0.85 2.6036 0.5154 1.3066 2.2991 3.0104 2.9509

0.9 4.2632 0.5435 1.4577 2.8501 4.5992 4.8720
0.95 9.2564 0.5838 1.6118 3.4647 7.2945 9.6521

Autocorrelation Asset MA(1,5) MA(1,10) MA(1,20) MA(1,50) MA(1,100)
0.05 1.0000 33.1600 17.1296 9.0909 4.2439 2.6233

0.1 1.0000 9.4696 5.5937 3.3821 1.9728 1.4897
0.15 1.0000 4.8740 3.3098 2.2419 1.5169 1.2618

0.2 1.0000 3.1739 2.4578 1.8163 1.3468 1.1767
0.25 1.0000 2.3300 2.0362 1.6082 1.2641 1.1355

0.3 1.0000 1.8298 1.7887 1.4897 1.2180 1.1126
0.35 1.0000 1.4947 1.6239 1.4154 1.1902 1.0991

0.4 1.0000 1.2492 1.5015 1.3652 1.1729 1.0909
0.45 1.0000 1.0571 1.4009 1.3292 1.1622 1.0862

0.5 1.0000 0.8989 1.3098 1.3014 1.1563 1.0841
0.55 1.0000 0.7639 1.2203 1.2775 1.1538 1.0840

0.6 1.0000 0.6454 1.1268 1.2536 1.1542 1.0859
0.65 1.0000 0.5394 1.0253 1.2250 1.1570 1.0898

0.7 1.0000 0.4432 0.9131 1.1851 1.1617 1.0959
0.75 1.0000 0.3550 0.7885 1.1244 1.1672 1.1048

0.8 1.0000 0.2736 0.6512 1.0293 1.1697 1.1173
0.85 1.0000 0.1979 0.5019 0.8831 1.1562 1.1334

0.9 1.0000 0.1275 0.3419 0.6685 1.0788 1.1428
0.95 1.0000 0.0631 0.1741 0.3743 0.7880 1.0428
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Figure 3: Absolute Ljung Box Statistics for Asset and Various the MA(l,s) Rules 

 
 

Figure 4: Relative Ljung Box Statistics for Asset and Various the MA(l,s) Rules 

 
 

As s increases, for l =1, the autocorrelation of the MAbull amplifies see figures 3 and 4 and 

tables 6 and 7. This result highlights the fact that the MA rule traces the price autocorrelation 

structure and amplifies it, although the rule does not explicitly identify the structure. Looking 

at Figure 3, Figure 4, Table 6 and Table 7, we see that for plausible price values, the strategy 

has led to increased LB for ‘short’ rules and low autocorrelation whilst it has increased 

autocorrelation for ‘long’ rules (1 – 50 or 1 – 100) and higher autocorrelation (prices). What 

these results indicate is that when time series (price, earnings, returns) autocorrelation is low 

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Asset MA(1,5) MA(1,10) MA(1,20) MA(1,50) MA(1,100)

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Asset MA(1,5) MA(1,10) MA(1,20) MA(1,50) MA(1,100)



24 
 

an MA rule with a small s should be used whilst an MA rule with a large s should be used 

with a highly autocorrelated process. As we discussed earlier, the application of our current 

model is not necessarily restricted to the price process. Based on our results in this section, 

when the MA rule is employed with a price MA, where price autocorrelation is very high, an 

MA rule with a large s would be appropriate. And when the MA rule is applied to a return 

process, which has lower autocorrelation than the price process in general, a smaller s would 

be suitable. 

 

5 Empirical Evidence 
 

5.1 Empirical Details of Autocorrelation Amplification 
 

The previous section has focused on analyzing how the MA rule identifies the price 

autocorrelation structure and amplifies it in a simulated setting where we know the actual 

price autocorrelation structure. It would be meaningful to apply the MA rule to real historical 

data. Before we conduct a formal, thorough empirical test on the main theoretical result of the 

paper, autocorrelation structural amplification, it would be meaningful to provide some 

empirical observations first. The objective of section 5.1 is to empirically provide processing 

figures used in section 3 in deriving the main result of the paper on selected indices. These 

‘processing figures’ include the detrended log price first order autocorrelation, index price 

trend, critical value and its transition matrix as shown in Table 2, and error term statistics. We 

also conducted Dickey Fuller test result to show that the innate autocorrelation in index price 

process is statistically significant; therefore the result of the paper is relevant in the real world. 

Since this is only an observation, we chose 6 indices (3matured and 3 emerging markets) as 

an example. 

 

Table 8: Detrended Log Price First Order Autocorrelation and Trends of International 
Indices 

 
* Sample date from January 4, 2000 to June 1, 2011 
 
In Table 8 we see a very high first order autocorrelation in detrended log price process in 

major indices: We employ Dickey Fuller tests to see whether a unit root is present 

Kospi Hang Seng Jakarta S&P500 FTSE100 Nikke
Rho 0.9995 0.9962 0.9961 0.9961 0.9960 0.9972

Trend 0.046% 0.025% 0.088% -0.001% 0.001% -0.007%
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Table 9: Price trend, Dickey Fuller Test and the Profitability of the MA(1,10) Rule 
Applied to Various Indies. Historical Daily Data from Jan 4, 2000 to May 31, 2011 

 
 
* Dickey Fuller critical value: -2.58 at 1% and -1.95 at 5% 
 

Table 9 presents price trend, Dickey Fuller test results and profitability measures of the 

MA(1,10) rule when applied to the daily historical data of various indices; a description of 

the trading strategy is detailed in Section 2.2. The sample data are from January 4, 2000 to 

May 31, 2011. First we identify the positive trend in the emerging market indices and the 

negative trend in the advanced market indices, which comfortably conforms to general 

expectations. The Dickey Fuller test result shows that the emerging markets parameters are 

significant at 1%, while the parameters of the advanced markets are significant at 5% but not 

at 1%. This reflects and conforms to the common belief that advanced markets are more 

“efficient” (in the sense that log prices follow a random walk) than emerging markets. 

Considering that emerging markets have had strong positive price trends, which is also 

reflected in the profitability of the buy and hold strategy, it is not surprising that the MAbull 

rule performs best during the sample period. Again, we identify a negative long run price 

trend in advanced markets; hence the MAbear rule performs best. Table 9 tells us that 

identifying the price trend is critical to profitability of a given trading strategy in the sample 

period. 

 

Table 10: C(t) Transition Matrix of Indices of the MA(1,10) Rule 

 
 

*R1: C(t-1) > 0 and C(t) > 0 R2: C(t-1) > 0 and C(t) < 0 
  R3: C(t-1) < 0 and C(t) > 0 R4: C(t-1) < 0 and C(t) < 0 

Kospi Hang Seng Jakarta S&P500 FTSE100 Nikke
Mu 0.00046 0.00025 0.00088 -0.00001 0.00001 -0.00007
Rho 0.9955 0.9971 0.9980 0.9966 0.9967 0.9976

DF Test Stat -3.71 -2.59 -3.15 -2.43 -2.51 -2.13
MA bull 7.30% 6.29% 13.25% -4.02% -4.10% -2.38%
MA bear -2.28% -2.73% -6.30% 4.68% 4.71% -1.34%

Buy and Hold 5.25% 3.13% 9.66% -0.90% -0.97% -4.76%

Kospi Hang Seng Jakarta S&P500 FTSE100 Nikke
R1 (+, +) 47.49% 44.13% 47.12% 46.36% 45.40% 43.07%
R2 (+, -) 8.11% 7.95% 6.85% 8.92% 9.79% 8.54%
R3 (-, +) 8.11% 7.91% 6.85% 8.95% 9.79% 8.54%
R4 (-, -) 35.94% 39.66% 38.82% 35.42% 34.68% 39.49%
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Table 10 presents the transition matrix of C(t). Since details of how to interpret the transition 

matrix are presented at the end of Section 3.2, there is no need to reiterate them here. There is 

asymmetry between R1 and R4 and we believe the asymmetry is coming from the non-

normality of the error terms in the historical data. To check this, the error term is backed out 

from the historical detrended log prices of the index historical data assuming they follow the 

AR(1) process. 

 

Table 11: Error Term Statistics 

 
 
Table 11 shows that they are not normally distributed as expected. We see that two factors 

decide the profitability of the MA rule, the price trend and the autocorrelation structure of the 

strategy. Since we investigated index level trend of international indices, an investigation of 

autocorrelation structure of the international indices should follow. 

 

Kospi Hang Seng Jakarta S&P500 FTSE100 Nikke
Mean -0.0002 -0.0001 -0.0003 0.0000 -0.0001 -0.0002
Stdev 0.0179 0.0164 0.0151 0.0136 0.0131 0.0162

Skewness -0.5559 -0.0591 -0.6588 -0.2027 -0.1865 -0.4302
Kurtosis 4.9721 7.8572 5.7923 7.6380 6.0143 6.5963



27 
 

Figure 5: Historical Daily International Indices Autocorrelation Structure: from 
January 4, 2000 to May 31, 2011 

 
 
x – axis: lag time period, m y – axis: autocorrelation 
 

Ljung Box test statistics are computed, they are truncated at the 300th autocorrelation. 

 

Table 12: Ljung-Box Test Statistics for Indices (Prices) and the MA(1,250) Strategy 
from January 4, 2000 to May 31, 2011 

 
 

Table 13: Ljung-Box Test Statistics for Indices (Returns) and the MA(1,10) Strategy 
from January 4, 2000 to May 31, 2011 

 
 

Table 14: Simulated Ljung-Box Test Statistics for the AR(1) Model 
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Kospi Hang Seng Jakarta S&P500 FTSE100 Nikke

Kospi Hang Seng Jakarta S&P500 FTSE100 Nikke
1st order Autocorrel 0.9955 0.9971 0.9980 0.9966 0.9967 0.9976
log Price LB 70.22 103.57 85.26 112.08 133.02 141.40
MA(1,250) LB 127.22 137.52 127.57 147.73 160.46 182.01

Kospi Hang Seng Jakarta S&P500 FTSE100 Nikke
1st order Autocorrel 0.0155 -0.0216 0.1209 -0.0852 -0.0628 -0.0310
log Price LB 0.1404 0.2041 0.1589 0.1654 0.1897 0.1424
MA(1,10) LB 0.2087 0.2919 0.1884 0.1871 0.2189 0.1627

Asset rho 0.99 0.9925 0.995 0.9975
LB 49.25 65.92 99.25 199.25
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Table 12 presents the LB statistics for international indices price and the MA(1,250) strategy, 

and Table 13 presents the LB statistics for international indices returns and the MA(1,10) 

strategy. The number in Table 12 may look very high compared to previous simulated results 

of trading strategy autocorrelations below 0.95. Hence, the LB statistics of an asset when it 

follows the AR(1) process with a very high ρ are presented in 14 to confirm the 

reasonableness of the numbers in Table 12. We have seen that when the price autocorrelation 

is very high, a strategy with a large s becomes effective. In this empirical test of index price 

series, we will use 1 year MA, hence the MA(1, 250) rule. 250 days were chosen for no 

specific reason but to ensure large enough s. We could have used (1, 100) or (1, 500) and the 

result would be the same. We also argued that when ρ is very low, a strategy with small s is 

effective. Hence for index return series we will use the MA(1, 10) rule, although any small s 

would have equivalent results. The result clearly shows that the MA strategy amplifies the 

level of autocorrelation in the index level. 

 

5.2 A Formal Test on Autocorrelation Amplification 
 

In this section, we present a formal empirical test of our finding. We use 11 international 

equity indices from January 4, 2001 to December, 2011. Table 14 contains the list of the 

indices and the corresponding countries. 

 

Table 14: List of the Indices and the Corresponding Countries 
Matured Emerging 

Country Index  Country Index  

Canada S&P/TSX Brazil Bovespa 

France CAC40 China Hang Seng 

Germany DAX30 Indonesia IHSG (Jakarta) 

Japan Nikkei 225 Korea KOSPI 

UK FTSE100 Singapore FSSTI 

US S&P500 Russia RTS 
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We chose major indices around the world and we expect the similar empirical result can be 

driven from different sample. However, for the purpose of the current paper, we believe the 

sample is sufficiently large and representative. 

 The hypothesis we intend to test is “When the MA rule is applied to an index; 

amplification of autocorrelation is significant and depends on the degree of autocorrelation of 

the original price process”. Define MA(1, s) as the Moving Average with l and s as defined in 

Lemma 1 where where s = 5, 10, 20, 30, 60 let MA(1, s)LB be Ljung-Box test statistics for 

MA(1, s) strategy and let PLB be Ljung-Box test statistics for log index price. We compute 

daily MA(1, s) for the sample period then non-overlapping 6-month MA(1, s)LB is computed 

from 2001 to 2011 (10 years). I intend to use non-overlapping measures because underlying 

index prices are serially correlated. This serial correlation will automatically make MA(1, 

s)LB serially correlated, which is not desirable. There will be 20 observations of MA(1, s)LB 

for each of s (= 5, 10, 20, 30, 60). 6-month PLB is computed from 2001 to 2011. Then the 

formal test can be done by running 5 regressions of MA(1, s)LBt = βs PLBt + εt for each 

index, where t = 1 … 22. If βs > 1 and both are statistically significant, it means that there 

exists amplification of autocorrelation and the degree of the amplification depends on the 

level of autocorrelation of the original index price process. Table 15 and 16 summarizes the 

test result.  

 

Table 15: βs Estimates in Matured Markets 

 
 

s 5 10 20 30 60
S&P/TSX 1.113 1.194 1.279 1.344 1.158

(0.00) (0.00) (0.00) (0.00) (0.00)
CAC40 1.208 1.409 1.722 1.94 1.607

(0.00) (0.00) (0.00) (0.00) (0.00)
DAX30 1.156 1.313 1.555 1.687 1.306

(0.00) (0.00) (0.00) (0.00) (0.00)
Nikkei 225 1.146 1.269 1.46 1.549 1.344

(0.00) (0.00) (0.00) (0.00) (0.00)
FTSE100 1.175 1.307 1.491 1.652 1.447

(0.00) (0.00) (0.00) (0.00) (0.00)
S&P500 1.143 1.262 1.41 1.488 1.206

(0.00) (0.00) (0.00) (0.00) (0.00)

Matured
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Table 16: βs Estimates in Emerging Markets 

 
 

Empirical test shows all βs are larger than 1 and statistically significant. From this formal test, 

we can conclude that the amplification of the overall correlation in log price occurs in both 

Matured and Emerging markets when the MA rule is applied. We believe this can explain 

why the momentum trading strategy is still valid and widely used in matured markets where 

there has been no significant upward trend in the markets. 

 

6 Conclusion 
 

This paper first presents a technical definition of momentum in order to investigate how 

technical analysis, especially the MA rule, becomes profitable and theoretically demonstrates 

that the trading rule is profitable. The theoretical examination revealed that, in addition, price 

autocorrelation might be another fundamental reason for profitability, and the further 

investigation of the autocorrelation structure of the MA rule showed that the MA rule reflects 

the price autocorrelation structure, without identifying it. This analysis sheds some light on 

why analysts use technical trading rules. There are three main findings in this paper: 

 

1. The MA rule identifies and takes advantage of price trend 

2. 2. The MA rule is a simple and straightforward way of exploiting price 

autocorrelation without actually knowing it 

s 5 10 20 30 60
Bovespa 1.131 1.24 1.381185 1.505178 1.477067

(0.00) (0.00) (0.00) (0.00) (0.00)
Hang Seng 1.105 1.193 1.296333 1.363696 1.359526

(0.00) (0.00) (0.00) (0.00) (0.00)
IHSG (Jakarta) 1.088 1.169 1.267139 1.29838 1.139249

(0.00) (0.00) (0.00) (0.00) (0.00)
KOSPI 1.129 1.246 1.414025 1.485353 1.200378

(0.00) (0.00) (0.00) (0.00) (0.00)
FSSTI 1.078 1.141 1.232656 1.281892 1.095732

(0.00) (0.00) (0.00) (0.00) (0.00)
RTS 1.114 1.228 1.415172 1.55133 1.392335

(0.00) (0.00) (0.00) (0.00) (0.00)

Emerging
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3. 3. In the case of MA(1, s) rules, where s is a time period for the short position’s 

MA,  the amplification of the autocorrelation structure is more prominent for a 

small s when the level of autocorrelation is low and for a large s, when the level of 

autocorrelation is high 

The first finding is already well known and discussed in the earlier literature. We confirm it 

by constructing a simple model with a single asset. The second finding has not been 

investigated in the previous literature due to lack of a precise technical definition of 

momentum. We show this with simulated results and empirical data from 6 international 

indices from developing and mature markets. The third finding suggests what length of s 

should be applied in employing the MA rule. 

 These findings should be considered important in themselves since they identify why the 

MA rule is used. However, the practical application of this is also interesting. One of many 

natural questions that can be asked is how well would the MA rule would perform if the full 

price autocorrelation structure was known. After all, we saw that the MA rule is all about 

simplification of conditioning on the past price information. Therefore, if we use the entire 

past price information, this should outperform the MA rule. However, in practice the tradeoff 

between the inefficiency and the cost of knowing the full autocorrelation would justify the 

use of the MA rule. Nevertheless the extent of the efficiency gain would be a worthy area for 

future research. 
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Appendix 
 
A1 Proof of Proposition 1 
 
The ratio of future price in period h to today’s price can be represented as 
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This can be thought of as the population momentum measure conditioned on time t. Taking 
logs, we get 
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A2 Derivation of Definition 2 
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A3 Derivation of Lemma 1 
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A4 Proof of Remark 1 
 

Since [ ] [ ] [ ]( )YEYXEYXE
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X -+=
s
sr  and 222 )1( XYX srs -= , the unconditional and the 

conditional probability distribution of C(t) can be written as 
 

( ) ( ) 5.00)('1)( =>=> tQwprobtCprob  
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Unconditionally, ( ) 5.01)( ==tprob a  
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Conditionally, ( ) ( )
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A5 Simulation Procedure 
 

1. We have cttPtq --= m)(log)( , assume tA tqtq erg +-+= )1()(  
From GS data (May 4, 1999 - May 31, 2011), estimate c, and es  

182011.4=c ,  0.002687=es , 0.0008=g  and set 0=m  

Let % trading cost = 0%, annual risk free rate: 2% è daily risk free rate: 0.008% 

 

2. Simulate ( )2,0~ ese N  
 

3. tA tqtq erg +-+= )1()( , cttqtP ++= m)()(log , )(/)()( tSMAtqtC =  

( ) ÷
ø

ö
ç
è

æ
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s

i
itqstSMA

1
)1(/1exp)( , 

î
í
ì

<Û<
>Û>
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ta          

)1(log)(log)( --= tPtPtRA  

 

4. % Return from the MA rule: 
 ( )( ) )1()(1)1()()1( +--++=+ tTCrttRttR fAT aa  

 
A6 Proof of Proposition 3 
 
Decompose W  into four pieces where 11W  is ll ´ , 12W  is )( lsl -´ , 21W  is lls ´- )( and 

22W  is )()( lsls -´- , also decompose ( )''' 21 www =
 
where '1w  is s´1  and '1w  is )(1 ls -´  

 

Let ÷
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è
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