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Abstract 

In this paper, we examine the empirical performance of several options pricing models with 
respect to the roll-over strategies of parameters. We compare the pricing and hedging 
performances of several models using the traditional roll-over strategy of the parameters, the 
nearest-to-next approach with those using the new roll-over strategy, the next-to-next approach. 
It is found that when we use the nearest-to-next strategy, the SVJ and SV models show better 
performance than the AHBS-type models for pricing options. Among AHBS-type models, 
simpler model with less parameter shows better performance than other models. That is, for the 
AHBS-type models, the presence of more parameters actually cause over-fitting but that does 
not cause over-fitting problem for the mathematically complicated models. For the hedging 
performance, the AHBS-type models show better performance than the mathematically 
complicated models but, the differences among the models are not significant. When we use the 
next-to-next strategy, the results are changed. The next-to-next strategy decreases the errors of 
all options pricing models. The pricing errors of the AHBS-type models are decreased largely 
by the next-to-next strategy. AHBS-type models show better performance than the 
mathematically complicated models for pricing options. That is, the next-to-next strategy 
mitigate over-fitting problem of AHBS-type models, but the improvement of the 
mathematically complicated models including the BS model using the next-to-next strategy is 
not much. 
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I. Introduction 

 

Since Black and Scholes published their seminal article on option pricing in 1973, there have 

been various theoretical and empirical researches on option pricing. One important direction in 

which the Black and Scholes (1973) model can be modified is to generalize the geometric 

Brownian motion, which is used as a process for the dynamics of log stock prices. For example, 

Merton(1976) and Naik and Lee (1990) propose a jump-diffusion model. Hull and White (1987), 

Johnson and Shanno (1987), Scott (1987), Wiggins (1987) and Heston (1993) suggest a stochastic 

volatility model. Naik (1993) considers a regime-switching model. Duan(1995) and Heston and 

Nandi(2000) develop an option pricing framework based on the GARCH process. Madan, Carr, 

and Chang (1998) use a three-parameter stochastic process, termed the VG process, as an 

alternative model for capturing the dynamics of log stock prices. 

Bakshi, Cao, and Chen (1997, 2000) and Kim and Kim (2005) have conducted a 

comprehensive empirical study on the relative merits of competing option pricing models. They 

have found that taking stochastic volatility into account is of the first order in importance for 

improving upon the Black and Sholes model. However, in striking empirical findings, Dumas, 

Fleming and Whaley (1998), Jackwerth and Rubinstein (2001) and Li and Pearson (2007), Kim 

(2009) and Choi and Ohk (2011) examine the performance of a number of these mathematically 

sophisticated models and find that they predict option prices less well than a pair of ad hoc 

approaches sometimes used by option traders. Ad hoc approaches can be an alternative to the 

complicated models for pricing options and are called as ad hoc Black and Scholes models 

(henceforth AHBS). 

There are two versions of the ad hoc approach. In the “relative smile” approach, the implied 

volatility skew is treated as a fixed function of moneyness, S/K and the implied volatility for a 

fixed strike K varies as the stock index S varies. This is also known as the “sticky volatility” 

method. In the “absolute smile” approach, the implied volatility is treated as a fixed function of 
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the strike price K and the implied volatility for a fixed strike does not vary with S. This is also 

known as the “sticky delta” method. Dumas, Fleming and Whaley (1998), Jackwerth and 

Rubinstein (2001) and Li and Pearson (2007), who report the AHBS model outperforms other 

models, adopt the “absolute smile” approach. On the other hand, Kirgiz (2001) and Kim and 

Kim (2004), who report the AHBS model does not outperform other models, adopt the “relative 

smile” approach. That is, the type of the AHBS model seems to be important for pricing and 

hedging options. Jackwerth and Rubinstein (2001), Li and Pearson (2007), Kim (2009), and Choi 

and Ohk (2011) have found that the “absolute smile” approach shows better performance than 

the “relative smile” approach for pricing options. Also simpler model among the AHBS models 

shows better performance than other models. That is, the presence of more parameters actually 

cause over-fitting. 

When we forecast and hedge option prices, we need to estimate the parameters to plug into 

each model. For one day ahead pricing and hedging, the parameters are estimated using the 

previous days’ options data. For one week ahead pricing and hedging, the options data before 

seven days are used. In general trading dates, there is no complicate problems. However, it is 

standard to eliminate the nearest option contracts with expiries less than 7 days, and use the 

next-to-nearest option contracts with expiries less than 7 days plus 1 month for the empirical 

study. When forecasting the parameters for the next-to-nearest option contracts with expiry less 

than 7 days plus 1 month, we have the problems about the roll-over strategies of the parameter. 

One can use either the nearest contracts with expiry greater than 6 days (the nearest-to-next 

strategy) or the next-to-nearest contracts with expiry greater than 6 days plus 1 month (the next-

to-next strategy). Choi and Ohk (2011) have shown that the next-to-next roll-over strategy can 

mitigate the over-fitting problems of AHBS models and can make the AHBS models with more 

parameters the better model than the AHBS model with less parameters. 

The next-to-next roll-over strategy of the parameters can be useful. Is this strategy functioned 

with only the AHBS models? Or is this strategy also functioned with mathematically completed 
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models, the stochastic volatility (henceforth SV) and stochastic volatility with jump (henceforth 

SVJ) models? In this paper, we examine the empirical performance of several options pricing 

models with respect to the roll-over strategies of parameters. Not only the traders’ rules, AHBS-

type models, but also the SV model and the SVJ model are considered for a horse race 

competition. We compare the pricing and hedging performances of several models using the 

traditional roll-over strategy of the parameters, the nearest-to-next approach, with those using 

the new roll-over strategy, the next-to-next approach. We examine that new roll-over strategy of 

the parameters can be functioned not only the AHBS-type models but also the mathematically 

complicated models, the SV and SVJ models. After considering the new roll-over strategy of the 

parameters, we find out the best options pricing model.  

We fill the gaps that have not been resolved in previous researches. First, when the roll-over 

strategies of the parameters are examined, Choi and Ohk (2011) and Choi, Jordan, and Ohk 

(2012) do not consider the mathematically complicated models that are shown to be competitive 

options pricing models. In this paper, it is examined whether the roll-over strategies of the 

parameters for the SV and the SVJ models is functioned. Second, in previous researches, the 

new roll-over strategies of the parameters, the next-to-next strategy, is not considered for 

hedging performance. When we find out the best options pricing model, both pricing and 

hedging performance are considered. Pricing performance measures the ability to forecast the 

level of options price, but hedging performance does the ability to forecast the variability of 

options prices. If a specific model shows better performance than other models for both 

measures, that model can be truly the best options pricing model. Third, Choi and Ohk (2011) 

and Choi, Jordan, and Ohk (2012) consider the sample period with a span of two years. For two 

years, the dates that need the roll-over of the parameters are twenty four days when we 

examine the one day ahead out-of-sample pricing performance. The effect of the roll-over 

strategy can be exaggerated because of small sample. In this paper, we examine the roll-over 

strategy using a sample date with a span of 13 years. If the roll-over strategy is worked well 
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even for the long sample period, we can conjecture that there is the structural change of the 

parameters when the maturity of options is roll-overed. Fourth, recent detailed researches about 

the AHBS-type models examined KOSPI 200 options, one of emerging markets. Although 

KOSPI 200 options are the biggest derivatives product in terms of trading volumes, that product 

is traded in the emerging market. We use S&P 500 (OEX) option price for our empirical work. 

S&P 500 options have been the focus of many existing investigations including, among others, 

Bakshi, Cao, and Chan (1997), Bates (1996), Dumas, Fleming, and Whaley (1995). Also, the roll-

over strategies of the parameter is not examined in S&P 500 options market. If the new roll-over 

strategy is well functioned for OEX options, we can expect that it is not only fit to emerging 

markets but also generally can be applied into advanced options markets. 

It is found that when we use the traditional estimation method, the nearest-to-next strategy, 

the SVJ and SV models show better performance than the AHBS-type models for pricing 

options. Among AHBS-type models, simpler model with less parameter shows better 

performance than other models. That is, for the AHBS-type models, the presence of more 

parameters actually cause over-fitting but that does not cause over-fitting problem for the 

mathematically complicated models. For the hedging performance, the AHBS-type models 

show better performance than the mathematically complicated models but, the differences 

among the models are not significant. When we use the next-to-next strategy, the results are 

changed. The next-to-next strategy decreases the errors of all options pricing models. The 

pricing errors of the AHBS-type models are decreased largely by the next-to-next strategy. 

AHBS-type models show better performance than the mathematically complicated models for 

pricing options. That is, the next-to-next strategy mitigate over-fitting problem of AHBS-type 

models. On the other hand, the improvement of the mathematically complicated models 

including the BS model using the next-to-next strategy is not much. 

The outline of this paper is as follows. The AHBS models, the stochastic volatility with jumps 

model and the roll-over strategies of the parameters are reviewed in Section 2. The data used for 
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analysis are described in Section 3. Section 4 describes parameter estimates of each model and 

evaluates pricing and hedging performances of alternative models. Section 5 concludes our 

study by summarizing the results. 

 

II. Model 

 

1. Ad Hoc Black-Scholes Model 

Despite its significant pricing and hedging biases, the Black and Scholes (1973) model 

(henceforth the BS model) continues to be widely used by market practitioners. However, when 

practitioners apply the BS model, they commonly allow the volatility parameter to vary across 

strike prices and maturities of options, to fit the volatility to the observed smile pattern. As 

Dumas, Fleming, and Whaley (1998) show, this procedure can circumvent some of the biases 

associated with the BS model’s constant volatility assumption. 

We have to construct the AHBS model in which each option has its own implied volatility 

depending on a strike price and the time to maturity. Specifically, the spot volatility of the asset 

that enters the BS model is a function of the strike price and the time to maturity or a 

combination of both. However we only consider the function of the strike price because the 

liquidity of the KOPSI 200 index options market is concentrated in the nearest expiration 

contract. Dumas, Fleming, and Whaley (1998) show that the specification that includes a time 

parameter does worst of all, indicating that the time variable is an important cause of overfitting 

problem at the estimation stage. 

There are two versions of the ad hoc approach. In the “relative smile” approach, the implied 

volatility skew is treated as a fixed function of moneyness, S/K and the implied volatility for a 

fixed strike K varies as the stock index S varies. This is also known as the “sticky volatility” 

method. In the “absolute smile” approach, the implied volatility is treated as a fixed function of 

the strike price K and the implied volatility for a fixed strike does not vary with S. This is also 
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known as the “sticky delta” method. These models are so called the ad hoc Black-Scholes model 

(henceforth AHBS). Dumas, Fleming and Whaley (1998), Jackwerth and Rubinstein (2001) and 

Li and Pearson (2007), Kim (2009) and Choi and Ohk (2011), Choi, Jordan, and Ohk (2012) who 

report the AHBS model outperforms other models, adopt the “absolute smile” approach. On the 

other hand, Kirgiz (2001) and Kim and Kim (2004), who report the AHBS model does not 

outperform other models, adopt the “relative smile” approach. That is, the type of the AHBS 

model seems to be important for pricing and hedging options.  

In the “relative smile” approach, the implied volatility skew is treated as a fixed function of 

moneyness, S/K and the implied volatility for a fixed strike K varies as the stock index S varies. 

In the “absolute smile” approach, the implied volatility skew is treated as a fixed function of the 

strike price K and the implied volatility for a fixed strike does not vary with S. Specifically we 

adopt the following six specifications for the BS implied volatilities: 

 

R1:  ii KS /21    

R2:    2321 // iii KSKS  
 

R3:      34

2

321 /// iiii KSKSKS    

A1: 
ii K 21   

A2: 
2

321 iii KK  
 

A3: 3
4

2
321 iiii KKK    

 

where i  is the implied volatility for an i th option of strike iK  and spot price S . 

From first to third models are the “relative smile” approaches using the moneyness as the 

independent variables. From fourth to the last models are the “absolute smile” approaches 

using the strike prices as the independent variables. R1 is the ad hoc Black-Scholes model that 

considers the intercept and the moneyness as the independent variables. R2 is the ad hoc Black-

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Scholes model that considers the intercept, the moneyness, and the square of the moneyness as 

the independent variables. R3 is the ad hoc Black-Scholes model that considers the intercept, the 

moneyness, the square and the third power of the moneyness as the independent variables. A1 

is the ad hoc Black-Scholes model that considers the intercept and the strike price as the 

independent variables. A2 is the ad hoc Black-Scholes model that considers the intercept, the 

strike price, and the square of the strike price as the independent variables. A3 is the ad hoc 

Black-Scholes model that considers the intercept, the strike price, and the square and the third 

power of the strike price as the independent variables. Up to now, previous studies do not 

consider the third power of the moneyness and the strike price. In this paper, the performances 

of the AHBS models with higher degrees are examined for the first time. 

For the implementation, we follow a four-step procedure. First, we abstract the BS implied 

volatility from each option. Second, we set up the implied volatilities as the dependent variable 

and the moneyness or the strike price as the independent variables. And we estimate the 

)4,3,2,1( ii  by ordinary least squares. Third, using estimated parameters from the second 

step, we plug each option’s moneyness or the strike price into the equation, and obtain the 

model-implied volatility for each option. Finally, we use volatility estimates computed in the 

third step to price options with the following BS formula. 

 

         21;, dNKedNtSKTtC tTr   

         12;, dNtSdNKeKTtP tTr  
 

     

tT

tTrKtS
d








 2//ln 2

1
, tTdd  12  

 

where  N  is the cumulative standard normal density. The AHBS model, although 

theoretically inconsistent, can be a more challenging benchmark than the simple BS model for 

any competing option valuation model. 

(7) 

(8) 

(9) 
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2. Stochastic Volatility with Jumps Model 

Bakshi, Cao, and Chan (1997) derived a closed-form option pricing model that incorporates 

stochastic volatility and random jumps. Under the risk neutral measure, the underlying 

nondividend-paying stock price  tS  and its components for any time t  are given by 

 

 
 

          tdqtJtdZtVdttR
tS

tdS
SJ    

        tdZtVdttVKtdV vvvv    

     22 ,2/11ln~1ln JJJNtJ  
 

 

 where  tR  is the instantaneous spot interest rate at time t ,   is the frequency of jumps 

per year and  tV  is the diffusion component of return variance (conditional on no jump 

occurring).  tZS  and  tZv  are standard Brownian motions, with 

     dttdZtdZCov vSt , .  tJ  is the percentage jump size (conditional on a jump 

occurring) that is lognormally, identically, and independently distributed over time, with 

unconditional mean, J . The standard deviation of   tJ1ln  is J .  tq  is a Poisson 

jump counter with intensity  , that is,    dttdq 1Pr  and    dttdq  10Pr . v , 

vv  / , and v  are the speed of adjustment, long-run mean, and variation coefficient of the 

diffusion volatility  tV , respectively.  tq  and  tJ  are uncorrelated with each other or 

with  tZS  and  tZv . 

For a European call option written on the stock with strike price K  and time to maturity , 

the closed form formula for price  ,tC  at time t  is as follow. 

 

(10) 

(11) 

(12) 
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where the risk neutral probabilities, 1P  and 2P , are computed from inverting the respective 

characteristic functions of the following: 
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The characteristic functions,
jf , are given in equations (A-1) and (A-2) of the Appendix. The 

price of a European put on the same stock can be determined from the put-call parity. 

The option valuation model in equation (13) and (14) contains the most existing models as 

special cases. For example, we obtain (i) the BS model by setting 0  and 

0 vvv  ; and (ii) the SV model by setting 0 , where to derive each special case 

from equation (14) one may need to apply L’Hopital’s rule. 

 In applying option pricing models, one always encounters the difficulty that spot volatilities 

and structural parameters are unobservable. As estimated in the standard practice, we estimate 

the parameters of each model every sample day. Since closed-form solutions are available for an 

option price, a natural candidate for the estimation of parameters in the pricing and hedging 

formula is a non-linear least squares procedure, involving a minimization of the sum of 

percentage squared errors between the model and the market prices. Estimating parameters 

from the asset returns can be an alternative method, but historical data reflect only what 

happened in the past. Furthermore, the procedure using historical data is not capable of 

identifying risk premiums, which must be estimated from the options data conditional on the 

estimates of other parameters. The important advantage of using option prices to estimate 

(13) 

(14) 



 

 10 

parameters is to allow one to use the forward-looking information contained in the option 

prices. 

Let  KtOi ;,*   denote the model price of the option i  on day t  and  KtOi ;,  denote 

the market price of option i  on day t . To estimate parameters for each model, we minimize 

the sum of percentage squared errors between the model and the market prices: 

 

   

 









 N

i i

ii

KtO

KtOKtO

t 1

2
*

;,

;,;,
min






 ( Tt ,,1 ) 

 

where N denotes the number of options on day t , and T  denotes the number of days in the 

sample. Conventionally, the objective function to minimize the sum of squared errors is used. 

However, we adopt the above function since the conventional method that gives more weight 

to relatively expensive in-the-money options makes the worse fit for out-of-the-money options.1 

 

3. Rollover Strategies 

When we forecast and hedge option prices, we need to estimate the parameters to plug into 

each model. For one day ahead pricing and hedging performance, the parameters are estimated 

using the previous days’ options data. For one week ahead pricing and hedging performance, 

the options data seven days ago are used. In general trading dates, there is no complicate 

problems to implement this methodology. However, it is standard to eliminate the nearest 

option contracts with expiries less than 7 days, and use the next-to-nearest option contracts with 

expiries less than 7 days plus 1 month for the empirical study because of the liquidity problems 

of options contract. When forecasting the parameters for the next-to-nearest option contracts 

with expiry less than 7 days plus 1 month, one can use either the nearest contracts with expiry 

                                            
1 In our sample, there was no large difference between the results using the sum of squared 
errors and those using the sum of squared percentage errors. 

(15) 
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greater than 6 days or the next-to-nearest contracts with expiry greater than 6 days plus 1 

month. The information content of these two contracts may differ and the rollover procedure 

may be important to the accuracy of the parameter forecasting. Choi and Ohk (2011) consider 

two rollover strategies from then on the day of rollover from the nearest contract to next 

contract: the nearest-to-next strategy and the next-to-next strategy. Specifically, when the 

nearest contract’s expiry is less than 7 days, the next-to-next strategy uses the next-to-nearest 

contracts on the previous day(s), whereas the nearest-to-next one uses the nearest-term 

contracts. These two strategies are different only on the day(s) when the expiry of nearest-term 

option contracts is less than seven days. In this paper, the performances of the nearest-to-next 

strategy and the next-to-next strategy are compared. 

 

III. Data 

 

The SPX option data used in this paper come from Option Metrics LLC. The data include 

end-of day bid and ask quotes, implied volatilities, open interest, and daily trading volume for 

the SPX (S&P 500 index) options traded on the Chicago Board Options Exchange from January 4, 

1996 through December 31, 2008. The data also include daily index values and estimates of 

dividend yields, as well as term structures of zero-coupon interest rates constructed from 

LIBOR quotes and Eurodollar futures prices. We use the bid-ask average as our measure of the 

option price. 

The following rules are applied to filter data needed for the empirical test. We use out-of-the-

money options for calls and puts. First of all, since there is only a very thin trading volume for 

the in-the-money (henceforth ITM) option, the reliability of price information is not entirely 

satisfactory. Therefore, we use price data regarding both put and call options that are near-the-

money and out-of-the-money (henceforth OTM). Second, if both call and put option prices are 

used, ITM calls and OTM puts which are equivalent according to the put-call parity are used to 
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estimate the parameters. Third, as Huang and Wu (2004) mention, “the Black-Scholes model has 

been known to systematically misprice equity index options, especially those that are out-of-

the-money (OTM).” We recognize the need for alternative option pricing model to mitigate this 

effect. As options with less than 7 days to expiration may induce biases due to low prices and 

bid-ask spreads, they are excluded from the sample. Because the liquidity is concentrated in the 

nearest expiration contract, we only consider options with the nearest maturity. To mitigate the 

impact of price discreteness on option valuation, prices lower than 0.4 are not included. Prices 

not satisfying the arbitrage restriction are excluded. 

We divide the option data into several categories according to the moneyness, S/K. Table 1 

describes certain sample properties of the OEX option prices used in the study. Summary 

statistics are reported for the option price and the total number of observations, according to 

each moneyness-option type category. Table 2 presents the “volatility smiles” effects for 26 

consecutive sub-periods. We employ six fixed intervals for the degree of moneyness, and 

compute the mean over alternative subperiods of the implied volatility. OEX options market 

seems to be “sneer” independent of the subperiods employed in the estimation. As the S/K 

increase, the implied volatilities decrease to near-the-money but, after that, increase to out-of-

the-money put options. The implied volatility of deep out-of-the-money puts is larger than that 

of deep out-of-the-money calls. That is, a volatility smile is skewed towards one side. The 

skewed volatility smile is sometimes called a 'volatility smirk' because it looks more like a 

sardonic smirk than a sincere smile. In the equity options market, the volatility smirk is often 

negatively skewed where lower strike prices for out-of-the money puts have higher implied 

volatilities and, thus, higher valuations.2 This is consistent with Rubinstein (1994), Derman 

(1999), Bakshi, Kapadia, and Madan (2001), and Dennis and Mayhew (2002). As the smile 

evidence is indicative of negatively-skewed implicit return distribution with excess kurtosis, a 

better model must be based on a distributional assumption that allows for negative skewness 

                                            
2 See Rubinstein(1994) and Bakshi, Cao, and Chan(1997). 
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and excess kurtosis. 

 

IV. Empirical Results 

 

In this section, we compare empirical performances of each model with respect to in-sample 

pricing, out-of-sample pricing and hedging performance. The analysis is based on two 

measures: mean absolute percentage errors (henceforth MAPE), and root mean squared errors 

(henceforth RMSE) as follows.   

 

MAPE = 
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where,  KtOi ;,*   denote the model price of the option i  on day t  and  KtOi ;,  

denote the market price of option i  on day. N denotes the number of options on day t , and 

T  denotes the number of days in the sample. MAPE measures the magnitude of pricing errors, 

while RMSE measures the volatility of errors. 

 

1. In-sample Pricing Performance 

Table 3 reports the mean and the standard error of the parameter estimates for each model. R2 

values for each model are reported. For the AHBS-type models, each parameter is estimated by 

the ordinary least squares every day. For the BS, SV, and SVJ models, each parameter is 

estimated by minimizing the sum of percentage squared errors between model and market 

option prices every day. First, the estimates of each model’s parameters have excessive standard 

errors of daily parameters. However, such estimation will be valuable for the following reasons. 

(16) 

(17) 
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The estimated parameters can be generated by indicating market sentiment on a daily basis and 

the estimated parameters may suggest the future specification of more complicated dynamic 

models. Because this ad hoc Black-Scholes method is based on not theoretical backgrounds but 

the traders’ rule, it is not a fatal problem. Second, as expected, the models (R3 andA3) that have 

four independent variables show higher R2 values than other models do. So, it is necessary to 

check over-fitting problem by examining the out-of-sample pricing performance. Third, the 

implied correlation of the SV and SVJ models has negative values. The negative estimate 

indicates that the implied volatility and the index returns are negatively correlated and the 

implied distribution perceived by option traders is negatively skewed. This is consistent with 

the volatility sneer pattern shown in table 2. 

We evaluate the in-sample pricing performance of each model by comparing market prices 

with model’s prices computed by using the parameter estimates from the current day. Table 4 

reports in-sample valuation errors for the alternative models computed over the whole sample 

of options. The SVJ model shows the best performance closely followed by the A3 model for 

MAPE and the A3 model outperforms other models for RMSE. In a rough way, the SVJ and the 

A3, the complex models, are the best models for in-sample pricing. This is a rather obvious 

result when the use of larger number of parameters in the SVJ and A3 model is considered. 

Surprisingly, although the SV model has five parameters, the SV model does not show better 

performance than the A3 and the R3 model with four parameters. The in-sample pricing 

performance is not simply contingent on the number of free parameters. Lastly, all models 

show moneyness-based valuation errors. The models exhibit the worst fit for the out-of-the-

money options. The fit, as measured by MAPE, steadily improves as we move from out-of-the-

money to near-the-money options. Overall, all AHBS-type models and mathematically 

complicated models show better performance than the BS model. Also the traders’ rule can 

explain the current market price in the options market although it is not rooted in rigorous 

theory. 
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2. Out-of-sample Pricing Performance 

 In-sample pricing performance can be biased due to the potential problem of over-fitting to 

the data. A good in-sample fit might be a consequence of having an increasingly larger number 

of parameters. To lower the impact of this connection to inferences, we turn to examining the 

model’s out-of-sample cross-sectional pricing performance. In the out-of-sample pricing, the 

presence of more parameters may actually cause over-fitting and have the model penalized if 

the extra parameters do not improve its structural fitting. This analysis also has the purpose of 

assessing the stability of each model’s parameter over time. To control the parameters’ stability 

over alternative time periods, we analyze out-of-sample valuation errors for the following day 

(week). We use the current day’s estimated structural parameters to price options for the 

following day (week). 

Table 5 and table 6 respectively report one-day and one-week ahead out-of-sample valuation 

errors for alternative models computed over the whole sample of options. First of all, we 

examine the pricing performance using the nearest-to-next roll-over strategy. Panel A of table 5 

and table 6 represents the results using the nearest-to-next roll-over strategy. For one day ahead 

out-of-sample pricing, the SVJ model shows the best performance, closely followed by the SV 

model. The SVJ and the SV models also exhibit better fit for the one week ahead out-of-sample 

pricing. For the in-sample pricing performance, the AHBS-type models are competitive. 

However, for the out-of-sample pricing performance, the mathematically complicated models 

show better performance than AHBS-type models. That is, the presence of more parameters of 

the SVJ and SV models actually does not cause over-fitting. Contrary to Jackwerth and 

Rubinstein (2001), Li and Pearson (2007) and Kim (2009), the traders’ rules do not dominate 

mathematically more sophisticated model, the SVJ and the SV models, although the traders’ 

rules is not far behind. With respect to moneyness-based errors, similar to the case of in-sample 

pricing, MAPE steadily decreases as we move from deep out-of-the-money to near-the-money 



 

 16 

options for all models. Generally, the SVJ model outperforms all the other models. 

Pricing errors increase from in-sample to out-of-sample pricing. The average of MAPE of all 

the models is 0.1334 for the in-sample pricing, and grows to 0.4022 for one-day ahead out-of-

sample pricing. One-week ahead out-of-sample pricing errors grow to 0.6953 almost five times 

as much as in-sample pricing errors. The relative margin of performance is significantly 

changed when compared to that of the in-sample pricing case. The difference of the BS and the 

best model, the SVJ model, becomes smaller in the out-of-sample pricing. The ratio of the BS 

model to the SVJ model for MAPE is 8.2279 for in-sample pricing errors. The ratio of the BS 

model to the SVJ model decreases to 2.5267 and to 1.4218 for one-day ahead and one-week 

ahead out-of-sample errors, respectively. As the term of the out-of-sample pricing gets longer, 

the difference between the BS model and the SVJ model, becomes smaller. The pricing 

performance of the SVJ model that is the best model for in-sample pricing is maintained as the 

term of out-of-sample pricing gets longer, implying that the presence of more parameters 

actually does not cause over-fitting. However, for the AHBS-type models, the A3 and R3 model, 

the best models among them for in-sample pricing, do not remain their position for one day and 

one week ahead out-of-sample pricing. For out-of-sample pricing, the A3 and the R3 models are 

changed into the very last implying that the presence of more parameters actually cause over-

fitting. This result is consistent with the result of Jackwerth and Rubinstein (2001), Li and 

Pearson (2007) and Kim (2009). As a result, the mathematically complicated models do not have 

over-fitting problems and the AHBS-type models have those when the nearest-to-next roll-over 

strategy is used. To mitigate these problems, we need to consider the new roll-over strategy, the 

next-to-next strategy. 

Second, we examine the pricing performance for the next-to-next roll-over strategy suggested 

by Choi and Ohk (2011). Panel B of table 5 and table 6 represents the results for the next-to-next 

roll-over strategy. Above all, the next-to-next roll-over strategy decreases the errors of all 

options pricing models. After using the next-to-next strategy, the averages of the MAPEs of all 
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options pricing models are decreased from 0.4022 (0.6953) to 0.2557 (0.3485) for one day (one 

week) ahead out-of-sample pricing. Panel A and panel B of Figure 1 represent the MAPE of 

each options pricing model for both the nearest-to-next and the next-to-next roll-over strategies, 

respectively. The pricing errors of the AHBS-type models are decreased largely by the next-to-

next strategy. Among them, the models with more parameters, the R3 and A3 model are 

favored the most. On the other hand, the improvement of the mathematically complicated 

models including the BS model is not much. Using the next-to-next strategy, the averages of the 

MAPEs of all AHBS-type models are decreased from 0.4426 (0.7968) to 0.2321 (0.2321), but those 

of the mathematically complicated models are from 0.2176 (0.4480) to 0.1924 (0.3342) for one 

day (one week) ahead out-of-sample pricing, respectively. For one day ahead out-of-sample 

pricing, the A2 model generally shows the best performance, closely followed by the SV model. 

The A3 models exhibit better fit for the one week ahead out-of-sample pricing, closely followed 

by the SV model. Using the nearest-to-next roll-over strategy, the SVJ model shows better 

performance than other models. However, using next-to-next strategy, AHBS-type models 

show better performance than the mathematically complicated models. As a result, after the 

next-to-next roll-over strategy is applied, the A2 or A3 model outperforms all the other models. 

Finally, we consider the relative strength of the absolute and relative smile models for pricing 

options. For in-sample pricing, the averages of the MAPEs of relative smile and absolute smile 

approaches are 0.0969 and 0.1005, respectively. Using the nearest-to-next strategy, for one day 

(one week) ahead out-of-sample pricing, the average MAPEs of alternative relative smile and 

absolute smile approaches are 0.4724 (0.8628) and 0.4128 (0.7308), respectively. Using the next-

to-next strategy, for one day (one week) ahead out-of-sample pricing, the averages of the 

MAPEs of alternative relative smile and absolute smile approaches are 0.2462 (0.3518) and 

0.2180 (0.2836), respectively. In other words, the effects of the reduction of pricing errors using 

the absolute smile approach are much better compared with those using the relative smile 

approach. This result is consistent with that of Jackwerth and Rubinstein (2001), Li and Pearson 
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(2007), Kim (2009), and Choi and Ohk (2011) who report that the “absolute smile” model beats 

the “relative smile” model in predicting prices. The result can be explained by the fact that the 

absolute smile model implicitly adjusts for the negative correlation between the index level 

movement and the level of implied volatilities. Because the absolute model treats the skew as a 

fixed function of the strike instead of the moneyness S/K, it makes out a smaller implied 

volatility than the relative smile model when there is an increase in the stock price. 

 

3. Hedging Performance 

Hedging performance is important to gauge the forecasting power of the volatility of 

underlying assets. We examine hedges in which only a single instrument (i.e., the underlying 

asset) can be employed. In practice, option traders usually focus on the risk due to the 

underlying asset price volatility alone, and carry out a delta-neutral hedge, employing only the 

underlying asset as the hedging instrument. 

We implement hedging with the following method. Consider hedging a short position in an 

option,  KtO ;,  with   periods to maturity and strike price of K . Let  tS  be the 

number of shares of the underlying asset to be purchased, and     tS StKtO  ;,0   be 

the residual cash positions. We consider the delta hedging strategy of   tS SKtO  /;,  

and  t0 . 

To examine the hedging performance, we use the following steps. First, on day t , we short an 

option, and construct a hedging portfolio by buying  tS  shares of the underlying asset3, 

and investing  t0  in a risk-free bond. To compute  tS , we use estimated parameters from 

the previous trading day and the current day’s asset price. For the SV model, we use estimated 

instantaneous volatility from the previous day. For the AHBS model, the volatility parameter 

necessary to compute the delta position is obtained by plugging the option specific strike price 

                                            
3 The delta, for a put option, is negative, which means that a short position in put options 
should be hedged with a short position in the underlying stock. 
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into the regression equation along with the previous day’s parameter estimates. Second, we 

liquidate the position after the next trading day or the next week. Then we compute the 

hedging error as the difference between the value of the replicating portfolio and the option 

price at the time of liquidation: 

 

 KtttOeS tr

ttSt ;,0  

  . 

 

Table 7 and table 8 present one day and one week hedging errors over alternative moneyness 

categories respectively. First, using the nearest-to-next roll-over strategy, the A1 model has the 

best hedging performance for one day and one week. Except the BS model, the SV or the SVJ 

model is the worst performer. For the hedging performance, the AHBS-type models show better 

performance than the other models. However the difference among models is not so large. This 

result is consistent with Kim (2009). The ratio of the BS model to the A1 model which is the best 

performers is 1.1724 and 1.0967 for one-day ahead and one-week ahead hedging errors, 

respectively. In each moneyness category, the hedging errors are highest for ATM options and 

get smaller as we move to OTM options. This pattern is true for every model and for each 

rebalancing frequency. Second, we examine the hedging results using the next-to-next roll-over 

strategy. In Panel A and Panel B of Figure 2, the errors of all models are decreased and the 

AHBS-type models are favored the most, similar to the pricing results. The A3 is the best 

performer for both one day and one week ahead hedging errors. However, the next-to-next 

strategy does not make extreme decreases. For hedging performance, the impact of the next-to-

next roll-over strategy is not much. 

 

V. Conclusion 

 

For the OEX options, we implement a horse race competition among several options pricing 

(18) 
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models. We examine the traders’ rules to predict future implied volatilities by applying simple 

ad hoc rules to the observed current implied volatility function and the mathematically 

complicated models, the SV and the SVJ model, for pricing and hedging options. The roll-over 

strategies of the parameters for each options pricing model are also examined. In the nearest-to-

next strategy, the options data of the nearest term contract on day t − k is used to estimate the 

parameters of the next-to-nearest contract on day t, whereas in the next-to-next, the next-to-

nearest contract on day t − k is used to estimate the parameter of the next-to-nearest contract on 

day t.  

It is found that when we use the traditional estimation method, the nearest-to-next strategy, 

the SVJ and SV models show better performance than the AHBS-type models for pricing 

options. Among AHBS-type models, simpler model with less parameter shows better 

performance than other models. That is, for the AHBS-type models, the presence of more 

parameters actually cause over-fitting but that does not cause over-fitting problem for the 

mathematically complicated models, the SV and SVJ models. For the hedging performance, the 

AHBS-type models show better performance than the mathematically complicated models but, 

the differences among the models are not significant. When we use the next-to-next strategy, the 

results are changed. The next-to-next strategy decreases the errors of all options pricing models. 

The pricing errors of the AHBS-type models are decreased largely by the next-to-next strategy. 

AHBS-type models show better performance than the mathematically complicated models for 

pricing options. That is, the next-to-next strategy mitigate over-fitting problem of AHBS-type 

models. On the other hand, the improvement of the mathematically complicated models 

including the BS model using the next-to-next strategy is not much. Also, the “absolute smile” 

approach shows better performance than the “relative smile” approach. 

As a result, when the nearest-to-next strategy is considered, the SVJ model shows better 

performance than the AHBS-type models. However, after considering the next-to-next strategy, 

the AHBS-type model has the advantage of simplicity and can be competitive model for pricing 
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and hedging S&P 500 index options. 
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Appendix 

 

The characteristic functions jf̂  for the SVJ model are respectively given by 
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The characteristic functions for the SV model can be obtained by setting 0  in (A-1) and 

(A-2). 
 

  

(A-1) 

(A-2) 
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Table 1: Options Data 

This table reports average option price, and the number of options, which are shown in 
parentheses, for each moneyness and type (call or put) category. The sample period is from 
January 4, 1996 to December 31, 2008. Last bid-ask average of each option contract is used to 
obtain the summary statistics. Moneyness of an option is defined as S/K where S denotes the 
spot price and K denotes the strike price. 
 

Call Options Put Options 

Moneyness Price Number Moneyness Price Number 

S/K<0.94 2.7833 10,033 1.00<S/K<1.03 13.0104 17,966 
0.94<S/K<0.96 4.8054 13,580 1.03<S/K<1.06 6.5072 15,149 
0.96<S/K<1.00 12.2916 18,783 S/K>1.06 3.0967 31,201 

Total 7.6435 42,396 Total 6.6693 64,316 
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Table 2: Implied Volatility 

This table reports the implied volatilities calculated by inverting the Black-Scholes model 
separately for each moneyness category. The implied volatilities of individual options are then 
averaged within each moneyness category and across the days in the sample. Moneyness is 
defined as S/K where S denotes the spot price and K denotes the strike price. 1996 01-06 is the 
period from January, 1996 to June, 1996. 
 

  S/K < 0.94 0.94 < S/K < 0.97 0.97 < S/K < 1.00 1.00 < S/K < 1.03 1.03 < S/K < 1.06 S/K > 1.06 

1996 01-06 0.1308 0.1204 0.1207 0.1553 0.1841 0.2249 

1996 07-12 0.1413 0.1243 0.1289 0.1606 0.1884 0.2332 

1997 01-06 0.1626 0.1579 0.1636 0.1895 0.2108 0.2516 

1997 07-12 0.1920 0.1867 0.1957 0.2223 0.2477 0.3092 

1998 01-06 0.1517 0.1491 0.1588 0.1917 0.2226 0.2872 

1998 07-12 0.2364 0.2037 0.2139 0.2406 0.2709 0.3492 

1999 01-06 0.1831 0.1851 0.2011 0.2267 0.2511 0.3132 

1999 07-12 0.1626 0.1658 0.1774 0.2035 0.2267 0.2887 

2000 01-06 0.1922 0.1840 0.1969 0.2238 0.2417 0.3025 

2000 07-12 0.2095 0.1844 0.1891 0.2070 0.2259 0.2841 

2001 01-06 0.2120 0.1962 0.2040 0.2269 0.2391 0.2996 

2001 07-12 0.2159 0.1977 0.2115 0.2401 0.2638 0.3525 

2002 01-06 0.1781 0.1694 0.1740 0.1993 0.2256 0.2889 

2002 07-12 0.2711 0.2683 0.2787 0.3070 0.3270 0.3850 

2003 01-06 0.2427 0.2248 0.2208 0.2325 0.2504 0.2951 

2003 07-12 0.1563 0.1459 0.1446 0.1689 0.1911 0.2444 

2004 01-06 0.1464 0.1262 0.1243 0.1504 0.1768 0.2281 

2004 07-12 0.1227 0.1127 0.1121 0.1354 0.1589 0.2036 

2005 01-06 0.1197 0.1025 0.0986 0.1233 0.1510 0.1994 

2005 07-12 0.1628 0.0902 0.0926 0.1205 0.1472 0.1958 

2006 01-06 0.1205 0.0968 0.0981 0.1289 0.1562 0.2131 

2006 07-12 0.2184 0.0875 0.0903 0.1201 0.1480 0.1954 

2007 01-06 0.1666 0.0945 0.0955 0.1301 0.1618 0.2236 

2007 07-12 0.1809 0.1548 0.1713 0.2124 0.2386 0.2917 

2008 01-06 0.1902 0.1771 0.1942 0.2284 0.2471 0.2893 

2008 07-12 0.3975 0.3296 0.3435 0.3754 0.4017 0.4722 
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Table 3: Parameters 

The table reports the mean and the standard error of the parameter estimates for each model. 
The mean and the standard deviation of R2s for each model are reported. For the AHBS-type 
models, each parameter is estimated by the ordinary least squares every day. R1 is the ad hoc 
Black-Scholes model that considers the intercept and the moneyness as the independent 
variable. R2 is the ad hoc Black-Scholes model that considers the intercept, the moneyness, and 
the square of the moneyness as the independent variable. R3 is the ad hoc Black-Scholes model 
that considers the intercept, the moneyness, the square and the third power of the moneyness as 
the independent variable. A1 is the ad hoc Black-Scholes model that considers the intercept and 
the strike price as the independent variable. A2 is the ad hoc Black-Scholes model that considers 
the intercept, the strike price, and the square of the strike price as the independent variable. A3 
is the ad hoc Black-Scholes model that considers the intercept, the strike price, and the square 
and the third power of the strike price as the independent variable. BS is the Black-Scholes (1973) 
option pricing model. SV is the option pricing model considering the continuous-time stochastic 
volatility. SVJ is the option pricing model considering the continuous-time stochastic volatility 
and the jumps. For the BS, SV, and SVJ models, each parameter is estimated by minimizing the 
sum of percentage squared errors between model and market option prices every day. 
 

Panel A: AHBS-type Models 

 0  
1  2  

3  2R  

R1 
-0.6097 
(0.0052) 

0.8006 
(0.0046) 

 
 0.9326 

(0.1124) 

R2 
1.7984 

(0.0631) 
-3.9174 
(0.1255) 

2.3059 
(0.0621) 

 0.9720 
(0.0427) 

R3 
26.9431 
(1.0340) 

-77.5085 
(3.0511) 

73.9906 
(2.9996) 

-23.2409 
(0.9828) 

0.9833 
(0.0289) 

A1 
1.0360 

(0.0048) 
-0.0008 
(0.0000) 

 
 0.9152 

(0.1202) 

A2 
4.3900 

(0.0656) 
-0.0071 
(0.0001) 

0.0000 
(0.0000) 

 0.9761 
(0.0377) 

A3 
-17.1892 
(1.0140) 

0.0559 
(0.0030) 

-0.0001 
(0.0000) 

0.0000 
(0.0000) 

0.9847 
(0.0285) 

Panel B: Other Models 

          

BS 
0.1699 

(0.0012) 
    

   

   J  J      v    
tv  

SV    
5492.2986 

(5200.8240) 
6.3328 

(0.4005) 
140.5703 

(127.4397) 
-0.5426 
(0.0023) 

6.5856 
(6.3503) 

SVJ 
2.4129 

(0.1533) 
0.0084 

(0.0268) 
2.2860 
(04780) 

5814.9122 
(3853.0067) 

0.4964 
(0.0287) 

2.2812 
(0.3920) 

-0.2469 
(0.0119) 

25.9249 
(23.5741) 
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Table 4: In-Sample Pricing Errors 

This table reports in-sample pricing errors with respect to moneyness. S/K is defined as moneyness where S denotes the asset price and K denotes 
the strike price. Each model is estimated every day during the sample period and in-sample pricing errors are computed using estimated parameters 
from the current day. MAPE denotes mean absolute percentage errors and RMSE denotes root mean squared errors. R1 is the ad hoc Black-Scholes 
model that considers the intercept and the moneyness as the independent variables. R2 is the ad hoc Black-Scholes model that considers the 
intercept, the moneyness, and the square of the moneyness as the independent variables. R3 is the ad hoc Black-Scholes model that considers the 
intercept, the moneyness, the square and the third power of the moneyness as the independent variables. A1 is the ad hoc Black-Scholes model that 
considers the intercept and the strike price as the independent variables. A2 is the ad hoc Black-Scholes model that considers the intercept, the strike 
price, and the square of the strike price as the independent variables. A3 is the ad hoc Black-Scholes model that considers the intercept, the strike 
price, and the square and the third power of the strike price as the independent variables. BS is the Black-Scholes (1973) option pricing model. SV is 
the option pricing model considering the continuous-time stochastic volatility. SVJ is the option pricing model considering the continuous-time 
stochastic volatility and jumps. 
 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAPE 

S/K<0.94 0.2780 0.3521 0.2537 0.1337 0.4723 0.2116 0.1089 0.1186 0.0984 

0.94<S/K<0.96 0.2145 0.2268 0.1546 0.0915 0.2555 0.1431 0.0769 0.0561 0.0467 

0.96<S/K<1.00 0.1328 0.1090 0.0854 0.0615 0.1169 0.0800 0.0565 0.0561 0.0442 

1.00<S/K<1.03 0.2987 0.0655 0.0425 0.0480 0.0720 0.0436 0.0471 0.0586 0.0516 

1.03<S/K<1.06 0.6453 0.0749 0.0469 0.0384 0.0879 0.0461 0.0357 0.0566 0.0448 

S/K>1.06 0.9065 0.0957 0.0739 0.0590 0.1148 0.0691 0.0566 0.0702 0.0712 

Total 0.4838 0.1308 0.0940 0.0658 0.1557 0.0863 0.0595 0.0666 0.0588 

RMSE 

S/K<0.94 0.8478 0.6683 0.4764 0.2383 2.8438 0.3796 0.2173 0.3040 0.4919 

0.94<S/K<0.96 1.3162 0.9581 0.6833 0.3747 1.0699 0.7589 0.3370 0.5302 0.6625 

0.96<S/K<1.00 2.3751 1.3847 1.1295 0.8592 1.5330 1.0672 0.8222 0.9734 1.1253 

1.00<S/K<1.03 4.7693 1.0109 0.8813 0.9327 1.0172 0.9080 0.8887 1.1914 1.5422 

1.03<S/K<1.06 4.7025 0.5752 0.5852 0.3648 0.5569 0.5734 0.3191 0.5246 1.3276 



 

 30 

S/K>1.06 3.6577 0.3225 0.3329 0.2059 0.3643 0.3000 0.1828 0.2238 1.2709 

Total 3.4873 0.8635 0.7191 0.5752 1.2557 0.7065 0.5432 0.7100 1.1934 
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Table 5: One Day Ahead Out-of-Sample Pricing Errors 

This table reports one day ahead out-of-sample pricing errors with respect to moneyness. S/K is defined as moneyness where S denotes the asset 
price and K denotes the strike price. Each model is estimated every day during the sample period and one day ahead out-of-sample pricing errors 
are computed using estimated parameters from the previous trading day. MAPE denotes mean absolute percentage errors and RMSE denotes root 
mean squared errors. R1 is the ad hoc Black-Scholes model that considers the intercept and the moneyness as the independent variables. R2 is the ad 
hoc Black-Scholes model that considers the intercept, the moneyness, and the square of the moneyness as the independent variables. R3 is the ad hoc 
Black-Scholes model that considers the intercept, the moneyness, the square and the third power of the moneyness as the independent variables. A1 
is the ad hoc Black-Scholes model that considers the intercept and the strike price as the independent variables. A2 is the ad hoc Black-Scholes model 
that considers the intercept, the strike price, and the square of the strike price as the independent variables. A3 is the ad hoc Black-Scholes model 
that considers the intercept, the strike price, and the square and the third power of the strike price as the independent variables. BS is the Black-
Scholes (1973) option pricing model. SV is the option pricing model considering the continuous-time stochastic volatility. SVJ is the option pricing 
model considering the continuous-time stochastic volatility and jumps. 

Panel A: Nearest-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAPE 

S/K<0.94 0.5341 1.5407 0.9417 1.5318 1.9915 0.9234 1.6504 0.5778 0.4373 

0.94<S/K<0.96 0.3247 0.3937 0.3218 0.3152 0.4314 0.2639 0.2966 0.2566 0.2623 

0.96<S/K<1.00 0.1802 0.1765 0.1610 0.1461 0.1558 0.1315 0.1182 0.1412 0.1474 

1.00<S/K<1.03 0.3000 0.1205 0.1059 0.1072 0.1048 0.0868 0.0888 0.1241 0.1177 

1.03<S/K<1.06 0.6398 0.1673 0.1545 0.1574 0.1455 0.1297 0.1288 0.1831 0.1701 

S/K>1.06 0.9048 0.2719 0.6004 1.5192 0.2345 0.4619 1.0370 0.2295 0.2221 

Total 0.5291 0.3496 0.3731 0.6945 0.3765 0.3116 0.5502 0.2258 0.2094 

MSE 

S/K<0.94 3.1253 9.8866 6.9483 11.2266 12.1547 7.4598 11.6676 10.2350 1.8681 

0.94<S/K<0.96 2.2157 2.5736 2.2606 2.2050 2.8509 1.9258 1.8610 4.5890 2.0238 

0.96<S/K<1.00 2.9984 2.6426 2.3948 2.3005 2.3494 1.9160 1.7958 4.1612 2.5945 

1.00<S/K<1.03 4.9140 2.2118 2.1536 2.1869 1.8059 1.7111 1.7057 4.1129 2.6332 

1.03<S/K<1.06 4.7668 1.7302 1.7318 1.8537 1.3526 1.3127 1.2769 3.6266 2.1428 



 

 32 

S/K>1.06 3.7063 1.6942 3.1487 12.5589 1.3521 2.3913 9.4232 4.0781 1.7147 

Total 3.7990 3.6539 3.2101 7.7982 4.1522 2.9598 6.3635 5.0155 2.1709 

 
Panel B: Next-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAPE 

S/K<0.94 0.4918 0.9766 0.6284 1.0934 1.0709 0.5456 0.9756 0.4143 0.4069 

0.94<S/K<0.96 0.3204 0.3412 0.3045 0.2646 0.3045 0.2433 0.2133 0.2340 0.2397 

0.96<S/K<1.00 0.1795 0.1688 0.1563 0.1415 0.1469 0.1260 0.1123 0.1322 0.1381 

1.00<S/K<1.03 0.2992 0.1163 0.1008 0.1021 0.0999 0.0811 0.0831 0.1121 0.1091 

1.03<S/K<1.06 0.6390 0.1612 0.1447 0.1450 0.1392 0.1213 0.1202 0.1661 0.1592 

S/K>1.06 0.9042 0.2016 0.1865 0.1906 0.1865 0.1573 0.1591 0.1954 0.2018 

Total 0.5241 0.2664 0.2174 0.2549 0.2564 0.1813 0.2162 0.1916 0.1931 

MSE 

S/K<0.94 2.0566 6.5118 4.4744 9.9655 7.7868 4.2148 10.1036 2.0878 1.9821 

0.94<S/K<0.96 2.0071 1.9145 1.8257 1.7539 1.5357 1.3176 1.2002 1.8637 1.7718 

0.96<S/K<1.00 2.9282 2.3118 2.1726 2.0654 1.9846 1.6376 1.4830 2.1965 2.1697 

1.00<S/K<1.03 4.9063 1.9392 1.8888 1.9098 1.4814 1.3808 1.3534 2.0800 2.2010 

1.03<S/K<1.06 4.7669 1.4731 1.4869 1.4545 1.0535 1.0306 0.9614 1.5444 1.8706 

S/K>1.06 3.6934 1.1429 1.1481 1.1399 0.8229 0.7548 0.7765 1.1771 1.6165 

Total 3.6995 2.5918 2.1065 3.4315 2.7239 1.7325 3.2841 1.7813 1.9167 
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Table 6: One Week Ahead Out-of-Sample Pricing Errors 

This table reports one week ahead out-of-sample pricing errors for the KOSPI 200 option with respect to moneyness. S/K is defined as moneyness 
where S denotes the asset price and K denotes the strike price. Each model is estimated every day during the sample period and one week ahead 
out-of-sample pricing errors are computed using estimated parameters from one week ago. MAPE denotes mean absolute percentage errors and 
RMSE denotes root mean squared errors. R1 is the ad hoc Black-Scholes model that considers the intercept and the moneyness as the independent 
variables. R2 is the ad hoc Black-Scholes model that considers the intercept, the moneyness, and the square of the moneyness as the independent 
variables. R3 is the ad hoc Black-Scholes model that considers the intercept, the moneyness, the square and the third power of the moneyness as the 
independent variables. A1 is the ad hoc Black-Scholes model that considers the intercept and the strike price as the independent variables. A2 is the 
ad hoc Black-Scholes model that considers the intercept, the strike price, and the square of the strike price as the independent variables. A3 is the ad 
hoc Black-Scholes model that considers the intercept, the strike price, and the square and the third power of the strike price as the independent 
variables. BS is the Black-Scholes (1973) option pricing model. SV is the option pricing model considering the continuous-time stochastic volatility. 
SVJ is the option pricing model considering the continuous-time stochastic volatility and jumps. 

Panel A: Nearest-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAPE 

S/K<0.94 0.8617 1.9879 2.0170 3.0647 2.6419 2.0196 3.6512 1.3913 0.7470 

0.94<S/K<0.96 0.4497 0.5460 0.4920 0.4991 0.5954 0.4316 0.5740 0.5209 0.5237 

0.96<S/K<1.00 0.2190 0.2455 0.2304 0.2148 0.2103 0.1795 0.1709 0.2549 0.2709 

1.00<S/K<1.03 0.3069 0.1766 0.1677 0.1667 0.1433 0.1316 0.1333 0.2247 0.2172 

1.03<S/K<1.06 0.6341 0.2672 0.2738 0.2784 0.2119 0.2234 0.2277 0.3665 0.3355 

S/K>1.06 0.8970 0.5984 1.4879 2.7130 0.4559 1.1021 1.6741 0.5318 0.4778 

Total 0.5808 0.5424 0.7952 1.2507 0.5488 0.6527 0.9910 0.4874 0.4085 

MSE 

S/K<0.94 4.2860 11.7077 12.6689 15.3663 14.5579 11.5353 15.0424 12.9565 2.7126 

0.94<S/K<0.96 2.9367 3.4075 3.4598 3.3580 3.6598 2.6120 3.1233 6.5186 3.1778 

0.96<S/K<1.00 3.6061 3.6611 3.4406 3.3757 3.0477 2.5708 2.5055 6.3450 4.1884 

1.00<S/K<1.03 5.1224 3.3300 3.3049 3.3273 2.5613 2.4069 2.4213 6.3463 4.2508 

1.03<S/K<1.06 4.8038 2.7604 2.7448 2.8641 2.1222 2.0400 2.2054 5.7462 3.3905 
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S/K>1.06 3.6253 2.5126 4.1344 15.3676 2.0307 3.4903 11.2947 5.6007 2.6057 

Total 4.0802 4.6395 5.1587 9.8868 5.1212 4.4360 7.9132 6.9945 3.4238 

 
Panel B: Next-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAPE 

S/K<0.94 0.6769 1.0920 1.1717 0.8539 0.9536 0.9828 0.6170 0.5046 0.7284 

0.94<S/K<0.96 0.4182 0.4678 0.4482 0.4071 0.3642 0.3345 0.3078 0.3604 0.4830 

0.96<S/K<1.00 0.2159 0.2419 0.2340 0.2157 0.1933 0.1758 0.1600 0.2083 0.2569 

1.00<S/K<1.03 0.3104 0.1707 0.1601 0.1581 0.1306 0.1155 0.1169 0.1727 0.1984 

1.03<S/K<1.06 0.6392 0.2405 0.2361 0.2382 0.1869 0.1863 0.1881 0.2892 0.3231 

S/K>1.06 0.9025 0.3294 0.3274 0.3285 0.2926 0.2784 0.2793 0.3076 0.4234 

Total 0.5618 0.3640 0.3647 0.3266 0.3042 0.2932 0.2534 0.2901 0.3783 

MSE 

S/K<0.94 2.7911 7.3373 8.4343 5.7274 7.4183 8.2250 3.0896 2.2932 2.8595 

0.94<S/K<0.96 2.7126 2.7285 2.6666 2.5978 2.0137 1.8453 1.7212 2.3140 2.7989 

0.96<S/K<1.00 3.6344 3.2995 3.2114 3.1088 2.5312 2.2361 2.0776 3.0648 3.4921 

1.00<S/K<1.03 5.3199 3.0122 2.9683 2.9811 2.0871 1.9427 1.9221 3.0605 3.3834 

1.03<S/K<1.06 5.0098 2.4232 2.4145 2.4438 1.6461 1.5466 1.5552 2.3768 2.8596 

S/K>1.06 3.8287 1.8045 1.8136 1.8225 1.3018 1.1693 1.2655 1.5868 2.2649 

Total 4.0749 3.3527 3.5615 2.9933 2.9041 3.0086 1.8623 2.4379 2.9154 
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Table 7: One Day Ahead Hedging Errors 

This table reports one day ahead hedging error with respect to moneyness. Only the underlying asset is used as the hedging instrument. Parameters 
and spot volatility implied by all options of the previous day are used to establish the current day’s hedge portfolio, which is then liquidated the 
following day. For each option, its hedging error is the difference between the replicating portfolio value and its market price. MAPE denotes mean 
absolute percentage errors and RMSE denotes root mean squared errors. R1 is the ad hoc Black-Scholes model that considers the intercept and the 
moneyness as the independent variables. R2 is the ad hoc Black-Scholes model that considers the intercept, the moneyness, and the square of the 
moneyness as the independent variables. R3 is the ad hoc Black-Scholes model that considers the intercept, the moneyness, the square and the third 
power of the moneyness as the independent variables. A1 is the ad hoc Black-Scholes model that considers the intercept and the strike price as the 
independent variables. A2 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and the square of the strike price as the 
independent variables. A3 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and the square and the third power of the 
strike price as the independent variables. BS is the Black-Scholes (1973) option pricing model. SV is the option pricing model considering the 
continuous-time stochastic volatility. SVJ is the option pricing model considering the continuous-time stochastic volatility and jumps. 

Panel A: Nearest-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAPE 

S/K<0.94 0.6677 0.6652 0.6888 0.6885 0.6857 0.6876 0.6910 0.6703 0.6762 

0.94<S/K<0.96 0.3542 0.3337 0.3376 0.3420 0.3281 0.3357 0.3414 0.3632 0.3901 

0.96<S/K<1.00 0.1526 0.1463 0.1484 0.1475 0.1461 0.1484 0.1473 0.1623 0.1723 

1.00<S/K<1.03 0.1270 0.1170 0.1160 0.1158 0.1165 0.1155 0.1153 0.1383 0.1335 

1.03<S/K<1.06 0.2082 0.1751 0.1717 0.1725 0.1740 0.1696 0.1699 0.1883 0.1869 

S/K>1.06 0.3019 0.2052 0.2205 0.2485 0.2003 0.2135 0.2358 0.2171 0.2196 

Total 0.2748 0.2351 0.2420 0.2509 0.2344 0.2391 0.2467 0.2511 0.2566 

RMSE 

S/K<0.94 2.5132 2.7778 2.7379 2.6767 2.8555 2.7129 2.6856 3.6700 2.7955 

0.94<S/K<0.96 1.5283 1.6582 1.6308 1.5964 1.6561 1.6085 1.5817 2.1158 2.0952 

0.96<S/K<1.00 1.4958 1.5212 1.5138 1.5077 1.5224 1.5094 1.5050 1.8682 1.8283 

1.00<S/K<1.03 2.0369 1.6609 1.6735 1.6580 1.6522 1.6677 1.6542 2.1256 2.1287 

1.03<S/K<1.06 1.6514 1.2474 1.2429 1.2336 1.2429 1.2330 1.2238 1.5762 1.6345 
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S/K>1.06 1.3234 0.9074 0.9160 1.0574 0.9071 0.9038 1.0349 1.1785 1.2405 

Total 1.6874 1.5366 1.5282 1.5363 1.5472 1.5159 1.5288 1.9725 1.8503 

 
Panel B: Next-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAPE 

S/K<0.94 0.6500 0.6197 0.6313 0.6179 0.6068 0.6257 0.6127 0.6547 0.6756 

0.94<S/K<0.96 0.3539 0.3294 0.3366 0.3337 0.3209 0.3337 0.3301 0.3611 0.3903 

0.96<S/K<1.00 0.1525 0.1459 0.1483 0.1475 0.1456 0.1483 0.1472 0.1622 0.1723 

1.00<S/K<1.03 0.1270 0.1170 0.1160 0.1158 0.1165 0.1155 0.1153 0.1383 0.1329 

1.03<S/K<1.06 0.2082 0.1750 0.1714 0.1718 0.1739 0.1694 0.1695 0.1877 0.1859 

S/K>1.06 0.3024 0.2007 0.2005 0.2010 0.1973 0.1963 0.1971 0.2133 0.2163 

Total 0.2733 0.2290 0.2306 0.2291 0.2254 0.2281 0.2265 0.2481 0.2553 

MSE 

S/K<0.94 2.3741 2.6121 2.5715 2.5004 2.6184 2.5213 2.4721 3.3134 2.9120 

0.94<S/K<0.96 1.5172 1.6290 1.6141 1.5843 1.6206 1.5948 1.5668 2.1139 2.0934 

0.96<S/K<1.00 1.4937 1.5120 1.5106 1.5061 1.5131 1.5073 1.5030 1.8547 1.8303 

1.00<S/K<1.03 2.0454 1.6653 1.6774 1.6626 1.6578 1.6728 1.6594 2.1289 2.1032 

1.03<S/K<1.06 1.6639 1.2526 1.2494 1.2366 1.2496 1.2411 1.2311 1.5756 1.5971 

S/K>1.06 1.3398 0.9067 0.8959 0.8978 0.9081 0.8881 0.8921 1.1397 1.2071 

Total 1.6751 1.5059 1.4970 1.4772 1.5044 1.4827 1.4676 1.9060 1.8502 
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Table 8: One Week Ahead Hedging Errors 

This table reports one week ahead hedging error with respect to moneyness. Only the underlying asset is used as the hedging instrument. 
Parameters and spot volatility implied by all options of the previous day are used to establish the current day’s hedge portfolio, which is then 
liquidated the next week. For each option, its hedging error is the difference between the replicating portfolio value and its market price. MAPE 
denotes mean absolute percentage errors and RMSE denotes root mean squared errors. R1 is the ad hoc Black-Scholes model that considers the 
intercept and the moneyness as the independent variables. R2 is the ad hoc Black-Scholes model that considers the intercept, the moneyness, and the 
square of the moneyness as the independent variables. R3 is the ad hoc Black-Scholes model that considers the intercept, the moneyness, the square 
and the third power of the moneyness as the independent variables. A1 is the ad hoc Black-Scholes model that considers the intercept and the strike 
price as the independent variables. A2 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and the square of the strike 
price as the independent variables. A3 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and the square and the third 
power of the strike price as the independent variables. BS is the Black-Scholes (1973) option pricing model. SV is the option pricing model 
considering the continuous-time stochastic volatility. SVJ is the option pricing model considering the continuous-time stochastic volatility and jumps. 

Panel A: Nearest-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAPE 

S/K<0.94 2.8491 2.9664 2.9921 2.9648 2.9794 3.0041 2.9787 3.5156 3.3768 

0.94<S/K<0.96 1.1475 1.1192 1.1244 1.1293 1.1165 1.1214 1.1266 1.3321 1.3710 

0.96<S/K<1.00 0.4419 0.4281 0.4313 0.4308 0.4231 0.4293 0.4295 0.4546 0.4716 

1.00<S/K<1.03 0.3703 0.3721 0.3696 0.3701 0.3719 0.3684 0.3689 0.4033 0.3946 

1.03<S/K<1.06 0.6822 0.6543 0.6489 0.6538 0.6519 0.6440 0.6464 0.6920 0.6786 

S/K>1.06 1.0605 0.8051 0.8375 0.8674 0.7921 0.8211 0.8445 0.8481 0.8426 

Total 0.9597 0.8797 0.8919 0.9003 0.8751 0.8861 0.8924 0.9823 0.9730 

MSE 

S/K<0.94 6.6513 7.0792 7.0946 7.0745 7.1525 7.0756 6.9844 8.8376 8.2344 

0.94<S/K<0.96 3.1401 3.2563 3.2330 3.2005 3.2709 3.2093 3.1837 4.1987 4.1980 

0.96<S/K<1.00 3.1357 3.2304 3.2024 3.1794 3.2309 3.1813 3.1667 3.5489 3.5308 

1.00<S/K<1.03 4.1265 3.7116 3.6913 3.6902 3.7169 3.6885 3.6935 3.9930 4.0198 

1.03<S/K<1.06 3.0727 2.8233 2.8127 2.8464 2.8169 2.8002 2.8106 3.1969 3.2028 
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S/K>1.06 2.5903 2.2104 2.2283 2.3903 2.1970 2.2066 2.3509 2.4710 2.4540 

Total 3.5724 3.4869 3.4816 3.5086 3.4987 3.4659 3.4768 4.1056 3.9970 

 
Panel B: Next-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAPE 

S/K<0.94 2.8162 2.9226 2.9128 2.8485 2.8982 2.9104 2.8508 3.4766 3.4192 

0.94<S/K<0.96 1.1432 1.1174 1.1244 1.1180 1.0969 1.1168 1.1090 1.3261 1.3721 

0.96<S/K<1.00 0.4414 0.4271 0.4314 0.4303 0.4212 0.4291 0.4284 0.4544 0.4713 

1.00<S/K<1.03 0.3703 0.3720 0.3695 0.3699 0.3717 0.3682 0.3687 0.4036 0.3942 

1.03<S/K<1.06 0.6822 0.6535 0.6470 0.6498 0.6513 0.6424 0.6444 0.6923 0.6771 

S/K>1.06 1.0629 0.7870 0.7852 0.7859 0.7783 0.7766 0.7786 0.8341 0.8305 

Total 0.9570 0.8698 0.8685 0.8628 0.8610 0.8633 0.8582 0.9739 0.9726 

MSE 

S/K<0.94 6.6353 7.0186 6.9674 6.8980 7.0307 6.9493 6.9083 8.8121 8.2492 

0.94<S/K<0.96 3.1257 3.2232 3.2097 3.1744 3.2071 3.1841 3.1525 4.1951 4.2015 

0.96<S/K<1.00 3.1262 3.2123 3.1997 3.1761 3.2087 3.1809 3.1627 3.5385 3.5450 

1.00<S/K<1.03 4.1231 3.7120 3.6924 3.6906 3.7175 3.6898 3.6943 3.9845 4.0072 

1.03<S/K<1.06 3.0734 2.8179 2.8049 2.8145 2.8116 2.7934 2.8023 3.1838 3.1673 

S/K>1.06 2.5988 2.1864 2.1765 2.1772 2.1762 2.1613 2.1668 2.4002 2.4054 

Total 3.5684 3.4644 3.4454 3.4270 3.4620 3.4314 3.4210 4.0830 3.9863 
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Figure 1: Out-of-Sample Pricing Errors 

This figure shows the mean absolute percentage errors (MAPE) of out-of-sample pricing for each option pricing models with respect to the roll-over 
strategies. Panel A represents One-Day Ahead Out-of-Sample Pricing Errors and Panel B represents One-Week Ahead Out-of-Sample Pricing Errors. 
R1 is the ad hoc Black-Scholes model that considers the intercept and the moneyness as the independent variable. R2 is the ad hoc Black-Scholes 
model that considers the intercept, the moneyness, and the square of the moneyness as the independent variable. R3 is the ad hoc Black-Scholes 
model that considers the intercept, the moneyness, the square and the third power of the moneyness as the independent variable. A1 is the ad hoc 
Black-Scholes model that considers the intercept and the strike price as the independent variable. A2 is the ad hoc Black-Scholes model that 
considers the intercept, the strike price, and the square of the strike price as the independent variable. A3 is the ad hoc Black-Scholes model that 
considers the intercept, the strike price, and the square and the third power of the strike price as the independent variable. BS is the Black-Scholes 
(1973) option pricing model. SV is the option pricing model considering the continuous-time stochastic volatility. SVJ is the option pricing model 
considering the continuous-time stochastic volatility and the jumps. 
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Panel B. One-Week Ahead Out-of-Sample Pricing Errors 
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Figure 2: Hedging Errors 
This figure shows the mean absolute percentage errors (MAPE) of hedging for each option pricing models with respect to the roll-over strategies. 
Panel A represents One-Day Ahead Hedging Errors and Panel B represents One-Week Ahead Hedging Errors. R1 is the ad hoc Black-Scholes model 
that considers the intercept and the moneyness as the independent variable. R2 is the ad hoc Black-Scholes model that considers the intercept, the 
moneyness, and the square of the moneyness as the independent variable. R3 is the ad hoc Black-Scholes model that considers the intercept, the 
moneyness, the square and the third power of the moneyness as the independent variable. A1 is the ad hoc Black-Scholes model that considers the 
intercept and the strike price as the independent variable. A2 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and the 
square of the strike price as the independent variable. A3 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and the 
square and the third power of the strike price as the independent variable. BS is the Black-Scholes (1973) option pricing model. SV is the option 
pricing model considering the continuous-time stochastic volatility. SVJ is the option pricing model considering the continuous-time stochastic 
volatility and the jumps. 
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Panel B: One-Week Ahead Hedging Errors 
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