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Abstract

In this paper, a Bayesian estimation method for calibrating parameters of expo-
nential Lévy models, used to predict distributions of option prices, is proposed. As
real option prices are noisy, it is appropriate for option pricing models to provide
confidence intervals for option prices. An algorithm for calibrating the parameter
sets of exponential Lévy models is presented, and the performance of the proposed
method is verified by comparing model-generated option prices with real market op-
tion prices such as KOSPI 200 index option prices. Simulation results show that the
proposed method calibrates the parameter sets effectively, overcoming the ill-posed
inverse problem of model calibration and enabling the construction of reasonable
predicted distributions of option prices.
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1 Introduction

In the recent finance literature, the exponential Lévy process has been exam-
ined to gain an understanding of the intrinsic properties of asset returns and
option prices (see Gutierrez (2008); Cont and Tankov (2004)). It is clear,
based on considerable empirical research, that the Black-Scholes-Merton op-
tion pricing formula can not explain such properties of option prices in real
markets as implied volatility smile behavior, whereas, by contrast, an option
pricing theory based on the exponential Lévy process defined by its charac-
teristic triplet (σ, ν, γ), can reproduce features of option prices traded in real
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markets (see Balland (2002); Cont and Fonseca (2002); Dumas et al. (1998)).

Although option pricing models that employ the Fourier analysis can be used
to calculate option prices, the Fast fourier transform (FFT) method cannot
be directly applied to the option pricing formula, due to the singularity of the
payoff function at v = 0 (see Minenna and Verzella (2008)). To overcome this
problem, Carr and Madan (1999) propose an approach that circumvents this
problem through use of a damping parameter. We can easily estimate option
prices, using Fourier transform if the characteristic function of the log prices
in the risk-neutral measure is analytically known. In particular, the five Lévy
process models, Merton (1976), Kou (2002), Variance gamma (see Madan
(1998)), Normal inverse gaussian (see Barndorff (1997)), and CGMY (see
Carr et al. (2003)) considered in this paper, can be expressed in analytic
form. Using the FFT method to estimate option prices is thus made simple
by way of the Lévy processes.

In most models with jumps, suitable choice of an equivalent martingale mea-
sure allows for the generation of any given price for a given European option:
a range of possible prices obtained by picking various equivalent martingale
measures is the maximal interval allowed by static arbitrage arguments.

Because the market is incomplete, knowledge of historical price processes alone
does not allow for the computation of unique option prices. That is the main
difficulty of using a historical approach to the identification of exponential-
Lèvy models.

In incomplete market models, a risk-neutral measure Q bears only a weak
relationship to the time series behavior described by P: Q cannot be identified
from P but only inherits some of its qualitative properties such as the pres-
ence of jumps, infinite or finite activity, and infinite or finite variation of the
historical price process. Therefore, a natural approach, known as ”implied” or
risk-neutral modeling, is to directly model the risk-neutral dynamics of the
asset by choosing a pricing measure Q that respects the qualitative properties
of the asset price.

When option prices are quoted on the market, a market-consistent risk-neutral
pricing model Q can not be obtained merely from an econometric analysis of
the time series of the underlying returns but requires an examination of prices
of contingent claims today (t = 0). One chooses a risk-neutral model so as to
reproduce the prices of traded options, called model calibration, and then
uses this model to price exotic, illiquid or OTC options and to compute hedge
ratios.

Calibration Problem 1 Given an exponential-Lèvy model (σ(θ), ν(θ), γ(θ))
and observed prices Ci of call options with maturities Ti and strike prices
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Ki, i ∈ I, find θ such that the discounted asset price St exp(−rt) is a martin-
gale, and the observed option prices are given by their discounted risk-neutral
expectations:

∀i ∈ I, Ci = e−rTEθ[STi −Ki)
+]

where Eθ denotes the expectation computed using the exponential-Lévy model
with triplet (σ(θ), ν(θ), γ(θ)).

Because calibration of these models with market option data is usually for-
mulated as a nonlinear optimization problem, such calibration often suffers
from local minima problems, which can lead to poor performance or wrong
information in analyzing derivatives markets. Therefore, to successfully apply
a given model to the pricing of complex options and to analyze the behavior
of cross-sectional option data, it is very important to obtain a parameter set
that calibrates the market data well. In this paper, to overcome the ill-posed
problem, we propose a Bayesian estimation approach with assumptions re-
garding the distribution of the parameters representing the prior distribution.
To verify the performance of the proposed method, we conduct simulations of
the model-generated option prices, KOSPI200 index option prices, which are
traded in KRX(Korea Exchange).

The paper is structured as follows. In section II, we set out the five widely used
exponential Lévy models and the FFT method of option pricing. In section
III, we present a Bayesian estimation method to calibrate the five exponential
Lévy models and provide a method for calculating the hyperparameters of
the Bayesian estimation method. We then describe the calibration algorithm
in section IV. We test the robustness of the proposed method with model-
generated option prices in section V and conduct empirical tests, using the
KOSPI200 index option prices, in section VI. Section VII concludes.

2 Exponential Lévy models

In this section we briefly describe exponential Lévy models, closely following
the notation introduced by Cont and Tankov (2004); details can be found in
that reference.

2.1 Review of Lévy processes

Definition 1 (Lévy process) A cadlag stochastic process (Xt)t≥0 on (Ω,F ,P),
with values in ℜd such that X0 = 0, is called a Lévy process if it possesses
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the following properties:

(1) Independent increments: for every increasing sequence of units of time
t0, ..., tn, the random variables Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1 are indepen-
dent.

(2) Stationary increments: the law of Xt+h −Xt does not depend on t.
(3) Stochastic continuity: ∀ε > 0, limh→0 P(|Xt+h −Xt| ≥ ε) = 0.

The third condition excludes processes with jumps at fixed (nonrandom) times,
which can be regarded as “calendar effects”: discontinuities occur at random
times. The measure ν on ℜd, defined by

ν(A) = E[#{t ∈ [0, 1] : ∆Xt ̸= 0, ∆Xt ∈ A}], A ∈ B(ℜd)

is called the Lévy measure of X: ν(A) is the expected number, per unit of
time, of jumps whose sizes belong to A.

Theorem 2 [Lévy-Itô decomposition] Let (Xt)t≥0 be a Lévy process on ℜd,
where ν is its Lévy measure. Then,

• ν is a Radon measure on ℜd \ {0} and is verified as follows:∫
|x|≤1

|x|2ν(dx) <∞,
∫
|x|≥1

ν(dx) <∞

• Its jump measure JX is a Poisson random measure on [0,∞) × ℜd, with
intensity measure ν(dx)dt. (JX([0, t] × A) is the number of jumps of X,
occurring between 0 and t, whose amplitudes belong to A.)

• There is a vector γ and a d-dimensional Brownian motion (Bt)t≥0 with
covariance matrix A such that

Xt = γt+Wt +X l
t + lim

ϵ↓0
X̃ϵ
t (1)

X l
t =

∫
|x|≥1,s∈[0,t]

xJX(ds× dx) =
|∆Xs|≥1∑
0≤s≤t

∆Xs,

X̃ϵ
t =

∫
ϵ≤|x|<1,s∈[0,t]

x{JX(ds× dx)− ν(dx)ds} =
∫
ϵ≤|x|<1,s∈[0,t]

xJ̃X(ds× dx).

The terms in (1) are independent, and the convergence in the last term is
almost sure and uniform in t on [0, T ]. The triplet (A, ν, γ) is called a Lévy
triplet of the process Xt.

Here, X̃ϵ
t is a martingale and can be interpreted as an infinite superposition

of independent compensated Poisson processes. This implies that every Lévy
process can be approximated with arbitrary precision by a jump-diffusion
process: the sum of a Brownian motion with drift and a compound Poisson
process. Note that when ν has a singularity at zero, there can be infinitely

4



many small jumps, and the sum in the uncompensated jump integral does not
necessarily converge. This fact prevents us from making ϵ go to 0 directly, and
we must replace it by its compensated version to obtain convergence.

Theorem 3 [Lévy-Khinchin representation] Let (Xt)t≥0 be a Lévy process on
ℜd, with Lévy triplet (A, ν, γ). Then its characteristic function ΦX and char-
acteristic exponent ΨX are given by

ΦX(z) = E[eiz⊤Xt ] = etΨX(z)

ΨX(z) = −1

2
z⊤Az + iγ⊤z +

∫
ℜd
(eiz

⊤x − 1− iz⊤x1|x|≤1)ν(dx)

(Xt)t≥0 is a Lévy process of finite variation if and only if its Lévy triplet is
given by (0, ν, γ), with

∫
ℜd |x|ν(dx) <∞. Its characteristic exponent is then

ΨX(z) = iβ⊤z +
∫
ℜd
(eiz

⊤x − 1)ν(dx), where β = γ −
∫
|x|≤1

xν(dx).

2.2 Exponential Lévy processes

A tractable class of risk neutral models with jumps generalizing the Black-
Scholes model can be obtained by the exponential-Lévy model, as in

St = S0 exp(rt+Xt)

where (Xt)t≥0 is a Lévy process on ℜ, with Lévy triplet (σ2, ν, γ). Then, to
guarantee that e−rtSt is a martingale, we should impose additional restric-
tions on the Lévy triplet (σ2, ν, γ) of X, specifically, that EQ[eXt ] < ∞, i.e.,∫
|x|≥1 e

xν(dx) <∞ (see Sato (1999), Theorem 25.17) andEQ[eXt ] = etΨX(−i) =
1 for all t under a risk neutral martingale measure Q, i.e.,

ΨX(−i) = γ +
σ2

2
+
∫ ∞

−∞
(ex − 1− x1|x|≤1)ν(dx) = 0.

Exponential-Lévy models enable the use of Fourier transform methods in op-
tion pricing due to the availability of closed-form expressions for characteristic
functions of Lévy processes, which makes it possible to calibrate models to
market option prices and reproduce implied volatility skews/smiles.

Since the introduction of the Black-Scholes option pricing model by Black,
Scholes and Merton, alternative option pricing models have been studied in
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order to understand characteristic features of option prices in real markets, for
example, the volatility smile effects. Well known and widely used, Lévy pro-
cesses employed in the financial literature can be divided into two categories:
jump-diffusion models and infinite activity models. Jump-diffusion models in-
clude diffusion processes and jumps that represent abnormal rare events for
example, crashes or bubbles that occur in real markets at random intervals
with known distributions of jump size. In contrast, infinite activity models are
models with an infinite number of jumps in every interval, where distributions
of jump sizes do not exist. In addition, such models do not necessarily contain
diffusion processes because the dynamics of jumps are already sufficiently rich
to provide realistic descriptions of the historical price process over various time
scales.

In this paper, we consider a risk-neutral stock price process given by

St = S0 exp((r − q)t+Xt(θ) + ωt)

where r and q denote the constant continuously compounded interest rate and
dividend yield, respectively, and Xt(θ)t≥0 is a parameterized Lévy process on
ℜ, with parameter set θ. Here, ω is introduced to guarantee the martingale
property of the price process (Carr, 2003), i.e., EQ[eXt(θ)+ωt] = etΨX(−i)eωt = 1,
where ω = −ΨX(−i).

Five widely used homogeneous exponential Lévy processes are employed in
this paper and are briefly introduced in this section, with their parameter
sets and characteristic functions. Their detailed statistical and computational
properties are provided in the appendix section 8.1.

2.3 Lévy processes via jump-diffusion model

A Lévy process of the jump-diffusion type has the following form:

Xt = γt+ σWt +
Nt∑
i=1

Yi,

where (Nt)t≥0 is a Poisson process of the number of jumps of X, and Yi is
jump size. Two widely used jump-diffusion models are the following:
1) Merton model: a jump-diffusion model with Gaussian jumps

• Four parameters θ = (σ, λ, µ, δ), where σ is the diffusion volatility, λ is the
jump intensity, µ is mean jump size, and δ is the standard deviation of the
jump size.

6



• Characteristic function of the log prices, st = ln(St/S0):

Φs(z) = E[exp(iz ln(St/S0))] = eiz((r−q)t+ωt) × etΨX(z)

= exp
[
iz{(r − q + ω0)t}+ t

{
−1

2
σ2z2 + λ

(
e(iµz−

1
2
δ2z2) − 1

)}]
where

ω0 = ω + γ = −1

2
σ2 + λ

(
1− exp

(
µ+

1

2
δ2
))

2) Kou model: a jump-diffusion model with double exponential jumps

• Five parameters θ = (σ, λ, λ+, λ−, p), where σ is the diffusion volatility, λ is
the jump intensity, and λ+, λ−, p are parameters of jump size distribution.

• Characteristic function of the log prices, st = ln(St/S0):

Φs(z) = E[exp(iz ln(St/S0))] = eiz((r−q)t+ωt) × etΨX(z)

= e
iz(r−q+w0)t+t{− 1

2
σ2z2+iγz+λ(p

λ+
λ+−iz

+(1−p) λ−
λ−+iz

−1)}

where

ω0 = ω + γ = −1

2
σ2 + λ

(
1− p

λ+
λ+ − 1

− (1− p)
λ−

λ− + 1

)

2.4 Lévy processes via infinite activity models

2.4.1 Brownian subordinated Lévy processes

Let Tt be a subordinator, i.e. its trajectories are almost surely nondecreasing
with the Laplace exponent l(u) =

∫∞
0 (eux− 1)ρ(dx) where E[euTt ] = et·l(u). An

infinite activity Lévy process can be obtained by subordinating the Brownian
motion by subordinator Tt as follows:

Xt = γTt + σW (Tt),

Then, the characteristic exponent of Xt is given by ΨX(z) = l(−z2σ2/2+ iγz)
and the Lévy triplet (AX , νX , γX) of Xt is given by

AX = 0, νX(x) =
∫ ∞

0
pTs (x)ρ(ds), γX =

∫ ∞

0
ρ(ds)

∫
|x|≤1

xpTs (dx)

where pTt is the probability distribution of the subordinator Tt. This process is
a Brownian motion observed on a new time scale, for example, business time.
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Widely used subordinators are α-stable processes with α ∈ [0, 1). Because a
subordinator has no diffusion component, only positive jumps of finite varia-
tion and positive drift, the Lévy measure of a real-valued α-stable process is
of the form ce−λx

xα+1 1x>0; by tempering this Lévy measure, we obtain a tempered
stable subordinator, which is a three-parameter process, with Lévy measure
ρ(x) = ce−λx

xα+1 1x>0 where c > 0 alters the intensity of jumps (i.e., the time
scale of the process) of all sizes simultaneously, λ > 0 fixes the decay rate of
big jumps, and 1 > α ≥ 0 indicates the relative importance of small jumps
in the path of the process. The probability density of the tempered stable
subordinator is only known in explicit form for α = 0 (variance gamma) and
α = 1/2 (normal inverse Gaussian); thus, the corresponding subordinated
processes have been widely used because they are easier to simulate and more
mathematically tractable.

3) The Variance Gamma model:

• Three parameters θ = (γ, σ, κ), where γ is diffusion drift, σ is diffusion
volatility, and κ is the variance of the subordinator.

• Characteristic function of the log prices, st = ln(St/S0):

Φs(z) = E[exp(iz ln(St/S0))] = eiz((r−q)t+ωt) × etΨX(z)

= eiz(r−q+ω)t
(

1

1− iγκz + 1
2
σ2κz2

) t
κ

where

ω =
1

κ
ln
(
1− γκ− 1

2
σ2κ

)
4) Normal Inverse Gaussian model:

• Three parameters θ = (γ, σ, κ), where γ is diffusion drift, σ is diffusion
volatility, and κ is variance of the subordinator.

• Characteristic function of the log prices, st = ln(St/S0):

Φs(z) = E[exp(iz ln(St/S0))] = eiz((r−q)t+ωt) × etΨX(z)

= exp
[
iz(r − q + ω)t+ t

(
1

κ
− 1

κ

√
1− 2iγκz + σ2κz2

)]
where

ω =
1

κ

(√
1− 2γκ− σ2κ− 1

)

2.4.2 Tempered stable Lévy processes

A tempered stable process is a Lévy process ℜ with no Gaussian component
and is constructed by directly specifying a Lévy measure of the form
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ν(x) =
c−

(−x)1+α−
eλ−x1x<0 +

c+
x1+α+

e−λ+x1x>0

where c±, λ± > 0 and α± < 2. The process can be represented as a time
changed Brownian motion (with drift) if and only if c− = c+ and α− = α+ =
α ≥ −1. This condition on the coefficients (e.g. a CGMY model with four
parameters) implies that small jumps must be symmetric, whereas decay rates
for big jumps may vary. Because the main impact on option prices is due to
large jumps, the CGMY subclass is as flexible as the whole class of tempered
stable processes that allow for asymmetry of small jumps.
5) CGMY model: (also called ”truncated Lévy flights”)

• Four parameters θ = (c, α, λ−, λ+), where c determines the overall and rel-
ative frequency of jumps; α determines the local behavior of the process
(how the price evolves between big jumps); and λ−, λ+ determines the tail
behavior of the Lévy measure.

• Characteristic function of the log prices, st = ln(St/S0):

Φs(z) = E[exp(iz ln(St/S0))] = eiz((r−q)t+ωt) × etΨX(z)

= exp
[
iz(r − q + ω)t+ tcΓ(−α){(λ+ − iz)α − λα+ + (λ− + iz)α − λα−}

]
where

ω = cΓ(−α){(λ+ − 1)α − λα+ + (λ− + 1)α − λα−}

3 Fourier transform methods for option pricing

The availability of an explicit formula for the characteristic functions of expo-
nential Lévy models as in Section 2, led to the development of Fourier-based
methods of option pricing. We now briefly review Carr-Madan’s Fourier trans-
form method, which we have employed to calibrate exponential Lévy models
in this paper.

A necessary assumption of Carr-Madan’s method is that the Lévy density of
XT satisfies: ∫

|y|≥1
ν(dy)e(1+α)y <∞ (2)

which holds for all the five models in Section 2 when a constraint is placed on
the exponential decay parameter for positive jumps (negative jumps do not
affect it).

The European call option price of maturity T and strike price K is

CT (k) = S0 · e−rTE[(ST/S0 −K/S0)+] = S0 ·
∫ ∞

k
e−rT (es − ek)ρT (s)ds. (3)
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where st = ln(St/S0), k = ln(K/S0), and ρT is the risk-neutral density of XT .

Because C(k, T ) is not integrable (because C(k, T ) → S0 as k → ∞), we
define the following adjusted call prices to compute its Fourier transform:

cα(k, T ) ≡ eαkC(k, T )/S0,

with the damping parameter α > 0. Then, cα(k, T ) is square integrable in k
over the whole real range of proper positive values of α, and we can compute
the Fourier transform of cα(k, T ) as follows:

ψT (z) =
∫ +∞

−∞
eizkcα(k, T )dk =

∫ +∞

−∞
eizkeαk

∫ ∞

k
e−rT (es − ek)ρT (s)dsdk

=
∫ +∞

−∞
e−rTρT (s)ds

∫ s

−∞
(eαk+s − e(α+1)k)eizkdk

= e−rT
∫ +∞

−∞

[
e(α+1+iz)s

α+ iz
− e(α+1+iz)s

α+ 1 + iz

]
ρT (s)ds

=
e−rTΦs(z − (α+ 1)i)

α2 + α− z2 + i(2α+ 1)z
.

where Φs(z) = E[eizst ] is the characteristic function of the log prices st =
ln(St/S0). By choosing α > 0, we can estimate the integrand at the singular
point ν = 0 because the denominator is then nonzero. In this paper, we will
use α = 1.6.

Option prices can now be found by inverting the Fourier transform:

C(k, T ) =
e−αk

2π

∫ +∞

−∞
e−ivkψT (v)dv. (4)

To compute (4) for N -log strike levels k ranging from −b to b, i.e.

ku = −b+∆k(u− 1), for u = 1, ..., N, ∆k = 2b/N,

we apply the fast Fourier transform (FFT) method to (4) which is anO(N lnN)
algorithm for computing

w(u) ≈
N∑
j=1

e−i
2π
N

(j−1)(u−1)x(j) for u = 1, ..., N,

where N is a power of 2. Using the trapezoid rule for the integral part in
(4) where the upper limit for the integration is set to 2π/∆k, and setting
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η = 2π/(N∆k) and vj = η(j − 1), we obtain the following equation:

CT (ku) ≈
e−αku

π

N∑
j=1

e−ivjkuψT (vj)η, for u = 1, ..., N

≈ e−αku

π

N∑
j=1

e−i
2π
N

(j−1)(u−1)[eiπ(j−1)ψT (vj)η]

FFT is very efficient in pricing several options with the same maturity.

4 Proposed Method

4.1 Problem formulation

Because exponential Lévy models correspond to incomplete markets, knowl-
edge of the historical price process alone does not allow for computation of
unique option prices. (See the appendix section 8.3.) To choose a market-
consistent risk-neutral model Q, equivalent to the prior historical probability
P , one should consider information both from the historical time series and
from prices of traded options. To achieve this, one can restrict the choice of
pricing rules to the class of martingale measures that are equivalent to the
prior historical probability, either resulting from historical estimation or spec-
ified according to the views of a risk manager: the calibration procedure then
updates the prior based on information in the market prices of options. The
chosen model can then be used to price exotic, illiquid or OTC options and
compute hedge ratios. The calibration problem can be formulated as follows:

Calibration Problem 2 Given a prior model (σ0, ν0, γ0) and the observed
prices Ci for call options of maturities Ti and strike prices Ki, i ∈ I, find an
exponential-Lèvy model (σθ, νθ, γθ) such that the discounted asset price Ste

−rt

is a martingale, the probability measure Qθ generated by (σθ, νθ, γθ) is equiv-
alent to the prior P , and the observed option prices are given by discounted
risk-neutral expectations under Qθ :

Ci = C(Ti, Ki; θ) + ϵi, C(Ti, Ki; θ) = e−rTEθ[(STi −Ki)
+|S0 = S], ∀i ∈ I,

where the noise term ϵi is due to the presence of observation errors, such as
bid-as spreads or other market frictions, in the market data.

The Lèvy measure, calibrated via nonlinear least-squares, is very sensitive
not only to the input prices but also to the numerical starting point in the
minimization algorithm. Reformulating the calibration problem as a nonlinear
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least squares problem does not resolve the uniqueness and stability issues, even
if the calibration is restricted to the class of measures equivalent to the prior:
the inverse problem remains ill-posed. To resolve this problem, we use the
Bayesian approach as follows (see Bishop (2006)).

4.2 Bayesian estimation

We assume that the conditional distribution of the output variable y is given
by a deterministic and nonlinear parametric model Ĉ(T,K,θ) with additive
Gaussian noise, such that

p(C|T,K,θ, σ2
ϵ ) = N (C|Ĉ(T,K,θ), σ2

ϵ ) (5)

Let a prior probability distribution over the model parameter θ be given by a
Gaussian distribution of the form

p(θ|σ2
θ) = N (θ|θ0, σ

2
θI) (6)

Since p({Tn, Kn, Cn}Nn=1|θ) =
∏N
n=1 N (Cn|Ĉ(Tn, Kn,θ), σ

2
ϵ ), the posterior dis-

tribution is given by

p(θ|{Tn, Kn, Cn}Nn=1, σ
2
ϵ , σ

2
θ) ∝ p(θ|σ2

θ)p({Tn, Kn, Cn}Nn=1|θ, σ2
ϵ ) (7)

which, as a consequence of the nonlinear dependence of Ĉ(T,K,θ) on θ, will
be non-Gaussian. To obtain a Gaussian approximation of the posterior distri-
bution, we use the Laplace approximation. To do so, we first find a maximum,
say θMAP, of the logarithm of the posterior as given by

ln p(θ|{Tn, Kn, Cn}Nn=1, σ
2
ϵ , σ

2
θ)=− 1

2σ2
θ

(θ − θ0)
T (θ − θ0) (8)

− 1

2σ2
ϵ

N∑
n=1

{Ĉ(Tn, Kn,θ)− Cn}2 + const.

by using a standard nonlinear optimization algorithm. Then the Gaussian
approximation to the posterior distribution using the Laplace approximation
takes the form

q(θ|{Tn, Kn, Cn}Nn=1) = N (θMAP,ΣN)

where
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Σ−1
N =

1

σ2
θ

I+
1

σ2
ϵ

H

and where H is the Hessian matrix of the second derivatives of the sum-of-
squares error function with respect to the components of θ. Note that the
Hessian matrix of h(θ) can be approximated by using the finite difference

∂2h

∂θi∂θj
=

1

4ε2
{h(θi + ε, θj + ε)− h(θi + ε, θj − ε)

−h(θi − ε, θj + ε) + h(θi − ε, θj − ε)}+O(ε2)

The predictive distribution is obtained by marginalizing with respect to the
following posterior distribution:

p(C|{Tn, Kn, Cn}Nn=1) =
∫
p(C|T,K,θ)q(θ|{Tn, Kn, Cn}Nn=1)dθ

where the dependence on the input data and σ2
θ , σ

2
ϵ is omitted, as the inte-

gration remains analytically intractable due to the nonlinearity of Ĉ(T,K,θ)
with respect to θ. To make progress, we now assume that the posterior distri-
bution has a small variance compared with the characteristic scales of θ over
which Ĉ(T,K,θ) varies. This assumption allows us to perform a Taylor series
expansion of the function around θMAP and retain only the linear terms

Ĉ(T,K,θ) ≃ Ĉ(T,K,θMAP) + gT (θ − θMAP)

where we have defined g = ∇Ĉ(T,K,θ)|θ=MAP. With this approximation, we
have

p(C|{Tn, Kn, Cn}Nn=1,θ, σ
2
ϵ ) ≃ N (Ĉ(T,K,θMAP) + gT (θ − θMAP), σ

2
ϵ ).

Hence the predictive distribution takes the form

p(C|{Tn, Kn, Cn}Nn=1, σ
2
θ , σ

2
ϵ ) ≃ N (Ĉ(T,K,θMAP), σ

2
N(T,K)) (9)

where the variance of the predictive distribution is given by

σ2
N(T,K) = σ2

ϵ + gTΣNg

The variance consists of two terms. The first arises from the intrinsic noise of
the target variable, while the second is a T,K-dependent term that expresses
uncertainty of the interpolant due to uncertainty of the model parameters θ.
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4.3 Hyperparameter optimization

In a fully Bayesian treatment, we introduce hyperpriors over σ2
θ , σ

2
ϵ and the

predictive distribution is obtained by marginalization over θ, σ2
θ , σ

2
ϵ , so that

p(y|y) =
∫
p(y|θ, σ2

ϵ )p(θ|y, σ2
θ , σ

2
ϵ )p(σ

2
θ , σ

2
ϵ |y)dθdσ2

θdσ
2
ϵ

where p(y|θ, σ2
ϵ ) = N (y|f(x,θ), σ2

ϵ ), p(θ|y, σ2
θ , σ

2
ϵ ) ∼ N (µN ,ΣN)

Here the dependence on the input data X,x is omitted. If the posterior dis-
tribution p(σ2

θ , σ
2
ϵ |y) is sharply peaked around the values σ̂2

θ , σ̂
2
ϵ , then

p(y|y) ≃ p(y|y, σ̂2
0, σ̂

2) =
∫
p(y|θ, σ̂2)p(θ|y, σ̂2

0, σ̂
2)dθ

From Bayes’ theorem, the posterior distribution for σ2
θ , σ

2
ϵ is given by

p(σ2
θ , σ

2
ϵ |y) ∝ p(y|σ2

θ , σ
2
ϵ )p(σ

2
θ , σ

2
ϵ ).

In the evidence framework, the prior is assumed to be relatively flat; the values
of σ̂2

θ , σ̂
2
ϵ are then obtained by maximizing the marginal likelihood function

p(y|σ2
θ , σ

2
ϵ ), which is given by

p(y|σ2
θ , σ

2
ϵ ) =

∫
p(y|θ, σ2

ϵ )p(θ|σ2
θ)dθ =

(
1

2σ2
ϵπ

)N/2 (
1

2σ2
θπ

)M/2 ∫
exp{−E(θ)}dθ

where M is the dimensionality of θ. We define:

E(θ)= 1

σ2
ϵ

ED(θ) +
1

σ2
θ

EW (θ) =
1

2σ2
ϵ

N∑
n=1

{Ĉ(Tn, Kn,θ)− Cn}2 +
1

2σ2
θ

θTθ

=
1

2σ2
ϵ

N∑
n=1

{f(xn,θMAP)− Cn}2 +
1

2σ2
θ

θTMAPθMAP +
1

2
(θ − θMAP)

TΣ−1
N (θ − θMAP)

= E(θMAP) +
1

2
(θ − θMAP)

TΣ−1
N (θ − θMAP)

Then from

∫
exp{−E(θ)}dθ=exp{−E(θMAP)}

∫ 1

2
(θ − θMAP)

TΣ−1
N (θ − θMAP)dθ

=exp{−E(θMAP)}(2π)M/2|Σ−1
N |−1/2

14



we can write the log of the marginal likelihood in the form

ln p(y|σ2
θ , σ

2
ϵ ) = −E(θMAP)−

1

2
ln |Σ−1

N |+ M

2
ln

1

σ2
θ

+
N

2
ln

1

σ2
ϵ

− N

2
ln(2π)

In the evidence framework, we make point estimates for σ̂2
θ and σ̂2

ϵ by maxi-
mizing ln p(y|σ2

θ , σ
2
ϵ ).

If we let Hui = λiui where H is the Hessian matrix of the second derivatives
of the sum-of-squares error function evaluated at θMAP and differentiate (10)
with respect to 1/σ2

θ , 1/σ
2
ϵ , we obtain

σ̂2
θ =

1

γ
θTMAPθMAP

σ̂2
ϵ =

1

N − γ

N∑
n=1

{Ĉ(Tn, Kn,θMAP)− Cn}2

γ =
M∑
i=1

λi
λi + σ̂2

ϵ/σ̂
2
θ

(10)

Note that these are implicit solutions for σ2
θ , σ

2
ϵ and can be solved by choosing

initial values for σ2
θ , σ

2
ϵ and then using these values to calculate θMAP and

γ and then re-estimate them using these implicit equations, repeating until
convergence is achieved. Using this method, we prefer a model that has a
slightly poorer calibration quality but is similar to the prior to a model that
reproduces option prices exactly but is very different from the prior.

4.4 Algorithm

The final calibration algorithm consists of the following steps:

(1) Choose an exponential Lévy model we want to find a parameter set θ.
(2) Calculate the first four moments (4 cumulants of log stock prices related

to mean, variance, skewness, and kurtosis) of the historical stock prices
data, which is denoted by mMkt = (cMkt

1 , cMkt
2 , cMkt

3 , cMkt
4 )T . We choose a

prior mean θ0 in (6) that minimizes the difference between the histori-
cal moments mMkt and the model moments m(θ0) = (cθ0

1 , c
θ0
2 , c

θ0
3 , c

θ0
4 )T

whose explicit formula are given in the appendix section 8.1. Choose a
prior reflecting the users view of the model can also be preferred depend-
ing on the problems.

(3) Given a option market data set {Tn, Kn, Cn}Nn=1, we augment the data set
by using the bootstrap in such as way to have the similar number of data
for each maturities or by reflecting the liquidity of a given option. This
pre-processing step can help to enhance the calibration performance.

15



(4) Choose initial values for σ2
θ , σ

2
ϵ and then using these values, calculate

θMAP and γ by solving

θMAP = argmin
θ

{
(θ − θ0)

T (θ − θ0) +
σ2
θ

σ2
ϵ

N∑
n=1

{Ĉ(Tn, Kn,θ)− Cn}2
}

γ =
M∑
i=1

λi
λi + σ2

ϵ/σ
2
θ

Then using these θMAP and γ, re-estimate σ2
θ , σ

2
ϵ given by

σ2
θ =

1

γ
θTMAPθMAP

σ2
ϵ =

1

N − γ

N∑
n=1

{Ĉ(Tn, Kn,θMAP)− Cn}2
(11)

We repeat this process until convergence is achieved. To compute θMAP,
we can use a local search method called the Nelder-Mead method which
is one of the state-of-art, derivative-free, nonlinear optimization method
with low precision to estimate the ”model error”. We present the Nelder-
Mead method in the appendix section 8.4. Alternatively, we can run any
gradient-based nonlinear optimization solver (e.g., the BFGS method or
the trust-region method) by using the gradients of the chosen exponential
Lévy model. The gradients of the exponential Lévy models used in this
paper are explicitly given in the appendix section 8.2.

5 Model Robustness Test

In this section, the stability of the Bayesian method is verified by calibrating a
parameter set of exponential Lévy models with model-generated option price
data. For this verification, we simulate European call option prices for each of
the five exponential Lévy models, using Fast fourier transforms (FFT), then
calculating the implied volatility surface, using the Black-Scholes model. To
calculate the option prices, we first set the dampening parameter α to 1.6.

First, we analyze the implied volatility surface calculated for European call
options, using the Black-Scholes model, to test the usefulness of the five Lévy
models. The estimated implied volatility surface is presented in Fig. 1. and
Fig. 2. We find that the implied volatility surface, regardless of which of the
five exponential Lévy models is used, can explain both smile and sneer effects
observed in real markets.

Next, using the calibration function defined in the previous section 4.4, we
analyze the calibration problem with respect to European option prices gen-
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(a) Merton model (b) Kou model

Fig. 1. (a) and (b) displays the implied volatility surface for the Merton and Kou
models, respectively.
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Fig. 2. (a), (b) and (c) show the implied volatility surfaces for the variance gamma,
normal inverse Gaussian and CGMY models, respectively.

erated by the five exponential Lévy models. We establish the initial and true
Lévy parameter sets for the five exponential Lévy models and calculate option
prices for a diverse set of strike prices and times to maturity. We then calibrate
the Lévy triplet, using a gradient-based optimization algorithm. We find that,
for the five exponential Lévy models, the calibrated parameters are equal to
the true parameter sets. These results are presented in Table 1.

Fig. 3. and Fig. 4. display the European call option prices, which are calculated
by the FFT method, with an initial, true and calibrated parameter set.

The diamonds, circles and stars indicate initial, true and calibrated call option
prices, respectively. In Fig. 3. and Fig. 4., we observe that, regardless of the
model used, option prices calculated calibrated parameter are exactly equal

17



Table 1
The parameter calibration for five exponential Lévy model

Lévy Model Parameter set True Calibrated RMSE

Merton {σ,λ,µ,δ} {0.15, 0.1, 0.1, 0.3} {0.15, 0.1, 0.1, 0.3} 0

Kou {σ,λ,λ+,λ−,p} {0.1, 1, 14, 8, 0.5} {0.1, 1, 14, 8, 0.5} 0

VG {γ, σ, kappa} {-0.3, 0.3, 0.25} {-0.3, 0.3, 0.25} 0

NIG {γ, σ, kappa} {-0.5, 0.2, 0.3} {-0.5, 0.2, 0.3} 0

CGMY {c, α, λ−, λ+ } {3, 13, 52, 0.5} {3, 13, 52, 0.5} 0
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Fig. 3. (a) and (b) show European call option prices for given levels of moneyness,
as determined by the Merton and Kou models. The red circles, green diamonds
and blue stars indicate European call option prices estimated with true, initial and
calibrated Lévy parameter sets, respectively.
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Fig. 4. (a), (b) and (c) show European call option prices for given levels of money-
ness, as determined by the variance gamma, normal inverse Gaussian and CGMY
models, respectively. The red circles, green diamonds and blue stars indicate Euro-
pean call option prices, estimated with true, initial and calibrated Lévy parameter
sets, respectively.
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Fig. 5. The difference between the initial (or calibrated) and true Lévy parameters
for the five exponential Lévy models (Merton, Kou, variance gamma, normal inverse
Gaussian and CGMY models) are shown in the error-bar plot.

to those for the true parameter. To obtain the results observed in Table 1, we
construct 100 Lévy parameter sets for each of the five exponential Lévy models
and perform the calibration process. Fig. 5. displays the differences between
the initial (or calibrated) and the true Lévy parameters in the error-bars for
the five Lévy models.

The circles and squares correspond to the initial and calibrated parameter,
respectively. Irrespective of which of the five exponential Lévy models is used,
the difference of between calibrated and true parameters are approximately
zero. Based on the above results, we may assert that the calibrations of Eu-
ropean option prices, estimated using the five exponential Lévy models, are
very effective. To apply the Bayesian calibration approach to option pricing

19



90 100 110 120

Strike price

Merton model

 

Initial
True
Prior
Calibration

80 90 100 110 120
0

5

10

15

20

25

30

Strike price

O
pt

io
n 

pr
ic

e

Kou model

 

 

80 90 100 110 120
0

5

10

15

20

25

30

Strike price

O
pt

io
n 

pr
ic

e

VG model

 

 

90 100 110 120

Strike price

NIG model

 

80 90 100 110 120
0

5

10

15

20

25

30

Strike price

O
pt

io
n 

pr
ic

e

CGMY model

 

 

(c)(b)

(e)

Fig. 6. The European call option prices: initial (red circles), true (blue squares),
prior (cyan triangles) and calibration (pink diamonds). The five panels illustrate
the (a) Merton, (b) Kou, (c) variance gamma, (d) normal inverse Gaussian, and (e)
CGMY models.

calibration in the real market, we must know the true Lévy triplet. Unfortu-
nately, because we can not estimate a true Lévy parameter in the real mar-
ket, choosing the prior Lévy triplet in the penalty term of the calibration
function is very important. We use the prior parameters instead of the true
Lévy parameter used in the penalty term to analyze the effect of choosing
the prior parameter in the Bayesian calibration. Fig. 6. shows European call
option prices estimated using the FFT method, with initial, true, prior and
calibrated parameters, respectively.

Although the prior parameter set is not equivalent to the true parameter, we
find that the option prices estimated using the calibrated parameter are very
similar to those estimated using the true parameter, regardless of which of
the five exponential Lévy models is used. This result suggests that, although
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Table 2
Calibration results for five exponential Lévy models based on KOSPI 200 index
option prices on January 1st, 2005

Lévy Model Parameter set Calibrated RMSE

Merton {σ,λ,µ,δ} {0.1956, 2.464e-7, -0.0433, 1.498e-4} 0.1726

Kou {σ,λ,λ+,λ−,p} {0.1975, 2.39e-14, 38.6249, 2.0972, 0.9974} 0.1724

VG {γ, σ, κ} {0.6189, 0.1956, 0.0200} 0.1947

NIG {γ, σ, κ} {0.0508, 0.1936, 0.0053} 0.1748

CGMY {c, α, λ−, λ+ } {5.79e-4, 1.9765, 44.2601, 45.2601} 0.1565

we do not know the true Lévy parameter, our Bayesian calibration approach
performs well in European option pricing calibration, if we choose a proper
prior parameter set.

6 Empirical Results

6.1 Data Description

6.2 Simulation Results

We also check the performance of the proposed method, using KOSPI 200
index option prices. First, we conduct simulations of the real market option
prices on January 1st, 2005. The following table 2 shows the calibration results
for the five exponential Lévy models.

We calculate the predictive distribution of option prices with the proposed
method using the calibration results in Table 2, and the distribution of op-
tion prices, using the calibration result of the least-squares method, the most
widely used calibration method in the finance literature. We plot the 95% con-
fidence intervals for option prices, based on the predictive distribution with
the proposed method and with the least squares method, comparing each with
KOSPI 200 index option prices. Figs 7 - 11 show the simulation results.

As seen in Fig 7 to Fig 11, almost all actual option prices, represented by
the black dots, are within the 95% confidence interval (represented by the
red lines) of the predictive distribution, where the latter is calculated using
the proposed method. (Mean option prices are represented by blue lines.) We
can also verify that option prices computed using the least squares method
only fit the real option prices well at short maturities, while the option prices
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Fig. 7. The panels in the first row represent the KOSPI 200 index option prices and
Merton model’s option prices with the calibration result obtained using the proposed
method, while the panels in the second row represent the calibration result obtained
using the least squares method.

calculated using the proposed method capture the real option prices well,
regardless of maturities.

To consider the robustness of the proposed method we calibrate model param-
eters with 3 months of KOSPI 200 index option prices, from January 1st, 2007
to March 31th, 2007. We calibrate the parameter sets for the five exponential
Lévy models for each day, with randomly chosen initial parameter sets. First,
based on with the calibration results for the 3 months period, we compute
the in-sample errors for each day. Table ?? shows the mean squared errors of
the exponential Lévy models for each day over one month. The mean squared
errors are shown in Fig ??.

In this paper, we present mean squared errors for only one month: January.
The mean squared errors for the other month are similar to those found in Ta-
ble 3. In Table 3, we can verify that the mean squared errors for the proposed
method are always smaller than those for the least squares method. Hence, the
calibration results based on the proposed method provide a superior represen-
tation of KOSPI 200 index option prices. Based on the mean squared errors
for each day, we average all mean squared errors according to the exponential
Lévy models. Fig 12 shows the average in-sample errors.

It is shown that average in-sample errors under the proposed method are also
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Fig. 8. The panels in the first row represent the KOSPI 200 index option prices
and Kou model’s option prices, based on the calibration result obtained using the
proposed method. The panels in the second row are based on the calibration results
of the least squares method.

smaller than those under the least squares method, as shown in Fig 12. Among
the exponential Lévy models, the CGMY model shows the best performance,
as it has the lowest average mean squared errors. The Jump-diffusion models,
i.e., the Merton and Kou models, have similar average mean squared errors,
and the infinity activity models, i.e., the Variance Gamma and the Normal
Inverse Gaussian models, also have similar average mean squared errors.

7 Conclusion

In this paper, we have proposed a Bayesian estimation method to calibrate
the parameter sets of five exponential Lévy models of European option prices.
Using implied volatility surfaces, it is shown that the five exponential Lévy
models can explain smile or sneer patterns in real market data. To verify the
performance of the proposed method, we use model-generated option prices,
finding that for the five exponential Lévy models, the calibrated parameter sets
obtained using the proposed method perform well, as almost every calibrated
parameter set converges to the true parameter set, regardless of the initial
value of the parameters. The proposed method is shown to render the inverse
calibration problems well-posed and to ease the burden associated with the
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Fig. 9. The panels in the first row represent the KOSPI 200 index option prices
and the VG model’s option prices, based on the calibration result of the proposed
method. The panels in the second row are based on the calibration result of the
least squares method.

selection of priors . In further studies, we will evaluate the performance of
the proposed method with real market option price data and compare its
performance with other methods.

8 Appendix

8.1 Statistical and Computational Properties of six exponential Lévy models

8.1.1 Lévy processes via jump-diffusion model

1) Merton model: In the Merton model, jump sizes follow a Gaussian dis-
tribution N (µ, δ2) with a Lévy measure:

ν(x) =
λ

δ
√
2π

exp

(
−(x− µ)2

2δ2

)

• Four parameters θ = (σ, λ, µ, δ): σ-diffusion volatility, λ-jump intensity, µ-
mean jump size, and δ-standard deviation of jump size.
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Fig. 10. The panels in the first row represent the KOSPI 200 index option prices
and the NIG model’s option prices, based on the calibration result of the proposed
method. The panels in the second row are based on the calibration result of the
least squares method.

• The probability density function pt(x) of Xt satisfies

pt(x) =
∞∑
n=0

P[Xt = x|Nt = n]P[Nt = n] = e−λt
∞∑
n=0

(λt)n exp
{
− (x−γt−nµ)2

2(σ2t+nδ2)

}
n!
√
2π(σ2t+ nδ2)

• The characteristic function ΦXt(z) of Xt (obtained using the Levy-Khinchin
formula), is

ΦXt(z) = E[exp izXt] =
∞∑
n=0

E[eizXt |Nt = n]P{Nt = n}

=
∞∑
n=0

e{iz(γt+µn)−
1
2
z2(σ2t+δ2n)}P{Nt = n} = e

t

{
− 1

2
σ2z2+iγz+λ(eiµz−

1
2 δ2z2−1)

}

and the characteristic exponent ΨX(z) of Xt is therefore

ΨX(z) = −1

2
σ2z2 + iγz + λ

(
eiµz−

1
2
δ2z2 − 1

)

• The characteristic function of the log prices, st = ln(St/S0), used to calcu-
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Fig. 11. The panels in the first row represent the KOSPI 200 index option prices
and the CGMY model’s option prices, based on the calibration result of the pro-
posed method. The panels in the second row represent option prices, based on the
calibration result of the least squares method.

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Averaged In−Sample Errors

 

 
Proposed Method
Least Square Method

CGMYNIGVGKouMerton

Fig. 12. The average in-sample errors with the calibration results.
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Table 3
Mean Squared Errors of KOSPI index option prices during one month

Date 01/03/2005 01/04/2005 01/05/2005 01/06/2005

Method Proposed Least Square Proposed Least Square Proposed Least Square Proposed Least Square

Merton 0.165932 0.327045 0.015977 0.293418 0.077368 0.386332 0.293668 0.541619

Kou 0.171431 0.205929 0.013139 0.153184 0.042407 0.377745 0.151886 0.299115

VG 0.183418 0.485891 0.019737 0.4496 0.084782 0.934149 0.179759 0.606762

NIG 0.169229 0.467822 0.017887 0.484214 0.106094 0.658352 0.166863 0.672723

CGMY 0.160638 0.476006 0.016797 0.500304 0.041782 0.686419 0.158383 0.667299

Date 01/07/2005 01/10/2005 01/11/2005 01/12/2005

Method Proposed Least Square Proposed Least Square Proposed Least Square Proposed Least Square

Merton 0.061127 0.297139 0.04236 0.402962 0.185008 0.702211 0.059412 0.157767

Kou 0.061269 0.153452 0.084399 0.131125 0.365053 0.711451 0.044033 0.083929

VG 0.094701 0.699621 0.06968 0.509414 0.31954 0.846022 0.063589 0.532787

NIG 0.062217 0.513871 0.071155 0.787575 0.324209 1.444105 0.070837 0.260466

CGMY 0.060292 0.521332 0.071802 0.818535 0.322659 1.43285 0.08276 0.274362

Date 01/13/2005 01/14/2005 01/17/2005 01/18/2005

Method Proposed Least Square Proposed Least Square Proposed Least Square Proposed Least Square

Merton 0.041933 0.397133 1.717278 3.785101 0.503736 2.581022 0.436372 1.785231

Kou 0.053415 0.4045 3.701637 4.059861 2.153646 3.246182 1.259151 2.116589

VG 0.050703 0.487509 3.010606 10.46842 1.459468 4.125919 0.89871 1.841884

NIG 0.052394 0.775006 2.978464 7.919491 1.411878 5.043737 1.484798 5.056782

CGMY 0.053828 0.784285 3.117864 7.862287 1.484798 5.056782 0.862571 3.574706

Date 01/19/2005 01/20/2005 01/21/2005 01/24/2005

Method Proposed Least Square Proposed Least Square Proposed Least Square Proposed Least Square

Merton 0.158755 0.243832 0.199152 0.22124 0.169785 2.055862 0.405911 1.514049

Kou 0.015948 0.02288 0.12634 2.55483 0.092912 0.202147 0.129242 0.297898

VG 0.140617 0.932025 0.209176 0.778848 0.176793 3.009115 0.844011 2.201172

NIG 0.124017 0.71742 0.217378 0.28461 0.17001 3.36001 0.851239 3.132825

CGMY 0.39231 0.76384 0.664184 0.69748 0.098842 3.528859 0.858076 3.141008

Date 01/25/2005 01/26/2005 01/27/2005 01/28/2005

Method Proposed Least Square Proposed Least Square Proposed Least Square Proposed Least Square

Merton 0.130536 0.401842 0.221471 0.849423 0.056891 0.468822 0.055425 0.654364

Kou 0.129242 0.297898 0.356001 0.92294 0.071996 0.098465 0.10967 0.671842

VG 0.136363 1.435118 0.277013 1.041807 0.065952 0.520824 0.078456 1.224546

NIG 0.136718 0.564191 0.282418 1.608061 0.075622 0.988802 0.079495 1.365129

CGMY 0.109024 0.579529 0.308942 1.618982 0.075504 1.0152 0.085004 1.380085

late the option prices is expressed as

Φs(z) = E[exp(iz ln(St/S0))] = eiz((r−q)t+ωt) × etΨX(z)

= exp
[
iz{(r − q + ω0)t}+ t

{
−1

2
σ2z2 + λ

(
e(iµz−

1
2
δ2z2) − 1

)}]
where

ω0 = ω + γ = −1

2
σ2 + λ

(
1− exp

(
µ+

1

2
δ2
))
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Note that γ is not present in the above characteristic function; thus, the
number of parameters is reduced to 4. The characteristic exponent Ψs(z) of
st = ln(St/S0) is therefore

Ψs(z) = (r − q + ω0)iz +
{
−1

2
σ2z2 + λ

(
e(iµz−

1
2
δ2z2) − 1

)}
• The 4 cumulants of X related to mean, variance, skewness, and kurtosis are
(by using cXn = t · 1

in
∂nΨX(z)
∂zn

|z=0) given by

cX1 = E(Xt) = t(γ + λµ)

cX2 = Var(Xt) = t(σ2 + λδ2 + λµ2)

cX3 = tλ(3δ2µ+ µ3)

cX4 = tλ(3δ4 + 6µ2δ2 + µ4)

where s = cX3 /(c
X
2 )

1.5 and κ = cX4 /(c
X
2 )

2 are the skewness and the kurtosis
of Xt respectively. The corresponding 4 cumulants and the skewness and
the kurtosis of st = ln(St/S0) are the same as those of Xt except c1 since
Ψs(z) = ΨX(z)+(r−q+ω)iz. The first cumulant cs1 for st is c

X
1 +(r−q+ω)t,

i.e.

cs1 = E(st) = t(r − q + λµ)

Note that γ is not present in cs1.

2)Kou model: In the Kou model, the distribution of jump sizes is asymmetric
exponential with a Lévy measure:

ν(x) = λ ·
(
pλ+e

−λ+x1x>0 + (1− p)λ−e
λ−x1x<0

)
where λ± > 0 determines the tail behavior of the distribution of positive and
negative jump sizes and p ∈ [0, 1] represents the probability of an upward
jump. For this process, the probability distribution of returns has an expo-
nential tail. Due to the ”memorylessness” of exponential random variables,
analytical expressions for expectations involving first passage times can be
obtained.

• five parameters θ = (σ, λ, λ+, λ−, p): σ-diffusion volatility, and λ-jump in-
tensity, λ+, λ−, p-parameters of the jump size distribution.

• The characteristic function ΦXt(z) of Xt is given by

ΦXt(z) = E[exp izXt] =
∞∑
n=0

E
[
eizXt |Nt = n

]
P{Nt = n}

=
∞∑
n=0

eizγt−
1
2
z2σ2t

(
p

λ+
λ+ − iz

+ (1− p)
λ−

λ− + iz

)n
P{Nt = n}

= e
t

{
− 1

2
σ2z2+iγz+λ

(
p

λ+
λ+−iz

+(1−p) λ−
λ−+iz

−1

)}
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and the characteristic exponent ΨX(z) is therefore

ΨX(z) = −1

2
σ2z2 + iγz + λ

(
p

λ+
λ+ − iz

+ (1− p)
λ−

λ− + iz
− 1

)

• The characteristic function of the log prices, st = ln(St/S0), is given by

Φs(z) = E[exp(iz ln(St/S0))] = eiz((r−q)t+ωt) × etΨX(z)

= exp

[
iz(r − q + w0)t+ t

{
−1

2
σ2z2 + iγz + λ

(
p

λ+
λ+ − iz

+ (1− p)
λ−

λ− + iz
− 1

)}]

where

ω0 = ω + γ = −1

2
σ2 + λ

(
1− p

λ+
λ+ − 1

− (1− p)
λ−

λ− + 1

)

• The 4 cumulants of X related to the mean, variance, skewness, and kurtosis
are

cX1 = t

(
γ +

λp

λ+
− λ(1− p)

λ−

)

cX2 = t

(
σ2 +

λp

λ+
2 +

λ(1− p)

λ−
2

)

cX3 = tλ

(
p

λ+
3 − 1− p

λ−
3

)

cX4 = tλ

(
p

λ+
4 +

1− p

λ−
4

)

8.1.2 Lévy processes via infinite activity models

A. Brownian subordinated Lévy processes

3) The Variance Gamma model: The variance gamma process is a finite
variation process with infinite but relatively low activity of small jumps ob-
tained by evaluating Brownian motion with drift γ and volatility σ at an
independent gamma time, i.e. Xt = γTt + σW (Tt), where Tt is a gamma pro-
cess with mean rate t and variance rate κt and the density function of the
gamma time change g over a finite interval t is given by

pTt (g) = e−
g
κ g

t
κ
−1/(Γ(

t

κ
)κ

t
κ )

The Lévy measure of Tt, the rate of arrival as a function of the jump size x,
is given by ρ(x) = 1

κ
e−x/κ

x
1x>0 with Laplace exponent l(u) = − 1

κ
ln(1− κu).
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• 3 parameters θ = (γ, σ, κ): γ-diffusion drift, σ-diffusion volatility, κ-variance
of the subordinator.

• The probability density function pt(x) of Xt is obtained by integrating the
probability of X conditional on the realization of gamma time change g over
the probability of g lying in the interval [g g + dg]:

pt(x) =
∫ ∞

0
pt(x|g)pTt (g)dg =

∫ ∞

0

1

σ
√
2πg

e
− (x−γg)2

2σ2g
1

Γ
(
t
κ

)
κ

t
κ

e−
g
κ g

t
κ
−1dg

=
1

σ
√
2πΓ

(
t
κ

)
κ

t
κ

e
γx

σ2

∫ ∞

0
e
−
{

1
2

(
γ2

σ2+
2
κ

)
g+ x2

2σ2
1
g

}
g−{1−( t

κ
− 1

2
)}dg

=
1

σ
√
2πΓ

(
t
κ

)
κ

t
κ

e
γx

σ2 × 2

 |x|
σ
√

γ2

σ2 +
2
κ

 t
κ
− 1

2

K t
κ
− 1

2

 |x|
σ

√
γ2

σ2
+

2

κ


=

√
2

πσ2κ

(γ2κ2 + 2σ2κ)
1
4
− t

2κ

Γ
(
t
κ

) |x|
t
κ
− 1

2 e
γ

σ2 xK t
κ
− 1

2


√
γ2 + 2σ2

κ

σ2
|x|


= C|x|

t
κ
− 1

2 eAxK t
κ
− 1

2
(B|x|) ,

where K is the modified Bessel function of the second kind and

A =
γ

σ2
, B =

√
γ2 + 2σ2

κ

σ2
, C =

√
2

πσ2κ

(γ2κ2 + 2σ2κ)
1
4
− t

2κ

Γ
(
t
κ

) .

• The characteristic exponent ΨX(z) is given by

ΨX(z) = l(−z2σ2/2 + iγz) = −1

κ
ln
(
1− iγκz +

1

2
σ2κz2

)
and the characteristic function ΦXt(z) of Xt is therefore

ΦXt(z) = E[exp izXt] = etΨX(z) = e−
t
κ
ln(1−iγκz+ 1

2
σ2κz2)

• The Lévy measure νX of Xt is given by

νX(x) =
∫ ∞

0
pBSs (x)ρ(s)ds =

∫ ∞

0

1√
2πσ2s

e−
(x−γs)2

2σ2s
e−

s
κ

κs
ds

=
1

κ|x|
eAx−B|x| where A =

γ

σ2
, B =

√
γ2 + 2σ2

κ

σ2
.

• The characteristic function of the log prices, st = ln(St/S0), is given by

Φs(z) = E[exp(iz ln(St/S0))] = eiz((r−q)t+ωt) × etΨX(z)

= eiz(r−q+ω)t
(

1

1− iγκz + 1
2
σ2κz2

) t
κ
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where

ω =
1

κ
ln
(
1− γκ− 1

2
σ2κ

)
• The 4 cumulants of X related to mean, variance, skewness, and kurtosis are

cX1 = tγ

cX2 = t(γ2κ+ σ2)

cX3 = t(2γ3κ2 + 3γσ2κ)

cX4 = t(6γ4κ3 + 12γ2σ2κ2 + 3σ4κ)

4) Normal Inverse Gaussian model: The normal inverse Gaussian pro-
cess is an infinite variation process with stable-like behavior of small jumps
constructed from Brownian subordination at an independent inverse Gaussian
time, i.e. Xt = θTt + σW (Tt), where Tt is an independent inverse Gaussian
process with mean t and variance κt and the density function of the inverse
Gaussian time change g over a finite interval t is given by

pTt (g) =
t√
2πκ

e
t
κ e(−

1
2κ
g− t2

2κ
1
g
)g−

3
2

The Lévy measure of Tt, the rate of arrival as a function of the jump size x, is
given by ρ(x) = t√

2πκ
e−x/2κ

x
3
2

1x>0 with Laplace exponent l(u) = 1
κ
− 1

κ

√
1− 2κu.

• 3 parameters θ = (γ, σ, κ): γ-diffusion drift, σ-diffusion volatility, κ-variance
of the subordinator.

• The probability density function pt(x) of Xt is

pt(x) =
∫ ∞

0

1

σ
√
2πs

e−
(x−γs)2

2σ2s
t√
2πκ

e
t
κ e

(
− 1

2κ
s− t2

2κ
1
s

)
s−

3
2ds

=
t

2πσ
√
κ
e

t
κ e

γ

σ2 x
∫ ∞

0
e
−
(

γ2

2σ2+
1
2κ

)
s−
(

x2

2σ2+
t2

2κ

)
1
s 1

s2
ds

=
t

π
e

t
κ

√
γ2

σ2κ
+

1

κ2
e

γ

σ2 x

K1

√γ2+σ2

κ

σ2

√
x2 + t2σ2

κ


√
x2 + t2σ2

κ

= CeAx
K1

(
B
√
x2 + t2σ2

κ

)
√
x2 + t2σ2

κ

where

A =
γ

σ2
, B =

√
γ2 + σ2

κ

σ2
, C =

t

π
e

t
κ

√
γ2

σ2κ
+

1

κ2
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• The characteristic exponent ΨX(z) is given by

ΨX(z) = l(−z2σ2/2 + iγz) = et(
1
κ
− 1

κ

√
1−2iγκz+σ2κz2)

and the characteristic function ΦXt(z) of Xt is therefore

ΦXt(z) =
1

κ
− 1

κ

√
1− 2iγκz + σ2κz2

• The Lévy measure νX of Xt is given by

νX(x) =
∫ ∞

0
pBSs (x)ρ(s)ds =

∫ ∞

0

1√
2πσ2s

e−
(x−γs)2

2σ2s
e−

s
2κ

√
2πκs

3
2

ds

=
D

|x|
eAxK1(B|x|) where A =

γ

σ2
, B =

√
γ2 + 2σ2

κ

σ2
, D =

√
γ2 + σ2

κ

2πσ
√
κ

• The characteristic function of the log prices, st = ln(St/S0), is given by

Φs(z) = E[exp(iz ln(St/S0))] = eiz((r−q)t+ωt) × etΨX(z)

= exp
[
iz(r − q + ω)t+ t

(
1

κ
− 1

κ

√
1− 2iγκz + σ2κz2

)]
where

ω =
1

κ

(√
1− 2γκ− σ2κ− 1

)
• The 4 cumulants of X related to mean, variance, skewness, and kurtosis are

cX1 = tγ

cX2 = t(γ2κ+ σ2)

cX3 = t(3γ3κ2 + 3γσ2κ)

cX4 = t(15γ4κ3 + 18γ2σ2κ2 + 3σ4κ)

B. Tempered stable Lévy processes

5) CGMY model: The CGMY process (also called ”truncated Lévy flights”)
is an infinite activity tempered stable process given by

ν(x) =
c

(−x)1+α
eλ−x1x<0 +

c

x1+α
e−λ+x1x>0

It is of finite variation if 0 ≤ α < 1 and of infinite variation if α ≥ 1.

• 4 parameters θ = (c, α, λ−, λ+): c determine the overall and relative fre-
quency of jumps; α determine the local behavior of the process (how the
price evolves between big jumps); λ−, λ+ determine the tail behavior of the
Lévy measure.
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• The characteristic function ΦXt(z) of a CGMY process Xt is given by

ΦXt(z) = E[exp izXt] = e{tcΓ(−α)((λ+−iz)α−λα++(λ−+iz)α−λα−)}

and the characteristic exponent ΨX(z) is therefore

ΨX(z) = cΓ(−α)[(λ+ − iz)α − λα+ + (λ− + iz)α − λα−]

where 0 < α < 1 or α > 1
• The characteristic function of the log prices, st = ln(St/S0), is given by

Φs(z) = E[exp(iz ln(St/S0))] = eiz((r−q)t+ωt) × etΨX(z)

= exp
[
iz(r − q + ω)t+ tcΓ(−α){(λ+ − iz)α − λα+ + (λ− + iz)α − λα−}

]
where

ω = cΓ(−α){(λ+ − 1)α − λα+ + (λ− + 1)α − λα−}
• The 4 cumulants of X related to mean, variance, skewness, and kurtosis are

cX1 = tΓ(1− α)[−λα−1
+ + λα−1

− ]

cX2 = tΓ(2− α)[−λα−2
+ + λα−2

− ]

cX3 = tΓ(3− α)[−λα−3
+ + λα−3

− ]

cX4 = tΓ(4− α)[−λα−4
+ + λα−4

− ]

8.2 Gradients for five Lévy models

To apply the gradient-based nonlinear optimization solver, which is the trust-
region method, we derive the gradient of the posterior distribution, ln p(θ|σ2

θ),
presented in (8):

∂ ln p(θ|σ2
θ)

∂θ
= − 1

σ2
θ

(θ − θ0)−
1

σ2
ϵ

N∑
n=1

{
Ĉ(Tn, Kn,θ)− Cn

} ∂Ĉ(Tn, Kn,θ)

∂θ
.

Using (4), the gradient of the option price is as follows:

∂Ĉ(Tn, Kn,θ)

∂θ
=
e−αk

2π

∫ +∞

−∞
e−ivk

∂ψT (v)

∂θ
dv.

where ∂ψT (v)
∂θ

= e−rT

α2+α−z2+i(2α+1)z
∂Φs(z−(α+1)i)

∂θ
. By computing the gradient of the

characteristic function, we can obtain the gradient of the posterior distribution
and can use the gradient-based nonlinear optimization solver.

1) Merton model:
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The gradient of the characteristic function of log prices with respect to the
Lévy triplet(σ, λ, µ, δ), used to obtain the Hessian, is expressed as

∂Φ

∂σ
= −(i+ z)zσt× Φ

∂Φ

∂λ
=
(
(iz − 1)t+ t exp(iµz − 1

2
δ2z2)− izt exp(µ+

1

2
δ2)
)
× Φ

∂Φ

∂µ
=
(
−izλ exp(µ+

1

2
δ2)t+ itλz exp(iµz − 1

2
δ2z2)

)
× Φ

∂Φ

∂δ
=
(
−izλ exp(µ+

1

2
δ2)t− tλz2 exp(iµz − 1

2
δ2z2)

)
δ × Φ

2) Kou model:

The gradient of the characteristic function of the log prices with respect to
the Lévy triplet(σ, λ, λ+, λ−, p) is given by

∂Φ

∂σ
= −(i+ z)ztσ × Φ

∂Φ

∂λ
=

[
−iz

(
p

λ+
λ+ − 1

+ (1− p)
λ−

λ− + 1
− 1

)
+

(
p

λ+
λ+ − iz

+ (1− p)
λ−

λ− + iz
− 1

)]
t× Φ

∂Φ

∂λ+
=

[
iz

(
−1

λ+ − 1
+

λ+
(λ+ − 1)2

)
+

(
1

λ+ − iz
− λ+

(λ+ − iz)2

)]
λpt× Φ

∂Φ

∂λ−
=

[
iz

(
−1

λ− + 1
+

λ−
(λ− + 1)2

)
+

(
1

λ− + iz
− λ−

(λ− + iz)2

)]
λ(1− p)t× Φ

∂Φ

∂p
=

[
iz

(
−λ+
λ+ − 1

+
λ−

λ− + 1

)
+

(
λ+

λ+ − iz
− λ−
λ− + iz

)]
tλ× Φ

3) Variance Gamma model

The gradient of the characteristic function of the log prices with respect to
the Lévy triplet(θ, σ, κ) is given by

∂Φ

∂γ
=

[
−iz

(1− γκ− 1/2σ2κ)
+

iz

(1− iγκz + 1
2
σ2κz2)

]
t× Φ

∂Φ

∂κ
=
[
log

(
1− iγκz +

1

2
σ2κz2

)
− iz log

(
1− γκ− 1

2
σ2κ

)]
t

κ2
× Φ

−

 κ
(
1
2
σ2z2 − iγz

)
1− iγκz + 1

2
σ2κz2

+
κ
(
γ + 1

2
σ2
)
iz

1− γκ− 1
2
σ2κ

 t

κ2
× Φ

∂Φ

∂σ
=

[
−izσ

(1− γκ− 1/2σ2κ)
− σz2

(1− iγκz + 1/2σ2κz2)

]
t× Φ
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4) Normal Inverse Gaussian model

The gradient of the characteristic function of the log prices with respect to
the Lévy triplet(θ, σ, κ) is given by

∂Φ

∂γ
=

(
1√

1− 2iγκz + σ2κz2
− 1√

1− 2γκ− κσ2

)
tiz × Φ

∂Φ

∂κ
=

(
− 1

κ2
+

√
1− 2iγκz + σ2κz2

κ2
+

2γiz − σ2z2

2κ
√
1− 2iγκz + σ2κz2

)
t× Φ

+

(
1−

√
1− 2γκ− κσ2

κ2
− σ2 + 2γ

2κ
√
1− 2γκ− κσ2

)
tiz × Φ

∂Φ

∂σ
=

(
− z√

1− 2iγκz + σ2κz2
− i√

1− 2γκ− κσ2

)
tσz × Φ

5) CGMY model

The gradient of the characteristic function of the log prices with respect to
the Lévy triplet(c, λ−, λ+, α) is given by

∂Φ

∂c
=
(
izw

c
+ Γ(−α)((λ+ − iz)α − λα+ + (λ− + iz)α − λα−)

)
t× Φ

∂Φ

∂λ−
=
(
(α(λ− + iz)α−1 − αλα−1

−

)
+ iz

(
αλα−1

− − α (λ− + 1)α−1
)
ctΓ(−α)× Φ

∂Φ

∂λ+
=
(
(α(λ+ − iz)α−1 − αλα−1

+

)
+ iz

(
αλα−1

+ − α (λ+ − 1)α−1
)
ctΓ(−α)× Φ

∂Φ

∂α
=
(
log(λ− + iz)(λ− + iz)α + log(λ+ − iz)(λ+ − iz)α − λα− log(λ−)− λα+ log(λ+)

)
ctΓ(−α)Φ

+
(
(λα− log(λ−) + λα+ log(λ+)− log(λ− + 1)(λ− + 1)α − log(λ+ − 1)(λ+ − 1)α

)
izctΓ(−α)Φ

+
(
λ− + 1)α(λ+ − 1)α − λα− − λα+

)
ψ0(−α)ctΓ(−α)Φ

+
(
λα− + λα+ − (λ− + iz)α − (λ+ − iz)α

)
ψ0(−α)ctΓ(−α)Φ

where ψ0(z) represents the polygamma function. ψ0(z) = Γ
′
(z)

Γ(z)

8.3 Equivalence of measures for Lévy processes

Recall that if P and Q are equivalent probability measures, then there is a
positive random variable, called the Radon-Nikodym derivative of Q with
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respect to P, denoted dQ
dP , such that for any random variable Z

EQ[Z] = EP
{
Z
dQ
dP

}
.

The next result shows that in the presence of jumps, the class of equivalent
probability measures is surprisingly large. Unless a diffusion component is
present, we cannot change the drift but can obtain a much greater variety of
equivalent measures by altering the distribution of jumps.

Proposition 1 (Sato (1999), Theorems 33.1 and 33.2) Let (Xt, P ) and
(Xt, P

′) be two Lévy processes on R with characteristic triplets (σ2, ν, γ) and
(σ′2, ν ′, γ′). Then P |Ft and P ′|Ft are equivalent for all t(equivalently for one
t > 0) if and only if the three following conditions hold:

(1) σ = σ′.
(2) ν and ν ′ are equivalent with

∫∞
−∞(ephi(x)/2 − 1)2ν(dx) <∞, where ϕ(x) =

ln(dν
′

dν
).

(3) If σ = 0 then we must in addition have

γ′ − γ =
∫ 1

−1
x(ν ′ − ν)(dx). (12)

When P and P ′ are equivalent, the Radon-Nikodym derivative is

dP ′

dP

∣∣∣
Ft

= eUt (13)

with

Ut = ηXc
t −

η2σ2t

2
− ηγt+ lim

ε↓0

|∆Xs|>ε∑
0≤s≤t

ϕ(∆Xs)− t
∫
|x|>ε

(eϕ(x) − 1)ν(dx)


In this expression, (Xc

t ) is the continuous part of (Xt) and η is such that

γ′ − γ −
∫ 1

−1
x(ν ′ − ν)(dx) = σ2η

if σ > 0 and zero if σ = 0. Ut is a Lévy process with a characteristic triplet
(σ2

U , νU , γU) given by

σ2
U = σ2η2, νU = νϕ−1, γU = −1

2
σ2η2 −

∫ ∞

−∞
(ey − 1− y1|y|≤1)(νϕ

−1)(dy).

and EP [eUt ] = 1.

Example 1 (i) (Equivalence of measures for Brownian motions with drift):
If (Xt, P ) and (Xt, P

′) are two Brownian motions with volatilities σ > 0 and
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σ′ > 0 and drifts µ and µ′. P and P ′ are equivalent if σ = σ′. When they are
equivalent, the Radon-Nikodym derivative is

dP ′

dP
= exp

{
µ′ − µ

σ2
XT − 1

2

(µ′)2 − (µ)2

σ2
T

}
= exp

{
µ′ − µ

σ2
WT − 1

2

(µ′ − µ)2

σ2
T

}
.

where Wt = (Xt − µt)/σ is a standard Brownian motion under P .
(ii) (Equivalence of measures for compound Poisson processes): If (Xt, P ) and
(Xt, P

′) are two compound Poisson processes with Lévy measures ν and ν ′, P
and P ′ are equivalent if and only if ν and ν ′ are equivalent. In this case, the
Radon-Nikodym derivative is

dP ′

dP
= exp

T (λ− λ′) +
∑
s≤T

ϕ(∆Xs)

 , (14)

where λ ≡ ν(R) and λ′ ≡ ν ′(R) are the jump intensities of the two processes

and ϕ ≡ ln
(
dν′

dν

)
.

Let (X,P ) be a Lévy process with a characteristic triplet (σ2, ν, γ). If the
trajectories of X are neither almost surely increasing nor almost surely de-
creasing, then the exponential-Lévy model given by St = ert+Xt , is arbitrage-
free: there is a probability measure P ′ equivalent to P , such that (e−rtSt)t∈[0,T ]
is a P ′-martingale, where r is the interest rate. Thus, the exponential-Lévy
model is arbitrage-free in the following(not mutually exclusive) cases: (i) X
has a nonzero Gaussian component, σ > 0, or (ii) X has infinite variation∫ 1
−1 |x|ν(dx) = ∞, or (iii) X has both positive and a negative jumps, or (iv)
has positive jumps and negative drift or negative jumps and a positive drift.

An Esscher transform can be applied in constructing P ′ equivalent to P : (i)
when σ > 0, P ′ can be obtained by changing the drift as in the Black-Scholes
without changing the Lévy measure, by Proposition 1; (ii) when σ = 0, from
the Esscher transform with ϕ(x) = θx, we obtain an equivalent probability
under which X is a Lévy process with a characteristic triplet (0, ν̃, γ̃), where
ν̃(dx) = eθxν(dx) and drift γ̃ = γ +

∫ 1
−1 x(e

θx − 1)ν(dx) by Proposition 1. By
choosing θ satisfying

γ +
∫ 1

−1
x(eθx − 1)ν(dx) +

∫ ∞

−∞
(ex − 1− x1|x|≤1)e

θxν(dx) = 0,

eXt becomes a martingale under P ′, and the Radon-Nikodym derivative is

dP ′

dP

∣∣∣
Ft

=
eθXt

E[eθXt ]
= eθXt+γ(θ)t, γ(θ) = − lnE[eθX1 ]

Preservation properties under equivalent changes of measures
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• Preserved: continuity/discontinuity of sample paths, cadlag property for
sample paths, quadratic variation of sample paths, absence of arbitrage,
finite/infinite jump rate, range of jump sizes, finite/infinite variation, pres-
ence and volatility of diffusion component, etc.

• Non-preserved: distribution of returns, heavy tails of increments, indepen-
dence of increments, Markov property, intensity of jumps, etc.

8.4 Nelder-Mead Simplex Method

Four scalar parameters must be specified to define a complete Nelder-Mead
method: coefficients of reflection ρ, expansion χ, contraction γ, and shrinkage
σ. These parameters are chosen to satisfy

ρ > 0, χ > 1, 0 < γ < 1 and 0 < σ < 1

The Nelder-Mead method consists of the following steps:

1. Order. Order and re-label the n + 1 vertices as x1, x2, · · · , xn+1 so that
f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). Because we want to minimize f , we refer to
x1 as the best vertex or point and to xn+1 as the worst point.

2. Reflect. Compute the reflection point xr by

xr = x+ ρ(x− xn+1)

where x is the centroid of the n best points, i.e., x =
∑n
i=1

xi
n
. Evaluate f(xr).

If f(x1) ≤ f(x2) < f(xn), replace xn+1 with the reflected point xr and go to
step 6.

3. Expand. If f(xr) < f(x1), compute the expansion point xe by

xe = x+ χ(xr − x).

Evaluate f(xe). If f(xe) < f(xr) replace xn+1 with xe and go to step 6; other-
wise replace xn+1 with xr and go to step 6.

4. Contract. If f(xr) ≥ f(xn), perform a contraction between x and the
better of xn+1 and xr.

4.1. Outside. If f(xn) ≤ f(xr) < f(xn+1) (i.e., xr is strictly better than
xn+1), perform an outside contraction. Calculate

xoc = x+ γ(xr − x).

Evaluate f(xoc). If f(xoc) ≤ f(xr), replace xn+1 with xoc and go to step 6;
otherwise, go to step 5.

38



Fig. 13. The reflection, expansion, contraction and shrinkage points for a simplex
in two dimensions.

4.2. Inside. If f(xr) ≥ f(xn+1), perform an inside contraction: Calculate

xic = x+ γ(xn+1 − x).

Evaluate f(xic). If f(xic) ≤ f(xn+1), replace xn+1 with xic and go to step 6;
otherwise, go to step 5.

5. Shrink. Evaluate f at the n new vertices

x′i = x1 + γ(xi − x1), i = 2, 3, · · · , n+ 1

Replace the vertices x2, · · · , xn+1 with the new vertices x′2, · · · , x′n+1.

6. Stopping Condition.Order and re-label the vertices of the new simplex as
x1, x2, · · · , xn+1 such that f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). If f(xn+1)−f(x1) <
ε, then stop, where ε > 0 is a small predetermined tolerance. Otherwise go to
step 2.

Fig 1 shows the effects of reflection, expansion, contraction and shrinkage for
a simplex in two dimensions using the standard values of the coefficients

ρ = 1, χ = 2, γ =
1

2
and σ =

1

2
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