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Abstract

We derive a closed-form pricing formula for commodity futures under a stochastically-

changing market environment. We assume the commodity spot price follows a logarith-

mic mean-reverting process which suggested by Schwartz (1997) and the market envi-

ronment changes according to two states of business cycles, economic expansions and

economic recessions. We find a semi-closed form of the pricing formula for commodity

future prices. The formula contains a multi-dimensional integral and, thus, we utilize a

numerical quadrature method to get its approximate value.
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1 Introduction

Recently, empirical researches have found that commodity prices has positive historical re-

turns, but has a low correlation with equity and a positive correlation with inflation (Gorton

and Rouwenhorst, 2006; Erb and Harvey, 2006) which is an attractive feature for financial

investors. As a matter of fact, more and more financial investors has included commodity

futures in their portfolios as explained by Buyuksahin and Robe (2012). Commodities attract

more interest of the financial world as a research subject these days.

Many researchers have been developed stochastic models for commodity prices. Gib-

son and Schwartz (1990) use a stochastic convenience yield to model the oil price dynam-

ics. Schwartz (1997) compares the performances of an one factor logarithmic mean-reverting

model, a two factor model including a stochastic convenience yield as a factor, and a three

factor model including a stochastic convenience yield and a stochastic interest rate as fac-

tors, using a Kalman filter method. Schwartz and Smith (2000) adopt a short-term deviation

process and an equilibrium level price process to model a commodity underlying process.

Cortazar and Schwartz (2003) modify the two factor model of Schwartz (1997) with fewer

parameters, maintaining same explanation power.

Empirical studies show that commodity market is sensitive to a stochastic market environ-

ment. Fong and See (2002) implement a generalized regime-switching model to reflect such

an environment of crude oil futures. De Jong (2006) applies a regime-switching approach for

an electricity spot price process. Benz and Truck (2009) model dynamics of carbon emission

allowance prices using a regime-switching model. These researches support that considering

stochastic market environment is quite reasonable.

In this paper, we focus on the development of an analytic valuation method for commodity

futures in a regime-switching market environment. Jang, Roh, and Yoon (2011) find an

analytic valuation formula for path-dependent contingent claims. They utilize the expected

value of the contingent claims when the occupation time of each regime is fixed. Since the same

argument is not applicable to our model, we develop a new method for pricing commodity

2



futures. We employ a numerical integration quadrature scheme to implement our method

and compare the numerical results by our method with those by the Monte-Carlo simulation.

2 The Model

This paper develops an analytic representation of a contingent claim, where logarithm of

the underlying asset price follows a regime-switching mean-reverting process. We assume a

frictionless financial market, that is, we assume there is no tax, no transaction costs,and no

short-sale restrictions in the financial market. We also assume that (Ω, {Ft}F ,P) is a filtered

probability space. The filtration {Ft}t≥0 is generated by a Brownian motion Wt under a

risk neutral measure Q and a continuous-time Markov chain I(t). The underlying asset price

process is given by

dSt = κ(I(t))(α(I(t))− lnSt)Stdt+ σ(I(t))dWt, (1)

where κ(I(t)) is a rate of convergence, α(I(t)) is a long term mean and σ(I(t)) is a volatility

parameter at time t.1 κ(I(t)), α(I(t)), and σ(I(t)) are parameterized by two state continuous-

time Markov chain I(t) with infinitesimal generator Q,

Q =

−λ1 λ1

λ2 −λ2

 , (2)

where λ1 > 0 and λ2 > 0 are poisson arrival rates. There are two regimes classified according

to the level of volatility, “low” regime (regime 1) and “high” regime (regime 2). The regime

i shifts into regime j(̸= i) after random time which follows an exponential distribution with

mean 1
λi
, for i, j ∈ {1, 2}. In regime I(t)=i, κ(I(t)) = κi, α(I(t)) = αi, and σ(I(t)) = σi. If

we define

Xt ≡ logSt,

then we can obtain the following Ornstein-Uhlenbeck (OU) type stochastic process:

dXt = κ(I(t))(α(I(t))−Xt)dt+ σ(I(t))dWt. (3)

1Schwartz (1997) show that the non-regime-switching version of this logarithmic mean-reverting process

might be suitable as a commodity price model.
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We let NT be the number of regime shifts in [0, T ], and Y ≡ {Yi}NT
i=1 be a finite sequence of

random variables of inter-arrival times between (i− 1)-th regime shift and i-th regime shift.

We assume time 0 is 0-th regime-switching time. We assume i(0) = i0 is a known parameter.

Let î0 be a regime other than i0. Consequently for even number i, Yi follows the exponential

distribution with intensity λî0
, for odd number i, Yi follows the exponential distribution with

intensity λi0 . Denote

Fn(y1, y2, ..., yn) =P (NT = n, Y1 ≤ y1, ..., Yn ≤ yn)

=P (Y1 ≤ y1, ..., Yn ≤ yn‘|‘NT = n) · P (NT = n)

(4)

and

fn(y1, ..., yn) =
∂nFn(y1, ..., yn)

∂y1∂y2...∂yn
(5)

as a cumulative density function and a probability density function of (Y1, ..., YNT
), given NT

times probability of NT = n, respectively.

3 An Analytical Approach

In this section, we present a general analytic valuation method for contingent claim when the

underlying asset follows equation (1).

Following Karatzas and Shreve (1991), the solution of the process (3) can be represented

as

Xt = Zt

(
X0 +

∫ t

0

κ(I(u))α(I(u))

Zu
du+

∫ t

0

σ(I(u))

Zu
dWu

)
, (6)

where Zt ≡ e−
∫ t
0 κ(I(u))du.

Because regime changing is uncertain up to realization, obtaining the probability dis-

tribution of XT directly is hardly possible. To address this issue, we firstly investigate

the probability distribution of XT conditioned on NT , Y1, ..., YNT
. This enables us to han-

dle the probability distribution with a known parameter path. Because a random-variable

within OU process follows a normal distribution, we expect a similar result to XT with given

NT , Y1, ..., and YNT
.
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Theorem 3.1 Given NT = n, Y1 = y1, ..., Yn = yn, XT follows a normal distribution with

mean m and variance v, where

m ≡ZTX0 +
n∑

j=0

αj
ZT

Zτj

(ekjyj − 1),

v ≡
n∑

j=0

σ2
jZ

2
T

2κjZ2
τj

(e2κjyj − 1),

(κj , αj , σj) ≡

{
(κi0 , αi0 , σi0) if j is even,

(κî0 , αî0
, σî0) if j is odd.

Proof. We denote the time when the i-th regime switch occurs as

τi ≡
i∑

j=1

yj ,

for 1 ≤ i ≤ n. Let τ0 = 0, τn+1 = T , and yn+1 = τn+1 − τn = T − τn. If we define

∆j ≡ ZT

(∫ τj+1

τj

κ(I(u))α(I(u))

Zu
du+

∫ τj+1

τj

σ(I(u))

Zu
dWu

)
, (7)

then we can easily verify that ∆j follows a normal distribution. Note that parameters have a

constant value on [τj , τj+1). Thus we can denote κ(I(u)) = κj , α(I(u)) = αj , σ(I(u)) = σj .

We rewrite the first term of the right hand side in (7) as

ZT

∫ τj+1

τj

κ(I(u))α(I(u))

Zu
= ZT

∫ τj+1

τj

e
∫ u
0 κ(I(s))dsκ(I(u))α(I(u))du

= ZT

∫ τj+1

τj

e
∫ τj
0 κ(I(s))ds+

∫ u
τj

κ(I(s))ds
κjαjdu

= κjαj
ZT

Zτj

∫ τj+1

τj

eκj(u−τj)du

= αj
ZT

Zτj

(ekjyj+1 − 1).

(8)

Note also that the second term of the right hand side in (7) can be rewritten by

ZT

∫ τj+1

τj

σ(I(u))

Zu
dWu = σjZT

∫ τj+1

τj

e
∫ u
0 κ(I(s))dsdWu

= σjZT

∫ τj+1

τj

e
∫ τj
0 κ(I(s))ds+

∫ u
τj

κ(I(s))ds
dWu

= σj
ZT

Zτi

∫ τj+1

τj

e
∫ u
τj

κjds
dWu

= σj
ZT

Zτi

∫ τj+1

τj

eκj(u−τj)dWu.

(9)
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Since the first term is an Ito integral of a deterministic function, ∆j follows the normal

distribution. The variance of ∆j is given by

the variance of ZT

∫ τj+1

τj

σ(I(u))

Zu
dWu = σ2

j

Z2
T

Z2
τj

∫ τj+1

τj

e2κj(u−τj)dt

=
σ2
jZ

2
T

2κjZ2
τj

(e2κjyj+1 − 1).

(10)

Therefore, we can conclude that ∆j follows the normal distribution with mean αj
ZT
Zτj

(ekjyj+1−

1) and variance
σ2
jZ

2
T

2κjZ2
τj

(e2κjyj+1 − 1). Consequently, we can obtain

XT

∣∣∣
N=n,Y1=y1,...,Yn=yn

∼ ℵ(ZTX0 +
n∑

j=0

αj
ZT

Zτj

(ekjyj+1 − 1),
n∑

j=0

σ2
jZ

2
T

2κjZ2
τj

(e2κjyj+1 − 1))) (11)

from the relationship of XT = ZTX0 +
∑n

j=0∆j . �

Now, let f : R 7→ R be a Borel-measurable function. Then we can calculate the expectation

of the payoff f(XT ), E[f(XT )].

Theorem 3.2 Suppose f : R 7→ R be a Borel-measurable function. Then the expectation of

the payoff f(XT ) is represented by

E[f(XT )] = E[E[f(XT )|NT , Y1, ..., YNT
]]

=

∞∑
n=0

An,

where

An = E[f(XT )|N(t) = n]P (NT = n)

=

∫ T

0

∫ T−τ1

0
...

∫ T−τn−1

0
E[f(XT )|NT = n, Y1 = y1, ..., Yn = yn]

e−λn(T−τn)(
n−1∏
i=0

λie
−λiyi+1)dyndyn−1...dy1,

where λi =

{
λi0 if i is even,

λî0
if i is odd,

(12)

and

E[f(XT )|NT = n, Y1 = y1, ..., Yn = yn] =

∫ ∞

−∞

f(x)√
2πv

e
−(x−m)2

2v dx, (13)

where m and v is the mean and variance described in (11).
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Proof. By the tower property, we write

E[f(XT )] = E[E[f(XT )|N(t) = n]]

=
∞∑
n=0

E[f(XT )|NT = n]P (NT = n)

=
∞∑
n=0

E[E[f(XT )|NT = n, Y1 = y1, ...Yn = yn]|NT = n]]P (NT = n).

(14)

We note that NT = n is equivalent to

n∑
i=1

Yi < T and
n+1∑
i=1

Yi > T (15)

and the probability density function of Y1, ..., Yn conditioned on NT = n is given by

fY1,Y2,...,Yn,Yn+1|Nt=n(y1, ..., yn, yn+1) =

n∏
i=0

λie
λiyi+1/P (NT = n). (16)

So, we can rewrite the conditional expectation in (14) as

E[E[f(XT )|NT = n, Y1 = y1, ...Yn = yn]|NT = n]]

=

∫ T

0

∫ T−τ1

0
...

∫ T−τn−1

0

∫ ∞

T−τn

E[f(XT )|NT = n, Y1 = y1, ..., Yn = yn]

fY1,Y2,...,Yn,Yn+1|Nt=n(y1, ..., yn, yn+1)dyn+1...dy1

=

∫ T

0

∫ T−τ1

0
...

∫ T−τn−1

0

∫ ∞

T−τn

E[f(XT )|NT = n, Y1 = y1, ..., Yn = yn]

(

n∏
i=0

λie
−λiyi+1)/P (NT = n)dyn+1...dy1

=

∫ T

0

∫ T−τ1

0
...

∫ T−τn−1

0
E[f(XT )|NT = n, Y1 = y1, ..., Yn = yn]

e−λn(T−τn)(

n−1∏
i=0

λie
−λiyi+1)/P (NT = n)dyn...dy1.

(17)

Using Theorem 3.1 and the equation (17), we get the desired result. �

4 Commodity Future Prices

In this section, we find commodity future prices when underlying commodity prices follows

the equation (3). Let F (S, T ) be the future price of the commodity with initial spot price S
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and expiration date T . Then F (S, T ) is given by

F (S, T ) = E[ST ] = E[eXT ], (18)

where E(·) is expectation under risk-neutral measure Q. Using Theorem 3.2 with f(x) = ex,

the expectation can be calculated. We can easily verify that XT

∣∣∣
NT=n,Y1=y1,...,Yn=yn

follows a

normal distribution with mean m and variance v where

X0 = ln(S),

m =ZTX0 +

n∑
j=0

αjZT

Zτj

(eκyj+1 − 1),

v =

n∑
j=0

σ2
jZ

2
T

2κZ2
τj

(e2κyj+1 − 1).

For a random variable X which follows a normal distribution with mean m and variance v,

the following holds:

E[eX ] = em+ 1
2
v.

Thus we get

E[eXT |NT = n, Y1 = y1, ..., Yn = yn] = exp(ZTX0+

n∑
j=0

αjZT

Zτj

(eκyj+1−1)+

n∑
j=0

σ2
jZ

2
T

4κZ2
τj

(e2κyj+1−1)).

(19)

Then An is represented as follows:

An = E[f(XT )|N(t) = n]P (NT = n)

=

∫ T

0

∫ T−τ1

0
...

∫ T−τn−1

0
E[f(XT )|NT = n, Y1 = y1, ..., Yn = yn]

e−λn+1(T−τn)(

n∏
i=1

λie
−λiyi)dyndyn−1...dy1

=

∫ T

0

∫ T−τ1

0
...

∫ T−τn−1

0
exp(ZTX0 +

n∑
j=0

αjZT

Zτj

(eκyj+1 − 1) +

n∑
j=0

σ2
jZ

2
T

4κZ2
τj

(e2κyj+1 − 1))

e−λn+1(T−τn)(

n∏
i=1

λie
−λiyi)dyndyn−1...dy1.

(20)
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Then the expectation is given by

E[eXT ] =

∞∑
n=0

E[eXT |NT = n]P (NT = n)

=

∞∑
n=0

An

=
∞∑
n=0

∫ T

0

∫ T−τ1

0
...

∫ T−τn−1

0
exp(ZTX0 +

n∑
j=0

αjZT

Zτj

(eκyj+1 − 1) +
n∑

j=0

σ2
jZ

2
T

4κZ2
τj

(e2κyj+1 − 1))

e−λn+1(T−τn)(

n∏
i=1

λie
−λiyi)dyndyn−1...dy1.

(21)

5 Numerical Implementation

Even though Theorem 3.2 is an explicit representation for calculating an expectation, it

contains multi-dimensional integrations over some simplexes. In most cases, the calculation

of a multiple integral over simplexes is a hard task. We implement a numerical integration

method by Hammer and Stroud(1956) to get the numerical results.

Theorem 5.1 Let Sn be an n-simplex with vertices V0, V1,...,Vn. An integration formula

exact for the general cubic polynomial over Sn for n ≥ 1 is given by∫
Sn

fdvn = an

n∑
i=0

f(Ui) + cnf(C) (22)

where

an =
(n+ 3)2

4(n+ 1)(n+ 2)
∆n, cn =

−(n+ 1)2

4(n+ 2)
∆n, C =

∑
i=1

Vi/(n+ 1), (23)

and

Ui =
2

n+ 3
Vi +

n+ 1

n+ 3
C. (24)

To find the value of the expectation of E[eXT ], we implement Theorem 5.1 to calculate An

for each n ≥ 1. The integration range of An is the n-simplex with vertices V0=0 and Vi = Tei

where ei = (0, ..., 1, ..., 0) ∈ Rn+1 where ei is i-th the standard basis vector of Rn. For n = 0,
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Parameter Benchmark Monte-Carlo Analytic

S κ2 α2 λ2 F1 F2 F1 F2 F1 F2

20 0.4 2 0.5 13.3518 12.4372 13.5093 12.3583 13.3621 12.4535

20 0.4 2 1.25 15.4474 14.7854 15.3655 14.9006 15.1889 14.5887

20 0.2 2 0.5 16.2550 15.4665 16.0106 15.3296 16.2800 15.4355

20 0.2 2 1.25 17.7380 17.2820 17.5106 17.2924 17.6318 17.1394

20 0.2 4 1.25 26.8971 27.8463 27.6733 27.8218 26.8512 27.8065

20 0.4 4 1.25 30.5324 31.9348 30.7696 31.9745 30.5708 31.9013

20 0.2 4 0.5 31.4942 33.8420 31.1856 33.0791 31.2679 33.4370

20 0.4 4 0.5 36.7297 39.4728 36.5929 28.8361 36.5734 39.2038

CPU time(sec) 628.08 25.74 1.06

Table 1: The values of commodity future prices by Monte-Carlo method and the

analytic solution in Theorem 3.2. Default parameters are T = 5, κ1 = 0.3, α1 = 3,

σ1 = 0.2, σ2 = 0.4, λ1 = 0.75, S = 20. whereas σ1 < σ2 is fixed. All possible cases such

that κ1 > κ2, κ1 < κ2 and α1 > α2, α1 < α2, are displayed at 1-4 columns. Fi is future

prices when initial underlying process is S = 20, and T = 5 with initial regime i0 = i.

The values in column 5-6 are obtained by the Monte-Carlo method with 365 time steps and

50000 trials, whereas the values in column 7-8 are obtained by 2000 trials, 365 time steps.

Column 8-9 contain the values obtained by our analytic formula, calculated with quadrature

for simplexes. All routines are programmed using MATLAB language and run on a 3.30-GHz,

i-2500 computer.
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we use the fact that

A0 = E[eXT |NT = 0]P (NT = 0) = S0
e
−κi0

T

e
αi0

(1−e
−κi0

T
)+

σi0
2

4κi0
(1−e

−2κi0
T
)

because Theorem 5.1 holds only for n ≥ 1. A0 is just the expected value of f(xT ) in no

regime-switching case multiplied by the probability that regime switch does not occur on time

interval [0, T ]. In Table 1, we present the expectation calculated by numerically integrating

the valuation formula, by the Monte-Carlo simulation with 50000 trials (as the benchmark),

and by the Monte-Carlo simulation with 2000 trials. We fix parameters T = 5, κ1 = 0.3,

α1 = 3, σ1 = 0.2 σ2 = 0.4, λ1 = 0.75 and variate κ2, α2, λ2. Compared with the Monte-Carlo

method, our analytic formula provides us more rapid valuation technique. The table shows

that the result from the Monte Carlo method with 2000 trials are calculated 25.74 second,

but the analytic solution takes just 1.06 second, which is about 24 times faster. There are

slight differences between the benchmark and the analytic solution, but these differences are

expected to due to numerical errors, and can be improved by implementing a more accurate

quadrature. Silvester(1970) introduced general ways to find quadrature coefficients which is

accurate for polynomial integrands with arbitrary degrees. We observe that our valuation

method is superior to the Monte-Carlo method with 2000 trials.

6 Conclusion

We derive an analytic valuation formula for representing contingent claim prices when the

logarithm of the underlying price follows a mean-reverting model with regime-switching pa-

rameters. The formula can be represented with infinite sum of integrations over simplexes.

We calculate future prices of a commodity which follows the equation of (1). To practically

evaluate the integration over simplexes, we implement the numerical quadrature scheme sug-

gested by Hammer and Stroud(1956). We compare the result by the analytic formula with

the results by the Monte-Carlo method. The Monte-Carlo methods are conducted with 50000

trials as the benchmark, and with 2000 trials for comparison purposes. It turns out to be our

method is much more superior to the Monte-Carlo method.
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