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Abstract 

Maximum drawdown refers to the largest cumulative loss of a portfolio within a given time interval. 

While it has been used by investment professionals as an important measure of portfolio risk for many 

years, its nature and its implications for asset pricing have not been well understood. The first part of 

the paper presents a rigorous argument for using maximum drawdown as a portfolio risk measure. 

The argument is based on liquidity preference of Keynes and rank dependent utility of Quiggin. We 

extend the Markowitz portfolio problem by including expected maximum drawdown as the third 

argument of the objective function. The second part of the paper investigates asset pricing 

implications. The marginal contribution of an individual asset to portfolio maximum drawdown—we 

call this “co-drawdown”—plays an important role. In an extended CAPM, there exists a linear 

relationship between expected return and co-drawdown. 

 

Keywords 

Maximum drawdown, Rank dependent utility, Markowitz portfolio problem, Co-drawdown, CAPM 

 

JEL Classification 

G11, G12, D81 

 

 

 

 

 

  



 

- 3 - 

 

1. Introduction  

 

Maximum drawdown refers to the largest cumulative loss of a portfolio, i.e. the distance between the 

peak and the bottom within a given time interval. A survey of literature clearly indicates that investors 

consider maximum drawdown as a relevant and important measure of portfolio risk, sometimes as 

important as portfolio volatility.
1
 However, the cause and the consequence of this phenomenon are 

not well understood. This paper aims to fill this gap in the literature. The goal of this paper is twofold: 

first, to provide a rigorous argument for maximum drawdown as a portfolio risk measure, and second, 

to investigate the asset pricing implications of incorporating maximum drawdown in the portfolio 

choice problem.      

 

A theory of maximum drawdown as a portfolio risk measure can be built out of two important ideas in 

economics: liquidity preference as first proposed by Keynes (1964; originally published in 1936) and 

the rank dependent utility of Quiggin (1982). Keynes notes that “a need for liquid cash may 

conceivably arise” unexpectedly, and that investors want to protect themselves against such 

possibility. Given this possibility of random “liquidity shock,” investors recognize that the actual 

holding period can be different from the original plan, and they want to ensure that the portfolio 

maintains a certain level of performance across different holding periods. Now, what if investors are 

averse to this “holding period risk” in the way suggested by the rank dependent utility theory of 

Quiggin (1982)? In this theory, utility is rank-dependent in the sense that decision makers give a 

higher “decision weight” to high-rank (i.e. low-payout) event. Thus, rank-dependent investors give a 

significant decision weight to the worst possibility, which in our case is represented by maximum 

drawdown.  

 

Developing this idea further, we extend Markowitz (1952) portfolio problem and include “expected 

maximum drawdown” as the third argument of the objective function. In the Markowitz portfolio 

problem, investors’ indirect utility is a function of portfolio mean return and variance, say,  (     
 ). 

                                           
1
 See, for example, Grossman and Zhou (1993), Magdon-Ismail, Atiya, Prtap, and Abu-Mostafa (2004), 

Chekhlov, Uryasev, and Zabarankin (2005), Alexander and Baptista (2006), Rebonato and Gaspari (2006), and 

Pospisil and Vecer (2008). Regulators take maximum drawdown seriously as well. The US Commodity Futures 

Trading Commision requires futures managers to report maximum drawdown in their performance reporting. 

See Harding, Nakou, and Nejjir (2003).   
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In our extension, expected maximum drawdown  ̅  enters into the portfolio problem so that we 

may express the indirect utility as  (     
   ̅ ).  

 

The portfolio choice problem with expected maximum drawdown can be easily solved, just as the 

portfolio problem with skewness is solved by Kraus and Litzenberger (1976). A non-trivial aspect of 

the problem is how to represent the marginal contribution of an individual asset to portfolio maximum 

drawdown. Our analysis shows that there exists a simple formula for this, which we call “co-

drawdown.” Co-drawdown is measured by the return of an individual asset during “market maximum 

drawdown period,” i.e. the period when the market experiences maximum drawdown. Co-drawdown 

has a number of desirable properties compared to other downside risk measures such as skewness, 

semi-variance, VaR, and expected shortfall.  

 

With co-drawdown, we modify the two-fund separation result and also extend the CAPM. The 

relationship between an individual asset return and the market portfolio return can be extended so that 

the expected return of an individual asset is proportional to its expected co-drawdown as well as to its 

market beta. Also, market premium—the expected excess return of the market over the riskfree rate—

is determined by the expected maximum drawdown as well as the volatility of the market portfolio. 

We interpret the expected maximum drawdown of the market as the premium demanded by investors 

for being exposed to liquidity shocks.  

 

The rest of the paper is organized as follows. Section 2 presents an overview of related literature. 

Section 3 provides a theory of maximum drawdown as a portfolio risk measure and an extension of 

Markowitz portfolio problem. Section 4 solves the extended portfolio problem and obtains an 

extension of CAPM incorporating expected co-drawdown. Section 5 discusses additional properties of 

co-drawdown. Finally, Section 6 concludes the paper.  

 

 

2. Literature Review 

 

We start with a review of studies on maximum drawdown. Then we discuss Keynesian liquidity 

preference and the rank dependent utility theory, the two building blocks of our theory of maximum 

drawdown as a risk measure. We relate the rank dependent utility theory to a large literature on 

ambiguity aversion. Finally, we review the works that extend the Markowitz portfolio problem and 

the CAPM by considering downside risk measures. 
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Maximum Drawdown 

 

Statistical properties of maximum drawdown are the topic of the studies by Magdon-Ismail, Atiya, 

Pratap, and Abu-Mostafa (2004), Rebonato and Gaspari (2006), and Pospisil and Vecer (2008). 

Magdon-Ismail et al. (2004) present a formula for the expected maximum drawdown of a Brownian 

motion, whereas Pospisil and Vecer (2008) examine the case of a geometric Brownian motion. Note 

that when price is a (geometric) Brownian motion, return is serially uncorrelated. This is a rather 

serious limitation: if return is serially uncorrelated, the distribution is completely characterized by 

mean and variance; there is no reason to consider maximum drawdown in an investor’s decision. 

Needless to say, analyzing maximum drawdown under serial correlation is very complicated. A 

formula developed by Afonja (1972) is applicable, but carrying out further analysis from this formula 

is not easy either. Rebonato and Gaspari (2006) examine the properties of maximum drawdown 

empirically from daily interest rate data.    

 

In this paper, we allow serial correlation in returns. So in that sense, our setup is more general than 

that of Magdon-Ismail et al. (2004) and Pospisil and Vecer (2008). In terms of mathematics, we do 

not report any new insights. Instead, we focus on the derivative of expected maximum drawdown, 

which we call co-drawdown, and its role in asset pricing.   

 

Several studies examine portfolio choice problem with a constraint on maximum drawdown. 

Grossman and Zhou (1993) consider a portfolio of one risky asset and one riskfree asset in a 

continuous time setting. Chekhlov, Uryasev, and Zabarankin (2005) consider a multi-asset portfolio 

choice problem. In their study, however, expected maximum drawdown replaces, rather than 

complements, volatility. Alexander and Baptista (2006) consider both volatility and maximum 

drawdown, but in a single-period finite-state-space setting. Set in a single-period framework, 

maximum drawdown is identical to the minimum return. Having a finite state-space is also restrictive. 

 

Our formulation of portfolio problem is more general in some respects. Unlike Grossman and Zhou 

(1993), we consider a portfolio of many assets, and, unlike Alexander and Baptista (2006), we 

consider many periods and an infinite state-space. Another difference from these studies is that we 

consider expected maximum drawdown, not maximum drawdown itself. For most continuous 

distributions including normal distribution, constraining maximum drawdown to be less than a fixed 

value leads to a cash-only position. So it does not make much sense. Grossman and Zhou (1993) 
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allow continuous rebalancing so that it is possible to have a risky portfolio and guaranteed to be above 

a certain level. Alexander and Baptista (2006) consider discrete distributions, so it is possible to create 

a static portfolio whose value is bounded from below. We do not allow continuous rebalancing, nor 

do we deal with discrete distributions. So it is natural for us to work with expected maximum 

drawdown, not maximum drawdown itself. 

 

Keynesian Liquidity Preference 

 

In developing his theory of interest rates, Keynes (1964) proposes the concept of liquidity preference: 

A need for liquid cash may arise unexpectedly; when such a need arises, investors may incur a loss if 

the sale price of risky assets happens to be low at that particular moment; considering this possibility, 

investors give preference to liquid assets. Note that what generate liquidity preference are the 

existence of liquidity shock (i.e. sudden demand for liquidity) and the volatility of risky asset prices.  

 

In this paper, we model liquidity shock by the variability of holding period. When there is sudden 

demand for liquidity, investors liquidate the risky portfolio; i.e., it is the end of holding period. 

Holding period begins when the opposite happens, i.e. when there is cash inflow. We work with a 

probability distribution over the set of holding periods. The volatility of risky asset prices is modeled 

in the standard way, i.e. by expressing returns as random variables.  

 

Our interpretation of Keynesian liquidity preference is comparable to that of Hill (2009), who has 

termed “horizon uncertainty” to indicate holding period risk. Hill notes that this risk is “driven by 

uncertainty regarding investment horizon or holding period, the correlation across the cash flow 

demands of market participants, and short-run constraints on the market making capital.” Thus, the 

overall liquidity condition of the market is relevant to holding period risk, and it is possible to relate 

our discussion to the literature on liquidity risk as well (for example, Amihud, 2002, Pastor and 

Stambaugh, 2003, and Acharya and Pedersen, 2005).
2
 

 

Rank Dependence and Ambiguity Aversion 

 

                                           
2
 Another liquidity literature is the one on the yield curve, where liquidity premium is implied by the slope of 

the yield curve. The relevance of Keynesian liquidity preference to such liquidity premium does not require 

elaboration. 
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The rank dependent utility (RDU) is often motivated by the Allais (1979) paradox, where decision 

makers appear to give ‘excessive’ preference for certainty. One way to solve the Allais paradox is by 

incorporating ‘how people feel about probabilities’ in the words of Wakker (2008). If a decision 

maker is not confident about the accuracy of the given probability, he may assign less than 100% to 

the probability, assigning extra significance to certainty. In the RDU of Quiggin (1982), a probability 

weighting function takes the place of probability in the expected utility theory. Its role is to “distort” 

the given probability so that it reflects the decision maker’s attitude toward the probability. When the 

probability weighting function is such that certainty receives more significance, we say that the 

decision maker is probabilistic-risk averse.  

 

The RDU is a special case of the Choquet expected utility (CEU) of Schmeidler (1989).
3
 This theory 

has been developed as a response to the Ellsberg (1961) paradox, where uncertainty cannot be 

adequately represented by probability. In the CEU theory, probability weighting function is replaced 

with a more general function called capacity. Capacity is not additive, its nonadditivity reflecting the 

ambiguity of the problem. As emphasized by Wakker (2008), the CEU and the RDU deal with two 

different situations. The CEU is applicable when there is no probability; the RUD is applicable when 

there is probability but it requires some “distortion.” Nonetheless, mathematically, the RDU is a 

special case of CEU. So we adopt certain insights from the CEU. 

 

Since Schmeidler (1989), a large literature has emerged investigating various aspects of ambiguity 

and ambiguity aversion. Of special relevance to our study are those papers that examine the asset 

pricing implications of ambiguity aversion. Epstein and Wang (1994) present an intertemporal asset 

pricing model and Chen and Epstein (2002) study its continuous time version. Gollier (2011) focuses 

on the equity premium puzzle in the framework of the smooth utility of Klibanoff, Marinacci, and 

Mukerji (2005). Other authors focus on the cross-sectional implications. Kogan and Wang (2003) and 

Garlappi, Uppal, and Wang (2007) derive an equilibrium condition where expected returns are 

proportional to a measure of ambiguity. Boyle, Garlappi, Uppal, and Wang (2012) apply this model to 

the question of diversification benefit. Maccheroni, Marinacci, Rustichini, and Taboga (2009) present 

the monotone CAPM where CAPM beta is modified to reflect truncation to satisfy monotonicity. 

Their analysis is based on the variational utility of Maccheroni, Marinacci, and Rustichini (2006).  

 

 

                                           
3
 The rank dependent utility is also a special case of probabilistically sophisticated utility of Machina and 

Schmeidler (1992), where utility depends on probability, but not in a linear form.  
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Markowitz, CAPM, and Downside Risk Measures 

 

Many of the papers reviewed above—Kogan and Wang (2003), Garlappi et al. (2007), Boyle et al. 

(2012), and Maccheroni et al. (2009)—adopt a popular scheme that we also follow in the current 

paper. The scheme consists of three steps: (i) to modify the Markowitz problem, (ii) to examine the 

first-order condition, and then (iii) to arrive at asset pricing equation which can be interpreted as an 

extended CAPM. The way that the Markowitz problem is modified reflects the motivation of each 

research project. The papers mentioned above modify the Markowitz problem to incorporate 

ambiguity. Others have a goal of bringing downside risk measures into the discussion. We review 

several of such studies. 

 

Kraus and Litzenberger (1976) introduce skewness into the Markowitz problem and extend the 

CAPM where there is another term, “co-skewness,” reflecting assets’ covariance with market 

volatility. Hogan and Warren (1972, 1974) replace portfolio variance with portfolio semi-variance in 

the Markowitz problem. The resulting CAPM-like formula has “co-semivariance” in place of usual 

covariance. Harlow and Rao (1989) generalize this model by replacing semi-variance with general 

“lower-partial moment.” Extending the work by Tasche (2000), Bertsimas, Lauprete, and Samarov 

(2004) consider a portfolio problem with expected shortfall, and present a CAPM-like formula where 

“shortfall beta” measures the risk of individual assets.  

 

Among popular downside risk measures, only value-at-risk (VaR) has not been integrated into the 

Markowitz-CAPM framework. This situation is due to the fact that VaR is not differentiable, making 

it difficult to come up with “co-VaR” or “VaR beta.” Various properties of VaR and its comparison to 

expected shortfall have been studied by Artzner, Delbaen, Eber, and Heath (1999) and Rockafellar 

and Uryasev (2002).  

 

 

3. Holding Period Risk, Rank Dependence, and Maximum Drawdown 

 

In the classical portfolio problem of Markowitz (1952), an investor maximizes his indirect utility 

 (     
 ) over all portfolios, where    and   

  are the mean and variance of the investor’s 

portfolio. We consider an extension of this problem which incorporates the expected maximum 

drawdown of the investor’s portfolio,  ̅ , into the indirect utility function; i.e., the indirect utility to 

be maximized is  (     
   ̅ ). While several authors have studied the portfolio choice problem 
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with maximum drawdown, no justification has been suggested for including maximum drawdown. 

The goal of our analysis is to do just that. We discuss a set of circumstances that lead to the indirect 

utility of the form  (     
   ̅ ). We do not aim to identify the necessary and sufficient condition 

for maximum drawdown. We have a more modest goal: we present a situation which we believe is 

probable and in which maximum drawdown enters into the portfolio choice problem. 

 

Our argument is based on two important ideas in economics: the Keynesian liquidity preference and 

Quiggin’s (1982) rank dependent utility theory. As Keynes (1964) notes, a need for liquid cash may 

arise unexpectedly, and investors want to protect themselves against this possibility of “liquidity 

shock.” To put it another way, investors recognize that the actual holding period can be different from 

the initial plan, and they want to ensure that the portfolio maintains a certain level of performance 

across all holding periods. Now, if investors are averse to this “holding period risk” in the way 

suggested by the rank dependent utility (RDU) theory, then they pay more attention to the worst 

possibility than probabilities warrant. In other words, investors give a higher “decision weight” to the 

worst possibility. The worst possibility is captured by maximum drawdown in our case.  

 

Let us formalize the above idea in three steps. First, we introduce the holding period risk. Then we 

introduce the RDU theory. Finally, we combine these two.  

 

Holding Period Risk 

 

Suppose that the investor wants to construct a portfolio for the next T periods. We index time periods 

by t so that        . Let      be the portfolio return for t. If there is no liquidity shock, then the 

investor holds the portfolio for all the periods, and the holding period return is            .
4
 If 

there are liquidity shocks, then the investor may hold the portfolio only for some periods. In general, 

the investor’s holding period can be any subset of {       }. Let us assume that the investor’s 

holding period is one contiguous block of time periods,
5
 i.e. {         } for some s and t, 

                                           
4
 The formula is exact only if the returns are log-returns. If the returns are simple returns, the formula is 

ignoring compounding. Our discussion in the next section is on the no-compounding basis. The analysis can be 

extended to the case of compounding.  

5
 If the holding period is not a contiguous block of time periods, it means that the investor creates and liquidates 

his portfolio at multiple times. If the investor’s utility is time-separable, the optimal investment problem can be 

broken down into multiple independent problems, each of which involves creating one optimal portfolio for a 

contiguous block of time periods.  
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       . Let us denote this holding period by [   ] and the holding period return by    [   ]. 

Then    [   ]             . 

 

In words, our setup can be described in the following way: the investor has zero wealth initially. At 

the beginning of any time period, a positive liquidity shock may occur, in which case the investor 

receives one unit of cash to invest. The investor may face a negative liquidity shock any time, as long 

as he has positive wealth. The negative liquidity shock is always of the same size as the total wealth. 

There will be exactly one positive liquidity shock and one negative liquidity shock between period 1 

and period T.
6
 

 

Let us denote the set of possible holding periods by  , i.e.   {[   ]        }. The 

investor facing liquidity shock recognizes that his holding period return can be any    [   ] with 

[   ]   . Thus, there are two sources of risk for    [   ]. The first is the “return risk,” i.e. the 

uncertainty regarding the realization of portfolio returns,            . The second is the “holding 

period risk,” i.e. the uncertainty regarding the realization of the holding period [   ].  

 

The return risk can be represented by    (the set of all possible values of            ) and a 

probability distribution   over   . Similarly, the holding period risk can be represented by   and 

a probability distribution Q over  . The total risk can be represented by the product space      

and a probability distribution   over     . The investor’s expected utility is  (   [   ])  

∫    [   ]      
. Note that   and Q are marginal distributions of  . In particular, if the return risk 

and the holding period risk are independent,   is the product of   and Q, i.e.  ( )   (  ) (  ). 

for        with                 and     . Let u be the von-Neumann 

Morgenstern utility index so that the investor’s instantaneous utility is  (   [   ]). Then the investor’s 

expected utility is  [ (   [   ])]  ∫ ∫  (   [   ])    
   . 

 

Literature suggests that the expected utility theory is not always applicable. Below we consider the 

possibility that the expected utility theory is applicable for the return risk, but not for the holding 

period risk. Our discussion is based on the RDU theory of Quiggin (1982). We relate our discussion to 

the ambiguity aversion of Schmeidler (1989) as well. 

 

                                           
6
 See the previous footnote. 
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Rank Dependent Utility and Ambiguity Aversion  

 

As seen in the Allais (1979) paradox, decision makers often give ‘excessive’ preference for certainty. 

This may be caused by the lack of confidence in the accuracy of the probability, which leads the 

decision makers to assign less than 100% to the probability. In the RDU theory of Quiggin (1982), 

this is done through a probability weighting function  .
7
 One possibility is to assign a smaller 

weight for a small probability and a larger weight for a large probability (i.e.  ( )    for   close 

to 0 and  ( )    for   close to 1). Then an event close to being certain (   ) has a larger effect 

than its probability suggests, generating the certainty effect in the Allais paradox. When the outcomes 

of a prospect   are rank ordered, i.e.        , the RDU of   is defined as  

   ( )  ∑    (  )
 

   
 

where     (       )   (         ),     (  )  and    is the probability of   . 

When the probability weighting function is such that almost certain events have larger weights than 

other events, decision makers are said to have probabilistic risk aversion.  

 

The RDU is a special case of the Choquet expected utility (CEU) of Schmeidler (1989). The CEU of 

prospect   with rank-ordered outcomes         is defined by 

   ( )  ∫  ( )   ∑  (  )[ (    )   (      )]
 

   
 

The probability-like function   is called a capacity. It shares many properties with the probability 

distribution, but it is not additive. Thus,  (    )   (      )   (    ). As follows from the 

formula, capacity   can be obtained from probability weighting function   and probability p: 

 (    )   [ (    )]. The CEU is understood as reflecting decision makers’ aversion to 

ambiguity. Ambiguity arises when there is no adequate probability to describe uncertainty, as in the 

Ellsberg (1961) paradox, where decision makers show preference for the choice with a clearly-defined 

probability. As mentioned earlier, the situation where the CEU is applicable is distinctive from the 

situation where the RDU is applicable. For the former, ambiguity aversion is relevant, whereas for the 

latter probabilistic risk aversion is relevant. Nonetheless, the CEU formula “works” for the situation 

of probabilistic risk aversion as well. So we continue our discussion in terms of the CEU even though 

we are primarily interested in the situation of probabilistic risk aversion. This allows us to draw from 

extensive literature on ambiguity aversion which is phrased in the CEU framework.  

                                           
7
 Three properties are required for  : (i)  ( )   , (ii)  ( )   , and (iii) w is continuous and increasing. 



 

- 12 - 

 

 

In the CEU framework, ambiguity arises as capacity   is not additive. For example, for two disjoint 

events, A and B,  (   )   ( )   ( )   . Extending this idea, Dow and Werlang (1992) 

define the ambiguity of event A as  ( )   ( )   (  ) where        is the set of the state. 

Let us generalize this further, and define the ambiguity of a partition         of S as  ( )  

 (  )     (  ). Let us call the largest among the ambiguities of partitions the “total ambiguity” 

of capacity  , i.e. the total ambiguity of   is     { ( )   (  )     (  )           are a 

partition of  }.  

 

When can we say that one decision maker is more ambiguity averse than another? Ghirardato and 

Marinacci (2002) show
8
 that one decision maker is more ambiguity averse than another if and only if 

the capacity of the latter is greater than the capacity of the former at each event; i.e., decision maker 1 

is more ambiguity averse than decision maker 2 if   ( )    ( ) for all  .
9
  

 

Based on the two ideas described above—“total ambiguity” and “being more ambiguity averse than 

someone else”—we would like to characterize “extreme aversion” in the following way: we call a 

decision maker “extremely ambiguity averse” if he is more ambiguity averse than anyone else given 

the total ambiguity. In terms of probability weighting function, we can define “total probabilistic risk,” 

“being more probabilistic-risk averse than someone else,” and “extremely probabilistic-risk averse” in 

a similar manner. The following lemma shows how it can be done. 

 

Lemma 1. Fix probability  . Suppose that all probability weighting functions are convex. Then 

the following statements are true. (i) The total ambiguity of the capacity induced by a probability 

weighting function   is       ( )   where      . (ii) Decision maker i whose 

capacity is induced by    is more ambiguity averse than decision maker j whose capacity is 

                                           
8
 See Theorem 17 of the article. 

9
 Schmeidler (1989) identifies the ambiguity aversion with the convexity of capacity  . Thus, it would seem 

natural to say that decision maker 1 is more ambiguity averse than decision maker 2 if    is more convex than 

  . As clarified by Epstein (1999), ambiguity aversion can be identified with the convexity of capacity only in 

the Anscome-Aumann (1963) framework where each outcome of a prospect is a lottery rather than cash. In the 

Savage (1972; first edition in 1954) framework where each outcome of a prospect is cash, ambiguity aversion is 

identified with the monotonicity of capacity. Thus, Ghirardato and Marinacci’s (2002) theorem is 

understandable.   
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induced by    if   ( )    ( ) for all x with      . (iii) A decision maker whose 

capacity is induced by  

 ( )  {
              
                     

 

is extremely ambiguity averse. 

 

Proof. Noting that if capacity   is induced by   and  , then  ( )   [ ( )], where   is an 

event, (i) can be easily verified geometrically. Consider the graph of   [   ]  [   ]. Draw a line 

connecting the origin and (   ( )). This line passes through (   ( )  ), and the vertical 

distance between (   ( )  ) and (   ) is    ( )  . Consider an event    whose 

probability is  . Given the convexity of  ,  ( )   (  )     (  ) is greater than 

   ( )   for any partition that includes   . Thus, the total ambiguity is greater than or equal 

to       ( )  . It is easy to show that, if the total ambiguity is strictly greater than      

 ( )  , we get to a contradiction. So (i) must be true. (ii) is obvious from the definition of “being 

more ambiguity averse than someone else.” (iii) can be easily derived from (i) and (ii). □ 

 

Based on this lemma, we call       ( )   the total probabilistic risk of  . Also, we say that 

decision maker i is more probabilistic-risk averse than decision maker j if   ( )    ( ). Finally, 

we say that a decision maker is extremely probabilistic-risk averse when   is as shown in (iii) of 

Lemma 1.  

 

Synthesis 

 

We now combine the two ideas that we have developed above: (i) the existence of holding period risk 

in addition to return risk and (ii) the RDU theory and its specialization for extreme probabilistic risk-

aversion.  

 

We apply the RDU theory to holding period risk. In fact, in presenting his theory of liquidity 

preference, Keynes (1964) notes that the uncertainty underlying the liquidity preference is unlikely to 

be expressed by probability alone.
10

 Given the uncertainty over holding period, it is probable that 

investors are more cautious and assign a larger weight to less favorable situation as the RDU theory 

suggests.  

                                           
10

 See page 169 of Keynes (1964). 
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While we apply the RDU theory to holding period risk, we assume that the expected utility theory is 

still applicable to return risk. That is, investors are well informed of the return distribution and 

confident of its accuracy; there is no rank dependency as far as return risk is concerned. Rank 

dependency arises only for holding period risk, as investors are not confident of the accuracy of the 

probability on holding period.  

 

We can model this situation in the following way. Recall that when return risk and holding period risk 

are independent, the expected utility is  [ (   [   ])]  ∫ ∫  (   [   ])    
   . As there is no rank 

dependence as far as (    ) is concerned, we leave the outer integral as it is. As for (   ), we 

allow rank dependence, thus the investor’s utility becomes
11

 

 (   [   ])  ∫ ∑ ([     ])

 

 (   [     ])  
  

 

where {[     ]} is a rank-ordered sequence made of the elements of   given a particular realization 

of portfolio returns; i.e., [     ]    for all   and, given            , for any   and   with    , 

 (   [     ])   (   [     ]).   is the decision weight; i.e.,  ([     ])   (∑  ([     ])
 
   )  

 (∑  ([     ])
   
   ) for some probability weighting function w.

12
  

 

We now impose the extreme probabilistic risk aversion on w and  . So the form of w is as in Lemma 

1. Then the investor’s utility takes a familiar shape, as stated in the following theorem. 

 

Theorem 1. Assume that (i) return risk and holding period risk are independent, (ii) when a 

holding period is fixed (i.e. when there is only return risk) the utility is not rank dependent, (iii) 

when returns are fixed (i.e. when there is only holding period risk), the utility is rank dependent 

and exhibits extreme probabilistic risk aversion given the total probabilistic risk of    . Then 

the investor’s utility can be stated as follows:   

 (   [   ])   ∫ ∫  (   [   ])  
   

   ∫  (    
[   ]  

   [   ])  
  

 

                                           
11

 It is possible to obtain another expression by applying    first and then   . See Ghirardato (1997).  

12
 We can make this derivation more rigorous by starting from a capacity over product space     , 

assuming Moebius independence, and then assuming that there is no non-risk uncertainty in    along the 

analysis of Ghirardato (1997).  
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  ∫ ∫  (   [   ])  
   

   ∫  (    
[   ]  

   [   ])  
  

 

 

Proof. We only need to substitute the formula in Lemma 1 for w and  . □ 

 

The first part of the utility shown in Theorem 1 is the standard expected utility, and the second part is 

the expected utility of maximum drawdown. To make it more comparable to the objective function of 

the Markowitz problem, we propose the following approximation. We would like to express the 

investor’s utility as a function of three parameters: T-period portfolio mean return   , T-period 

portfolio variance   
 , and the mean of maximum drawdown  ̅    (   [   ]     [   ]). Consider 

the first part of the utility:    ∫ ∫  (   [   ])     
  . The “inner” integral, ∫  (   [   ])    , is 

the standard expected utility, which Markowitz (1952) approximates as a function of mean return 

  (   [   ]) and variance     (   [   ]). Given the “outer” integral, we need further justification to 

approximate   as a function of    and   
  (and also  ̅ ). If the distribution of    [   ] is 

“stationary” so that   (   [   ]) and     (   [   ]) depend only on the length of holding period 

   ,
13

 then   can be written as  ∑  (     ) (     
 ) 

   , where      and     
  are the mean 

and variance of    [   ] given      , and  (  ) is a function comparable to Markowitz’ indirect 

utility. Furthermore, under the stationarity, mean returns of different periods are identical so that 

     (   )  . Unless serial correlation is zero,     
  cannot equal (   )  

 . However,     
  can be 

well approximated by   
  and  ̅  in some situations. If that is the case,   can be approximated by 

  ,   
 , and  ̅ . Now consider the second part of the investor’s utility, 

  ∫  (   [   ]     [   ])    . One can think of approximating it with a function of mean 

maximum drawdown  ̅  and variance of maximum drawdown     (   [   ]     [   ]). In general, 

this approximation can be rather inaccurate: even if returns are normal, maximum drawdown is not 

normal, making such approximation imprecise. However, in certain situations,  ̅  and 

    (   [   ]     [   ]) together with   
  may approximate ∫  (   [   ]     [   ])    . It is also 

possible to obtain good approximation only with  ̅  and   
 , i.e. without     (   [   ]     [   ]).  

                                           
13

 If we interpret   (   [   ]) and     (   [   ]) in the conditional sense, then the “stationarity” would not lead 

to   (   [   ]) and     (   [   ]) being dependent only on    . What is necessary is the property that, 

conditional on the information available at the beginning of period 1,   (   [   ]) and     (   [   ]) depend 

only on    . Example 1 below discusses such an example. Example 2 discusses an example where such 

property fails but our approximation is nonetheless exact. 
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Examples 1 and 2 show two cases where our proposed approximation is exact. 

 

Example 1. Suppose that, conditional on the information available at the beginning of period 1, 

portfolio returns    (           )  have a multivariate normal distribution with mean vector   

and variance-covariance matrix   where 

  (

  

 
  

)       

(

 

  
       

   
 

 
  

 )

  

Suppose also that we restrict the values of   ,   
  and   to the range where there is one-to-one 

correspondence between (     
   ) and (     

   ̅ ). Then the investor’s utility can be 

expressed as  (     
   ̅ ) for some function  .  

 

Example 2. Suppose that portfolio returns follow AR(1) process, i.e.                    , 

where      has a normal distribution with zero mean and the variance of   . Suppose also that 

we restrict the values of  ,   and    to the range where there is one-to-one correspondence 

between (      ) and (     
   ̅ ). Then the investor’s utility can be expressed as 

 (     
   ̅ ) for some function  . All the moments are to be calculated conditional on     . 

 

In Example 1, as the return distribution has three parameters   ,   
 , and  , the utility can be written 

in terms of these three parameters. Thus, if we restrict the range of   ,   
  and   so that there is 

one-to-one correspondence between (     
   ) and (     

   ̅ ), it follows that the utility can be 

expressed as a function of   ,   
 , and   ̅ . In Example 2, conditional on     , means and variances 

of different time periods are not identical. So we are in a different situation from Example 1. 

Nonetheless, the return distribution, and thus the utility, depends only on three parameters  ,   ,   . 

So, when the range of these parameters is restricted, we can again express the utility as a function of 

  ,   
 , and   ̅ . 

 

In these examples, it would certainly make more sense to express the utility in terms of the underlying 

parameters, i.e.   ,   
 , and   in case of Fact 1 and  ,  , and    in case of Fact 2. Also, any other 

re-parameterization of these underlying parameters should work as well. However, our re-

parameterization in terms of   ,   
 , and   ̅  is superior in that it reflects the structure of Theorem 

1 well.  
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4. Portfolio Choice and its Implications on Asset Pricing  

 

In the previous section, we have argued for the inclusion of expected maximum drawdown in the 

portfolio choice problem. In this section, we examine its consequences. We consider the portfolio 

choice problem where expected maximum drawdown enters into the objective function, and study its 

implications on asset pricing, i.e. how expected return of each asset is altered by the consideration of 

expected maximum drawdown.  

 

We extend the standard single-period portfolio choice problem of Markowitz (1952) into a multi-

period setup. The extension is not trivial because of one technical difficulty. In the single period 

problem, the portfolio return can be expressed as a linear combination of individual asset returns, say, 

               . In the multi-period framework, it is not so simple. Individual asset returns 

should be cumulated first, to account for compounding effect, and weights can be applied only after 

that. The portfolio return might be expressed as   ∏(      )      ∏(      )   , which 

cannot be represented as a linear combination of   {  } and   {    }.
14

 Given this difficulty, 

we face with two choices. The first choice is to make the discussion as rigorous as possible at the cost 

of giving up familiar matrix algebra and thus making the discussion rather abstract. The second choice 

is to make the discussion more intuitive at the cost of ignoring the compounding and thus making the 

discussion less complete. We choose the latter. We note, however, that the consideration of 

compounding does not alter the main result of this paper.
15

 

 

We need to extend our notation to account for the multiplicity of assets. For clarity, we describe the 

portfolio choice problem again. The investor wants to construct a portfolio for the next T periods. We 

index time periods by t so that        . Suppose that there are N risky assets and one riskfree 

asset. We index the risky assets by i so that        . Let us denote the excess returns of risky 

asset i (over the riskfree rate) by T-vector   , and the excess returns of all risky assets by T-by-N 

matrix  , i.e.,    [       ]. Let us denote the risky portfolio weights by N-vector w so that 

      is the return vector of the risky portfolio. If $1 is invested at the beginning of period 1, then 

                                           
14

 Nor can it be represented as a linear combination of {  } and log-returns {   (      )}.  

15
 Let   be the T-by-N matrix of returns. Let   be the T-vector of 0 and 1, representing the holding period. 

Let   be the N-vector of portfolio weights. The holding period return of the portfolio can be written as 

 (   )   where  (   ) is an N-vector representing the holding period returns of individual assets. We can 

restate Lemmas and Theorems of this paper using this notation.  
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the cumulative excess profit at the end of period T is     . Let    and   
  be the mean and variance 

of     , where   is a vector of 1’s. Let us denote expected maximum drawdown of the portfolio by 

 ̅ . Then the portfolio choice problem can be expressed as      (     
   ̅ ), where   is the 

indirect utility function of the investor. 

 

Three comments on the above setup are in order. First, other than allowing multiple periods, the above 

setup is very similar to that of Kraus and Litzenberger (1976), who include skewness in the place of 

 ̅ . Some authors (e.g. Garlappi, Uppal, and Wang (2007)) prefer a more explicit parameterization of 

the indirect utility, typically a linear function. For example, we may express the indirect utility as 

        
    ̅ , where   represents risk aversion and   represents aversion to expected 

maximum drawdown.
16

 In our solution we linearize the indirect utility; therefore, our setup is not any 

more general than those studies adopting a linear indirect utility function.  

 

Second, considering our multi-period setup, a more relevant measure of variance could be the 

expected sample variance  [∑(      ̅ )
 
]   , rather than the variance of the end-of-period-T value 

  
     [∑    ]. The difference between these two is whether the serial correlation among 

            is added or subtracted. If we assume that the means of             are identical and 

denote the variance-covariance matrix of    by  , then  [∑(      ̅ )
 
]    [  ( )        ]  ,

17
 

whereas   
     [∑    ]      . Thus, for the expected sample variance, the off-diagonals of S are 

subtracted, whereas for the variance of the end-of-period-T value, they are added. For our analysis, it 

is unimportant which of these two are used as a measure of variance. 

 

The last comment concerns the treatment of the riskfree rate. The above problem is expressed in terms 

of excess returns. We have subtracted the riskfree rate from risky asset returns. The portfolio choice 

problem determines the weight    of risky portfolio, and the weight on the riskfree asset is 

determined by       . Obviously, the sum of    does not have to be 1. By choosing to express 

the portfolio choice problem in terms of excess returns, we are assuming that the investor defines a 

drawdown event relative to the riskfree rate. That is, to the investor, a drawdown event occurs when 

                                           
16

 δ also represents thus probabilistic risk aversion and the aversion to liquidity shocks, given the discussion of 

the previous section. 

17
 To see this, note that ∑(      ̅ )

 
   

 (       )     [(       )    
 ] and that  (    

 )    

 (  ) (  
 ). 
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the risky portfolio underperforms the riskfree asset. This assumption turns out to be critical to the 

development of our theory. Without this assumption, in order to derive the equilibrium implications, 

we will have to assume instead that every investor owns identical portfolio of risky assets and the 

riskfree asset.
18

 Fortunately, defining a drawdown event relative to the riskfree rate does not seem 

counter-intuitive.  

 

We now present the solution to the portfolio problem. The first order condition is obtained by 

differentiating the objective function with respect to        , and setting the results equal to zero, 

i.e.  

  

   
 

  

   

   

   
 

  

   
 

   
 

   
 

  

  (  )

  ̅ 

   
    

for        . Note that          (    ), and    
          (         ). Assuming 

stationarity so that the means of             are identical and rearranging terms, the first order 

condition above can be written as 

 (   )   
 

 
   (      

   )   
 

 

  ̅ 

   
 

where    (      
 ) (      ) is the marginal rate of substitution between portfolio variance 

and portfolio mean, and    (     ̅ ) (      ) is the marginal rate of substitution between 

expected maximum drawdown and portfolio mean.  

 

The equation above has an intuitive interpretation. The expected excess return of an asset depends on 

its marginal contribution to portfolio variance and also to the expected maximum drawdown of the 

portfolio. The marginal contribution to portfolio variance is measured by the familiar “market beta” 

                                           
18

 We have two-fund separation when different investors may invest different amounts of money in their risky 

portfolios, but their risky portfolios are identical. We show that the risky portfolios of different investors are 

identical by showing that when risky portfolio weights    satisfies the first order condition of one investor, 

    satisfies the first order condition for some other investor. This requires that the terms in the first order 

conditions are homogeneous of degree one in  . Covariance between portfolio return and individual asset 

returns is homogeneous of degree one in  . Co-drawdown (to be defined later) is homogeneous of degree one 

in   only if the riskfree rate does not appear in the expected maximum drawdown term. Otherwise, co-

drawdown would not be homogeneous of degree one, and we would not have two-fund separation result. In that 

case, we would have to assume that every investor owns identical portfolios of risk assets and the riskfree asset 

to discuss equilibrium implications. Such assumption would be very restrictive. 
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and its coefficient is the utility parameter indicating the sensitivity of utility to portfolio variance. The 

term involving the expected maximum drawdown of portfolio has the identical structure.  

 

To discuss the implications of the above equation further, let us introduce some additional notation. 

Let   be a T(T+1)/2-by-T matrix that transforms a return vector into a cumulative return vector. 

Matrix C is a collection of rows { (    )}          , where  (    )  { (        )}     . That is, 

  

[
 
 
 
 
 
 
 
 
 
      
      
 
      
      
      
 
      
 
      ]

 
 
 
 
 
 
 
 
 

 

With this matrix, the maximum drawdown of    can be expressed as    (   ). Let   ( ) be a T-

vector such that    (   )    (  )
 
  , i.e. it transforms a return vector into the maximum 

drawdown. Then the expected maximum drawdown can be written as  ̅   [   (   )]  

 [  (  )   ].
19

 Based on this notation, Lemma 2 provides a simple representation of   ̅     . 

Note that differentiating  [  (  )   ] with respect to    is not trivial since   (  ) is not a 

continuous function, and we may not change the order of derivative      and expectation  [ ]. 

 

Lemma 2. (Representation of Co-drawdown) Suppose that  (|   |)    for all         and 

       . Then 

 

   
 [  (  )   ]   [  (  ) 

 

   
  ]   [  (  ) 

 

   
  ] 

 

Proof. From the definition of partial derivative,  

 

   
 [  (  )   ]     

   
 [

  (      )
 
(      )    (  )

 
  

 
 ] 

Since   ( ) selects the worst drawdown periods,   (      )
 
(      )    (  )

 
(      )  

 . Thus,  

                                           
19

 One could attempt to solve  [   (   )] directly. Afonja (1972) provides an explicit formula for 

 [   ( )] in the case that x is multivariate normal. Afonja’s formula, however, is quite complicated and does 

not yield a simple interpretation. 
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  (      )
 
(      )    (  )

 
   

   (      )
 
(      )    (  )

 
(      )    (  )

 
(      )    (  )

 
   

   (  )
 
    

Also,   (      )
 
     (  )

 
    . Thus,  

  (      )
 
(      )    (  )

 
   

   (      )
 
(      )    (      )

 
     (      )

 
     (  )

 
   

   (      )
 
    

Thus, 

   
   

 [  (      )
 
   ]     

   
 [

  (      )
 
(      )    (  )

 
  

 
 ]   [  (  )

 
   ] 

Note that |  (      )
 
  |  |   |    |   |, and that, from the condition in the given statement, 

 (|   |    |   |) is finite, i.e. (|   |    |   |) (         ) is integrable where 

 (         ) is the probability density function. So we can apply the Lebesque’s dominated 

convergence theorem
20

, and obtain 

   
   

 [  (      )
 
   ]   [   

   
   (      )

 
  ]   [  (  )

 
   ] 

Thus, the lower bound and the upper bound of        [  (      )
 
(      )    (  )

 
   ]    

are identical, and we have  

   
   

 [
  (      )

 
(      )    (  )

 
  

 
 ]   [  (  )

 
   ] 

This completes the proof. □ 

 

The remainder of this paper centers on  [  (  )
 
  ], which we call expected “co-drawdown.” 

Expected co-drawdown indicates the contribution of the given asset to the maximum drawdown of the 

market portfolio. Clearly, expected co-drawdown is a “downside risk measure” in that it indicates the 

risk that the given asset may contribute to the downside risk of the market portfolio. We study the 

detailed properties of expected co-drawdown in the next section. Lemma 3 and Lemma 4 are the basic 

properties that follow immediately from Lemma 2.  

                                           
20

 Lebesque’s dominated convergence theorem: Let {  } be a sequence of measurable functions such that 

     almost everywhere. If there exists an integrable function   (i.e. ∫  
 

  ) such that |  |    

almost everywhere for all k, then ∫    
 ∫  

 
. See Chapter 5 of Wheeden and Zygmund (1977). 



 

- 22 - 

 

 

Lemma 3. (Homogeneity of Co-drawdown) Expected co-drawdown is homogeneous of degree 

one in  . That is, 

 [  (   )   ]    [  (  )   ] 

 

Proof. Immediate from the definition of   ( ). □ 

 

Lemma 4. (Linearity of Co-drawdown) Co-drawdown is linear in asset returns, i.e.  

 [  (  )
 
(       )]    [  (  )

 
  ]    [  (  )

 
  ] 

for any two numbers a, b, and two return vectors   ,   . 

 

Proof. It is obvious from the formula of co-drawdown. □   

 

Lemma 3 together with the homogeneity of covariance function insures that the right hand side of the 

first order condition is homogeneous of degree one in  . That is, if    is the solution to the 

portfolio problem, then     is the solution to the portfolio problem for some other values of   and 

 . More specifically, if    is the solution for   and  , then     is the solution for     and    . 

This homogeneity ensures that different investors with different values of   and   choose the 

identical portfolios as long as the ratio of   to   is identical. So, assuming a constant ratio of   to 

 , we have the two-fund separation result. Then we may interpret    in the first order condition as 

the “market portfolio” of risk assets, and the first order condition itself as the equilibrium condition. 

Lemma 4 implies that the co-drawdown of the market portfolio is its maximum drawdown. The 

following theorem summarizes these ideas. 

 

Theorem 2. (Equilibrium Condition) Suppose that the ratio of   to   is constant across investors. 

Then the following statements are true. (i) The two-fund separation holds, i.e. every investor holds 

the same portfolio of risky assets. Let us call this portfolio the market portfolio. (ii) In equilibrium, 

the expected return of individual asset is proportional to its market beta and its expected co-

drawdown, i.e. 

 (   )   
 

 
   (         )   

 

 
  [  (  )   ] 

(iii) In equilibrium, the expected return of the market portfolio is proportional to its variance and 

its expected maximum drawdown, i.e. 
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 (    )   
 

 
   (    )   

 

 
  ̅  

 

Proof. (i) follows from Lemma 2 and the homogeneity of covariance function. (ii) follows from 

Lemma 1 and statement (i) in this Lemma. (iii) follows from linearity. □ 

 

 

5. Properties of Co-drawdown and Comparison to Other Downside Risk 

Measures 

 

In the previous section, we have discussed some basic properties of expected co-drawdown, i.e. it is 

homogeneous of degree one in w and linear in   . We discuss additional properties of co-drawdown in 

this section. As co-drawdown belongs to the class of downside risk measures, we compare co-

drawdown to other downside risk measures as well.  

 

Co-drawdown represents the behavior of asset returns conditional on the market portfolio returns. 

Thus, the non-systematic components of asset returns do not influence co-drawdown, while the 

systematic components, i.e. “beta,” influence it. The following statement formalizes this idea. 

 

Fact 1. (Beta Dependence) Suppose that the distribution of asset returns    (           ) (i.e. 

the returns over time of asset i) conditional on market returns    (           ) is such that 

the following linear regression model holds:           , where  ( |  )    and 

   ( |  )    . Then the following statements are true. (i) The co-drawdown of asset i does not 

depend on the non-systematic variances and serial-correlations; i.e.,  [  (  )   ] does not depend 

on the diagonal and off-diagonal elements of   . (ii) The co-drawdown of asset i depends on the 

correlations and cross-serial correlations between asset i and the market portfolio; i.e. 

 [  (  )   ] depends on the diagonal and off-diagonal elements of  . 

 

Proof. By the law of iterated expectation,  [  (  )   ]   {  (  )  [  |  ]}   {  (  ) (  

   )}, from which the given statements become obvious. □   

   

Thus, if an asset is highly correlated with the current or the previous returns of the market portfolio, 

its co-drawdown is going to be high. On the other hand, strong serial-correlation in asset returns is 

irrelevant if it is not related to the market portfolio. Note that Fact 1 reveals one difference between 
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co-drawdown and beta. While the contemporaneous correlation with the market portfolio matters for 

both, the cross-serial correlation affects co-drawdown only. This is, however, not a fundamental 

difference between co-drawdown and beta. It is possible to modify the definition of beta to reflect the 

cross-serial correlation. A more fundamental difference between beta and co-drawdown is that co-

drawdown is a downside risk measure. The following statement illustrates this point. 

 

Fact 2. (Downside Beta Sensitivity) Let us partition the space of the market portfolio returns into 

the following three sets,   {       },   {         }, and   {            }, 

where   indicates the element-by-element comparison,    (           ), and    is the 

mean of   . Suppose that the distribution of asset returns    (           ) conditional on 

market returns    is such that (i)               on A, (ii)               on B, 

and (iii)            on C where   ,   , and   satisfy the assumption of the linear 

regression model; i.e. they have zero mean conditional on   . Suppose also that the distribution of 

   is symmetric around its mean   . Then the co-drawdown of asset   is more sensitive to 

“downside beta”    than to “upside beta”   . 

 

Proof. By the property of conditional expectation,  

 [  (  )   ]    ( )  {  (  )   | }    ( )  {  (  )   | }    ( )  {  (  )   | } 

   ( )  {  (  ) (       )| }    ( )  {  (  ) (       )| } 

                    ( )  {  (  ) (     )| } 

The derivative of  [  (  )   ] with respect to an element in    is   ( ) [  
 (  )    | ], 

whereas the derivative of  [  (  )   ] with respect to an element in    is 

  ( )  [  
 (  )    | ], where   

 (  ) is the s-th element of   (  ). Note that on A,   
 (  )    

for all s. By the symmetry of the distribution of   ,   ( )     ( ). Thus, 

  ( )  [  
 (  )    | ] is greater than   ( )  [  

 (  )    | ]. □   

 

Just as we have derived (expected) co-drawdown from (expected) maximum drawdown, we can 

derive a “co-measure” from any other portfolio risk measure as well.
21

 While the original measure 

indicates the riskiness of a portfolio, the co-measure indicates the contribution of an asset to the 

riskiness of the portfolio. Formally, let  (  ) be a risk measure of the portfolio return vector 

                                           
21

 While the term “co-measure” itself is not widely used, adding prefix “co-“ to the name of risk measure is not 

new. For example, Hogan and Warren (1974) talk about co-semivariance, which is derived from semivariance.      
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     . Then a “co-measure” is obtained by differentiating  (  ) with respect to the weight of a 

particular asset, i.e.   (  )    . When  (  ) is the sample variance,   (  )     is the sample 

covariance. When  (  ) is the (expected) maximum drawdown,   (  )     is the (expected) co-

drawdown, assuming that    is an optimal portfolio. 

 

Given that co-drawdown is a downside risk measure, it is worth comparing it to other downside co-

measures, i.e. the co-measures associated with downside risk measures. We consider four popular 

downside risk measures and co-measures associated with them: skewness (Kraus and Litzenberger, 

1976), semi-variance (Hogan and Warren, 1972, 1974), value-at-risk (Artzner et al., 1999), and 

expected shortfall (Artzner et al., 1999; Tasche, 2000; Bertsimas et al., 2004). These measures are 

typically defined in terms of the final value of the portfolio     .
22

 Thus, skewness can be represented 

by  {(         )
 
} where     (  ), and semi-variance is represented by 

 {(         )
 
 (      )} for some x (typically    ). Value-at-risk (VaR) is      

  ( ) for 

some  ,       (typically       ), where      
 is the cumulative distribution function of 

    . Expected shortfall is  [     ( 
     )] for some x (typically    .).  

 

It turns out that the co-measures associated with semi-variance and expected shortfall (let us call them 

“co-semivariance”
 23

 and “expected co-shortfall”) share many properties with expected co-drawdown. 

Below we collect the properties of these two co-measures. Fact 3 is a consequence of the theorem of 

Hong and Warren (1972). Fact 4 is comparable to Lemma 5.6 of Tasche (2000) and Proposition 3 of 

Bertsimas et al. (2004).   

 

Fact 3. (Properties of Co-semivariance) Let  (  ) be the semivariance of portfolio, i.e. 

 (  )   [(    )
 
 (      )]. Let us call   (  )     co-semivariance. Suppose that 

 (|   |)    for all         and        . Then the following statements are true. (i) Co-

semivariance is homogeneous of degree one in weights, (ii) co-semivariance is linear in individual 

                                           
22

 It is possible to define skewness and semi-variance in terms of each elements of   , i.e. the expected value of 

sample semi-variance and the expected value of sample skewness. Whether we define these measures one way 

or another does not influence our discussion in this paper.  

23
 As has been noted before, Hong and Warren (1974) have introduced the term “co-seminvariance.” 
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asset returns. (iii) Co-semivariance is beta-dependent in the sense of Fact 1. (iv) Co-semivariance 

is downside beta-sensitive in the sense of Fact 2.
24

 

 

Proof. Hong and Warren (1972) show that co-semivariance is   [         ( 
     )]. The 

homogeneity and the linearity of co-shortfall (i) and (ii) are immediate. The beta dependence (iii) 

and the downside beta dependence (iv) can be checked in the same way as in Fact 1 and Fact 2. □ 

 

Fact 4. (Properties of Expected Co-Shortfall) Let  (  ) be the expected shortfall of portfolio, i.e. 

 (  )   [     ( 
     )]. We call   (  )     expected co-shortfall. Suppose that  (|   |)  

  for all         and        . Then the following statements are true. (i) Expected co-

shortfall is homogeneous of degree one in weights, (ii) Expected co-shortfall is linear in individual 

asset returns. (iii) Expected co-shortfall is beta-dependent in the sense of Fact 1. (iv) Expected co-

shortfall is downside beta-sensitive in the sense of Fact 2.
25

  

 

Proof. We first show that   (  )      [     ( 
     )], from which all the statements follow. 

By the definition of partial derivative, 

  (  )

   
    

   

 

 
 [(          ) ( 

           )       ( 
     )] 

We add and subtract      ( 
           ) so that, inside the expectation operator, we have the 

sum of (          ) ( 
           )       ( 

           ) and      ( 
           )  

     ( 
     ). The first of these simplifies to      ( 

           ). The second of these can be 

written as      ( )       ( ), where   {    
                     } and   {    

    

                  }. Thus, 

  (  )

   
    

   
 [    ( 

           )  
 

 
     ( )  

 

 
     ( )] 

On A,              , and       [     ( )  ]      [      ( )]   . (The last equality 

is guaranteed by Lebesque’s dominated convergence theorem. Note that     ( )    at each 

point.) On B,              , and       [     ( )  ]      [      ( )]   . (Again, the 

                                           
24

 We can work with a more general formula for semivariance, i.e.  [(      )
 
 (      )] for some x. In 

that case, however, we have to give up the homogeneity of degree one in weights. 

25
 We can work with a more general formula for expected shortfall, i.e.  [     ( 

     )] for some x. In that 

case, however, we have to give up the homogeneity of degree one in weights. 



 

- 27 - 

 

last equality follows from Lebesque’s dominated convergence theorem.) Finally,     [    ( 
    

       )]   [    ( 
     )]. Thus, we have shown that   (  )      [     ( 

     )]. The 

homogeneity and the linearity of co-shortfall (i) and (ii) are immediate. The beta dependence (iii) 

and the downside beta dependence (iv) can be checked in the same way as in Fact 1 and Fact 2. □ 

 

Expected co-drawdown and expected co-shortfall share all these properties because both of them are 

the expectations of asset returns conditional on poor market performance. Their difference lies in how 

“poor market performance” is defined. For expected co-drawdown, poor market performance means 

that the market portfolio is experiencing the worst drawdown. For expected co-shortfall, poor market 

performance means that the cumulative return is negative. In this sense, these two measures are 

complementary to each other.  

 

Lemma 2, Fact 3, and Fact 4 are based on the idea that certain conditioning arguments do not interfere 

with the application of the “chain rule.” In Lemma 2, the conditioning argument is that the portfolio is 

experiencing maximum drawdown. In Fact 3 and Fact 4, the conditioning argument is that the 

portfolio has a negative return. Fact 3 shows that the chain rule works even for the second moment.  

 

The co-measures associated with other downside risk measures do not share as many properties. Co-

skewness is linear in individual asset returns, but not homogeneous of degree one in weights. Nor is it 

downside beta-dependent. Co-VaR is linear only when the distribution is normal. We state these 

properties more formally below. 

 

Fact 5. (Properties of Co-skewness) Let  (  ) be the skewness of portfolio, i.e.  (  )  

 [(         )
 
]. We call   (  )     co-skewness. Then the following statements are true. (i) 

Co-skewness is linear in individual asset returns. (ii) Co-skewness is not homogeneous of degree 

one in weights. (iii) Co-skewness is beta-dependent. (iv) Co-skewness is not downside beta 

sensitive. 

 

Proof. Note that   (  )       [(         )
 
] (         ), from which the linearity (i) is 

immediate. It is also clear that co-skewness is not homogeneous of degree one in weights. Beta-

dependence (iii) can be proven easily noting that   has zero conditional expectation. Since co-

skewness is symmetric, downside beta sensitivity (iv) does not obtain. □ 
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Fact 6. (Properties of Co-VaR) Let  (  ) be the VaR of portfolio, i.e.  (  )       

  ( ) for 

      . We call   (  )     co-VaR. If returns have a multivariate normal distribution, then 

co-VaR is linear in individual asset returns and also homogeneous of degree one in weights. 

 

Proof. If returns have multivariate normal distribution, then VaR is       √    , where   is 

approximately 1.96. Then co-VaR is          (     ) √     , from which linearity in returns 

and homogeneity in weights follow immediately. □ 

 

 

6. Concluding Remarks 

 

We have shown that holding period risk and rank dependence may lead investors to consider expected 

maximum drawdown as a measure of portfolio risk. We have also shown that the systematic risk of an 

individual asset is proportional to its co-drawdown—the contribution of the asset to market maximum 

drawdown—as well as its market beta. As a downside risk measure, co-drawdown shares many 

properties with other downside risk measures such as co-semivariance and expected co-shortfall.   

 

We have not carried out an empirical analysis of co-drawdown. One challenge is whether co-

drawdown estimates from historical data would be reliable. Certainly, a proper estimation of co-

drawdown requires a larger amount of data than the estimation of other downside risk measures. This 

requirement can be probably met by using a relatively higher frequency data set, say daily or weekly 

rather than monthly. 

 

Ccareful empirical analysis allows to pursue a number of interesting questions. Given the link 

between liquidity preference and co-drawdown, one may examine whether the liquidity premium in 

the equity market is related to co-drawdown. Also, given the role of rank dependence in deriving co-

drawdown, one may consider a possible link to ambiguity premium. There is also a possibility that 

equity value premium is related to co-drawdown, either directly or indirectly through liquidity or 

ambiguity.  
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