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1. Introduction 

 

In this paper, we propose a consistent estimation technique to investigate the statistical 

properties of irregularly observed monetary value of fund under management. This estimation 

method takes advantage of return variance conditioned on the value of a fund and directly 

utilizes irregularly spaced observations without losing any information. Irregularly spaced 

data is a popular research topic as it can be found in many industrial and scientific areas: 

Natural disasters such as earthquakes, floods, or volcanic eruptions, astronomical 

measurements such as spectra of celestial objects, patients’ state of health and many more. 

However we do not find many studies that look at the particular case of irregular fund value 

observation, which would be highly relevant to investors and regulators. 

 We give an example to demonstrate how irregularity in fund value observation could be 

problematic for potential investors and regulators. Assume that a manager receives seed 

money to start a fund. The manager would first run the fund with the given seed money to 

establish historical performance record. Once the record is established, the manager would 

like to attract new investors for various reasons such as achieving economies of scale or 

attracting more management fees. The potential investors would like to investigate the 

historical return distribution of the fund in order to decide whether they should invest or not. 

As the fund is introduced to a larger pool of investors, regulators may feel that the fund needs 

to be investigated.  

However, the historical value of the fund under management does not necessarily be 

publicly available on regular basis. There could be many reasons for this including that the 

assets held by the fund are not appraised regularly, the assets are infrequently traded or 

simply the manager did not publish the value regularly. Then the potential investors and 

regulators need to evaluate the fund’s return distribution properly based on the irregularly 
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observed data. However, Eckner (2012) show that the estimated moments using irregularly 

observed data could be heavily biased. The proposed estimation method of this paper is 

useful in this situation. 

The fact that some financial data is observed irregularly is often overlooked in two 

ways; by having investment horizons of more than a few days or by assuming evenly spaced 

trade intervals. In studies with a relatively longer investment horizon, it is implicitly assumed 

that any effect that the intervals could have quickly disappear and such an assumption leads 

to information loss. Eckner (2012) points out that assuming evenly spaced intervals has four 

potential problems. (1) The estimates of the second moments, variance and auto covariance 

may be subject to a significant and hard-to-quantify bias. (2) It could change the causal 

relationship in a multivariate time series. (3) It leads data loss and dilution. (4) Loss of time 

information. 

The contribution of our paper is that we provide an econometrically enhanced and 

more detailed method that improves the existing likelihood based techniques developed in 

other fields in estimating the parameters of models when observations are irregularly spaced. 

Our result is theoretically equivalent to the existing methods, when the sample is large and 

the autocorrelation is low. However, our estimation method should outperform the existing 

methods when the sample size is small and there exists significant autocorrelation in the data. 

The rest of the paper is organized as follows. Section 2 presents literature review, 

Section 3 presents the model, Section 4 presents the estimation method, Section 5 

investigates simulated results and Section 6 concludes the paper. 

 

2. Research Background and Literature Review 

 

Investigation of irregularly spaced data has for a long time been a research topic in many 
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areas as it has many applications throughout various fields such as marine science (Gulland 

and Holt, 1959), forest science (Moser, 1972), biology (Chao, 1987), hydrology (Duan and 

Sorooshian, 1988), astronomy (Scargle, 1989) and many others. More recent literature 

includes Bos et al. (2002), Thiebaut and Roques (2005), Broersen (2008) and Davidsen and 

Griffin (2010). 

 Among these works, Duan and Sorooshian (1988) seems closest to ours and is also 

done in discrete time and their results are similar to the results we derive in section 3. They 

developed a new maximum likelihood criterion suitable for hydrological model calibration 

using data which are recorded at unequal time intervals and contain auto correlated errors. 

Our results, however, are more detailed in terms of the structure of the time series process. 

When the sample size is large and the autocorrelation in the data is low, their result will be 

equivalent to ours. However, when the sample size is small and there is significant 

autocorrelation, our approach potentially yields more precise estimates. 

Analysis of irregularly spaced data could have many applications in economics and 

finance. Irregularly reported fund returns, for example, where many mutual and hedge funds 

compute profit and losses whereby investors only observe them on an irregular basis. 

Economic and financial shocks also happen on an irregular basis. More generally, relevant 

news happens and also is observed on an unevenly distributed time space. Many illiquid 

financial assets, such as real estate, art sold by auction etc., are traded on an irregular basis. 

The announcement date of earnings is another example where the SEC only requires 

companies to announce within 40 days from the quarter end. Analysts forecast of many small 

cap companies are reported on an irregular basis. High frequency trading data also is a good 

example. Muller (1991), Gilles, Zumbach (2001) and Dacorogna et al. (2001) examine 

irregular time series data in the context of high frequency financial data. 

Much existing literature in financial application of irregularly spaced data focus on 
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irregular financial trades. Engle and Russell (1998) propose a statistical model for the 

analysis of data which arrive at irregular intervals and develop asymptotic properties of the 

quasi maximum likelihood estimator as a corollary to ARCH model results. Ghysels and 

Jasiak (1998) develop a class of ARCH models for irregularly spaced trades and quote 

arrivals. The econometric contribution of this body of work is to combine the temporal 

aggregation for the GARCH model and the autoregressive conditional duration model. 

Meddahi, Renault and Werker (2006) use an exact discretization of continuous time 

stochastic volatility processes observed at irregularly spaced times to investigate how a 

coherent GARCH model can be specified for such data. 

However, unlike the aforementioned works, we are interested in irregular 

observations in funds that invest trusted wealth. These funds could include mutual funds, 

hedge funds, private equity funds, venture capitals etc. Capital injection and investment 

opportunities in such funds are distributed unevenly across time. An especially important case 

is where a fund is given seed capital by its backer. Whenever actual funds arrive into the fund, 

which can occur on an occasional basis, an equal amount of funds, together with the profits 

accrued to them, is returned to the sponsor. Returns are only measured on these occasions. 

The challenge then is to calculate the distributional properties of the rate of return of the 

sponsor. We shall use this situation to motivate our analysis. 

 As previously discussed, irregularly spaced data is often overlooked in two ways: (1) 

by having investment horizons of more than few days or (2) by assuming evenly spaced trade 

intervals. The first cannot be applied to many studies other than ones with a relatively longer 

investment horizon. The second is the most widely used approach, which transforms 

irregularly spaced data into equally spaced data using some form of interpolation. (see Adorf, 

1995 and Beygelzimer et al., 2005) This paper, on the other hand, provides an estimation 

method that can directly utilize irregularly spaced financial data without losing any 
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information. 

 

3. The Model 

 

3.1. The Discrete i.i.d. Case 

As mentioned earlier, to motivate our paper, we use a situation where a fund is given seed 

capital by its backer. Whenever actual funds arrive into the fund, which can occur on an 

occasional basis, an equal amount of funds, together with the profits accrued to them, is 

returned to the sponsor. We want to calculate the distributional properties of the rate of return 

to the sponsor. 

Our problem can be cast in the following manner. Let xi, where i = (1, …,m), be the 

returns to the fund observed on m irregular dates. The time between observing the i th and i-

1th return we denote by ti–ti-1 = Δti. If the underlying data are independently distributed, with 

mean μ and variance σ
2
 then it is immediate that the observed random variable xi has mean 

μΔti and variance σ
2Δti; we shall write this in a regression format as 

 

𝑥𝑖 = 𝜇Δ𝑡𝑖 +𝜎√Δ𝑡𝑖𝑧𝑖         (1) 

 

where i = (1, …, m) and zi is distributed independently (0,1). We note in passing that we 

cannot assert that zi are identically distributed without additional assumptions. We can 

calculate a new regression 

𝑦𝑖 = 𝜇√Δ𝑡𝑖 +𝜎𝑧𝑖         (2) 

 

This regression satisfies Gauss-Markov assumptions and so, denoting total elapsed time by T, 
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𝜇̂ =
∑ 𝑦𝑖√Δ𝑡𝑖
𝑚
𝑖=1

∑ Δ𝑡𝑖
𝑚
𝑖=1

 = 
∑ 𝑥𝑖
𝑚
𝑖=1

𝑇
      (3) 

 

Furthermore, the “optimal”, i.e. the unbiased, OLS estimated variance will be 

 

𝑠2 =
∑ (𝑦𝑖−𝜇̂√Δ𝑡𝑖
𝑚
𝑖=1 )2

𝑚−1
=
∑ (

𝑥𝑖

√Δ𝑡𝑖
−𝜇̂√Δ𝑡𝑖

𝑚
𝑖=1 )2

𝑚−1
    (4) 

 

We have said nothing about the error distribution; if we assume that the underlying error is 

Gaussian, then zi is independent N(0,1). And, as is well-known, s
2
 is distributed as 𝜎2

𝜒2(𝑚−1)

𝑚−1
 

which in words says that the sample variance is distributed as the population variance 

multiplied by a chi-squared variable with m-1 degrees of freedom divided by m-1. 

Let xi, i = 1 … m, be now described by a continuous time process with finite second 

moments; we denote its non-constant mean by 𝜇(𝑡) and its auto-covariance function K(r,s) 

which can be defined even if the process is not weakly stationary as long as second moments 

exist. In particular, E(𝑥𝑖) = ∫ 𝜇(𝑠) 𝑑𝑠
𝑡𝑖
𝑡𝑖−1

 and Cov(𝑥𝑖 , 𝑥𝑗) = ∫ ∫ 𝐾(𝑟, 𝑠) 𝑑𝑟 𝑑𝑠
𝑡𝑗
𝑡𝑗−1

𝑡𝑖
𝑡𝑖−1

. And in 

particular, Var(𝑥𝑖) = ∫ ∫ 𝐾(𝑟, 𝑠) 𝑑𝑟 𝑑𝑠
𝑡𝑖
𝑡𝑖−1

𝑡𝑖
𝑡𝑖−1

. We could make a further weak stationarity 

assumption,𝐾(𝑟, 𝑠) = 𝐾(𝑟 − 𝑠), however it is hard to say much else without going to a 

particular example. 

 

3.2. Ornstein Uhlenbeck Model 

In this section, we study the effect and the estimation of irregularly spaced data on an OU 

Model. The OU process is often used to model mean reverting financial processes. Mean 

reverting processes are naturally attractive to model financial asset prices because of the 

economic argument that when prices are ‘too high’, demand will reduce, and supply will 
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increase, hence prices decrease, producing a counter-balancing effect. This process has been 

extensively studied by Bergstrom (1990) and it has been successfully used by many others 

including Lo and Wang (1995) in studying financial asset price processes. We present some 

general results for OU processes before looking at our particular model. We assume that 

 

( ) ( ( )) ( )dy t y t dt dW t          (5) 

 

Where θ > 0 and σ > 0. It is well-known that 

E(y(t)) = y(0)𝑒−𝜃𝑡+𝜅(1 − 𝑒−𝜃𝑡) 

K(s,r)=Cov(y(s),y(r))=
𝜎2

2𝜃
𝑒−𝜃(𝑠+𝑟)(𝑒2𝜃min(𝑠,𝑟) − 1) 

 

We shall motivate our analysis in terms of our fund where P(t) is the value of the fund at time 

t; it is only observed at a point at which there is an inflow or outflow. At this time, we 

compute the current pre-transaction value and assess the return relative to the previous 

observed value. Because new funds are replacing old (seed) funds the net impact of flows is 

zero. Consequently, the post-transaction value is equal to the pre-transaction value (as long as 

the amount of new funds does not exceed the residual seed money) but it is at these times that 

fund value is measured. New entrant funds are effectively locked in and cannot be withdrawn. 

At some point all the seed money will all be returned and so the flow of funds will jump at 

this time, that is pre and post values will differ.  

In more general cases, we can assume that at the particular time that new funds arrive 

and/or leave, the continuous time process stops and instantaneously restarts from the new 

level. A knowledge of these levels is available to fund managers so these computations are 

straight-forward. We assume that inter-arrival times are given and non-stochastic but this can 
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be easily generalized to stochastic times. Knight and Satchell (2013) (reference to be added) 

provide an analysis of multivariate log-normal processes wherein arrival times are i.i.d. 

negative exponential so that the overall number of events (defined as either additions or 

subtractions) follows a homogeneous Poisson process. Modelling the monetary value of a 

fund, as well as the return of a fund is advantageous because we can observe both the level 

and return and it allows us to condition on the monetary value. 

We now turn to our specific case. Assume that the logarithm of the asset prices logP(t) 

has linear trends. We consider the process  

 

𝑞(𝑡) ≔ log𝑃(𝑡) − 𝜇𝑡      (6) 

 

Assume that q(t) satisfies the following stochastic differential equation, 

 

𝑑𝑞(𝑡) = −𝜃𝑞(𝑡)𝑑𝑡 + 𝜎𝑑𝑊(𝑡)     (7) 

 

where the parameter μ is for the market and θ and σ are the parameters of the OU process. We 

assume σ> 0, and W denotes a Wiener process. Equation (7) does not presume stationarity or 

trending. OU processes and more general stochastic differential equation systems have been 

analyzed econometrically by Sargan (1974), Robinson (1977), and Phillips (1974, 1983). As 

previously discussed, the OU process has several advantages in investigating financial assets. 

It can be explicitly solved and there are exact solutions for discretized versions of this model. 

Furthermore, the OU process allows for stationary behavior, random walks and 

explosive behavior in q. Mean reverting processes are naturally attractive to model prices of 

financial assets since they embody the economic argument that when prices are ‘too high’, 

demand will reduce, supply will increase thereby reducing prices and producing a counter-
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balancing effect. When prices are ‘too low’ the opposite will happen, again pushing prices 

back towards some kind of long term mean. The OU process is the continuous-time analogue 

of the discrete-time AR(1) process. It can be interpreted as a scaling limit of a discrete 

process, in the same way that Brownian motion is a scaling limit of random walks. 

The solution for q(t) can be written as 

 

𝑞(𝑡) = 𝑞(0)𝑒−𝜃𝑡 + ∫ 𝜎𝑒−𝜃(𝑡−𝑢)𝑑𝑊(𝑢)
t

0

 

   

(8) 

 

From our general results above, E(q(t)) = q(0)𝑒−𝜃𝑡 and  

K(s,r) = Cov(q(s),q(r)) = 
𝜎2

2𝜃
𝑒−𝜃(𝑠+𝑟)(𝑒2𝜃min(𝑠,𝑟) − 1), s ≠ r 

= 𝑉𝑎𝑟(𝑞(𝑠)) =
𝜎2

2𝜃
𝑒−2𝑠𝜃(𝑒2𝜃s − 1), s = r 

 

First, assume that returns are computed over evenly spaced time periods. The one period 

return, (which may not be observable) at time t can be written as 

 

𝑟(𝑡 + 1, 𝑡) = 𝜇 + 𝑞(0)𝑒−𝜃𝑡(𝑒−𝜃 − 1) + ∫ 𝜎𝑒−𝜃(𝑡+1−𝑢)𝑑𝑊(𝑢)
t+1

t

 

 

(9) 

 

Assume that we observe the return at irregular intervals, ∆𝑡𝑖, then the return between two 

time points;𝑡𝑖 and 𝑡𝑖+1 can be written as 

 

𝑟(𝑡𝑖+1, 𝑡𝑖) = 𝜇∆𝑡𝑖 + 𝑞(𝑡𝑖)(𝑒
−𝜃∆𝑡𝑖 − 1) + ∫ 𝜎𝑒−𝜃(𝑡𝑖+1−𝑢)𝑑𝑊(𝑢)

𝑡𝑖+1
𝑡𝑖

 

 

(10) 

 

A more convenient form for estimation is to use the autoregressive representation of (8). We 
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can rewrite (8) as 

 

𝑞(𝑡) = 𝑞(𝑡 − 1)𝑒−𝜃 + ∫ 𝜎𝑒−𝜃(𝑡−𝑢)𝑑𝑊(𝑢)
t

t−1
    (11)

 

 

Generalizing, 

 

𝑞(𝑡𝑖+1) = 𝑞(𝑡𝑖)𝑒
−𝜃∆𝑡𝑖, + ∫ 𝜎𝑒−𝜃(𝑡𝑖+1−𝑢)𝑑𝑊(𝑢)

𝑡𝑖+1
𝑡𝑖

    (12) 

 

This is the analogue of (46) of Lo and Wang (1995),which is the explicit solution of the 

univariate trending OU process in a recursive representation of q. Lo and Wang (1995) show 

that the maximum likelihood estimator of the discrete-time parameters of this process is 

asymptotically equivalent to the ordinary least squares estimator applied to detrended prices. 

The continuous-time parameters µ, σ, and θ may then be obtained from the discrete-time 

parameter estimates. Returns from t to t+s can now be simply expressed as 

 

𝑟(𝑡 + 𝑠, 𝑡) = 𝜇𝑠 + 𝑞(𝑡)(𝑒−𝜃𝑠 − 1) + ∫ 𝜎𝑒−𝜃(𝑡+𝑠−𝑢)𝑑𝑊(𝑢)
t+s

t
  (13)

 

 

The advantage of the expression in (13) is that the error terms are uncorrelated; the 

disadvantage is that the expression is mixed, involving both de-trended prices and returns. 

The conditional (conditioning on q(t)) mean, μr, and the variance of r(t + s, t), σr
2, can be 

written as
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𝐸(𝑟(𝑡 + 𝑠, 𝑡)|𝑞(𝑡)) = 𝜇𝑟 = 𝜇𝑠      (14) 

𝑉𝑎𝑟(𝑟(𝑡 + 𝑠, 𝑡)|𝑞(𝑡)) = 𝜎𝑟
2 =

𝜎2

2𝜃
(1 − 𝑒−2𝜃𝑠)    (15) 

 

Since in what follows t≥ j+k>j, and using the independence property of non-overlapping 

increments property of Brownian motion, 

 

Cov(𝑟(𝑡 + 𝑠, 𝑡), 𝑟(𝑗 + 𝑘, 𝑗)|𝑞(𝑡)) = 0  for t > j   (16) 

 

We call the net change of the fund due to flow at time ti, X(ti). So at times ti , the level of funds 

under management changes by X(ti). Then the level equation for the fund under management 

is 𝑃(𝑡𝑖
+)  = P(𝑡𝑖

−) + 𝑋(𝑡𝑖).  Assuming ti and ti+1 are adjacent event times and define 

∆𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖, the return between ti and ti+1 can be written as 

 

𝑟(𝑡𝑖+1, 𝑡𝑖) = ln(P((𝑡𝑖+1
− ))) − ln(𝑃(𝑡𝑖

+)) 

𝑟(𝑡𝑖+1, 𝑡𝑖) = 𝜇∆𝑡𝑖 + 𝑞(𝑡𝑖
+)(𝑒−𝜃∆𝑡𝑖 − 1) + ∫ 𝜎𝑒−𝜃(𝑡𝑖+1−𝑢)𝑑𝑊(𝑢)

𝑡𝑖+1
𝑡𝑖

  (17) 

 

We do not enter into the calculations except to adjust the funds to the level which is earning 

the returns. Also note, technically that q(𝑡+)=ln(𝑃(𝑡+)) − 𝜇𝑡 whilst q(𝑡−) = ln(𝑃(𝑡−)) −

𝜇𝑡. We can also, if we wished, include withdrawals over and above the repayment of seed 

money. 

 

4. Estimation of the Model 
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Model parameters may best be estimated but using the 𝑞(𝑡𝑖
+) in (17) as we can use 

generalized least squares noting that while the error terms are uncorrelated they are 

heteroscedastic. Using our previous result in (15) and (16), weighted Least Squares can be 

applied iteratively to a linear regression of 𝑟(𝑡𝑖+1, 𝑡𝑖) on ∆𝑡𝑖  and 𝑞(𝑡𝑖
+). This would 

involve an initial estimate of 𝜇 to calculate q(t). However, we can rewrite (17) as 

 

𝑟(𝑡𝑖+1, 𝑡𝑖) = 𝜇∆𝑡𝑖 + ln(𝑃(𝑡𝑖
+)) (𝑒−𝜃∆𝑡𝑖 − 1) − 𝑡𝑖𝜇(𝑒

−𝜃∆𝑡𝑖 − 1) + ∫ 𝜎𝑒−𝜃(𝑡𝑖+1−𝑢)𝑑𝑊(𝑢)
𝑡𝑖+1
𝑡𝑖

 (18) 

 

So an alternative and possibly better estimation involves a weighted linear regression of 

r(ti+1, ti) on ∆𝑡𝑖, 𝑡𝑖 and ln(𝑃(𝑡𝑖
+)), using the square-root of the diagonal of the conditional 

covariance matrix as weights. 

We can generalize Lo and Wang (1995) who show that the maximum likelihood 

estimator of the discrete-time parameters of the equally-spaced q(t) process is asymptotically 

equivalent to the ordinary least squares estimator applied to detrended prices to demonstrate 

that our iterated WLS procedure is equivalent to maximum-likelihood. Our proposed 

estimation method is as follows. 

 From Equation (18) we have, 

 

𝑟(𝑡𝑖+1,𝑡𝑖)

𝑆𝑡𝑑𝑒𝑣(𝑟(𝑡𝑖+1,𝑡𝑖)|𝑞(𝑡))
=
𝜇(∆𝑡𝑖−𝑡𝑖(𝑒

−𝜃∆𝑡𝑖−1))

𝑆𝑡𝑑𝑒𝑣(𝑟(𝑡𝑖+1,𝑡𝑖)|𝑞(𝑡))
+

ln(𝑃(𝑡𝑖
+))

𝑆𝑡𝑑𝑒𝑣(𝑟(𝑡𝑖+1,𝑡𝑖)|𝑞(𝑡))
(𝑒−𝜃∆𝑡𝑖 − 1) + ε𝑖 (19) 

 

where 𝑆𝑡𝑑𝑒𝑣(𝑟(𝑡𝑖+1, 𝑡𝑖)|𝑞(𝑡)) = √
𝜎2

2𝜃
(1 − 𝑒−2𝜃∆𝑡𝑖) and ε𝑖~𝑁(0,1). The purpose of scaling by 

the conditional return standard deviation is to control potential heteroskedasticity. This results 

in more efficient estimates, i.e. smaller estimated standard error. This will be further 
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discussed in section 5.2 with simulated results. We notice that for a given value of θ and σ
2
, μ 

can be easily estimated using: 

 

𝑟(𝑡𝑖+1,𝑡𝑖)

𝑆𝑡𝑑𝑒𝑣(𝑟(𝑡𝑖+1,𝑡𝑖)|𝑞(𝑡))
−

ln(𝑃(𝑡𝑖
+))

𝑆𝑡𝑑𝑒𝑣(𝑟(𝑡𝑖+1,𝑡𝑖)|𝑞(𝑡))
(𝑒−𝜃∆𝑡𝑖 − 1) =

𝜇(∆𝑡𝑖−𝑡𝑖(𝑒
−𝜃∆𝑡𝑖−1))

𝑆𝑡𝑑𝑒𝑣(𝑟(𝑡𝑖+1,𝑡𝑖)|𝑞(𝑡))
+ ε𝑖 (20) 

 

and letting 𝑤𝑖(𝜃, 𝜎
2) =

𝑟(𝑡𝑖+1,𝑡𝑖)−ln(𝑃(𝑡𝑖
+))

𝑆𝑡𝑑𝑒𝑣(𝑟(𝑡𝑖+1,𝑡𝑖)|𝑞(𝑡))
(𝑒−𝜃∆𝑡𝑖 − 1) and 𝑧𝑖(𝜃, 𝜎

2) =
(∆𝑡𝑖−𝑡𝑖(𝑒

−𝜃∆𝑡𝑖−1))

𝑆𝑡𝑑𝑒𝑣(𝑟(𝑡𝑖+1,𝑡𝑖)|𝑞(𝑡))
, 

then (20) can be simply written as 

 

𝑤𝑖(𝜃, 𝜎
2) = 𝜇𝑧𝑖(𝜃, 𝜎

2) + ε𝑖     (21) 

 

Consequently, OLS gives 𝜇̂(𝜃, 𝜎2) =
∑𝑤𝑖(𝜃,𝜎

2)𝑧𝑖(𝜃,𝜎
2)

∑𝑧𝑖
2(𝜃,𝜎2)

. The residual sum of squares (RSS) 

from (21) is now 

 

∑[𝑤𝑖(𝜃, 𝜎
2) − 𝜇̂(𝜃, 𝜎2)𝑧𝑖(𝜃, 𝜎

2)]2    (22) 

 

and minimizing with respect to 𝜃, 𝜎2 gives 𝜃, 𝜎̂2 with 𝜇̂ = 𝜇̂(𝜃, 𝜎2). These estimates are 

now used as the starting values for the full non-linear optimization of (21). 

 

5. Simulated Investigation 

 

5.1. Simulation 

Good data in fund value observation are hard to find. We choose to simulate our result as this 

would deliver the contribution of the proposed method clearly. Rather than trying to choose 
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plausible values of µ, θ and σ
2
 it may be easier to choose plausible values for the observed 

(population) mean, variance and autocorrelations. Following Lo and Wang (1995) we denote 

by r , s
2
 and ρ(1) the unconditional mean, variance and first-order autocorrelation of returns 

respectively. These can be defined without any reference to a particular data-generating 

process. Then using results in Lo and Wang (1995) and setting their τ =1, we then have the 

results: 

 

r  , log(1 2 (1))     and 2 2 log(1 2 (1))

2 (1)
s







    (23) 

 

Using these relationships we can then examine the effect of small and large autocorrelation 

along with varying the sample size. We doubt that µ will have any effect or at least little so 

we can choose a suitable value, 0.001. This assumes the expected one period (daily) fund 

return of 0.1%. We also set s = 0.005 hence the fund return one period standard deviation of 

0.5%. These figures could be considered reasonable. Table 1 gives the OU parameters values 

associated with various first order return autocorrelations (ρ(1)). 

 

(Insert Table 1 here) 

 

We refer to these values as the ‘underlying parameter values’. We simulate 200 period 

observations where during the first 100 periods, there is no fund inflow. In the second 100 

periods, a fund experiences random capital injection. 

We set the initial value of fund under management, P(0), as $100,000,000 which is the 

seed money. We generate i.i.d. observations of a negative exponential with a mean of 3 

(corresponding to days).We sample from a Bernouilli distribution which equals 1 with a 
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probability of 0.9 corresponding to a measurement without flow and equals 0, with 

probability of 0.1 corresponding to a measurement with flow. We call the net change of the 

fund due to flow at time ti, X(ti). If there is flow, we sample X(ti) from a scaled chi-squared 3 

with a mean of 10,000,000. Note that the degree of freedom, 3, is an arbitrary choice of a 

positive distribution. We keep the P(t) at 100,000,000 until all the seed capital is returned 

(about 18 months) then we increase the capital as the inflows occur. 

 Then at times ti , the level of funds under management changes by X(ti). Also as noted, 

q(𝑡+)=ln(𝑃(𝑡+)) − 𝜇𝑡 whilst q(𝑡−) = ln(𝑃(𝑡−)) − 𝜇𝑡. We simulated 200-period regularly 

observed data first, and then randomly choose from the regularly observed data, as described 

in the previous paragraph, to construct the irregularly observed data. As the average length of 

irregular period is 3 (the mean of a negative exponential distribution), we have 67 

observations for irregular data on average. Therefore the irregular data could be seen as 

regularly observed data with missing observations.  

We simulate 3000 sets of data. We can also, if we wished, include withdrawals over 

and above the repayment of seed money. The technical details of the simulation are provided 

in Appendix A. Finally inflows and outflows could be related to past performance, in which 

case we would use a Cox process i.e. a Poisson process whose intensity function is dependent 

on past returns. 

 

5.2. Simulated Result 

Let us define three cases of interest. 

 

(1) Case 1: The value of a fund is regularly observed for each period. This is considered 

as the true case in the sense that estimates based on this framework should be 

consistent and asymptotically efficient. 
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(2) Case 2: The value of a fund is observed irregularly. We use our estimation method. 

(3) Case 3: The value of a fund is observed irregularly. We take the irregularly observed 

data and compute return moments ignoring the irregularities. 

 

Case 1 is based on regularly observed data in every period while case 2 and 3 are based on 

irregularly observed data. In order to help readers distinguish the parameters for three cases. 

Although the choice of initial values of the estimation do not affect the result as we estimate 

iteratively and the estimated parameters converge very quickly, we make sure that the initial 

values are computed based only on the available information set for each case. In case 1, 

information from regularly observed data is used and we assume that the underlying case 

information is not available. For case 2, information from irregularly observed data is used to 

set the initial estimation values and we assume that the underlying and the regularly observed 

data are not available. Note that we do not need to assume initial values in case 3. 

In case 1, we denote 𝜇̅̂, 𝜎̅̂, 𝜃̅ , 𝜇𝑟̂̅̅ ̅ and 𝜎𝑟̂̅̅̅ as mean of estimated 𝜇, 𝜎, 𝜃, return 

mean and return standard deviation respectively. Parameters𝜇 , 𝜎  and 𝜃  are the OU 

parameters and return mean and standard deviation are estimated from regularly observed 

data. In case 2, we use notation 𝜇̅, 𝜎̅̃, 𝜃̅̃, 𝜇𝑟̅̅ ̅ and 𝜎̃𝑟̅̅̅. In case 3, we use notations 𝜇̅̇, 𝜎̅̇, 𝜃̅̇, 

𝜇𝑟̇̅̅ ̅ and 𝜎𝑟̇̅̅̅.  

Note that all the estimated parameters in case 1, 2 and 3 are denoted as averages. This 

is because these are the averages of the estimated parameters over 3000 simulations. For 

example, in case 1, these can be expressed as 

 

𝜇̅̂ =
∑ 𝜇̂ 
𝑖=1

 
, 𝜎̅̂ =

∑ 𝜎̂ 
𝑖=1

 
, 𝜃̅ =

∑ 𝜃̂ 
𝑖=1

 
, 𝜇𝑟̂̅̅ ̅ =

∑ 𝜇𝑟̂
 
𝑖=1

 
, 𝜎𝑟̂̅̅̅ =

∑ 𝜎𝑟̂
 
𝑖=1

 
, 

  (𝜇̅̂) = √
∑ (𝜇̂−𝜇̅̂)2 
𝑖=1

 −1
,   (𝜎̅̂) = √

∑ (𝜎̂−𝜎̅̂)2 
𝑖=1

 −1
,   (𝜃̅̂) = √

∑ (𝜃̂−𝜃̅̂)2 
𝑖=1

 −1
,  (24) 
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  (𝜇𝑟̂̅̅ ̅) = √
∑ (𝜇𝑟̂−𝜇𝑟̂̅̅̅̅ )2
 
𝑖=1

 −1
,   (𝜎𝑟̂̅̅̅) = √

∑ (𝜎𝑟̂−𝜎𝑟̂̅̅̅̅ )2
 
𝑖=1

 −1
 

 

where N is the number of simulations, which is 3000 in our case. The equivalent formulae 

can be obtained for case 2 and 3 by replacing 𝜇̂, 𝜎̂, 𝜃 , 𝜇𝑟̂, 𝜎𝑟̂ with 𝜇, 𝜎̃, 𝜃̃, 𝜇𝑟, 𝜎̃𝑟 and 

𝜇̇, 𝜎̇, 𝜃̇, 𝜇𝑟̇, 𝜎𝑟̇, respectively. Table 2 reports the accuracy of the OU parameter estimation 

in Case 1. Panel A, B and C present the estimated OU parameters, their standard errors and 

mean squared errors of Case 1, respectively. Panel D presents the p-values of statistical 

difference between the underlying case and case 1 OU parameters. The p-values are to test 

the hypothesis that the expected values of the estimated OU parameters of case 1 are not 

statistically significantly different from those of the underlying case. The test is a standard 

mean difference test assuming the normality in the estimated parameter distribution. All 

subsequent p-values are computed using the same assumption. 

 

(Insert Table 2 here) 

 

Estimated OU parameters and their standard errors reported in panel A and panel B are 

computed using (24). Comparing the results in panel A of Table 2 and Table 1, we can see 

that the estimated OU parameters based on regularly observed data are not much different 

from those of the underlying OU parameters. The results in panel D indicates that the case 1 

estimates of the OU parameters are not statistically different from the underlying OU 

parameters at the 1% significance level. 

Therefore, Table 2 concludes that the case 1 estimation of the OU parameters is 

statistically accurate. Table 3 compares one period return mean and standard deviation of the 

underlying case and case 1. Panel A reports the underlying return mean and standard 
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deviation. Panel B presents the average of case 1 return mean and standard deviation 

estimates. And panel C reports the p-values testing the hypothesis that the return means and 

standard deviations estimates of the underlying case are not statistically significantly different 

from those of case 1. 

 

(Insert Table 3 here) 

 

 

The first and the third rows of panel A are computed using (14) and (15) respectively, where 

the observation interval, s = 1 and using the OU parameters in Table 1, which are 𝜇̂, 𝜎̂ and 

𝜃. These are the analytical return moments of (13) and therefore standard errors do not exist. 

The return mean and standard deviation in panel B are computed using (24) with case 1 

parameters, 𝜇̂, 𝜎̂, 𝜃 , 𝜇𝑟̂ and 𝜎𝑟̂. 

Comparing the underlying return mean and standard deviation in panel A to case 1 

estimated return mean and standard deviation in panel B, we can see that the case 1 return 

mean and standard deviation are very close to those of the underlying case with very small 

standard errors. Panel C shows that all p-values of difference test between the expected 

values of the underlying return mean and standard deviation and the expected values of case 

1 return mean and standard deviation and show that they are not statistically different at the 1% 

significance level. From Table 3, we observe that the case 1 estimated one period (regularly 

observed) return mean and standard deviation are unbiased compare to the underlying return 

mean and standard deviation. 

Table 4 reports the return mean and standard deviation for case 2 (𝜇𝑟̅̅ ̅ and 𝜎̃𝑟̅̅̅) and for 

case 3 (𝜇𝑟̇̅̅ ̅ and 𝜎𝑟̇̅̅̅), respectively. In order to help readers in comparing the results from the 

irregularly observed data to those of regularly observed data, we present in panel A the 

estimated return mean and standard deviation of case 1, which was included in panel B of 
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Table 3. Panel B and C of Table 4 show the estimated return mean and standard deviation of 

case 2 and 3 respectively. 

 

(Insert Table 4 here) 

 

Panel A is the same as panel B of Table 3. Panel B is computed using (24) but the parameters 

for case 2, 𝜇, 𝜎̃, 𝜃̃, 𝜇𝑟, 𝜎̃𝑟, are used instead of the parameters of case 1, 𝜇̂, 𝜎̂, 𝜃 , 𝜇𝑟̂, 𝜎𝑟̂. 

Panel C is computed using (24) but the parameters for case 3, 𝜇̇, 𝜎̇, 𝜃̇, 𝜇𝑟̇, 𝜎𝑟̇, are used. 

Note that the expected frequency of the irregular observations is 3, which is given in 

the simulation with the parameter of the negative exponential distribution. Therefore if we 

compute return mean and standard deviation, ignoring the irregularity as we do in case 3, the 

average interval is 3 periods. In order to compute comparable means and variances for one 

period, the estimated return mean and the variance in case 3, reported in panel C, are scaled 

by the average observed irregular frequency. 

By comparing the row 1 and 3 of panel A to row 1 and 3 of panel B, we note that case 2 

return means and standard deviations are very close to those of case 1. However from 

comparing the row 1 and 3 of panel A to row 1 and 3 of panel C, we can see that the return 

standard deviations of case 3 are significantly overestimated compare to those of case 1 while 

the return means of case 3 are somewhat overestimated compared to those of case 1.  

Table 5 investigates the statistical significance of the estimated parameter differences. 

Panel A of Table 5 shows the relative difference of one period return mean and standard 

deviation of case 2 from case 1. Panel B reports the relative difference of one period return 

mean and standard deviation of case 3 from case 1. Panel C reports the p-values of testing the 

hypothesis that the expected return means and standard deviations of case 2 are not 

statistically different from those of case 1. Panel D reports the p-values of testing the 
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hypothesis that the expected return means and standard deviations of case 2 are not 

statistically different from those of case 1. 

 

(Insert Table 5 here) 

 

As indicated in the first column, panel A is computed as the ratio of the estimated return 

moments of case 2 to those of case 1. Panel B is computed as the ratio of the estimated return 

moments of case 3 to those of case 1. Panel C shows that the expected values of the return 

means and standard deviations in case 2 are not statistically significantly different from those 

of case 1 while panel D shows that the expected values of the return standard deviations in 

case 3 are statistically significantly different from those of case 1 at the 1% confidence level. 

Panel D also shows that the estimated return means of case 3 are not statistically significantly 

different from those of case 1 at the 1% significance level. This may be a result of the fact 

that the test is based on normality assumption, after all the bias in the mean returns is quite 

high. 

This result is consistent with the previous literature. For example, Davidsen and Griffin 

(2010), find that standard estimates of the volatility of uneven sampling intervals can be 

strongly biased by applying fractional Brownian motion to ice core records. Eckner (2012) 

also points out that the estimates of the second moments, variance and autocovariance may be 

subject to a significant and hard-to-quantify bias. 

Table 6 demonstrates the relative gain in estimation accuracy from using the proposed 

method. Panel A of Table 6 shows the relative difference of one period return mean and 

standard deviation of case 3 from case 2. Panel B reports the p-values of testing the 

hypothesis that the expected return means and standard deviations of case 2 are not 

statistically different from those of case 3. . Panel C reports the relative gain in return mean 
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and standard deviation when case 2 estimation is used against case 3 in percentage term. 

These values are computed by subtracting 1 from the relative difference of return means and 

standard deviations of case 3 against 2 subtracted by 1, therefore can be expressed as   

 

𝜇𝑟̇̅̅̅̅  

𝜇̃𝑟̅̅̅̅
− 1 and 

 𝜎𝑟̇̅̅̅̅

𝜎̃𝑟̅̅̅̅
− 1      (25) 

 

(Insert Table 6 here) 

 

Panel A provides the relative gain in estimation of return means and standard deviations of 

case 2 to case 3 as defined in (24). From Table 6, we see 15% accuracy gain in the expected 

mean estimates on average when the proposed estimation method of this paper is employed 

compared to when we overlook the irregularity in irregularly observed fund under 

management data. The relative gain in return standard deviations ranges from 19.86% to 

41.39%. Panel B compares the return means and standard deviations estimates of case 2 and 

3 to show that both mean and standard deviations could be statistically significantly different. 

 When the estimation method proposed in this paper is employed, the estimated means 

and standard deviations of returns are more accurate compared to case 3 when the irregularity 

in the data is overlooked. Moreover, the estimated return means and standard deviations of 

the newly proposed method are not statistically significantly different from the regularly 

observed return means and standard deviations. Therefore, we conclude that the proposed 

method provides unbiased and efficient estimates of both return means and standard 

deviations by directly utilizing the irregularly spaced fund value observations. 

Lastly, we make a brief further note on the heteroskedasticity in the irregularly 

observed return distribution. As discussed in section 4, if we do not scale the both sides of the 

(19), we still get the unbiased return means and standard deviations estimates. However, the 
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standard errors of the estimated return standard deviations increase significantly. This result 

shows that conditioning on past level data (fund value) increases the estimation efficiency. 

Hence it provides evidence that the use of return variance conditioned on the value of a fund 

adds value. Although the result without the scaling factor is not shown in this section for the 

brevity of the paper, it is available upon request from the authors. 

 

6. Conclusion 

In this paper, we demonstrate a consistent estimation technique to investigate the statistical 

properties of irregularly observed fund return, when the monetary value of a fund under 

management follows a stochastic process. Modelling the monetary value of a fund, as well as 

the return of a fund is advantageous because we can observe both the level and return and it 

allows us to condition on the monetary value. Good data in fund value observation are hard to 

find. Consequently, we choose to simulate our result as this would deliver the contribution of 

the proposed method clearly. 

 The simulated result shows that the irregularly observed return has unbiased return 

mean but significantly biased variance. This is consistent with the existing literature. We 

show that the estimated return moments using the proposed estimation technique that takes 

advantage of return variance conditioned on the value of a fund yields unbiased and more 

efficient return variance estimate. 
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Appendix 

Appendix A. Simulation Process. 

Initial price: P(0) = 100,000,000 

Probability distribution function of random observation: 

𝑝𝑑𝑓(Δ𝑡𝑖; 𝜆) = 𝜆𝑒
−𝜆Δ𝑡𝑖 where𝜆 =

1

3
 

Simulation: Δ𝑡𝑖 =
−ln (𝑢)

𝜆
 where u ~ uniform(0,1) 

𝑝𝑑𝑓(𝑘; 𝑝) = {
0.9 𝑖𝑓 𝑘 = 1
0.1 𝑖𝑓 𝑘 = 0

 

If k = 0 at time ti, 𝑃(𝑡𝑖)~
10000000

3
𝜒2(3), 𝐸[𝑃(𝑡𝑖)] = 10000000 

Simulation: 𝑃(𝑡𝑖) =
10000000

3
∑ 𝑧𝑗

23
𝑗=1  where 𝑧~𝑁(0,1) 

No fund flow for the first 100 observations. 

Allow only fund inflow for next 100 observations 
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Tables 

Table 1 

Underlying Parameters 
This table reports the OU parameters, θ, σ and µ for return first order autocorrelation, ρ(1) of -0.1, -0.2, -0.3, -

0.4 and -0.45. 
ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

θ 0.2231 0.5108 0.9163 1.6094 2.3026 

σ 0.0053 0.0057 0.0062 0.0071 0.0080 

µ 0.0010 0.0010 0.0010 0.0010 0.0010 

 

 

Table 2 

Underlying vs. Case 1: The OU Parameters Accuracy 

This table reports the accuracy of the OU parameters using regularly observed simulated series. Parameters 𝜃̅̂, 

𝜎̅̂ and 𝜇̅̂ are the average of the estimated OU parameters in case 1 computed using (24). Underlying value is the 

value assumed in simulation, estimated value is the parameter value estimated from the simulated data for return 

first order autocorrelation, ρ(1) of -0.1, -0.2, -0.3, -0.4 and -0.45. Panel A reports the estimated OU parameters 

in Case 1, where the value of a fund is observed on regular basis. Panel B reports the standard errors of Case 1 

estimated parameters. Panel C reports Mean Squared Errors of the estimated parameters in Case 1. Panel D 

reports the p-values whether the estimated values of the Case 1 parameters are not statistically significantly 

different from the underlying parameter values. The notation ‘< 0.0001’ indicates that the value is less than 

0.0001. 200 observation period and 3000 simulation are used. 

Panel A: Case 1 Parameters Estimation 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜃̅ 0.2165 0.5068 0.9109 1.6289 2.3727 

𝜎̅̂ 0.0053 0.0056 0.0062 0.0071 0.0081 

𝜇̅̂ 0.0010 0.0010 0.0010 0.0010 0.0010 

 

Panel B: Case 1 Estimation Standard Errors 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜃̅ 0.0675 0.1076 0.1790 0.4249 0.8329 

𝜎̅̂ 0.0003 0.0004 0.0005 0.0008 0.0013 

𝜇̅̂ < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

 

Panel C: Case 1 Estimation MSE 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜃̅ 0.0046 0.0116 0.0321 0.1808 0.6984 

𝜎̅̂ < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

𝜇̅̂ < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

 

Panel D: P-values of statistical difference between the underlying and Case 1 OU parameters 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜃̅ 0.9215 0.9700 0.9758 0.9635 0.9329 

𝜎̅̂ 0.9311 0.9599 0.9866 0.9514 0.9564 

𝜇̅̂ 0.9824 0.9946 0.9813 0.9502 0.9755 

 

 

  



28 

 

Table 3 

Underlying vs. Case 1: One Period Return Mean and Standard Deviation Comparison 
This table reports the estimated mean, its estimated standard error, estimated standard deviation and estimated 

its standard error of returns in underlying values and in Case 1 for return first order autocorrelation, ρ(1) of -0.1, 

-0.2, -0.3, -0.4 and -0.45. Parameters 𝜇𝑟 and 𝜎𝑟 are the return mean and standard deviation in the underlying 

case and parameters 𝜇𝑟̂̅̅ ̅ and 𝜎𝑟̂̅̅̅ are the averages of the return mean and standard deviation in case 1 computed 

using (24). SE indicates standard error. Panel A reports the return mean and return standard deviation and their 

standard errors for underlying values. Panel B reports the return mean and standard deviation and their standard 

errors in Case 1. Panel C reports p-values whether the estimated values of the Case 1 parameters are not 

statistically significantly different from the underlying parameter values. The notation ‘< 0.0001’ indicates that 

the value is less than 0.0001. 200 observation period and 3000 simulation are used. 

Panel A: Underlying Return Mean and Return Standard Deviation 

ρ(1) 0 -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇𝑟 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 

SE(𝜇𝑟) NA NA NA NA NA NA 

𝜎𝑟 0.0050 0.0047 0.0045 0.0042 0.0039 0.0037 

SE(𝜎𝑟) NA NA NA NA NA NA 
 

Panel B: Case 1 Return Mean and Return Standard Deviation 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇𝑟̂̅̅ ̅ 0.0010 0.0010 0.0010 0.0010 0.0010 

SE(𝜇𝑟̂̅̅ ̅) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

𝜎𝑟̂̅̅ ̅ 0.0047 0.0045 0.0042 0.0039 0.0037 

SE(𝜎𝑟̂̅̅ ̅) 0.0002 0.0002 0.0002 0.0002 0.0002 

 

Panel C: P-values of statistical difference between the underlying and Case 1 return mean and standard 

deviation 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇𝑟̂̅̅ ̅ 0.9824 0.9946 0.9813 0.9502 0.9755 

𝜎𝑟̂̅̅ ̅ 0.9727 0.9774 0.9835 0.9173 0.9423 
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Table 4 

One Period Return Mean and Standard Deviation: Case 1, Case 2 and Case 3 
This table reports the estimated mean, estimated mean standard error, estimated standard deviation (Std 

Deviation) and estimated standard deviation standard error of returns for Case 2 and Case 3 for return first order 

autocorrelation, ρ(1) of -0.1, -0.2, -0.3, -0.4 and -0.45. Parameters 𝜇𝑟̂̅̅ ̅ and 𝜎𝑟̂̅̅̅ are the averages of the return 

mean and standard deviation in case 1 computed using (24). Parameters 𝜇̃𝑟̅̅ ̅ and 𝜎̃𝑟̅̅̅ are the averages of the 

return mean and standard deviation in case 2 computed using (24). Parameters 𝜇𝑟̇̅̅ ̅ and 𝜎𝑟̇̅̅̅ are the averages of 

the return mean and standard deviation in case 3 computed using (24). SE indicates standard error. Panel A 

reports the return mean and return standard deviation and their standard errors for Case 1. Panel B reports the 

return mean and return standard deviation and their standard errors for Case 2. Panel C reports the return mean 

and standard deviation and their standard errors in Case 3. The notation ‘< 0.0001’ indicates that the value is less 

than 0.0001. 200 observation period and 3000 simulation are used. 

Panel A: Case 1 Return Mean and Return Standard Deviation 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇𝑟̂̅̅ ̅ 0.0010 0.0010 0.0010 0.0010 0.0010 

SE(𝜇𝑟̂̅̅ ̅) 0.0000 0.0000 0.0000 0.0000 0.0000 

𝜎𝑟̂̅̅ ̅ 0.0047 0.0045 0.0042 0.0039 0.0037 

SE(𝜎𝑟̂̅̅ ̅) 0.0002 0.0002 0.0002 0.0002 0.0002 

 

Panel B: Case 2 Return Mean and Return Standard Deviation 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇̃𝑟̅̅ ̅ 0.0010 0.0010 0.0010 0.0010 0.0010 

SE(𝜇̃𝑟̅̅ ̅) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

𝜎̃𝑟̅̅ ̅ 0.0048 0.0045 0.0043 0.0040 0.0038 

SE(𝜎̃𝑟̅̅ ̅) 0.0003 0.0003 0.0003 0.0003 0.0003 
 

Panel C: Case 3 Return Mean and Return Standard Deviation 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇𝑟̇̅̅ ̅ 0.0012 0.0012 0.0012 0.0012 0.0012 

SE(𝜇𝑟̇̅̅ ̅) 0.0001 0.0001 0.0001 0.0001 0.0001 

𝜎𝑟̇̅̅ ̅ 0.0062 0.0055 0.0050 0.0047 0.0045 

SE(𝜎𝑟̇̅̅ ̅) 0.0003 0.0003 0.0003 0.0003 0.0003 
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Table 5 

Relative Difference and Difference Test 
This table reports the relative difference and statistical difference of return mean and standard deviation for Case 

2 and Case 3 from Case 1 for return first order autocorrelation, ρ(1) of -0.1, -0.2, -0.3, -0.4 and -0.45. 

Parameters 𝜇𝑟̂̅̅ ̅ and 𝜎𝑟̂̅̅̅ are the averages of the return mean and standard deviation in case 1 computed using 

(24). Parameters 𝜇̃𝑟̅̅ ̅ and 𝜎̃𝑟̅̅̅ are the averages of the return mean and standard deviation in case 2 computed 

using (24). Parameters 𝜇𝑟̇̅̅ ̅ and 𝜎𝑟̇̅̅̅ are the averages of the return mean and standard deviation in case 3 

computed using (24). SE indicates standard error. Panel A reports the relative difference of return mean and 

standard deviation between Case 1 and Case 2. Panel B reports the relative difference of return mean and 

standard deviation between Case 1 and Case 3. Panel C reports p-values whether the estimated values of Case 2 

are statistically significantly different from Case 1. Panel D reports p-values whether the estimated values of 

Case 3 are not statistically significantly different from Case 1. The notation ‘< 0.0001’ indicates that the value is 

less than 0.0001. 200 observation period and 3000 simulation are used. 

Panel A: Relative Difference of Return Mean and Standard Deviation of Case 2 from Case 1 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇̃𝑟̅̅ ̅/𝜇𝑟̂̅̅ ̅ 1.0017 1.0006 1.0002 0.9996 0.9996 

𝜎̃𝑟̅̅ ̅/𝜎𝑟̂̅̅ ̅ 1.0062 1.0138 1.0190 1.0220 1.0113 

 

Panel B: Relative Difference of Return Mean and Standard Deviation of Case 3 from Case 1 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇𝑟̇̅̅ ̅/𝜇𝑟̂̅̅ ̅ 1.1562 1.1572 1.1533 1.1503 1.1551 

𝜎𝑟̇̅̅ ̅/𝜎𝑟̂̅̅ ̅ 1.3062 1.2281 1.1983 1.2005 1.2099 

 

Panel C: P-values of statistical difference between the Case 2 and Case 1 return mean and standard 

deviation 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇̃𝑟̅̅ ̅ and 𝜇𝑟̂̅̅ ̅ 0.9924 0.9906 0.9939 0.9695 0.9635 

𝜎̃𝑟̅̅ ̅ and 𝜎𝑟̂̅̅ ̅ 0.9100 0.8264 0.7949 0.7738 0.8784 

 

Panel D: P-values of statistical difference between the Case 3 and Case 1 return mean and standard 

deviation 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇𝑟̇̅̅ ̅ and 𝜇𝑟̂̅̅ ̅ 0.2708 0.2524 0.2542 0.2557 0.2368 

𝜎𝑟̇̅̅ ̅ and 𝜎𝑟̂̅̅ ̅ < 0.0001 0.0003 0.0068 0.0088 0.0047 
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Table 6 

Relative Difference and Difference Test 
This table reports the relative difference and statistical difference of return mean and standard deviation for Case 

2 and Case 3for return first order autocorrelation, ρ(1) of -0.1, -0.2, -0.3, -0.4 and -0.45. Parameters 𝜇̃𝑟̅̅ ̅ and 𝜎̃𝑟̅̅̅ 
are the averages of the return mean and standard deviation in case 2 computed using (24). Parameters 𝜇𝑟̇̅̅ ̅ and 

𝜎𝑟̇̅̅̅ are the averages of the return mean and standard deviation in case 3 computed using (24). SE indicates 

standard error. Panel A reports the relative difference of return mean and standard deviation between Case 2 and 

Case 3. Panel B reports p-values whether the estimated values of Case 2 are statistically significantly different 

from Case 3. Panel C reports the relative gain in return mean and standard deviation when Case 2 estimation 

method is used against Case 3 in percentage term as defined in (25). The notation ‘< 0.0001’ indicates that the 

value is less than 0.0001. 200 observation period and 3000 simulation are used. 

Panel A: Relative Difference of Return Mean and Standard Deviation of Case 3 from Case 2 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇𝑟̇̅̅ ̅/𝜇̃𝑟̅̅ ̅ 1.1711 1.1542 1.1565 1.1531 1.1507 

𝜎𝑟̇̅̅ ̅/𝜎̃𝑟̅̅ ̅ 1.4139 1.2982 1.2114 1.1759 1.1746 
 

Panel B: P-values of statistical difference between the Case 2 and Case 3 return mean and standard 

deviation 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇𝑟̇̅̅ ̅ and 𝜇̃𝑟̅̅ ̅ 0.0025 0.0022 < 0.0001 < 0.0001 < 0.0001 

𝜎𝑟̇̅̅ ̅ and 𝜎̃𝑟̅̅ ̅ < 0.0001 0.0007 0.0144 0.0197 0.0075 
 

Panel C: Relative Gain in Return Mean and Standard Deviation of Case 2 from Case 3 

ρ(1) -0.1 -0.2 -0.3 -0.4 -0.45 

𝜇𝑟̇̅̅ ̅/𝜇̃𝑟̅̅ ̅ 17.11% 15.42% 15.65% 15.31% 15.07% 

𝜎𝑟̇̅̅ ̅/𝜎̃𝑟̅̅ ̅ 41.39% 29.82% 21.14% 17.59% 17.46% 
 

 

 

 

 


