
Risk Premium Information from Treasury Bill Yields∗

Jaehoon Lee†

University of New South Wales

April 24, 2015

Abstract

This paper finds that bond risk premium consists of long-term and short-term

components. The long-term factor raises the slope of yield curve, has forecastabil-

ity horizon of longer than one year, and is related to value, size and momentum

premiums in the stock market. In contrast, the short-term factor affects Treasury

bill yields but has very little effects on Treasury bonds, has forecastability hori-

zon of less than one quarter, is related to aggregate stock market returns, and is

attributed to liquidity premium.
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1 Introduction

If an investor buys and holds Treasury bonds (T-bonds) until maturity, his holding

returns may vary each year but the overall returns are determined ex ante by bond

yields. Therefore, bond yields today are equal to the average of holding returns in the

future, or equivalently the sum of two components: the averages of future riskfree interest

rates and excess returns.1

The excess returns’ expectation is called risk premium. Risk premium itself is not

observable, but it is found to be predictable by other observable variables. For example,

Fama and Bliss (1987) and Campbell and Shiller (1991) document that the risk premium

increases with the slope of yield curves. Cochrane and Piazzesi (2005) show that the

risk premium can be predicted better if projected not only on the slope but also on five

forward interest rates altogether, and Ludvigson and Ng (2009) find that macroeconomic

variables are informative of the risk premium that is not spanned by bond yields.

The question is how the risk premium would affect the shape of yield curves. Long-

term bonds are riskier than short-term bonds, thus long-term yields may be expected to

have higher sensitivity to risk premium than short-term yields. In this case, the slope of

yield curves would monotonically increase with risk premium. However, Cochrane and

Piazzesi (2005)’s findings are somewhat different. Cochrane and Piazzesi (2005) find that

the excess returns of various maturities can be predicted by a single risk premium factor,

and this factor “is clearly not related to any of the first three principal components.”

To answer this question, we need to revisit the relation between risk premium and

bond yields. As will be shown later, forward interest rates are determined by the risk-

neutral dynamics of state variables,2 one of which is the risk premium factor. If a

1Equation (4) in Section 2 explains this composition of bond yields.
2Equation (19) in Section 4 shows that forward interest rate is equal to the risk-neutral expectation of

future riskfree interest rate with Jensen’s inequality, and the riskfree rate is a function of state variables.
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state variable diverges in the risk-neutral dynamics, long-term forward rates will have

higher loadings on the variable than short-term rates. Thus, the slope will increase with

it. Otherwise, the slope may decrease if the variable mean-reverts. Therefore, what

determines the relation is the risk-neutral dynamics of the state variable.

There is no reason to believe that the risk premium factor would only diverge or

only mean-revert. Risk premium is probably made of two latent variables of different

dynamics. One is diverging, and the other converging. The diverging one will create

variations on long-term yields meanwhile the converging one will create those on short-

term yields. In particular, the converging one will affect only the yields of extremely

short maturities if its half-life is sufficiently short. This is the main motivation of this

paper.

I call them long-term and short-term risk premium factors, rpl and rps, respectively.

The setup that the bond risk premium is a function of rpl and rps can explain why risk

premium is not necessarily related to any specific principal component of yield curves.

I find that rpl raises the slope of yield curve, while rps affects Treasury bills (T-bills)

but has almost no effects on T-bonds. rpl predicts excess returns over longer than one

year, while rps loses its predictability in one quarter. rpl is related to value, size and

momentum premiums in the stock market while rps is related to liquidity premium and

aggregate stock market returns.

The contribution of this paper is to suggest a simple orthogonalisation method to

estimate rpl and rps from bond yields and inflation data. I assume four state variables,

the first two of which are the persistent and temporary components of one-period riskfree

interest rates. rpl is estimated as the variations in long-term yields orthogonalised by

the two riskfree rate components, and rps the orthogonalised 3-month T-bill yields. The

following empirical tests show that rpl and rps outperform all the known risk premium

predictors from the literature in the forecast of future excess returns. The paper also
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shows that an affine term structure model with cross-sectional fit maximisation finds

it difficult to estimate risk premium accurately because of the high correlations among

bond yields.

This is not the first paper that examines the differences between T-bonds and T-

bills. For example, Duffee (1996) documents their market segmentation by using the

correlations of T-bond and T-bill yields. Pearson and Sun (1994), who estimate a two-

factor Cox, Ingersoll, and Ross (1985) term structure model, also conclude that “estimates

based on only bills imply unreasonably large price errors for longer maturities.” However,

there has been no precedent that systematically compares the risk premium forecast with

and without T-bills. Many papers use both T-bonds and T-bills to estimate risk premium

but do not investigate how much improvement of forecast performance can be accounted

by T-bills independently.

Although three factors can explain most variation of term structure, the need for

a fourth factor is stressed by the recent literature. For example, Dai and Singleton

(2002) show that the fourth factor is needed to match the moment of projecting the risk-

premium adjusted yield changes on the slope of yield curves (i.e., the LPY (ii) condition

of the paper) for maturities less than two years. Duffee (2010) also shows that the fourth

principal component can explain about a half of the variation of monthly expected excess

returns in the bond market. This paper contributes to this literature by showing that

T-bills are informative of this fourth factor.

The rest of this paper is organized as follows. Section 2 explains the estimation of state

variables from bond yields and inflation. Section 3 compares the qualitative differences of

forecastability between long- and short-term risk premium factors. Section 4 estimates

affine term structure models with different specifications of state variables and shows

that the cross-sectional fit optimisation of the affine model estimation is likely to ignore

the risk premium information from T-bill yields. Section 5 combines the state variable
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estimation and the risk premium forecast into a single GMM framework and finds that

the results are robust. Section 6 compares the risk premium factors to other financial

market variables such as liquidity and stock market risk factors. Section 7 concludes.

2 Estimation of state variables

Let p
(n)
t denote the log price of an n-period maturity discount bond at time t. Its

continuously compounded bond yield is

y
(n)
t = − 1

n
p
(n)
t , (1)

where y
(1)
t = rt is the one-period riskfree interest rate.

The excess return of holding n-period maturity bonds from time t for h periods is

defined as its holding return less the h-period interest rate,

exr
(n)
t,t+h =

{
p
(n−h)
t+h − p(n)t

}
−
{

0− p(h)t

}
= −(n− h) y

(n−h)
t+h + n y

(n)
t − h y

(h)
t . (2)

For a unit holding period, h = 1, the above equation can be used to derive

n y
(n)
t = rt + (n− 1) y

(n−1)
t+1 + exr

(n)
t+1

= rt +
{
rt+1 + (n− 2) y

(n−2)
t+2 + exr

(n−1)
t+2

}
+ exr

(n)
t+1

= · · ·

=
n−1∑
i=0

rt+i +
n−2∑
i=0

exr
(n−i)
t+i+1. (3)

5



Therefore,

∴ y
(n)
t =

1

n

n−1∑
i=0

Et [rt+i] +
1

n

n−2∑
i=0

Et

[
exr

(n−i)
t+i+1

]
. (4)

This equation implies that bond yields are essentially the sum of two components: the

average of expected future short interest rates (rt+i) and excess returns (exrt+i). Now

the question is how to split bond yields into the two components, which is the main

theme of the following two subsections. Section 2.1 separates the former component—

the average of expected future short rates—into a persistent part of core inflation and

a transitory deviation of one-year bond yields. Section 2.2 splits the latter one—the

average of expected excess returns—into two risk premium state variables of different

frequencies. All state variables are estimated over the sample period from January 1968

through December 2013.

2.1 Decomposition of short interest rates (rt+i)

Short interest rates do not revert to a constant mean. Instead, their mean-reversion

is toward a time-varying expected value. For example, Fama (2006) concludes that its

“mean-reversion is toward a non-stationary (permanent) long-term mean.” This finding

implies that at least two state variables are needed to model the dynamics of short interest

rates: one needs to be persistent and the other transitory.3

The literature suggests that the persistent component of short interest rates is primar-

ily determined by the long-run mean of inflation (Kozicki and Tinsley, 2001; Gürkaynak,

3In fact, it has long been assumed, either explicitly or implicitly, that short interest rates consist of
multiple components with different frequencies. For example, in almost all multi-factor term structure
models with at least a level and a slope factor, such as Rudebusch and Wu (2008), short interest rates
are implicitly assumed to be driven by persistent and transitory components. The level factor usually
appears as a persistent unit-root process as opposed to the slope factor being a stationary mean-reverting
variable. Other examples include Campbell, Sunderam, and Viceira (2012), who explicitly model that
nominal short interest rates are composed of three components: permanent inflation, transitory inflation,
and transitory real interest rate.
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Sack, and Swanson, 2005; Atkeson and Kehoe, 2009; Goodfriend and King, 2009). Thus,

I estimate the persistent component using the history of realized core inflation, and the

transitory component is estimated as the residuals from regressing 1-year T-bond yields

on the persistent inflation component. This estimation strategy is borrowed from Cieslak

and Povala (2015).

The persistent component (τt) is estimated as an exponentially-weighted average of

realized core inflation over the past 120 months:

τt ≡
∑120

i=0 v
iCPIt−i∑120
i=0 v

i
, (5)

where (1−v) denotes constant gain. Cieslak and Povala (2015) estimate the gain param-

eter at v = 0.9868 (standard error 0.0025) by comparing realized inflation with inflation

survey forecasts.

The top panel of Figure 1 shows the time series of the estimated persistent inflation

component. Core inflation data are downloaded from the FRED Economic Data.4 The

estimated series start in January 1968 since the database provides core inflation since

January 1958 and 10-year histories are used to estimate the variable. According to the

figure, the inflation component reached the peak in the early 1980s and has gradually

declined since then. The augmented Dickey-Fuller (ADF) test does not reject the null

hypothesis for the persistent inflation of being a unit-root process.

Provided that short interest rates are determined by persistent and transitory com-

ponents, the transitory one can be estimated as the residuals of short interest rates or-

thogonalized by the persistent inflation component. Following Cieslak and Povala (2015),

4http://research.stlouisfed.org/fred2/series/CPILFESL?cid=32424
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Figure 1: Decomposition of Short Interest Rates

This figure decomposes one-year Treasury bond yields into two components: one is
persistent and the other is transitory. The persistent component is estimated as an
exponentially-weighted average of realized core inflation over the past 10 years, and the
transitory component as the residuals from the regression of one-year yields on the per-
sistent inflation. Shaded areas denote NBER recessions.

(a) Persistent Inflation (τt)

(b) Transitory Short Interest Rates (δt)
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Fama-Bliss one-year bond yields are used as a proxy of the short interest rates.

δt ≡ y
(1y)
t − β̂0 − β̂1 τt, (6)

where δt denotes the transitory deviation of short interest rates. β̂0 and β̂1 are OLS

coefficients of regressing y
(1y)
t on τt.

The bottom panel of Figure 1 shows the time series of the transitory component. It

drops rapidly during recession periods, which is consistent with conventional monetary

policy that employs federal funds rate to moderate business cycle. The unconditional

standard deviation of δt is 1.834%.

2.2 Decomposition of risk premium (Et [exrt+i])

Risk premium can be defined as the expected excess returns of risky assets. The early

literature of bond risk premium, such as Campbell and Shiller (1991) and Dai and Sin-

gleton (2002), shows that the excess returns are predictable, and this finding has two

implications. First, it rejects the expectations hypothesis that forward interest rates are

equal to expected future short interest rates.5 Second, it implies that the market price

of risk is time-varying and spanned by observable variables.

This paper assumes two risk premium factors. The first one, rpl, is estimated following

Cieslak and Povala (2015)’s approach. The authors estimate the risk premium factor as

the residual from regressing T-bond yields on the two components of short interest rates.

They first regress each of 2- to 5-year bond yields on the persistent inflation (τt),

y
(n)
t = β

(n)
0 + β

(n)
1 τt + ε

(n)
t for n = 2, · · · , 5 years, (7)

5Piazzesi (2003) explains the rejection of the expectations hypothesis in detail.

9



and then regress the average of the residuals
(
ε̄t ≡ 1

4

∑5y
n=2y ε̂

(n)
t

)
on the transitory interest

rate component (δt) without an intercept,6

ε̄t = γ1 δt + ut. (8)

Cieslak and Povala (2015) show that equation (8)’s residual (ût) outperforms both Cochrane

and Piazzesi (2005)’s and Ludvigson and Ng (2009)’s risk premium predictors in the pre-

dictive regression of excess returns in the bond market. This paper uses the residual as a

proxy of rpl. The CRSP Fama-Bliss Discount Bond Yields are used for the 2- to 5-year

bond yields.

The second risk premium factor, rps, is estimated as 3-month T-bill yields that are

orthogonalised by the other three state variables,

rpst = −
{
y
(3m)
t − β̂0 − β̂1 τt − β̂2 δt − β̂3 rplt

}
, (9)

where the β̂s are OLS coefficients. rps turns positive when 3-month T-bill yield is lower

than the projected value by the three state variables. I specifically choose 3-month T-bill

yields for two reasons. First, the 3-month yields do not have mechanical correlation to

monthly excess returns while 1-month yields do due to measurement errors. Second,

they have the longest history that starts in 1954. In comparison, the secondary market

rate of 4-week T-bills is provided only since July 2001. The 3-month T-bill yields are

downloaded from the FRED Economic Data.7

Figure 2 shows the time series of the two risk premium factors, rpl and rps. The three

state variables (τt, δt, and rplt) are based on the replication of Cieslak and Povala (2015),

6The latest version of Cieslak and Povala (2015) slightly changes the estimation method of the risk
premium factor, but I stick to their original estimation strategy because it is more consistent with the
estimation of my second risk premium factor. I also tried their new method and confirmed that the
results are not changed.

7http://research.stlouisfed.org/fred2/series/DTB3?cid=116
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Figure 2: Time Series of Risk Premium Factors

This figure compares the time series of long- and short-term risk premium factors. The
former is estimated from Treasury bond yields meanwhile the latter is from Treasury bill
yields. Shaded areas denote NBER recessions.

(a) Risk Premium Factor from Treasury Bonds (rplt)

(b) Risk Premium Factor from Treasury Bills (rpst)
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and this paper adds one more state variable—short-term risk premium factor (rpst)—to

the framework and focuses on the comparison of rpl and rps. Although not reported

in this paper, other benchmark risk premium factors such as Fama and Bliss (1987)’s

forward interest rate slope and Cochrane and Piazzesi (2005)’s tent-shaped factor were

also used as an alternative proxy of rpl and the results were not changed. I winsorized

rps at 0.5 and 99.5 percentiles, but the un-winsorized version also yields the same results.

The unconditional standard deviations of rpl and rps are 0.42% and 0.34%, respectively.

3 Forecast of excess returns in the bond market

Risk premium is not directly observable. However, if future excess returns can be pre-

dicted by some observable variables at time t, one can consider that the unobservable

risk premium can be projected on the space that is spanned by the observable predictors.

Therefore, if rpl and rps were indeed related to risk premium, they would have been able

to predict future excess returns.

Table 1 shows the forecast of annual excess returns. The dependent variable is the

excess returns of holding T-bonds over the next one year, exr
(n)
t,t+1y, in which riskfree

short interest rates are estimated as one-year T-bond yields. Since Fama and Bliss

(1987), it has been a norm to use annual excess returns for the test of risk premium

factors’ forecastability. The excess returns are estimated from the T-bond data provided

by the Federal Reserve Board of Governors,8 which smoothes yield curves using the

Svensson curve approximation method. Gürkaynak, Sack, and Wright (2006) explain the

construction of the dataset in detail.

Panel A regresses the excess returns on rpl only, replicating Cieslak and Povala

(2015)’s predictability test. For comparison, Panel B and C regress the returns on the

8http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
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Table 1: Forecast of Annual Excess Returns

The dependent variable is excess returns of holding Treasury bonds over the next one year,

exr
(n)
t,t+1y, whose maturities are specified by the top row. Predictors in each panel are respectively

attributed to Cieslak and Povala (2015), Cochrane and Piazzesi (2005), and Duffee (2011).
rpl’s estimation method is explained in Section 2.2. All risk premium factors are normalized.
Numbers in parentheses are Newey–West t statistics with 12 lags. ***, **, and * denote
significances at 1%, 5%, and 10% level, respectively.

Maturity 2 years 3 years 5 years 7 years 10 years 15 years

Panel A. Forecast by rpl (Cieslak and Povala, 2015)

rpl 2.14*** 4.06*** 7.43*** 10.49*** 15.18*** 22.26***
(7.201) (7.538) (7.947) (8.186) (8.404) (7.828)

obs 540 540 540 540 497 494
R2 0.283 0.308 0.340 0.361 0.404 0.420

Panel B. Cochrane and Piazzesi (2005)’s Tent-Shaped Factor

tent 0.44*** 0.84*** 1.56*** 2.23*** 3.05*** 4.58***
(4.393) (4.424) (4.588) (4.749) (4.376) (4.403)

obs 540 540 540 540 497 494
R2 0.165 0.182 0.209 0.226 0.219 0.238

Panel C. Duffee (2011)’s Hidden Factor

hidden -7.65*** -13.82*** -24.16*** -33.31*** -50.30*** -74.32***
(-4.091) (-4.049) (-3.951) (-3.908) (-4.100) (-4.066)

obs 480 480 480 480 437 434
R2 0.158 0.158 0.164 0.170 0.196 0.206

other two benchmark risk premium factors. Panel B uses Cochrane and Piazzesi (2005)’s

tent-shaped factor which is estimated from the predicted excess returns projected on five

forward interest rates. Panel C uses Duffee (2011)’s hidden factor which is estimated as a

higher-order state variable from the Kalman filtering under the restriction that the factor

be hidden from the cross-section of bond yields. The hidden factor can be downloaded
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Figure 3: Other Benchmark Risk Premium Factors

This figure shows the time series of Cochrane and Piazzesi (2005)’s tent-shaped risk premium
factor and Duffee (2011)’s hidden factor. Cochrane and Piazzesi (2005) estimate the
tent-shaped factor as the predicted annual excess returns of holding Treasury bonds by five
forward interest rates, and Duffee (2011) estimates the hidden factor as a higher-order state
variable of the Kalman filtering method. Both factors are normalised, and Duffee (2011)’s
hidden factor is multiplied by −1.

from Gregory Duffee’s website.9 Figure 3 shows the time series of the two benchmark

risk premium factors.

Table 1 shows that rpl outperforms other benchmarks by a large margin. For example,

rpl’s R2s in Panel A range from 28.3% to 42.0%. In comparison, the tent-shaped factor’s

R2s in Panel B are from 16.5% to 23.8%, and the hidden factor’s R2s in Panel C are from

15.8% to 20.6%. rpl also outperforms the benchmarks in terms of statistical significance.

rpl’s Newey–West t statistics are 7.2 to 8.4 as opposed to the statistics of 4.4∼4.7 in

Panel B and 3.9∼4.1 in Panel C. According to Panel A, a 1 standard deviation increase

in rpl implies 6.4% (= 15.18× 0.42%) increase in the annual excess returns from holding

10-year T-bonds.10

9http://www.econ2.jhu.edu/people/Duffee/
10For comparison, the unconditional sample standard deviation of the excess returns is 14.6%.
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In particular, the large improvement of forecastability from Panel B to Panel A is

notable since both predictors are estimated from the same dataset—the cross-section

of five Fama-Bliss bond yields11—except that rpl orthogonalises the yields with inflation

rates. R2s almost double by simply getting rid of the persistent inflation component from

predictors. Thus, it implies that the persistent inflation component is not related to the

time-varying market price of risk. In a similar vein, Dai, Singleton, and Yang (2004)

argue that the tent shape of Cochrane and Piazzesi (2005)’s risk premium factor is due

to a mechanical effect to offset the level factor from forward interest rates. Cochrane and

Piazzesi (2008) also show that the level factor is not related to the market price of risk

although its uncertainty is priced by the market.

However, strong forecastability of annual excess returns does not necessarily mean

strong forecastability for shorter investment horizons. First of all, the predictive regres-

sion of annual returns with monthly observations is likely to be contaminated by the

long-horizon forecast bias since its dependent variable is mechanically autocorrelated.

Boudoukh, Richardson, and Whitelaw (2007) show that long-horizon forecast regressions

exaggerate R2 and statistical significance. Moreover, annual excess returns inevitably

ignore the risk premium born by one-year T-bonds since one-year bonds are considered a

riskfree asset for an annual horizon but a risky asset for a monthly period. One stylized

fact in the bond market is that, as shown by Duffee (2010), shorter-maturity bonds offer

higher Sharpe ratios. Thus, the act of ignoring one-year bonds’ risk premium would have

probably undermined the authenticity of excess return forecasts.

Table 2 shows the forecast of monthly excess returns. The dependent variable is

the excess returns from holding T-bonds for the next one month over one-month riskfree

interest rates, exr
(n)
t,t+1m. The one-month riskfree rates are from the Ibbotson Associates.12

11I intentionally specify the “Fama-Bliss” bond yields since, as shown by Dai, Singleton, and Yang
(2004), the tent shape is turned into a wave pattern if bond yields are estimated from different data
sources.

12The one-month riskfree interest rates are provided from Kenneth French’s website.
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Table 2: Forecast of Monthly Excess Returns

The dependent variable is excess returns of holding Treasury bonds over the next one month,

exr
(n)
t,t+1m, whose maturities are specified by the top row. rpl and rps denote risk premium

factors which are estimated respectively from Treasury bonds and Treasury bills. ỹ
(1m)
t and

ỹ
(3m)
t denote 1- and 3-month Treasury bills orthogonalized by the persistent and transitory

components of riskfree interest rates and rpl. Numbers in parentheses are Huber–White t
statistics. ***, **, and * denote significances at 1%, 5%, and 10% level, respectively.

Maturity 2 years 3 years 5 years 7 years 10 years 15 years

Panel A. Forecast by rpl Only

rplt 0.314*** 0.475*** 0.761*** 1.003*** 1.341*** 1.863***
(2.585) (2.950) (3.474) (3.615) (3.508) (3.294)

obs 552 552 552 552 509 506
R2 0.027 0.031 0.035 0.034 0.035 0.032

Panel B. Forecast by rpl and rps

rplt 0.318*** 0.480*** 0.769*** 1.014*** 1.333*** 1.849***
(2.654) (3.030) (3.581) (3.751) (3.604) (3.414)

rpst 0.408*** 0.549*** 0.828*** 1.154*** 1.750*** 2.860***
(3.130) (3.110) (3.250) (3.484) (3.777) (4.157)

obs 552 552 552 552 509 506
R2 0.055 0.057 0.061 0.063 0.072 0.080

Panel A uses rpl as the only predictor. As suspected, its R2s drop to 2.7%∼3.5%, which

are barely one tenth of the R2s in Table 1. Although not reported here, the R2s of the

other benchmark predictors also drop to 1%∼2%.

Panel B, however, shows that the monthly return forecast is significantly improved

by adding rps as the second predictor. R2s almost double to 5.5%∼8.0%, and both rpl

and rps appear significant. rpl and rps do not have multicollinearity issue since rps is

orthogonalised by rpl and thus they have zero correlation. According to the results, a

1 standard deviation increase in rpl and rps implies 0.56% and 0.60% increase in the
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monthly excess returns of holding 10-year T-bonds, respectively. Although not reported

here, I also project monthly excess returns on all four state variables and find that neither

τt nor δt is significant. Therefore, this table implies that rps (or equivalently 3-month

T-bills) has unique risk premium information that is not spanned by the first three state

variables.

These results in Table 1 and 2 reaffirm Duffee (2010)’s finding that monthly and an-

nual expected bond excess returns are driven by two factors and these two factors operate

at different frequencies. He shows that the second and fourth principal components are

equally responsible for the predictable variation of monthly excess returns meanwhile the

second dominates the fourth component in terms of annual excess returns. rpl and rps

demonstrate the same pattern as described in the paper. However, the later analysis in

the following section will show that rpl and rps do not exactly correspond to the second

and fourth principal components.

As Figure 2 shows, rps is more volatile than rpl. In particular, rpl’s half-life is

estimated to be about 7.0 months meanwhile rps’ is 1.8 months. Since rps has a shorter

half-life, one can also expect that rps might have a shorter forecast horizon than rpl,

which is tested in Table 3.

The dependent variables in each panel of Table 3 are monthly excess returns in 2,

3, and 16 months, respectively (exr
(n)
t+1m,t+2m, exr

(n)
t+2m,t+3m, and exr

(n)
t+15m,t+16m). The ta-

ble shows that rps is equally significant in two months compared to the forecast in one

month but loses most of its forecastability in three months. In contrast, rpl’s forecasta-

bility remains significant for the horizon of up to 16 months. Particularly, rpl appears

significant at 1% confidence level even in 12 months. Thus, the table confirms that rps’

forecastability is limited to a short horizon whereas rpl’s forecastability remains strong

for more than one year.

Every term structure model is essentially a function to convert state variables into
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Table 3: Forecast of Monthly Excess Returns in Further Periods

The dependent variable is monthly excess returns of holding Treasury bonds in further periods,

exr
(n)
t+φ−1,t+φ for φ = 2, 3 and 16 months. rpl and rps denote risk premium factors which

are estimated respectively from Treasury bonds and Treasury bills. Numbers in parentheses
are Huber–White t statistics. ***, **, and * denote significances at 1%, 5%, and 10% level,
respectively.

Maturity 2 years 3 years 5 years 7 years 10 years 15 years

Panel A. Monthly Excess Returns in 2 Months, exr
(n)
t+1m,t+2m

rplt 0.363*** 0.551*** 0.890*** 1.180*** 1.584*** 2.160***
(3.494) (3.929) (4.481) (4.664) (4.683) (4.499)

rpst 0.422*** 0.589*** 0.876*** 1.157*** 1.587*** 2.173***
(3.303) (3.422) (3.539) (3.564) (3.518) (3.174)

obs 552 552 552 552 510 507
R2 0.066 0.071 0.076 0.076 0.080 0.071

Panel B. Monthly Excess Returns in 3 Months, exr
(n)
t+2m,t+3m

rplt 0.338*** 0.494*** 0.760*** 0.989*** 1.351*** 1.990***
(3.301) (3.537) (3.819) (3.880) (3.932) (4.127)

rpst 0.194 0.263 0.370 0.505 0.869* 1.240*
(1.410) (1.438) (1.423) (1.500) (1.878) (1.790)

obs 551 551 551 551 510 507
R2 0.037 0.039 0.039 0.039 0.045 0.046

Panel C. Monthly Excess Returns in 16 Months, exr
(n)
t+15m,t+16m

rplt 0.154 0.240 0.388* 0.505* 0.703* 0.926*
(1.346) (1.568) (1.784) (1.805) (1.866) (1.683)

rpst -0.116 -0.173 -0.318 -0.475 -0.869* -1.326*
(-0.769) (-0.861) (-1.137) (-1.349) (-1.839) (-1.951)

obs 538 538 538 538 510 507
R2 0.009 0.010 0.013 0.013 0.019 0.018
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Table 4: Forecast of State Variables and Bond Yields

The dependent variable is the changes in four state variables: τ , δ, rpl, and rps. τ and δ denote
the persistent and transitory components of riskfree interest rates whereas rpl and rps denote
long- and short-term risk premium factors. Their estimation is explained in Section 2.1 and 2.2.
τ and δ are multiplied by 100 to match with the scales of rpl and rps. Numbers in parentheses
are Huber–White t statistics. ***, **, and * denote significances at 1%, 5%, and 10% level,
respectively.

(1) (2) (3) (4)

dep. var. ∆τt+1 ∆δt+1 ∆rplt+1 ∆rpst+1

τt 0.000 -0.001 0.001 0.000
(0.095) (-0.054) (0.331) (0.068)

δt 0.008*** -0.040** 0.001 -0.008
(11.517) (-2.410) (0.236) (-1.182)

rplt -0.025*** 0.011 -0.095*** 0.029
(-9.877) (0.137) (-4.837) (0.957)

rpst -0.004 -0.185** -0.031 -0.324***
(-0.909) (-2.092) (-1.069) (-6.197)

obs 551 551 551 551
R2 0.261 0.035 0.051 0.168

yield curves. In other words, excess returns of bonds can be written as a function of

the changes in state variables. Given the previous finding that the excess returns are

predicted by rpl and rps, one can expect the risk premium factors to also predict the

changes in other state variables. Moreover, it is of a particular interest to see the forecast

of the persistent inflation (τt) and transitory short interest rate (δt) since they account

for the level and slope factors (will be shown in the next section) and thus explain almost

99% of the total variation of yield curves.

For this aim, Table 4 estimates the VAR(1) system of the state variables to under-

stand their dynamics. Its dependent variables are the changes in state variables, which

are specified in the first row. Note that τt’s coefficient in column (1) is close to zero,

implying that the inflation component is as persistent as a random walk process. In
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comparison, δt’s coefficient of −0.040 in column (2) implies that its half-life is about 17.0

(= − log(2)/ log(1− 0.040)) months. rplt’s coefficient of −0.095 in column (3) and rpst’s

coefficient of −0.324 in column (4) imply that their half-lives are 7.0 and 1.8 months,

respectively. These results are consistent with Figure 1 and 2’s findings that τt is the

most persistent state variable, followed by δt, rplt, and rpst. Moreover, δt’s coefficient in

column (1) is significantly positive since the Federal Reserve Board raises federal funds

rate in the anticipation of high inflation in subsequent periods.

The most important implication in the table is based on rplt and rpst’s coefficients

in column (1) and (2), which imply that both risk premium factors predict a decrease in

short interest rates. However, they do so in different ways. rplt predicts a decrease in the

persistent inflation (τt) meanwhile rpst predicts a decrease in the transitory component

of short interest rates (δt). This result confirms that their predictability is based on

different dimensions.

4 Affine term structure model

Several papers in the literature notice the possibility that risk premium consists of two

factors of different frequencies. For example, Duffee (2002) explains that “an increase

in the slope factor affects the price of risk of the level factor,” and the twist (curvature)

shock “has a strong effect on instantaneous expected returns, but it is also very short-

lived. Thus, this shock is responsible for high-frequency fluctuations in expected excess

returns.” The short-term risk premium has been often related to high-order principal

components but not been pinned down to T-bill yields.

In this section, I will show why it is difficult to estimate rps with an affine term

structure model even if T-bill yields are used in the sample. This implication can explain

why it has largely eluded the literature that the short-term risk premium factor could be
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easily estimated from T-bill yields.

4.1 Affine model overview

Let Xt denote a column vector of state variables. The variables are assumed to follow

VAR(1) process.

Xt+1 = µ+ ΦXt + εt+1, Ω ≡ E
[
εt+1ε

>
t+1

]
. (10)

One-period risk-free interest rate, rt, is given as a linear function of state variables,

rt = δ0 + δ>1 Xt. (11)

The market price of risk, λt, is a column vector which is also linearly proportional to

state variables,

λt = λ0 + ΛXt, (12)

where λ0 ∈ Rn and Λ ∈ Rn×n. Thus, the log nominal pricing kernel can be derived as

mt+1 = −rt −
1

2
λ>t Ωλt − λ>t εt+1. (13)

Note that the price of a discount bond is equal to the expectation of its future value

discounted by the pricing kernel. Let p
(n)
t denote its log price. This recursive form can

be written as

p
(n)
t = logEt

[
exp

(
mt+1 + p

(n−1)
t+1

)]
= Et

[
mt+1 + p

(n−1)
t+1

]
+

1

2
vart

(
mt+1 + p

(n−1)
t+1

)
. (14)
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By combining all these equations, the solution of log bond price can be derived as

p
(n)
t = An +B>nXt, (15)

An+1 = −δ0 + An +B>n µ
Q +

1

2
B>n ΩBn, (16)

B>n+1 = −δ>1 +B>n ΦQ, (17)

where µQ ≡ µ − Ωλ0 and ΦQ ≡ Φ − Ω Λ. µQ and ΦQ denote the dynamics of state

variables under risk-neutral probability measure. Bond yields are y
(n)
t = − 1

n
p
(n)
t .

The conditional expectation of excess returns can also be derived as a linear function

of state variables,

Et

[
exr

(n)
t,t+1

]
= B>n−1Ω (λ0 + ΛXt)−

1

2
B>n−1ΩBn−1. (18)

ΛXt in the above equation drives the time-varyingness of the market price of risk. Each

non-zero element of Λi,j denotes that the i-th innovation shock, εt+1,i is priced by the j-th

state variable, Xt,j. Thus, if some innovation shocks are not priced by the market, their

corresponding rows in λ0 and Λ will be set to zero. Equivalently, if some state variables

are not related to the time-varying price, their corresponding columns in Λ will be zero.

Lastly, it can be shown that forward rates are equal to the risk-neutral expectation

of future one-period riskfree interest rates after adjusting for Jensen’s inequality,

f
(n)
t ≡ p

(n−1)
t − p(n)t

= δ0 + δ>
{(
I + ΦQ + · · ·+ ΦQ(n−2)

)
µQ + ΦQ(n−1)

Xt

}
− 1

2
B>n−1ΩBn−1

= EQ
t [rt+n−1]−

1

2
B>n−1ΩBn−1︸ ︷︷ ︸

Jensen’s inequality

. (19)
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4.2 Affine model estimation

In this section, I estimate and compare four different specifications of the affine term

structure model. They all have four factors but use different observations for state

variables.

• Model 1: Xt = ( τt, δt, rplt, rpst )

• Model 2: Xt =
(
τt, y

(3m)
t , y

(1y)
t , y

(5y)
t

)
• Model 3: Xt =

(
τt, y

(1y)
t , y

(3y)
t , y

(5y)
t

)
• Model 4: Xt =

(
y
(3m)
t , y

(1y)
t , y

(3y)
t , y

(5y)
t

)
Model 1 uses the four variables that are introduced in the previous section: τt, δt, rplt

and rpst. Model 2 combines τt with three-month, one-year and five-year bond yields.

Essentially, the state vector of Model 2 can be considered a rotation of Model 1’s state

vector, and thus spans an identical space.13 Model 3 replaces Model 2’s three-month

yields with another T-bond yields to test whether the exclusion of T-bill yields makes a

notable difference. The last one, Model 4, uses yields only. The comparison with Model

4 later assures Cieslak and Povala (2015)’s finding that the presence of τt significantly

improves the predictability of risk premium.

The estimation is done in two steps. First, the parameters for physical dynamics—

µ, Φ and Ω—are estimated from running OLS regressions on the state variables. Second,

all the other parameters—δ0, δ1, λ0 and Λ—are estimated by numerically minimising the

squared errors of observed and model-implied bond yields,

δ̂0, δ̂1, λ̂0, Λ̂ = arg min
T∑
t=1

∑
n=1m,··· ,15y

{
y
(n)
t − ŷ

(n)
t

}2

, (20)

13Technically, rpl is estimated from the average residuals of 2- to 5-year bond yields. But the difference
between Model 1 and Model 2’s state space is very small.
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where y
(n)
t and ŷ

(n)
t denote observed and model-implied bond yields, respectively. The

squared errors are summed through 11 maturities: 1, 3, 6 months and 1, 2, 3, 4, 5, 7,

10, 15 years. This estimation strategy is motivated by Joslin, Singleton, and Zhu (2011),

who show the independence between physical and risk-neutral measures.

The bond yield data are collected from various sources. 1-month yields are from the

Ibbotson Associates and downloaded from Kenneth French’s website. 3- and 6-month

yields are from the FRED Economic Data. 1- to 5-year yields are from the CRSP Fama–

Bliss discount bond yields. 7-, 10- and 15-year yields are from the Federal Reserve Board

of Governors. The sample horizon spans from January 1968 through December 2013.

The 10- and 15-year yields are missing in the first 3∼4 years.

Table 5 compares the cross-sectional fit of bond yields by each model specification.

For this comparison, the table shows R2, which is defined as

R2 ≡ 1− SSresiduals

SStotal

= 1−

∑T
t=1

(
y
(n)
t − ŷ

(n)
t

)2
∑T

t=1

(
y
(n)
t − y(n)

)2 , (21)

where y
(n)
t and ŷ

(n)
t denote observed and model-implied bond yields, respectively. y(n) is

the sample average of observed bond yields. R2 approaches to one if a model can explain

most variations in observed bond yields and thus the sum of squared residuals in the

objective function of (20) goes to zero.

According to the table, all four models can explain more than 99% of the total varia-

tions on average. This finding is consistent with the literature that three state variables

are enough to explain most variations in bond yields.

The table also shows that Model 3 performs slightly worse than others in the fitting of

T-bill yields. This result is understandable since Model 3 is the only model that does not

use T-bill yields as a state variable. In contrast, Model 1 fits 15-year yields slightly worse

24



Table 5: Cross-sectional Fit of Bond Yields by the Affine Models

This table shows R2s of the cross-sectional variations of bond yields that are explained by each
model specification,

R2 ≡ 1− SSresiduals
SStotal

= 1−

∑T
t=1

(
y
(n)
t − ŷ(n)t

)2
∑T

t=1

(
y
(n)
t − y(n)

)2 ,
where y

(n)
t and ŷ

(n)
t denote observed and model-implied bond yields, respectively. y(n) is the

sample average of observed bond yields.

maturity (n) Model 1 Model 2 Model 3 Model 4

1 month 0.980 0.976 0.968 0.976
3 months 0.991 0.999 0.982 0.999
6 months 0.992 0.998 0.989 0.998

1 year 0.997 0.999 0.999 0.998
2 years 0.998 0.999 0.999 0.999
3 years 0.999 0.999 0.999 1.000
4 years 0.999 0.999 0.999 0.999
5 years 0.999 1.000 1.000 1.000
7 years 0.992 0.995 0.994 0.995
10 years 0.985 0.991 0.991 0.992
15 years 0.974 0.983 0.984 0.984

average 0.992 0.994 0.991 0.994

than others (97.4% vs. 98.4%) since its state variables do not directly include long-term

T-bond yields. Model 2 and 4 perform the best across all maturities since they use both

T-bill and T-bond yields as state variables.

4.3 Model-implied risk premium

All four models are just shown to fit the cross-sectional variations in bond yields equally

well. In this section, I will test their predictive power of risk premium.

The first test is to regress realised excess returns on their model-implied conditional
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expectations,

exr
(n)
t,t+1 = β0 + β1Êt

[
exr

(n)
t,t+1

]
+ εt+1. (22)

The model-implied risk premium, Êt

[
exr

(n)
t,t+1

]
, is derived as a linear function of state

variables in equation (18). If the model were correctly specified, the estimated β1 would

appear to be equal to one. This test can be considered a variation from Dai and Singleton

(2002), who project the risk-premium-adjusted yield changes on the slope of yield curves.

Figure 4 shows the results of the regression. The upper panel (a) shows the estimated

β̂1, and the lower panel (b) shows R2 from the regression. The regression is run for the

excess returns from holding T-bonds with the maturities of 2, 3, 4, 5, 7, 10 and 15 years.

According to panel (a), most estimated β̂1s are close to one. For Model 1, 2 and 3,

the standard errors of β̂1 are 0.15∼0.21, and thus none of the estimates are significantly

different from one. Only Model 4 shows substantially bigger standard errors, 0.17∼0.33,

and its β̂1 for 15-year bond excess returns (0.569) is outside the 95% confidence interval

from one. Although not reported in this figure, the results are also similar for β̂0, none

of which is significantly different from zero.

Moreover, Model 1 appears to dominate other models in terms of the mean absolute

difference (MAD) of β̂1 from one, 1
N

∑N
n=1

∣∣∣ β̂(n)
1 − 1

∣∣∣. The MAD for Model 1 is 0.046

meanwhile those for Model 2, 3 and 4 are 0.147, 0.145 and 0.209, respectively.

The outperformance of Model 1 over others becomes even more conspicuous when

it comes to compare R2s in panel (b). R2s from Model 1 are 5.5%∼7.2% meanwhile

those from Model 2, 3 and 4 are 2.8%∼4.6%, 3.0%∼5.8%, and 1.2%∼3.0%, respectively.

The t-statistics of β̂1 also show similar patterns as in R2s. This result provides several

important implications.

First, the magnitudes of the R2s in Model 1 (5.5%∼7.2%) are comparable to the R2s

from the unrestricted regressions in Table 2 (5.5%∼8.0%). Not only the magnitudes,
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Figure 4: Model-implied and Realised Expected Excess Returns

This figure shows the results of regressing realised excess returns on their conditional
expectations which are implied by the affine models,

exr
(n)
t,t+1 = β0 + β1Êt

[
exr

(n)
t,t+1

]
+ εt+1.

The model-implied conditional expectations are derived for each model specification, and
the maturities n are denoted on the horizontal axis. If the model were correctly specified,
β1 would be equal to one. Panel (a) shows the estimated β1 and panel (b) compares R2.

(a) β̂1

(b) R2
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but also both R2s in this figure and the table increase monotonically with maturity.

This result shows that the affine model loses very little information compared to the

unrestricted model.

The second notable finding is the humble performance of the yield-only Model 4.

Although Model 4 shows the best fitting of the cross-sectional variations, it performs

worst in the forecast of the time-series changes in bond yields. The underperformance of

Model 4 can be attributed to the fact that the term structure is not a Markov process due

to measurement errors or the existence of a hidden factor. This result is consistent with

Cieslak and Povala (2015)’s finding that the control of persistent inflation (τt) significantly

improves the forecastability of excess returns in the bond market.

The last and the most interesting implication is from the difference between Model 1

and Model 2. As explained earlier, the two state vectors are the rotations of each other

and thus span almost identical spaces. Therefore, all the differences in their forecastability

performance must be attributed to affine model parameter estimation. The question is

which part of the affine model estimation—either of the physical dynamics or the risk-

neutral dynamics—causes the difference.

To answer this question, suppose the demeaned state variables of Model 1 and 2 have

the following relation,

X
(M2)
t = W X

(M1)
t , (23)

for some invertible rotation matrix, W . Then, the relation between the two models’

physical dynamics can be derived as

Φ(M1) = W−1 Φ(M2)W. (24)

I estimate Φ(M1), Φ(M2) andW using OLS regressions. The largest eigenvalues of Φ(M1)

and Φ(M2) are 0.9994 and 0.9996, respectively, due to the persistence of τt. However, the
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residual of equation (24), Φ̂(M1) − Ŵ−1 Φ̂(M2) Ŵ , is a singular matrix and the absolute

value of its largest eigenvalue is 0.0913.

I repeat the same process for risk-neutral dynamics, ΦQ,(M1) and ΦQ,(M2). The largest

eigenvalue of ΦQ,(M1) is 1.0671, which implies non-stationarity, whereas the largest eigen-

value of ΦQ,(M2) is 0.9985, which is still stationary. The largest eigenvalue of their residual,

Φ̂Q,(M1) − Ŵ−1 Φ̂Q,(M2) Ŵ , is 0.1606.

From this simple calculation, one can conclude that the underperformance of Model

2 can be attributed to the measurement errors in both dynamics. First, the physical

dynamics is estimated with higher standard errors because of the high correlation among

state variables in Model 2. Second, the risk-neutral estimation is also biased by the objec-

tive function of minimising the cross-sectional squared errors. This estimation method

chooses λ0 and Λ to optimise the overall yield curve fit while rps is visible only from

short-maturity yields. Thus, the variation in 3-month yields by rps might have been

ignored to utilise another shape factor from the yields to optimise the overall fit.

Table 6 studies the projection of risk premiums on rpl and rps. In Panel A, the

dependent variable is the model-implied conditional expectations of excess returns from

holding 5-year T-bonds for each model, Et

[
exr

(5Y )
t,t+1

]
. 5-year bonds are arbitrarily chosen

as a representative example in this table, and similar results are found for other maturities

too.

As expected, the risk premium in Model 1 is exclusively driven by rpl and rps.

Both of their t-statistics are bigger than 100 and its R2 is 99.7%. Moreover, even their

coefficients—0.840 for rpl and 0.973 for rps—are not significantly different from the

coefficients from the unrestricted forecast in Table 2—0.769 for rpl and 0.828 for rps.

Thus, one can conclude from this result that the affine model performs on a par with the

unrestricted forecast and the time-varying market price of risk in the model is entirely

determined by rpl and rps. The two other state variables—τ and δ—do not affect the
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Table 6: Projection of Model-implied Risk Premium on rpl and
rps

This table shows the results of regressing risk premiums on rpl and rps. In Panel A, the
dependent variable is the model-implied conditional expectations of excess returns from holding

5-year T-bonds for each model, Et

[
exr

(5Y )
t,t+1

]
. In Panel B, the dependent variable is risk premium

factors which are often used in the literature. Numbers in parentheses are Newey and West
t statistics with 12 lags. ***, **, and * denote significance at the 1%, 5%, and 10% level,
respectively.

Panel A. dep var: model-implied Et

[
exr

(5Y )
t,t+1

]
Model 1 Model 2 Model 3 Model 4

rplt 0.840*** 0.889*** 0.829*** 0.378***
(147.49) (74.73) (15.95) (7.16)

rpst 0.973*** 0.170*** -0.157*** 0.245***
(174.20) (10.74) (-2.60) (4.77)

obs 552 552 552 552
R2 0.997 0.955 0.682 0.326

Panel B. dep var: risk premium factors in the literature

dep var Cochrane and Piazzesi (2005) Duffee (2011) Duffee (2011)
tent-shaped factor filtered risk premium smoothed risk premium

rplt 2.670*** -0.067*** -0.099***
(11.28) (-3.85) (-5.60)

rpst -0.305 -0.101*** -0.108***
(-1.52) (-5.63) (-5.12)

obs 552 480 480
R2 0.531 0.248 0.395

market price although their innovation shocks are priced by the market.

In comparison, rpl still plays an important role in the risk premium implied by Model

2. However, both the coefficient and t-statistic of rps become much smaller. This result

implies that Model 2’s risk premium does not successfully capture the information by

rps despite of its having 3-month yields as a state variable. This implication supports

30



the claim that the information of rps from 3-month yields is somehow ignored in order

to improve the overall cross-sectional fit instead.

Interestingly, the coefficients of rpl are similar across Model 1 to 3 but not in Model 4.

Thus, this result reassures the finding that it is critical to control for persistent inflation

(τt) to improve the forecast of risk premium in the bond market.

The results so far suggest that it is difficult to estimate risk premium if the objective

function of estimation relies only on the cross-sectional fit of bond yields. The next panel

is to study the effects on the estimated risk premium when the estimation is made not

only by cross-sectional fit but also by time-series information.

Panel B of the table shows the results of projecting popular risk premium factors

in the literature on rpl and rps. The first dependent variable is Cochrane and Piazzesi

(2005)’s tent-shaped risk premium factor. The factor is significantly correlated to rpl but

not to rps. This result is straightforward since Cochrane and Piazzesi (2005)’s factor is

estimated from five T-bond forward rates and annual excess returns while rps is visible

from T-bill yields and affects monthly excess returns.

The next two dependent variables in the panel are the two versions of Duffee (2011)’s

risk premium factor. Duffee (2011) first shows that yield curves are not necessarily a

Markov process due to the possible existence of a hidden factor, and estimate the factor

using the Kalman filtering to harness the time-series information since the hidden factor

is not spanned by the cross-section of bond yields. The panel shows that both versions

of the factor are significantly correlated to rpl and rps.

To sum up, this section offers three suggestions to improve the forecastability of risk

premium in the bond market. First, it is important to control for the persistent inflation,

τ . Second, T-bill yields contain important information about risk premium. Third, an

affine dynamic term structure model may not be able to fully reveal risk premium if its

estimation objective function is dependent only on the cross-section of bond yields.
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4.4 Yield factor loadings and principal components

Bond yields, as shown by equation (4), are the sum of expected future riskfree interest

rates and risk premium. This equation suggests a possibility that the unobservable

risk premium can be estimated by the combination of observable bond yields. This

intuition motivates many papers in the literature to relate risk premium to the principal

components of yield curves, particularly to the slope factor. For example, Fama and Bliss

(1987) show that risk premium is proportional to the steepness of yield curve slope. Their

finding implies that long-maturity bond yields have higher loadings on risk premium than

short-maturity yields. Duffee (2002) documents a similar finding that “an increase in the

slope factor affects the price of risk of the level factor.”

In addition to the slope factor, the recent literature also sheds light on the impor-

tance of higher-order principal components. For example, Cochrane and Piazzesi (2005)

estimate a tent-shaped risk premium factor by regressing annual excess returns on five

forward interest rates and conclude that “the return-forecasting factor is clearly not re-

lated to any of the first three principal components.” Duffee (2002) finds that a curvature

shock “has a strong effect on instantaneous expected returns, but it is also very short-

lived,” and Duffee (2010) shows that the fourth principal component can explain about

a half of the variation of monthly expected excess returns in the bond market.

I find positive evidence backing all of the aforementioned papers. My results support

Fama and Bliss (1987) since the long-term risk premium factor (rpl) indeed raises the

slope of yield curves. Duffee (2002) is also supported since rpl explains not only 37% of

the slope factor’s variations but also 76% of the curvature’s variations. The results are

also agreeable to Cochrane and Piazzesi (2005) and Duffee (2010) since the short-term

risk premium factor (rps) dominates most variations in the fourth and fifth principal

components.

Figure 5 shows how bond yields are affected when each state variable is deviated
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by +/− one standard deviation. Each subfigure is labeled according to a given state

variable. The horizontal axis denotes maturities in years from 1 to 15 years, and the

vertical axis denotes annualized bond yields. The figure is plotted based on the factor

loadings of the affine model in equation (16) and (17).

Panel (a) shows that the persistent inflation (τt) shifts the level of yield curves. This

effect is intuitive given the near-unit-root persistence of the variable. Panel (b) and (c)

show that yield curves’ slope is determined by the transitory short interest rate (δt) as well

as the long-term risk premium factor (rplt). High δt flattens the slope by raising short-

maturity bond yields meanwhile high rplt steepens it by raising long-maturity yields.

Panel (d) shows that the short-term risk premium factor (rpst) makes small effects

only on short-term bond yields and almost completely hidden from long-term yields. For

example, the model-implied one-year yields when rps is +/− one standard deviation are

5.47%—5.75% while the three-year yields are 6.06%—6.14%. The yield spreads by rps

become less than 2bps for the maturities of longer than five years. This effect is so small

that it is difficult to distilguish rps from measurement errors.

Table 7 shows the contribution of each state variable to the explained variations of

principal components (PCs). The contributions are estimated by the Shapley decompo-

sition method. Numbers in any row are summed to one hundred. The estimation is made

with 15 T-bond yields (1 year, 2 years, · · · , 15 years) and three T-bill yields (1 month,

3 months and 6 months).

The table shows that the slope factor (PC2)’s variations are largely driven by δt and

rplt, each of which explains 57% and 37%. This result is consistent with the factor

loadings of T-bond yields in Figure 5, which shows that the slope becomes steeper when

δt is low or rplt is high. Moreover, it also explains why the slope factor per se is a poor

proxy of risk premium. Not only it fails to outperform other benchmark risk premium

factors in the predictive regression of bond excess returns, but also it loses all significance
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Table 7: Decomposition of Principal Components

This table shows the contributions of the four state variables to the explained variance of
the respective principal components. Each state variable’s contribution is computed using the
Shapley decomposition. Numbers in one row are summed to one hundred. Fifteen Treasury
bond yields with the maturities of 1 to 15 years and three Treasury bill yields of 1, 3, and
6-month maturities are used for the estimation of principal components.

Persistent Transitory Long-term Short-term

Inflation (τ) Short Rates (δ) Risk Premium (rpl) Risk Premium (rps)

PC1 (Level) 81.35 16.48 2.16 0.02
PC2 (Slope) 5.13 57.39 36.94 0.53
PC3(Curvature) 0.68 8.48 75.67 15.16
PC4 0.06 0.40 30.87 68.67
PC5 0.46 2.72 0.35 96.46

when monthly excess returns are used as a dependent variable. As the table shows, a

large amount of the slope’s variations are determined by δt, which is not related to risk

premium.

The table also shows that higher-order principal components are dominated by the two

risk premium factors, rplt and rpst. For example, rplt explains 76% of PC3’s variations

and rpst does 69% of PC4’s and 96% of PC5’s variations. This result also explains the

literature that higher-order principal components are more informative of risk premium

in the bond market than the first three principal components.

5 Combined estimation with GMM

So far, my analysis has largely been made of two separate steps. The first step is to

estimate state variables, and the second is to show that the latter two of the variables

are risk premium factors. In this section, these two steps are combined into one unified

framework by GMM.
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Using GMM provides two benefits. First, the GMM estimates are among the most

efficient since the method can take into account the covariances among residuals. This

feature is important all the more because the T-bond excess returns have strong cross-

sectional correlations. For example, the exercise of a simple principal component analysis

suggests that around 70% of the variations in excess returns can be explained by the first

principal component. Second, over-identifying restrictions can be used as a joint test to

show that τt and δt are not risk premium factors.

Let me briefly recap the state variable estimation with a little simplification. The

first state variable, τt, is the weighted average of past inflation rates, and the other three

state variables are residual bond yields orthogonalised by preceding state variables. The

orthogonalisation can be summarised as

δt = y
(1y)
t − β(δ)

0 − β
(δ)
1 τt, (25)

rplt = yt − β
(rpl)
0 − β(rpl)

1 τt − β(rpl)
2 δt, (26)

rpst = −y(3m)
t + β

(rps)
0 + β

(rps)
1 τt + β

(rps)
2 δt + β

(rps)
3 rplt, (27)

where yt denotes the average of 2- to 5-year T-bond yields, yt = 1
4

(
y
(2y)
t + y

(3y)
t + y

(4y)
t + y

(5y)
t

)
.

The superscripts of β’s are determined by their corresponding dependent variables.

Among these four variables, rplt and rpst are shown to forecast the excess returns

from holding T-bonds,

exr
(n)
t,t+1 = β

(n)
0 + β

(n)
1 rplt + β

(n)
2 rpst + ε

(n)
t+1, (28)

for n = 2, 3, 5, 7, 10 and 15 years. The superscripts of β’s denote the maturities of the

excess returns. The sample began in November 1971 since 15-year T-bonds had not been

available earlier.
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These equations are put into a vector of GMM moments,

gT (β) = ET



δt ⊗
(

1 τt

)>
rplt ⊗

(
1 τt δt

)>
rpst ⊗

(
1 τt δt rplt

)>
εt+1 ⊗

(
1 τt δt rplt rpst

)>


∈ R39×1, (29)

where β is a vector of 27 parameters,

β ≡
[
β
(δ)
0 β

(δ)
1 β

(rpl)
0 β

(rpl)
1 β

(rpl)
2 β

(rps)
0 β

(rps)
1 β

(rps)
2 β

(rps)
3

β
(2y)
0 β

(2y)
1 β

(2y)
2 · · · β

(15y)
0 β

(15y)
1 β

(15y)
2

]>
. (30)

Note that gT (β) has overidentifying restrictions for the orthogonality between εt+1

and τt, δt. These overidentifying restrictions are to assure that τt and δt are not risk

premium factors.

β is estimated by minimising the quadratic form of the sample moments,

β̂ = arg min
β

gT (β)>W gT (β), (31)

where the weighting matrix W is an identity matrix (W = I) for the first stage and an

inversed spectral density matrix (W = S−1) in the second stage. The spectral density

matrix is estimated as

Ŝ ≡
k∑

j=−k

(
k − |j|
k

)
ET
(
ût û

>
t+j

)
, (32)

where ût denotes the GMM moment residuals. As noted in equation (32), the higher-order

correlations are down-weighted as suggested by Newey and West (1987). I choose k = 2
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since a measurement error may create mechanical autocorrelations between adjacent time

periods.

The first-order condition of the minimisation is

d>W gT (β) = 0 where d ≡ ∂gT (β)

∂β>
. (33)

The derivations of the matrix d are straightforward but omitted due to the lack of space.

They are available upon request. Numerical methods are used to find the optimal β.

Table 8 shows the results of the GMM estimation. As explained earlier, the GMM

Table 8: GMM Estimates

Panel A shows the correlations of the two estimated time series of state variables, one from the
original multi-step orthogonalisation method and the other from the GMM. Panel B shows the
GMM estimates of the following forecast regression,

exr
(n)
t,t+1 = β

(n)
0 + β

(n)
1 rplt + β

(n)
2 rpst + ε

(n)
t+1,

for n = 2, 3, 5, 7, 10 and 15 years. Panel C shows the results of the JT test for the over-
identifying restrictions.

Panel A. Correlation of state variables from the multi-step orthogonalisation
method and the GMM estimates

τt δt rplt rpst

1.0000 0.9999 0.9999 0.9877

Panel B. Forecast of excess returns in the next month

dep.var. exr
(2Y )
t,t+1 exr

(3Y )
t,t+1 exr

(5Y )
t,t+1 exr

(7Y )
t,t+1 exr

(10Y )
t,t+1 exr

(15Y )
t,t+1

rplt 0.302*** 0.475*** 0.772*** 1.021*** 1.373*** 1.992***
(3.021) (3.496) (4.023) (4.176) (4.186) (4.157)

rpst 0.430*** 0.579*** 0.850*** 1.154*** 1.686*** 2.640***
(3.597) (3.527) (3.534) (3.710) (4.062) (4.345)

Panel C. Over-identifying restriction test

TJT = 20.17, p–value = 0.064
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combines the state variable estimation and the risk premium forecast, each of which is

covered by the corresponding panel of the table.

Panel A shows the correlations of the two estimated time series of state variables,

one from the original multi-step orthogonalisation method and the other from the GMM.

The correlation of τt is equal to one since τt is directly observed from the past inflation

and thus its value is not affected by an estimation method. The variables of interest are

the latter three: δt, rplt and rpst. According to the panel, the correlations are virtually

100% for δt and rplt, and 99% for rpst. Thus, this panel suggests that the multi-step

orthogonalisation method and the GMM produce nearly identical state variables.

Panel B shows the results of the risk premium forecast regression. The panel is

designed to be matched with the results in Table 2. As shown by the comparison of

the two tables, the estimates of the forecast coefficients (β(n)’s) from GMM are close to

those from the OLS regressions, and their differences are less than one standard error.

Therefore, one can conclude that the OLS-based multi-step method produces sufficiently

close approximates to GMM.

Lastly, Panel C shows the results of the JT test of the over-identifying restrictions.

The test statistic is computed as

T JT = T gT (β)> S−1 gT (β)→ χ2
12, (34)

since gT (β) has 39 moments and β has 27 parameters. According to the table, the

over-identifying restrictions are rejected with the p-value of 0.064, implying that the

forecast residuals, ε
(n)
t+1’s, are not jointly orthogonal to τt and δt, although they appear to

be orthogonal individually. This weak rejection can be attributed to the effects of risk

premium factors on 1-year yields. In the GMM setup, 1-year yields are assumed to be

a linear function of τt and δt but not of rplt and rpst. However, as shown by the yield
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loadings in Figure 5, 1-year yields are slightly affected by rplt and rpst up to a few basis

points. These small effects add up to the rejection of the joint null hypothesis.

6 Relation to the financial market

6.1 Liquidity in the bond market

T-bills are special. Their values rise during a financial crisis since they are considered

the safest collaterals in the world. For example, the yield on the three-month T-bill even

turned negative on December 9, 2008, three months after the Lehman Brothers’ collapse,

as investors had sought for a safe haven.14 One-month T-bill yields briefly went negative

again on August 4, 2011, since the European woes had cast a shadow over the market.15

Even when compared to other types of credit-riskfree assets such as other govern-

ment securities, T-bills still look different. For example, Duffee (1996) describes that the

market segmentation between T-bills and T-bonds has increased since the early 1980s.

Krishnamurthy (2010) also documents that the repo haircut rate of short-term Trea-

suries had been fixated at 2% in 2007–2009 meanwhile those of long-term Treasuries and

investment-grade corporate bonds soared from 5% to 6% and 5% to 20%, respectively.

Considering the role of T-bills as the safest haven and how its price is affected by rps,

we can expect rps to be related to liquidity premium. Motivated by the intuition, this

section compares rps to various liquidity measures in the bond market.

Fontaine and Garcia (2012) estimate bond liquidity premium as the difference of

yields between on-the-run (most recently issued) and off-the-run (seasoned) T-bonds.16

Since on-the-run bonds are more liquid and thus have higher values as collaterals than

14http://blogs.wsj.com/marketbeat/2008/12/09/three-month-bill-yield-goes-negative/
15http://blogs.wsj.com/marketbeat/2011/08/04/from-one-crisis-to-another-one-month-t-bill-yields-go-negative-again/
16I am grateful to Jean-Sebastien Fontaine and Rene Garcia for generously sharing the data.
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Figure 6: Fontaine and Garcia (2012)’s Bond Liquidity Premium

Fontaine and Garcia (2012) estimate bond liquidity premium using the difference of yields
between on-the-run (most recently issued) and off-the-run (seasoned) Treasury bonds. This
figure compares its time series to the short-term risk premium factor (rps).

off-the-run bonds, the yield differential of on-the-run bonds over off-the-run ones is likely

to increase when there are strong demands for liquidity. Figure 6 compares the time

series of the bond liquidity premium to rps.

The figure shows that the two time series are remarkably overlapped with each other.

They both peaked in 2008 after the Lehman Brothers collapsed and in 1987 after the

infamous stock market crash on the Black Monday. They also soared during the Tequila

crisis in 1994 and remained high throughout the Asian currency crisis in 1997 and the

Russian moratorium and the subsequent demise of the Long Term Capital Management

(LTCM) in 1998. The unconditional correlation between the two series is 0.768.

Figure 7 also compares rps to two other measures of liquidity in the bond market.

Panel (a) uses the 3-month AA financial commercial paper spreads over 3-month T-bill

yields, and Panel (b) is based on the 3-month overnight index swap (OIS) spreads. Both
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Figure 7: Other Liquidity Measures in the Bond Market

This figure compares the short-term risk premium factor (rps) to two other liquidity
measures in the bond market. Panel (a) uses 3-month AA financial commercial paper
spread, and Panel (b) uses 3-month overnight index swap (OIS) spread. Both figures
display the log values of those spreads. The scale of rps is on the left axis and the log
spreads are on the right axis.

(a) 3-Month AA Financial Commercial Paper Spread

(b) 3-Month Overnight Index Swap (OIS) Spread
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panels display the log values of the spreads. The commercial paper spreads are down-

loaded from the FRED Economic Data,17 and the OIS spreads are from the Bloomberg.

Note that the spreads are a close but not perfect liquidity measure since the spreads are

determined not only by convenience yields (Grinblatt, 2001) but also by counterparty

risk (Duffie and Singleton, 1997).

Again, the figure shows substantial comovement of rps with the bond market spreads.

They all had gradually increased since 2002, reached to the peak during the financial

crisis, and dropped rapidly and stabilised thereafter. The correlations between rps and

the two log spreads are 0.402 and 0.365 respectively.

6.2 Risk factors in the stock market

Risk premium in the bond market has been discussed so far. Naturally it raises a question

whether it is also related to the stock market. The no arbitrage model imposes that all

risk premium should have come from the covariance between asset returns and innovation

shocks to a pricing kernel. If an universal pricing kernel is able to price both bond and

stock markets, risk premium factors in the bond market might have been related to the

risk premium in the stock market.

This section is motivated by Koijen, Lustig, and Van Nieuwerburgh (2013), who

show that “innovations to the nominal bond risk premium price the book-to-market

sorted stock portfolios.” They find that the joint portfolios of stocks and bonds can be

priced by three state variables: the level factor of yield curves, stock market returns, and

Cochrane and Piazzesi (2005)’s tent-shaped risk premium factor. Interestingly, growth

to value stock portfolio returns are found to have monotonically increasing loadings on

the tent-shaped factor, implying that value and bond risk premium might have the same

roots.

17http://research.stlouisfed.org/fred2/categories/120
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Let exr
(j)
t+1 denote the excess returns from holding a risky asset j. Under the no

arbitrage assumption, all risk premium should have come from the covariance of asset

returns and the pricing kernel,

Et

[
exr

(j)
t+1

]
= − covt

(
exr

(j)
t+1,mt+1

)
= Σj Λt, (35)

where Σj is the covariance between the returns and the innovation shocks to state vari-

ables. By taking unconditional expectations on both sides of equation (35),

E
[
exr

(j)
t+1

]
= Σj Λ̄. (36)

For example, suppose the covariance matrix, Σj, is estimated for each of value portfolios.

If the value premium were related to the i-th state variable, Σji would have shown a

monotonically increasing (or decreasing) pattern over j.

Figure 8 shows the coefficients of regressing the excess returns of value, size, and

momentum-sorted decile stock portfolios on the contemporary innovation shocks to the

two risk premium factors, r̃pl and r̃ps. The innovation shocks are measured as the

residuals of estimating rpl and rps’ time series as two independent AR(1) processes.

This figure is to illustrate the estimated covariance matrix, Σj. Stock portfolio return

data are downloaded from Kenneth French’s website.18

Being consistent with Koijen, Lustig, and Van Nieuwerburgh (2013), the figure shows

that the long-term risk premium factor (rpl) is related to all three cross-sectional stock

risk premiums. r̃pl’s coefficients show monotonic patterns in all panels, implying that

rpl is positively related to value and size premiums and negatively to momentum. In

contrast, r̃ps’ coefficients seem to be flat, but they are all significantly different from

zero. Thus, rps can be considered closely related to stock market returns.

18http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 8: Covariance with Stock Portfolio Returns

This figure shows the coefficients of regressing stock portfolio excess returns on the
contemporary innovation shocks to two risk premium factors, rpl and rps. Portfolio 1 on
the horizontal axis denotes growth / small / loser stocks meanwhile Portfolio 10 denotes
value / large / winner stocks. Portfolio returns are downloaded from Kenneth French’s
website.

(a) Value Portfolios

(b) Size Portfolios

(c) Momentum Portfolios
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Table 9: Covariance with Cross-sectional Stock Return Factors

The dependent variables are the Fama-French three factors and the momentum factor, which
are denoted on the first row. The explanatory variables are contemporary innovation shocks to
the two risk premium factors. Numbers in parentheses are Huber–White t statistics. ***, **,
and * denote significances at 1%, 5%, and 10% level, respectively.

MktRf SMB HML MOM

r̃plt -0.135 1.089*** 0.732** -1.676***
(-0.242) (3.129) (2.282) (-2.991)

r̃pst -0.957*** 0.057 0.014 -0.293
(-2.619) (0.319) (0.066) (-1.085)

obs 551 551 551 551
R2 0.023 0.022 0.011 0.028

As a robustness check, Table 9 directly regresses the Fama-French three factors and

the momentum factor on the contemporary innovation shocks to state variables. This

table confirms the previous finding that rps is related to aggregate stock market returns

meanwhile rpl is to value, size, and momentum premiums.

7 Conclusion

This paper finds that bond risk premium consist of two factors: one for a long term

and the other for a short term. The long-term factor raises the slope of yield curve. In

contrast, the short-term factor affects T-bill yields but is almost completely hidden from

T-bonds. The long-term factor predicts monthly excess returns over the horizon of even

longer than one year meanwhile the short-term factor loses its predictability completely

in one quarter. The estimation of the short-term factor is likely to elude an affine term

structure model if the model is estimated by the optimisation of cross-sectional fits. The

results are robust to the GMM estimation. The long-term factor is found to be related to
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value, size, and momentum premiums in the stock market whereas the short-term factor

is to bond liquidity premium and aggregate stock market returns.
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