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Abstract

In this paper, we estimate continuous time stochastic volatility models considered by Aït-

Sahalia and Kimmel (2007) in a more general setting. Regime-switching Heston, GARCH, and

CEV models where all parameters are allowed to vary depending on the state of the economy

are suggested and examined. Hamilton (1989) algorithm is used to compute likelihood and

conduct maximum likelihood estimation. In doing so, it is necessary to know the true transition

probability density function (TPDF) of a stochastic volatility model. But the true TPDF is

unavailable for all models considered in this paper. So, we adopted the irreducible approach

established by Aït-Sahalia (2008) and Choi (2015b) to obtain closed-form log-TPDFs of those

models and then to get TPDFs. Using S&P 500 and VIX data for the stock price and volatility

proxy, respectively, we investigate which model can describe the dynamics of data better. We

found strong evidence of regime shifts for all models. The CEV model is statistically preferred

to the other two nested models in explaining the evolutions of the data. Moreover, the transition

probability of the regime variable changes with the stock price rather than its volatility.
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1 Introduction

Since Black and Scholes (1973)’s and Merton (1973)’s pioneering work on option pricing

theory, researchers including Black (1976) have questioned about validity of a geometric

Brownian motion employed by them to describe the dynamics of stock prices. Modeling

stock prices with a geometric Brownian motion implies that logarithmic stock price is nor-

mally distributed with constant mean and variance, which does not seem to reflect real data

observed in the market. In the light of this, stochastic volatility models have been proposed

by, for example, Scott (1987), Hull and White (1987), Stein and Stein (1991), and Heston

(1993) to get a more realistic models to explain some features of data better. Recently,

Aït-Sahalia and Kimmel (2007) estimated several continuous time stochastic volatility mod-

els by maximum likelihood (ML) estimation method. Chacko and Viceira (2003) and Jones

(2003) also estimated some stochastic volatility models by using GMM and MCMCmethods,

respectively.

Looking at the data, however, existing stochastic volatility models do not appear to be

able to fit the data well. Going through the dot-come bubble growth and bust period and

ongoing global financial and the Euro debt crises, it seems to be too strong to assume that

only one data generating process can explain the movements of stock prices. So, it might be

more reasonable to ask whether there has been any changes in the underlying data generating

process governing dynamics of stock price and its volatility. To do this, it is better to let the

data answer to this question in a more general settings. One popular way to address this

issue is to incorporate regime-switching features into a model.

We estimate the stochastic volatility models examined by Aït-Sahalia and Kimmel (2007)

in a more general setting. Regime-switching Heston, GARCH, and CEV models where all

parameters are allowed to vary depending on the state of the economy are estimated by MLE

in this article. Hamilton (1989) algorithm is used to compute likelihood and conduct MLE.

In doing so, it is necessary to know the true transition probability density function (TPDF)

of a stochastic volatility model. But the true TPDF is unavailable for all models considered

in this paper. So, we adopted the irreducible approach established by Aït-Sahalia (2008)

and Choi (2015b) to obtain closed-form log-TPDF of those models and then to get TPDF.
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After Aït-Sahalia (2002) makes a breakthrough in finding closed-form approximate TPDF

of a univariate time-homogeneous diffusion, many researchers have extended the results to

more general cases such as TPDF of a univariate time-inhomogeneous diffusion by Egorov,

Li, and Xu (2003), TPDF of univariate time homogeneous diffusion models driven by Lévy

processes by Schaumburg (2001), log-TPDF of multivariate time homogeneous diffusions

by Aït-Sahalia (2008), TPDF of multivariate time homogeneous jump diffusion models by

Yu (2007), log-TPDF of multivariate time inhomogeneous diffusion models by Choi (2013),

Bayesian setting by DiPietro (2001) and Stramer, Bognar, and Schneider (2010), TPDF of

damped diffusion by Li (2010), TPDF of multivariate diffusion models by Choi (2015b), and

TPDF of multivariate time inhomogeneous jump diffusion models by Choi (2015a).

In the literature, regime-switching diffusion models have been used to model interest

rates (Naik and Lee (1998), Liechty and Roberts (2001), and Choi (2009)). Because the true

TPDF of a diffusion process is unknown in general, people often discretized continuous-time

diffusion models to estimate them (Ang and Bekaert (2002), Bansal and Zhou (2002), and

Dai, Singleton, and Yang (2007)). In a recent paper, Durham and Park (2013) applied some

regime-switching stochastic volatility models to stock price and volatility data. Their models

are different from ours and they also discretized diffusion models for estimation. Moreover,

discretization of the continuous time diffusion is well known to yield biased and ineffi cient

estimates (Lo (1988)). Therefore, we can expect to obtain more precise estimates for the

parameters of our models making use of quite accurate TPDF expansions.

Using S&P 500 and VIX data for the stock price and to generate volatility proxy, re-

spectively, we investigate which model can describe the dynamics of data better. We found

strong evidence of regime shifts for all models. The CEV model is statistically preferred

to the other two nested models in explaining dynamics of data. Moreover, the transition

probability of regime variable changes with the stock price rather than its volatility.

Organization of this paper is as follows. Discussing some features of data which motivated

this article in the next section, three regime-switching Heston, GARCH and CEVmodels will

be introduced in Section 3. The ideas of Hamilton algorithm and approximation method of

getting the TPDF of diffusion models are presented in Section 4. In Section 5, all estimation

results are exhibited and discussed. Then we conclude.
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2 Data and Motivation

Daily observations of the Standard & Poor’s 500 (S&P 500) Index and the Chicago Board

Options Exchange (CBOE) Volatility Index, VIX from January 2, 1990 till June 12, 2012

have been downloaded from DataStream. These two series are depicted in Figure 1, where

the left y-axis corresponds to the S&P 500 data plot in blue and the right y-axis is the line

plot in red for the VIX data. On the top panel of Figure 2, daily changes in the S&P 500

and the VIX data are plotted. Here, the left y-axis and right y-axis are for the changes in

the S&P 500 and the VIX, respectively Daily changes in the VIX are graphed on the bottom

panel in Figure 2.

Figure 1. Daily S&P 500 and VIX from Jan/2/90 till June/12/12

From visual inspection of Figure 1, we can see that the VIX tends to increase more when

the S&P 500 decreases, which is well known as the leverage effect of asset prices. That is,

the S&P 500 appears to be negatively correlated with the VIX. Another well documented

phenomenon that can be observed from Figure 2 is volatility clustering which terms the

behavior that large changes in a variable tend to be followed by large changes for a while

and small changes tend to be followed by small changes for the same variable. Volatility

clustering can be seen not only in the S&P 500 but also in the VIX.

Figure 2: Daily Changes in S&P 500 and VIX, and VIX from Jan/2/90 till Jun/12/12
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Persistency of volatility in the S&P 500 can be explained by the second factor in a

stochastic volatility model1 because when the level of VIX is high the S&P 500 looks to

be more volatile. On the other hand, volatility clustering is exhibited in the VIX as well.

Moreover, the long run mean level of the VIX may not be unique. It seems to be too strong

to assume that the dynamics of data are governed by only one data generating process. One

way to check whether or not it is the case is to allow the underlying data generating process

to change over time. This motivates to adopt a regime-switching stochastic volatility model

so that the data can say whether or not there exists an additional regime.

1The ARCH (Engle (1982)) and GARCH (Bollerslev (1986) models provide alternative way to explain volatility clustering.
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Table 1: Summary Statistics

Observations Minimum Maximum Mean Std. Dev Skewness Coeff Degree of Excess

S&P 500 5856 295.4600 1565.1500 954.3139 370.4182 -0.3649 -1.2632

VIX 5856 9.3100 80.8600 20.5184 8.1869 1.9440 6.7626

ln (S&P 500) 5856 5.6885 7.3557 6.7631 0.4736 -0.7453 -0.9174

IV 5856 0.0087 0.6538 0.0488 0.0490 4.6274 33.6339

3 Model

Regime-switching is incorporated with three different continuous time stochastic volatility

models. One of these is the CEV model that encompasses the other two, the Heston and

GARCH, models. Starting with the Heston model, in what follows, we present how regime

shifts are added to stochastic volatility models.

3.1 Heston Model with Regime Shifts

Even if the Black-Scholes-Merton model (Black and Scholes (1973) and Merton (1973)) has

made a huge contribution to option pricing theory, they make a strong assumption that

stock prices follow a geometric Brownian motion. In such a case, a stock price, conditioning

on the past observation, is lognormally distributed with constant mean and variance. In

order to improve upon the Black-Scholes-Merton model by relaxing assumptions about the

dynamics of asset prices so that it can reflect what can be observed in data better Heston

(1993) proposed the Heston model. Under the risk-neutral measure Q, the Heston model for

a stock price, St and its local variance Vt is written as

d

 St

Vt

=

 rSt

κ′ (γ′ − Vt)

 dt+
 √(1− ρ2)VtSt ρ

√
VtSt

0 σ
√
V t

 d
 WQ

1t

WQ
2t

 , (1)
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where WQ
1t and W

Q
2t are independent Brownian motions and r is the risk-free interest rate

2.

The variance, Vt follows the Feller (1952)’s square root process which was also used by Cox,

Ingersoll, and Ross (1985). The variable Vt is always greater than zero as long as Feller’s

condition 2k′γ′ ≥ σ2 holds. Rewriting (1) in terms of st = lnSt and Vt we get

d

 st

Vt

=

 r − 1
2
Vt

κ′ (γ′ − Vt)

 dt+
 √(1− ρ2)Vt ρ

√
Vt

0 σ
√
V t

 d
 WQ

1t

WQ
2t

 , (2)

by Ito’s lemma.

The market price of risk is specified as
[
λ1

√
(1− ρ2)Vt, λ2

√
V t

]T
following Aït-Sahalia

and Kimmel (2007). Then the joint dynamics of st and Vt under the objective measure P

are by the Girsanov theorem

d

 st

Vt

=

 r + bVt

κ (γ − Vt)

 dt+
 √(1− ρ2)Vt ρ

√
Vt

0 σ
√
V t

 d
 W P

1t

W P
2t

 , (3)

where b = λ1 (1− ρ2) + λ2ρ− 1
2
, κ = κ′ − λ2σ, and γ =

(
κ′

κ′−λ2σ

)
γ′.

We will use a proxy for Vt that is described in Section 5.1 to estimate (3) by maximum

likelihood estimation (MLE) method. In this case only the parameters κ, γ, σ, ρ, r, and β

can be identified. Because both of λ1 and λ2 cannot be identified, we will assume λ2 = 0 as

in Aït-Sahalia and Kimmel (2007). Then (3) can be rewritten as

d

 st

Vt

=

 r +
[
λ1 (1− ρ2)− 1

2

]
Vt

κ (γ − Vt)

 dt+
 √(1− ρ2)Vt ρ

√
Vt

0 σ
√
V t

 d
 W P

1t

W P
2t

 . (4)

Notice that the parameter vector θ = (κ, γ, σ, ρ, r, λ1) . The parameter κ tells the speed

of mean reversion of Vt and γ is its long run mean level. And ρ measures the correlation

between the innovations to stock price and stochastic volatility and it can explain leverage

skewness effects.

Let us incorporate regime shifts into the dynamics of (st, Vt) by using regime index Rt

to capture possible regime-switching behavior of the data. Depending on the state of the
2We assume that the dividend yield of the stock is zero. Or r can be interpreted as the risk-free rate minus the dividend

yield.
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economy, there are two regimes such that Rt = L orH. Therefore, for the Heston model there

are two different sets of parameters, (κL, γL, σL, ρL, rL, λ1L) and (κH , γH , σH , ρH , rH , λ1H) .

d

 st

Vt

 =

 rRt +
[
λ1Rt

(
1− ρ2

Rt

)
− 1

2

]
Vt

κRt
(
γRt − Vt

)
 dt

+

 √(
1− ρ2

Rt

)
Vt ρRt

√
Vt

0 σRt
√
Vt

 d

 W P
1t

W P
2t

 .

The regime index Rt follows a continuous time first order Markov chain with two states.

The infinitesimal matrix of the Markov chain is

Π =

 πLL πHL

πLH πHH

 =

 −πLH πHL

πLH −πHL

 ,

where the intensity parameter πij is the rate of the probability at which the process switches

(πij > 0 for i 6= j). Assuming that regime shift can occur at most once during each period

∆, the transition matrix is

P∆ =
1

πLH + πHL

 πHL + πLHe
−∆(πLH+πHL) πHL

(
1− e−∆(πLH+πHL)

)
πLH

(
1− e−∆(πLH+πHL)

)
πLH + qπHLe

−∆(πLH+πHL)

 (5)

and unconditional probabilities are
(

πHL
πLH+πHL

, πLH
πLH+πHL

)
. Reparametrizing (5), the transi-

tion matrix and the corresponding unconditional probabilities are respectively

P =

 pLL pHL

pLH pHH

 and
(

1− pHH
2− pLL − pHH

,
1− pLL

2− pLL − pHH

)
.

Therefore the parameter vector to be estimated for the regime-switching Heston model is

θ = (κL, γL, σL, ρL, rL, λ1L, κH , γH , σH , ρH , rH , λ1H , pLL, pHH) .

We also consider the case where the transition probability is dependent on the state
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variables. Time-varying transition probabilities are specified as

pLL = P (Rt = L|Rt−∆ = L) = F (cL + dLst−∆ + eLVt−∆)

pLH = P (Rt = H|Rt−∆ = L) = 1− F (cL + dLst−∆ + eLVt−∆)

pHH = P (Rt = H|Rt−∆ = H) = F (cH + dHst−∆ + eHVt−∆)

pHL = P (Rt = L|Rt−∆ = H) = 1− F (cH + dHst−∆ + eHVt−∆) .

In the literature a logistic function, F (x) = ex/ (1 + ex) (Diebold, Lee, and Weinbach (1994)

and Dai, Singleton, and Yang (2007)), the cumulative standard normal distribution function

(Gray (1996)) or both (Choi (2009)) have been adopted for F (x) . As Choi (2009) found out,

it is not expected to make much difference in the estimation results whichever function is

used for F (·) . Because F (·) is a strictly increasing function and the argument of the function
is a linear function of st and Vt, if d > 0 (e > 0),then the probability of staying in the same

regime in the next period increases as st (Vt) increases. When dL = dH = eL = eH = 0, the

transition probability is time-invariant.

For each continuous time stochastic volatility model studied in this article, depending

on the number of regimes, if additional parameter is used for the initial state probability

or not, and whether or not the transition probability is constant, four different cases are

estimated. R1 is for the single-regime model. If we use unconditional probability (additional

parameter) for the probability of the initial state for a regime-switching model with time-

invariant transition matrix it is R2-1 (R2-2). Finally, regime-switching model with time-

varying transition matrix is R2TVTP3. Thus, with regard to the Heston model, MLE is

implemented for Heston-R1, Heston-R2-1, Heston-R2-2, and Heston-R2TVTP models.

3.2 CEV Model with Regime Shifts

Jones (2003) points out that the Heston model is unlikely to be able to explain the evolution

of the instantaneous volatility,
√
Vt well. The reason is because the Heston model implies

that the volatility of the instantaneous volatility is constant, whereas the volatility of the

instantaneous volatility seems to be more volatile when it is relatively higher as can be

seen in the bottom panel of Figure 2. To overcome this problem he considers the constant
3Additional parameter is required since the transition probability varies with the state variables.
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elasticity of variance (CEV) model where an additional parameter β is used for the power

of Vt in the diffusion process of the variance. That is, under the risk-neutral measure Q, the

underlying asset price St and its volatility Vt follow the dynamics

d

 St

Vt

 =

 rSt

κ′ (γ′ − Vt)

 dt+

 √(1− ρ2)VtSt ρ
√
VtSt

0 σV β
t

 d
 WQ

1t

WQ
2t

 . (6)

This model encompasses the Heston model, where β = 1/2 and the GARCH model, where

β = 1 to be discussed in the next section. The diffusion process of Vt in (6) was introduced

by Chan, Karolyi, Longstaff, and Sanders (1992) and has been popularly employed to model

interest rates since then. The CEV model for the volatility also has been used by Lewis

(2000) and Chacko and Viceira (2003).

In terms of the logarithmic stock price, (6) is rewritten as

d

 st

Vt

 =

 r − 1
2
Vt

κ′ (γ′ − Vt)

 dt+

 √(1− ρ2)Vt ρ
√
Vt

0 σV β
t

 d
 WQ

1t

WQ
2t

 .

Using the same assumption for the market prices of risks,
[
λ1

√
(1− ρ2)Yt, 0

]T
as in the

Heston model, under the physical measure, dynamics of the state variables are represented

as

d

 st

Vt

 =

 r + bVt

κ (γ − Vt)

 dt+

 √(1− ρ2)Vt ρ
√
Vt

0 σV β
t

 d
 W P

1t

W P
2t

 , (7)

where b = λ1 (1− ρ2)− 1
2
, κ = κ′, and γ = γ′. The true TPDF is unavailable for this model.

Finally, giving regime-switching structure to (7), the regime-switching CEV model is

d

 st

Vt

 =

 r +
(
λ1Rt

(
1− ρ2

Rt

)
− 1

2

)
Vt

κRt
(
γRt − Vt

)
 dt+

 √(1− ρ2
Rt

)
Vt ρRt

√
Vt

0 σRtV
βRt
t

 d
 W P

1t

W P
2t

 ,

where the regime determining variable Rt follows the aforementioned continuous time first

order Markov chain with two states. In addition to those parameters from Section 3.1 two

more parameters, βL and βH need to be estimated. Restriction, 1/2 ≤ β ≤ 1 will be

imposed for the uniqueness of option prices following Aït-Sahalia and Kimmel (2007). As
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in the regime-switching Heston model, both the time constant and time varying transition

matrix of Rt will be investigated. Therefore, we consider four different specifications, CEV-

R1, CEV-R2-1, CEV-R2-2, and CEV-R2TVTP.

3.3 GARCH Model with Regime Shifts

Another interesting model that will be examined is the GARCH model (Nelson (1990) and

Meddahi (2001)). In this setting, the stock price and its variance follow

d

 St

Vt

 =

 rSt

κ′ (γ′ − Vt)

 dt+

 √(1− ρ2)VtSt ρ
√
VtSt

0 σVt

 d
 WQ

1t

WQ
2t

 (8)

under the risk-neutral measure. As discussed above, this model is nested by the CEV model.

To ensure positivity of the variance Vt, κ′γ′ ≥ 0 is required. As before, expressing (8) in

(st, Vt)

d

 st

Vt

 =

 r − 1
2
Vt

κ′ (γ′ − Vt)

 dt+

 √(1− ρ2)Vt ρ
√
Vt

0 σVt

 d
 WQ

1t

WQ
2t

 .

With the same market price specification,
[
λ1

√
(1− ρ2)Yt, 0

]T
as above, under the mea-

sure P,

d

 st

Vt

 =

 r + bVt

κ (γ − Vt)

 dt+

 √(1− ρ2)Vt ρ
√
Vt

0 σVt

 d
 W P

1t

W P
2t

 , (9)

where b = λ1 (1− ρ2)− 1
2
, κ = κ′, and γ = γ′. Combining regime-switching with (9) yields

d

 st

Vt

 =

 r +
(
λ1Rt

(
1− ρ2

Rt

)
− 1

2

)
Vt

κRt
(
γRt − Vt

)
 dt+

 √(1− ρ2
Rt

)
Vt ρRt

√
Vt

0 σRtVt

 d
 W P

1t

W P
2t

 .

The dynamics of regime variable Rt and the associated transition matrix are illustrated in

Section 3.1. We have exactly the same set of parameters as in the Heston model. Similarly

to other two cases, four different models are said to be GARCH-R1, GARCH-R2-1, GARCH-

R2-2, and GARCH-R2TVTP.
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4 Estimation Method

Maximum likelihood estimation method is employed to estimate parameters. The likeli-

hood of the data is computed by the Hamilton algorithm (Hamilton (1989)). In doing so,

it is necessary to know the transition probability density function (TPDF) of our stochastic

volatility models. However, the true TPDF of most diffusion processes including our models

are unknown. Utilizing Aït-Sahalia (2008) and Choi (2015b) we can obtain a TPDF expan-

sion of a multivariate time-homogeneous diffusion in a closed-form. Let us first see how we

can get the approximate TPDF.

4.1 Approximate Transition Probability Density Function

An m-dimensional diffusion process,

dXt = µ (Xt; θ) dt+ σ (Xt; θ) dWt

is said to be reducible if there exists a transformation by which we can transform a diffusion

into a unit diffusion, where the volatility is the identity matrix. If a multivariate diffusion

is reducible, the log-likelihood function can be found by using the reducible method that

includes Hermite expansion and Kolmogorov method. However, if it is not reducible (irre-

ducible), the reducible method is not applicable but the irreducible method can be adopted.

The irreducible method is general enough to be applied to an arbitrary multivariate diffusion

models including reducible diffusions.

A necessary and suffi cient condition for the reducibility of an m-dimensional diffusion

process Xt is
∂σ−1

ij (x; θ)

∂xk
=
∂σ−1

ik (x; θ)

∂xj
,

for each x in the domain of Xt and triplet {i, j, k} ⊂ {1, 2, · · · ,m} such that k > j. Here

σ−1
ij (x; θ) is the (i, j) element of the inverse matrix of the volatility σ (x; θ) . Checking this

condition, all of the stochastic volatility models considered in this paper turn out to be

irreducible.

The key idea of finding the approximate log-TPDF of an irreducible diffusions is to pos-
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tulate the form of the log-likelihood expansion of Xt as the one obtained from the reducible

case:

l
(K)
X (∆, x|x0; θ) (10)

= −m
2

ln (2π∆)−Dυ (x; θ) +
C

(−1)
X (∆, x|x0; θ)

∆
+

K∑
k=0

C
(k)
X (∆, x|x0; θ)

∆k

k!
.

And use the fact that the true log-TPDF satisfies the Kolmogorov forward and backward

equations. The Kolmogorov forward equation is

∂lX (∆, x|x0; θ)

∂∆
= −

m∑
i=1

∂µi (x; θ)

∂xi
+

1

2

m∑
i=1

m∑
j=1

∂2υij (x; θ)

∂xi∂xj
−

m∑
i=1

µi (x; θ)
∂lX (∆, x|x0; θ)

∂xi

+
m∑
i=1

m∑
j=1

∂υij (x; θ)

∂xi

∂lX (∆, x|x0; θ)

∂xj
+

1

2

m∑
i=1

m∑
j=1

υij (x; θ)
∂2lX (∆, x|x0; θ)

∂xi∂xj
(11)

+
1

2

m∑
i=1

m∑
j=1

∂lX (∆, x|x0; θ)

∂xi
υij (x; θ)

∂lX (∆, x|x0; θ)

∂xj
.

Replacing lX (∆, x|x0; θ) with l(K)
X (∆, x|x0; θ) in (11) and matching the terms with the

same orders of∆ yield the partial differential equations (PDEs) of the coeffi cientsC(k)
X (∆, x|x0; θ) , k ≥

−1. They are

−2C
(−1)
X (∆, x|x0; θ) =

m∑
i=1

m∑
j=1

υij (x; θ)
∂C

(−1)
X (∆, x|x0; θ)

∂xi

∂C
(−1)
X (∆, x|x0; θ)

∂xj

−
m∑
i=1

m∑
j=1

υij (x; θ)
∂C

(−1)
X (∆, x|x0; θ)

∂xi

∂C
(0)
X (∆, x|x0; θ)

∂xj
= G

(0)
X (∆, x|x0; θ)

and for all k ≥ 1

C
(k)
X (∆, x|x0; θ)−1

k

m∑
i=1

m∑
j=1

υij (x; θ)
∂C

(−1)
X (∆, x | x0; θ)

∂xi

∂C
(k)
X (∆, x | x0; θ)

∂xj
= G

(k)
X (∆, x | x0; θ) ,
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where

G
(0)
X (∆, x | x0; θ) =

m

2
−

m∑
i=1

µi (x; θ)
∂C

(−1)
X (∆, x | x0; θ)

∂xi
+

m∑
i=1

m∑
j=1

∂υij (x; θ)

∂xi

∂C
(−1)
X (∆, x | x0; θ)

∂xj

−
m∑
i=1

m∑
j=1

υij (x; θ)
∂C

(−1)
X (∆, x | x0; θ)

∂xi

∂Dυ (x; θ)

∂xj
+

1

2

m∑
i=1

m∑
j=1

υij (x; θ)
∂2C

(−1)
X (∆, x | x0; θ)

∂xi∂xj
,

G
(1)
X (∆, x | x0; θ) = −

m∑
i=1

µi (x; θ)
∂C

(0)
X (∆, x | x0; θ)

∂xi
+

m∑
i=1

m∑
j=1

∂υij (x; θ)

∂xi

∂C
(0)
X (∆, x | x0; θ)

∂xj

−
m∑
i=1

m∑
j=1

υij (x; θ)
∂C

(0)
X (∆, x | x0; θ)

∂xi

∂Dυ (x; θ)

∂xj
+

1

2

m∑
i=1

m∑
j=1

υij (x; θ)
∂2C

(0)
X (∆, x | x0; θ)

∂xi∂xj

+
1

2

m∑
i=1

m∑
j=1

υij (x; θ)
∂C

(0)
X (∆, x | x0; θ)

∂xi

∂C
(0)
X (∆, x | x0; θ)

∂xj

−
m∑
i=1

∂µi (x; θ)

∂xi
+

1

2

m∑
i=1

m∑
j=1

∂2υij (x; θ)

∂xi∂xj
+

m∑
i=1

µi (x; θ)
∂Dυ (x; θ)

∂xi
−

m∑
i=1

m∑
j=1

∂υij (x; θ)

∂xi

∂Dυ (x; θ)

∂xj

−1

2

m∑
i=1

m∑
j=1

υij (x; θ)

[
∂2Dυ (x; θ)

∂xi∂xj
− ∂Dυ (x; θ)

∂xi

∂Dυ (x; θ)

∂xj

]
.

and when k ≥ 2

G
(k)
X (∆, x | x0; θ) = −

m∑
i=1

µi (x; θ)
∂C

(k−1)
X (∆, x | x0; θ)

∂xi
+

m∑
i=1

m∑
j=1

∂υij (x; θ)

∂xi

∂C
(k−1)
X (∆, x | x0; θ)

∂xj

−
m∑
i=1

m∑
j=1

υij (x; θ)
∂C

(k−1)
X (∆, x | x0; θ)

∂xi

∂Dυ (x; θ)

∂xj
+

1

2

m∑
i=1

m∑
j=1

υij (x; θ)
∂2C

(k−1)
X (∆, x | x0; θ)

∂xi∂xj

+

m∑
i=1

m∑
j=1

υij (x; θ)
∂C

(0)
X (∆, x | x0; θ)

∂xi

∂C
(k−1)
X (∆, x | x0; θ)

∂xj

+
1

2

m∑
i=1

m∑
j=1

υij (x; θ)

[
k−2∑
h=1

(
k − 1

h

)
∂C

(h)
X (∆, x | x0; θ)

∂xi

∂C
(k−1−h)
X (∆, x | x0; θ)

∂xj

]
.

Here υ (x; θ) = σ (x; θ)σ (x; θ)T , where σ (x; θ)T is the transpose of σ (x; θ) .

If Xt is reducible, the PDEs of C
(k)
X (∆, x|x0; θ) are solvable (see Choi (2015a)). Or we can

convert Xt into a unit diffusion process and use Choi (2015b) to acquire the approximate

TPDF. But we are no longer able to get analytic solutions of the PDEs when it is irreducible.

In this case we can Taylor-expand each coeffi cient, C(k)
X (∆, x|x0; θ) around x0 up to jk-th

order which is determined to achieve the same approximation error of Op

(
∆K+1

)
for each

coeffi cient. Setting jk = 2 (K − k + 1) would provide an approximation error Op

(
∆K+1

)
.

For example, if K = 2, j−1 = 8, j0 = 6, j1 = 4, j2 = 2, j3 = 0. The coeffi cients

have to be found recursively from a low order term to the next higher order term one by
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one in C
(j−1,−1)
X (∆, x|x0; θ) . Given C

(j−1,−1)
X (∆, x|x0; θ) , the next term C

(j0,0)
X (∆, x|x0; θ)

needs to be computed from low order to high order up to j0. Given C
(j−1,−1)
X (∆, x|x0; θ) and

C
(j0,0)
X (∆, x|x0; θ) , the next term C

(j1,1)
X (∆, x|x0; θ) can be determined, and so on. Let jk-th

order Taylor expansion of C(k)
X (∆, x|x0; θ) be C(k,jk)

X (∆, x|x0; θ) .4

Choi (2015b) established that

p
(K)
X (∆, x|x0; θ) = ∆−m/2 exp

[
C

(−1)
X (∆, x|x0; θ)

∆

]
(2π)−m/2

∣∣∣det [υ (x; ; θ)]−1/2
∣∣∣ (12)

× exp
[
C

(0)
X (∆, x|x0; θ)

] K∑
k=0

c
(k)
X (∆, x|x0; θ)

∆k

k!
.

The coeffi cients c(k)
X (t, x|t0, x0) , k ≥ 0 are

c
(k)
X (∆, x|x0; θ)

=
∑ k!

s1!s2! · · · sk!

[
C

(1)
X (∆, x|x0; θ)

1!

]s1 [
C

(2)
X (∆, x|x0; θ)

2!

]s2
· · ·
[
C

(k)
X (∆, x|x0; θ)

k!

]sk
,

where the summation is over all nonnegative integers sj, j = 1, · · · , k satisfying k = s1 +

2s2 + · · · + ksk and C
(l)
X (∆, x|x0; θ) , l ≥ −1 are the coeffi cients of log-likelihood expansion

(10). Replacing C(k)
X (∆, x|x0; θ) with C(k,jk)

X (∆, x|x0; θ) in (12) results in the approximate

TPDF of order Op

(
∆K+1

)
:

p̃
(K)
X (∆, x|x0; θ) = ∆−m/2 exp

[
C

(j−1,−1)
X (∆, x|x0; θ)

∆

]
(2π)−m/2

∣∣∣det [υ (x; ; θ)]−1/2
∣∣∣

× exp
[
C

(j0,0)
X (∆, x|x0; θ)

] K∑
k=0

c
(jk,k)
X (∆, x|x0; θ)

∆k

k!
.

4.2 Hamilton Algorithm

We observe the process Xt = (st, Vt) at discrete time points t = i∆ where i = 0, 1, 2, · · · , n.
Using the Bayes’rule, the joint probability density function of the data

(
xn∆, x(n−1)∆, · · · , x∆, x0

)
4The Kolmogorov backward equation for the log-TPDF of Xt is ∂lX (∆,x|x0;θ)

∂∆
=

∑m
i=1 µi (x0; θ)

∂lX (∆,x|x0;θ)
∂x0i

+

1
2

∑m
i=1

∑m
j=1 υij (x0; θ)

∂2lX (∆,x|x0;θ)
∂x0i∂x0j

+ 1
2

∑m
i=1

∑m
j=1

∂lX (∆,x|x0;θ)
∂x0i

υij (x0; θ)
∂lX (∆,x|x0;θ)

∂x0j
. The PDEs of the coeffi cients in

x0 and ∆ are obtainable if we use the backward equation. Making use of those PDEs, Taylor expansions of the coeffi cients can
be found as well. Either produces the same results.
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can be written as

p
(
xn∆, x(n−1)∆, · · · , x∆, x0; θ

)
= p

(
xn∆|x(n−1)∆, · · · , x∆, x0; θ

)
× p

(
x(n−1)∆|x(n−2)∆ · · · , x∆, x0; θ

)
×

· · · × p (x2∆|x∆, x0; θ)× p (x∆|x0; θ)× p (x0; θ) .

Ignoring the initial observation, the log-likelihood function is represented as

ln (θ) ≡
T∑
i=1

ln
[
p
(
xi∆|I(i−1)∆; θ

)]
, (13)

where It = {Xs|s ≤ t} is the information set which consists of data through time t.
Conditional likelihood functions p

(
xi∆|I(i−1)∆; θ

)
for all i = 0, 1, 2, · · · , n can be calcu-

lated using the algorithm developed by Hamilton (1989). As a matter of convenience to

explain the algorithm, let’s define a new state variable R∗t as follows (Hamilton (1994)):

R∗t = 1 if Rt−∆ = L and Rt = L

R∗t = 2 if Rt−∆ = L and Rt = H

R∗t = 3 if Rt−∆ = H and Rt = L

R∗t = 4 if Rt−∆ = H and Rt = H

Then R∗t follows a four-state continuous time Markov chain with the following transition

matrix

P ∗ =


pLL 0 pLL 0

pLH 0 pLH 0

0 pHL 0 pHL

0 pHH 0 pHH

 .

At step t+ ∆, the input of the algorithm are ξ̂t+∆|t and ηt+∆,

ξ̂t+∆|t =


P
(
R∗t+∆ = 1|It; θ

)
P
(
R∗t+∆ = 2|It; θ

)
P
(
R∗t+∆ = 3|It; θ

)
P
(
R∗t+∆ = 4|It; θ

)

 and ηt+∆ =


p
(
xt+∆|R∗t+∆ = 1, It; θ

)
p
(
xt+∆|R∗t+∆ = 2, It; θ

)
p
(
xt+∆|R∗t+∆ = 3, It; θ

)
p
(
xt+∆|R∗t+∆ = 4, It; θ

)
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Elements of ξ̂t+∆|t are the inferences about the value of R
∗
t+∆ based on It and knowledge

of the population parameter vector θ. The vector ηt+∆ contains conditional density func-

tions of Xt+∆ given R∗t+∆, It and θ. For example, if R
∗
t+∆ = 1 then p

(
xt+∆|R∗t+∆, It; θ

)
=

p (xt+∆|xt, Rt = L; θ) by exploiting the Markov property of the diffusion process, Xt and the

timing assumption that the parameters of conditional density function Xt+∆ depend on it.

Notice that the transition density function p (xt+∆|xt, Rt = L; θ) = p (xt+∆|xt, ; θL) is un-

known in general as is the case for our models, but we can use the approximate log-TPDF

explained above.

The joint likelihood of Xt+∆ and R∗t+∆ can be computed by the element by element

multiplication of ξ̂t+∆|t and ηt+∆, that is

ξ̂t+∆|t�ηt+∆ =


P
(
R∗t+∆ = 1|It; θ

)
p
(
xt+∆|R∗t+∆ = 1, It; θ

)
P
(
R∗t+∆ = 2|It; θ

)
p
(
xt+∆|R∗t+∆ = 2, It; θ

)
P
(
R∗t+∆ = 3|It; θ

)
p
(
xt+∆|R∗t+∆ = 3, It; θ

)
P
(
R∗t+∆ = 4|It; θ

)
p
(
xt+∆|R∗t+∆ = 4, It; θ

)

 =


p
(
xt+∆, R

∗
t+∆ = 1|It; θ

)
p
(
xt+∆, R

∗
t+∆ = 2|It; θ

)
p
(
xt+∆, R

∗
t+∆ = 3|It; θ

)
p
(
xt+∆, R

∗
t+∆ = 4|It; θ

)


Summing ξ̂t+∆|t � ηt+∆ over the variable R∗t+∆, we get the value of the conditional density

function given It,

p (xt+∆|It; θ) =
4∑
j=1

p
(
xt+∆, R

∗
t+∆ = j|It; θ

)
. (14)

The optimal inference about R∗t+∆ denoted as ξ̂t+∆|t+∆ is calculated by

ξ̂t+∆|t+∆ =
ξ̂t+∆|t � ηt+∆

p (xt+∆|It; θ)
=


P
(
R∗t+∆ = 1|It+∆; θ

)
P
(
R∗t+∆ = 2|It+∆; θ

)
P
(
R∗t+∆ = 3|It+∆; θ

)
P
(
R∗t+∆ = 4|It+∆; θ

)

 (15)

The input of the next step, ξ̂t+2∆|t+∆ is updated by premultiplying the transition matrix P
∗

by ξ̂t+∆|t+∆.

The initial state probabilities ofR∗t are (π1, π2, π3, π4) = (pLLp, pLHp, pHL (1− p) , pHH (1− p))
when P (R1 = L) = p, where an additional parameter p is introduced for the probability of

the initial state R1 = L. In this case P (R1 = H) = 1− p. Given these starting values, if we
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iterate the above procedure and collect the conditional density function (14) of each step,

we can compute the log-likelihood (13) to conduct MLE. For the probability of the initial

state, we also use stationay probability such that P (R1 = L) = 1−pHH
2−pLL−pHH instead of p for

the R2-1 and R2-1 models.

After computing the conditional likelihood p (xt+∆|It; θ) from (14), we can also attain the
probability of each state of R∗t+∆ as in (15). Then the filtered probability of Rt+∆ at each

time point is easily obtained as

P (Rt = L|It; θ) = P (R∗t = 1|It; θ) + P (R∗t = 3|It; θ)

and

P (Rt = H|It; θ) = 1− P (Rt = L|It; θ)

= P (R∗t = 2|It; θ) + P (R∗t = 4|It; θ) .

The smoothed probabilitis of each regime, P (Rt = L|IT ; θ) and P (Rt = H|IT ; θ) that use

all information available have also been calculated.

5 Estimation Results and Discussion

5.1 Integrated Volatility

When MLE is carried out to estimate the parameter vector, the S&P 500 Index is used for

St and the integrated volatility proxy for Vt is obtained by using the VIX. Exploiting Hull

and White (1987)’s idea, Aït-Sahalia and Kimmel (2007) developed a way to compute the

integrated volatility proxy from the observed implied variance of a short-maturity at-the-

money S&P 500 Index options (See also Jones (2003)). If the Q-measure drift of Vt is of the

form a+ bVt as is the case for the all of our models, then the integrated volatility proxy, IVt,

is given by

IVt =
b · τ · V imp

t + a · τ
exp (b · τ)− 1

− a

b
, (16)

where V imp
t is the implied volatility of the short-maturity at-the-money option and τ is time

to maturity of the option.
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We first estimate parameters of the following univariate CEV model for (V IXt/100)2

dVt = κ (γ − Vt) dt+ σV β
t dWt

to get a = κγ and b = −κ. Because the true log-likelihood function of the CEV model is
unknown, the approximate log-likelihood function was obtained using the irreducible method

from Aït-Sahalia (2008) to do MLE. Estimation results are

dVt = 2.61∗∗ (0.054∗∗ − Vt) dt+ 1.28∗∗X0.84∗∗

t dWt

(0.726) (0.010) (0.011) (0.002)

with standard errors in parentheses.

We use estimates of a and b and (V IXt/100)2 for V imp
t in equation (16) to compute the

integrated volatility such that

IVt = −0.0064 + 1.1182 (V IXt/100)2

The logarithm of S&P 500 index and the integrated volatility IVt are used for st and Vt,

respectively to estimate parameters. Because the log-likelihood function is not known for

any of models discussed above, the irreducible method has been applied to construct an

approximate joint log-likelihood function of (st, Vt) .

5.2 Estimation Results

In table 2, we summarize the ML estimation results for the four different Heston sto-

chastic volatility models. The first column shows estimation outcomes for the single-regime

model H-R1. The second and third columns report the estimation results for two regime-

switching models with time invariant transition matrix. The difference between them is the

approach we use to deal with the probability of the original state. We keep the uncondi-

tional probability at the value of 0.5 for the H-R2-1 model, but set an additional parameter

to estimate for the model H-R2-2. The last column presents ML estimation outcomes for

the regime-switching model with varying transition matrix and an additional parameter for

the probability of the original state. The asterisk by the parameter estimate implies that,

18



T
ab
le
2:
M
ax
im
um

L
ik
el
ih
oo
d
E
st
im
at
io
n
R
es
ul
ts
of
H
es
to
n
M
od
el
s

M
od
el

H
es
to
n-
R
1

H
es
to
n-
R
2-
1

H
es
to
n-
R
2-
2

H
es
to
n-
R
2T
V
T
P

R
eg
im
e

Si
ng
le
R
eg
im
e

T
w
o
R
eg
im
es

T
im
e
In
va
ri
an
t
T
ra
ns
it
io
n
M
at
ri
x

T
im
e
V
ar
yi
ng
T
ra
ns
it
io
n
M
at
ri
x

P
(R

1
=
L

)
-

1
−
p
H
H

2
−
p
L
L
−
p
H
H

p

P
(R

t+
∆

=
i|R

t
=
i)
w
it
h
i

=
L
an
d
H

-
p
ii

p
ii

e
x
p
(c
i
+
d
i
s
t
+
c
i
V
t
)

1
+

e
x
p
(c
i
+
d
i
s
t
+
c
i
V
t
)

L
og
-l
ik
el
ih
oo
d

4
2
2
3
1
.8

7
4
3
0
9
4
.0

3
4
3
0
9
4
.0

3
4
3
2
9
3
.3

0

P
ar
am
et
er
s

M
ax
im
um

L
ik
el
ih
oo
d
E
st
im
at
es
(S
ta
nd
ar
d
E
rr
or
)

ρ
L

−
0
.8

0
∗∗

(0
.0

0
2
)

−
0
.6

0
0
∗∗

(0
.0

1
0
)

−
0
.6

0
∗∗

(0
.0

1
0
)

−
0
.6

2
∗∗

(0
.0

0
2
)

ρ
H

-
−

0
.7

9
9
∗∗

(0
.0

0
2
)

−
0
.8

0
∗∗

(0
.0

0
4
)

−
0
.7

9
∗∗

(0
.0

0
4
)

κ
L

6
.8

2
∗∗

(1
.7

9
)

5
.0

0
∗∗

(1
.0

5
)

5
.0

0
∗∗

(1
.0

4
)

5
.0

0
∗∗

(0
.7

6
)

κ
H

-
7
.0

0
∗∗

(0
.9

3
)

7
.0

0
∗∗

(1
.1

5
)

7
.0

0
∗∗

(0
.7

5
)

γ
L

0
.0

4
6
∗∗

(0
.0

1
7
)

0
.0

1
8
∗∗

(0
.0

0
2
)

0
.0

1
8
∗∗

(0
.0

0
2
)

0
.0

1
9
∗∗

(0
.0

0
2
)

γ
H

-
0
.0

4
2
∗∗

(0
.0

0
5
)

0
.0

4
2
∗∗

(0
.0

0
6
)

0
.0

4
0
∗∗

(0
.0

0
5
)

σ
L

0
.7

3
∗∗

(0
.0

0
2
)

0
.2

4
9
∗∗

(0
.0

0
6
)

0
.2

5
∗∗

(0
.0

0
6
)

0
.2

3
∗∗

(0
.0

0
1
)

σ
H

-
0
.5

5
8
∗∗

(0
.0

0
1
)

0
.5

6
∗∗

(0
.0

0
4
)

0
.6

3
∗∗

(0
.0

0
3
)

r L
0
.0

0
0
2

(0
.2

3
)

0
.0

0
0
2

(0
.0

9
0
)

0
.0

0
0
2

(0
.0

9
1
)

0
.0

0
0
2

(0
.0

1
5
)

r H
-

0
.0

0
0
2

(0
.0

9
9
)

0
.0

0
0
2

(0
.1

4
)

0
.0

0
0
2

(0
.0

0
8
)

λ
L

6
.9

3
(9
.9

1
)

6
.0

0
(7
.7

2
)

6
.0

0
0

(7
.7

4
)

6
.0

0
(4
.9

0
)

λ
H

6
.0

0
(6
.3

1
)

6
.0

0
0

(7
.8

7
)

6
.0

0
(4
.1

5
)

p
L
L

-
0
.0

9
9
∗∗

(0
.0

1
1
)

0
.0

9
9
∗∗

(0
.0

1
2
)

-

p
H
H

-
0
.9

0
∗∗

(0
.0

1
1
)

0
.9

0
∗∗

(0
.0

1
1
)

-

c L
-

-
-

−
0
.2

0
(2
.9

2
)

c H
-

-
-

0
.1

7
0

(0
.5

1
)

d
L

-
-

-
−

1
.4

6
∗∗

(0
.4

5
)

d
H

-
-

-
1
.2

4
∗∗

(0
.0

8
3
)

e L
-

-
-

−
0
.0

1
4

(9
.5

5
)

e H
-

-
-

0
.0

1
0

(0
.4

8
)

p
-

-
0
.5

0
(1
.0

1
)

0
.5

0
(0
.6

6
)

A
I
C

−
1
4
.4

2
−

1
4
.7

1
−

1
4
.7

1
−

1
4
.7

8

B
I
C

−
1
4
.4

1
−

1
4
.7

0
−

1
4
.7

0
−

1
4
.7

6

R
C
M

-
2
7
.0

3
2
7
.0

3
6
.3

9

N
ot
e:
M
ax
im
u
m
li
ke
li
h
oo
d
es
ti
m
at
es
w
it
h
st
an
d
ar
d
er
ro
rs
in
p
ar
en
th
es
es
fo
r
th
e
p
er
io
d
01
/0
2/
19
90
-0
6/
12
/2
01
2
fo
r
th
e
fo
u
r
d
iff
er
en
t
m
od
el
s
w
it
h
th
e

ge
n
er
al
d
iff
u
si
on
sp
ec
ifi
ca
ti
on
ar
e
p
re
se
nt
ed
in
th
is
ta
b
le
.
T
h
e
st
an
d
ar
d
er
ro
rs
ar
e
ca
lc
u
la
te
d
u
si
n
g
sa
m
p
le
m
ea
n
of
th
e
ou
te
r
p
ro
d
u
ct
of
th
e
sc
or
e
fu
n
ct
io
n
s

ev
al
u
at
ed
at
th
e
M
L
es
ti
m
at
es
.
A
cc
or
d
in
g
to
th
e
nu
m
b
er
of
re
gi
m
es
,
th
e
st
ar
ti
n
g
p
ro
b
ab
il
it
y
an
d
th
e
tr
an
si
ti
on

p
ro
b
ab
il
it
y
m
at
ri
x
sp
ec
ifi
ca
ti
on
s,
th
e

fo
u
r
m
od
el
s
ar
e:
H
-R
1
(s
in
gl
e
re
gi
m
e)
,H
-R
2-
1
(t
w
o
re
gi
m
es
,
ti
m
e
in
va
ri
an
t
tr
an
si
ti
on
m
at
ri
x,
u
n
co
n
d
it
io
n
al
p
ro
b
ab
il
it
y
fo
r
th
e
p
ro
b
ab
il
it
y
of
in
it
ia
l
st
at
e)
,

H
-R
2-
2
(t
w
o
re
gi
m
es
,
ti
m
e
in
va
ri
an
t
tr
an
si
ti
on

m
at
ri
x,
ad
d
it
io
an
l
p
ar
am
et
er
fo
r
th
e
p
ro
b
ab
il
it
y
of
in
it
ia
l
st
at
e)
,
H
-R
2T
V
T
P
(t
w
o
re
gi
m
es
,t
im
e
va
ry
in
g

tr
an
si
ti
on
m
at
ri
x
w
it
h
lo
gi
st
ic
fu
n
ct
io
n
,a
d
d
it
io
n
al
p
ar
am
et
er
fo
r
th
e
p
ro
b
ab
il
it
y
of
in
it
ia
l
st
at
e)
.

19



at the 5% significance level, it is different from zero.

In the single regime model H-R1, besides the market price of risk λ and the rate of return

rd, the rest estimates are statistically significant. The long run average volatility γ1/2 is

estimated to be approximately 21.45% per year with a rate of mean reversion coeffi cient κ of

6.817. The correlation coeffi cient ρ between the innovations to the stock price and stochastic

volatility is strongly negative, −0.799. The variance of volatility σ is close to 0.726.

Comparing three different regime-switching models, we find that the rate of mean rever-

sion of Yt is higher in Regime H, κH > κL. The long-run average value of Yt is bigger in

Regime H, γH > γL. The correlation coeffi cient ρ between the innovations to stock price and

stochastic volatility is stronger in Regime H, ρH > ρL. The variance of Yt is more volatile in

Regime H, σH > σL. rdL, rdH , λL and λH are statistically insignificant. Regime H is very

persistent pHH ≈ 0.900 but Regime L is not so persistent pLL ≈ 0.099. In the model of H-

R2TVTP, the variable st appears to be much more important in explaining the time varying

transition probabilities of it. Because dL < 0 (dH > 0), pLL (pHH) decreases (increases) as

st increases. Both c and e are statistically insignificant.

Analyzing the log-likelihood values from the four different models, it illustrates that the

single regime model H-R1 reports the smallest value 42231.867 while the model H-R2TVTP

owns the biggest one 43293.294. The models of H-R2-1 and H-R2-2 display the same log-

likelihood value with very similar ML estimates. There seems to be not much difference

between using unconditional probability and employing a new parameter for the original

state. However, there is strong evidence of existence of high and low volatility regimes for

the time varying transition probability of the regime variable.

Since the parameters related to the second regime of the process are unidentified under

the null hypothesis of single regime, traditional test statistics cannot be used to test whether

there is one regime or not. Take the model of H-R2-1 for example, given P (s1 = L) = 1,

if the null hypothesis is pLL = 1, then λH , κH , γH , ρH , σH , rdH , and pHH cannot be iden-

tified under the null of no regime switching. In this case, standard asymptotic distribution

theory cannot be applied so that standard likelihood ratio tests and Wald tests cannot be

conducted. Although some literatures (Davis (1987), Hansen (1992),Hansen (1996) and Cho

and White (2007)) try to address this problem, testing for multiple regimes is still partic-
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ularly challenging. Therefore, we resort to calculate Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC) to compare different specifications. Although the

difference is very narrow, the H-R2TVTP model reports the smallest AIC and BIC values.

Another metric we employed to compare the performance of different regime-switching mod-

els is called Regime Classification Measure (RCM). It is first proposed by Ang and Bekaert

(2002) and then applied by Choi (2009) for R regime case as

RCM (R) = 100RR 1

n

n∑
t=1

(
R∏
i=1

pi,t

)
,

where pi,t = P (st = i|IT ), R = 2, 100RR is used to normalize the statistic to be between 0

and 100. A model that does a good (bad) job of distinguishing between regimes will make

an inference about st being in a regime close to 1 or 0 (1/R). Therefore, according to the

inferred probabilities of staying in a particular regime, the closer the RCM value is to 0, the

better the regime classification of a model is. It can be seen from table 3, the H-R2-1 and

H-R2-2 models display very similar RCM, but there is a great improvement in the model

H-R2TVTP. In the term of RCM values, it also shows strong evidence for the existence of

varying transition matrix.

In order to analyze the probability of being in state H, we draw the time series of filtered

probabilities and smoothed probabilities over the sample for the model H-R2TVTP.

Figure 2: Regime-Switching Probabilities of the Model H-R2TVTP
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To make it more clear, we plot the time series of smoothed probabilities with S&P 500,

VIX and their first difference separately.

Figure 3: Regime-Switching Probabilities of the Model H-R2TVTP with S&P 500, VIX

and Their First Difference
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These illustrations display that the H-R2TVTP model identifies most high volatility peri-

ods, which can be connected with some significant events in U.S. history and financial history

since 1990. The beginning high volatility regime corresponds to the Gulf War, which began

from 2 August 1990 and lasted to 28 February 1991. The next state of H reflects the Black

Wednesday in 1992. The high volatility regime around 1994 matches the 1994 Northridge

earthquake in the Los Angeles area, caused an estimated $20 billion in damage, making it

one of the costliest natural disasters in U.S. history. The following H state throughout 1996

is linked to the severe budget crisis, which forced the federal government to shutdown for

several weeks at the end of 1995. The 1998-2000 high volatility regime is related to the

Asian financial crisis, started in Thailand in July 1997 and then triggered the 1998 Russian

financial crisis. It is also coincident with the 1998 collapse of long-term capital management,

leading to an agreement among 14 financial institutions for a $3.6 billion recapitalization

under the supervision of the Federal Reserve. Furthermore, the dot-com bubble covered

roughly the period of 1995 to 2000, and finally burst because of an inflation report in April

of 2000. The next three successive years of H state is caused by the September 11, 2001
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terrorist attacks and the October 2001 invasion in Afghanistan. After that, the Iraq War was

launched on March 19, 2003. The 2004 high volatility regime is linked to the 2004 Atlantic

hurricane season, which impacted Florida, Charley, Frances, Ivan and Jeanne, and produced

over $50 billion in damage. What’s even worse, in August and September 2005, two powerful

hurricanes, Hurricane Katrina and Hurricane Rita hit the Gulf Coast region. The last long

H state is associated with the result of a succession of financial events. The Chinese Cor-

rection plunge of February 27, 2007 caused the Dow Jones Industrial Average dropped by

3.29%, which is the biggest one-day slide since the September 11. The subprime mortgage

crisis, which has its roots in the closing years of the 20th century, became apparent between

2007 and 2008, and then rapidly evolved into a global financial crisis. On September 15,

2008 Lehman Brothers filed for bankruptcy protection. The European sovereign-debt crisis

started late 2009, followed by the 2010 Flash Crash and the August 2011 stock markets fall

across the world, furthering severe volatility of stock market indexes until now.

Using the ML estimates given in table 2, we plot the approximate conditional transition

density functions of the stochastic differential equations given x0 = [s0, Y0]′ = [6.500, 0.045]′

for the models of H-R1 and H-R2TVTP, respectively. Since the corresponding graphs of

the model H-R2-1 and H-R2-2 are very similar to those of the H-R2TVTP model, we omit

them and compare only the model H-R1 and H-R2TVTP. At around the given asset price

s0 = 6.500 and its volatility Y0 = 0.045, the conditional density function of regime L for

the model H-R2TVTP is topped out with the peak of 4925.969 while that of regime H is

flattened out with the top of 2316.343. Compared with those of the H-R2TVTP model, the

conditional density function of the H-R1 modal is centered on a height of 2071.961. We also

calculate the 95% confidence interval by delta method for each case and find that the 3D

95% confidence interval surfs form an upper layer and a lower layer just around the density

functions.

Figure 4: Conditional Transition Density Functions for the Model H-R1 and H-R2TVTP
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To make it more clear, we split the 3D shapes into two pieces and take the cross sections

at Y0 = 0.045. Then we get the following two plots of conditional transition density functions

and their 95% confidence bands for the model H-R1 and H-R2TVTP separately. The different
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approximate conditional transition density functions show strong evidences for the existence

of high and low volatility regimes and for the time varying transition probability of the

regime variable.

Figure 5: Conditional Transition Density Functions and 95% Confidence Bands for the

Model H-R1 and H-R2TVTP

Table 3 reports the ML estimation results for the family of GARCH stochastic volatility

models. The first column shows ML estimation outcomes for the single-regime model, G-R1.

The rest three columns display the three different two-regime models G-R2-1(two regimes,

time invariant transition matrix,unconditional probability for the probability of initial state),

G-R2-2(two regimes, time invariant transition matrix, additional parameter for the probabil-

ity of initial state) and G-R2TVP(two regimes,time varying transition matrix with logistic

function,additional parameter for the probability of initial state) respectively. The asterisk

by the parameter estimate implies that, at the 5% significance level, it is different from zero.

In the term of the single regime model G-R1, the long term value of the volatility γ1/2 is

approximately 17.89% per year, which is smaller than that in the H-R1 model. The speed of

mean reversion coeffi cient κ is estimated to be 2.859, much smaller than 6.817 in the H-R1

model. The leverage effect ρ is −0.799 with the variance of volatility 2.319. However, the

market price of risk λ and the rate of return rd are statistically insignificant.

To analyze the three different two-regime models, we find very similar conclusions as the

class of Heston stochastic volatility models. κH > κL , γH > γL, ρH > ρL, σH > σL, rdL,
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rdH , λL and λH are still not statistically significant. Although κL is not significant, in fact,

the p-value is 0.051, which is a bit bigger than 0.05. H State is very persistent while L

state is not so steady. In the model of G-R2TVTP, time varying transition probabilities of

it are mainly affected by the variable st, other than the constant term and Yt. When dL < 0

(dH > 0), pLL (pHH) and st have a negative (positive) relationship. The ML estimates c and

e are not significant.

Comparing four log-likelihood values, the single regime model G-R1 reports the smallest

value 42061.618. What we should pay attention to is that, in the Heston stochastic volatility

model, the parameters have to satisfy the Feller condition 2κγ ≥ σ2, which is much more

restricted than the condition κγ ≥ 0 in the G-R1 model. With Feller condition, κ, γ and

σ can’t vary so much as they do in the GARCH stochastic volatility model. We can find

that in the G-R1 model, Feller condition is violated by 2 × 2.859 × 0.032 < 2.3192. Like

the model of H-R2-1 and H-R2-2, the model of G-R2-1 and G-R2-2 also report very closed

log-likelihood values and similar ML estimation outcomes. The log-likelihood value of G-

R2TVTP is 43274.182 that is much bigger than the log-likelihood value of single regime

model G-R1.

AIC and BIC are employed to compare the single regime model with three different two-

regime models. The G-R1 model reports the biggest AIC −14.363 and BIC −14.356 while

the G-R2TVTP model shows the smallest AIC −14.772 and BIC −14.751. The model of

G-R2-1 and G-R2-2 display the similar AIC and BIC values. In the term of RCM, we can

find strong advantage of the two regimes model with time varying transition matrix.

The filtered probabilities and smoothed probabilities of staying in H state over the sample

for the model of G-R2TVTP are displayed.

Figure 6: Regime-Switching Probabilities of the Model G-R2TVTP
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Then we plot the time series of smoothed probabilities with S&P 500, VIX and their first

difference separately.

Figure 7: Regime-Switching Probabilities of the Model G-R2TVTP with S&P 500, VIX

and Their First Difference
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Although the smoothed probabilities of G-R2TVTP are not so smooth as that of the

model H-R2TVTP, it still identifies the main high volatility periods of 1990-1991, 1994-

1995, 1998-2000, 2008-2010 and 2010-2012. Using the ML estimates provided in table 3, we

plot the approximate conditional transition density functions of the stochastic differential

equations still given x0 = [s0, Y0]′ = [6.500, 0.045]′ for the model of G-R1 and G-R2TVTP,

respectively. At around the point x0, the conditional density function of regime L for the

model H-R2TVTP has a peak of 1318.050 while that of regime H is with the top of 641.312

and the model G-R1 is centered on a height of 716.815.
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Figure 8: Conditional Transition Density Functions for the Model G-R1 and G-R2TVTP

In order to show 95% confidence bands, we plot the cross sections at Y0 = 0.045. These
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95% confidence interval surfs are very closed to the conditional density function for each

specification.

Figure 9: Conditional Transition Density Functions and 95% Confidence Bands for the

Model G-R1 and G-R2TVTP

In table 4, we display the estimation results for the model of C-R1, C-R2-1, C-R2-2

and C-R2TVTP respectively. The instantaneous standard deviation of S&P 500 γ1/2 in the

model C-R1 is 23.45% per year. The rate of mean reversion coeffi cient κ is estimated to be

6.049 with the correlation coeffi cient ρ = −0.809. The variance of volatility σ is close to

0.994, which is between 0.726 from the model G-R1 and 2.319 from the model H-R1. Of

particular interest for the CEV model is the exponent β, which is estimated at 0.54, above

the Heston value of 0.5 but below the GARCH value of 1. The market price of risk λ and

the rate of return rd are statistically insignificant.

Comparing three different regime-switching models, we find similar results as the Heston

and GARCH stochastic volatility models. κH > κL , γH > γL, ρH > ρL, σH > σL, however,

the exponent βH < βL. λL and rdL are statistically significant at the 5% level, but λH and

rdH are still insignificant.

Considering the log-likelihood values from the four different models, the single regime

model C-R1 exhibits the smallest value 42397.267, which is bigger than 42061.618 from the

model G-R1 and 42061.618 of the model H-R1. The main reason is still Feller condition
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2κγ ≥ σ2. The models of C-R2-1 and C-R2-2 show log-likelihood values of 43096.667 and

43197.402, respectively. The largest log-likelihood value 43734.808 belongs to C-R2TVTP

with time varying transition matrix.

When we move from the single regime model C-R1 to C-R2-1, C-R2-2 and C-R2TVTP,

the AIC values decrease gradually from −14.477 to −14.929 and BIC declines from −14.469

to −14.905. The models of C-R2-1 and C-R2-2 report RCM 34.583 and 33.113 while the

C-R2TVTP model shows RCM 7.781 that is much smaller than the previous two models.

It is definitely a strong evidence for the existence of two regimes with varying transition

matrix.

To analyze the probability of staying in state H, we draw the time series of filtered

probabilities and smoothed probabilities over the sample for the model C-R2TVTP.

Figure 10: Regime-Switching Probabilities of the Model C-R2TVTP

Then we plot the time series of smoothed probabilities with S&P 500, VIX and their first

difference separately.
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Figure 11: Regime-Switching Probabilities of the Model C-R2TVTP with S&P 500, VIX

and Their First Difference
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The smoothed probabilities are very smooth and therefore we can figure out most high

volatility periods more clearly than the models of H-R2TVTP and G-R2TVTP. The 1990-

1991 high regime state connects with the Gulf War, the 1992 period reflects the Black

Wednesday, the high volatility regime around 1994 is linked to he 1994 Northridge earth-

quake in the Los Angeles area. The successive 1996-2003 H state is associated with the

budget crisis in U.S., Asian financial crisis, Russian financial crisis, long-term capital man-

agement collapse, the dot-com bubble, September 11, 2001 terrorist attacks, as well as the

October 2001 invasion in Afghanistan and 2003 Iraq War. The 2004 and 2005 high volatility

regime is coincident with the 2004 Atlantic hurricane season and 2005 Hurricane Katrina

and Hurricane Rita, respectively. The H state regime around 2007 matches the Chinese

Correction plunge. The final long high volatility period of 2008-2012 is associated with the

subprime mortgage crisis, Lehman Brothers Bankruptcy protection, the European sovereign-

debt crisis, the 2010 Flash Crash and the August 2011 stock markets fall, which is still going

on until now.

Using the ML estimates provided in table 4, given x0 = [s0, Y0]′ = [6.500, 0.045]′, the

approximate conditional transition density functions of the stochastic differential equations

for the C-R1 and C-R2TVTP models are plotted respectively. At around x0 point, the

conditional density function of regime L for the model C-R2TVTP peaks at the height of

2122.339, that of regime H is flattened out with the top of 1280.951 and the model C-R1

is centered on a height of 1658.754. Compared to the H-R2TVTP and G-R2TVTP models,

the conditional transition density functions of the model C-R2TVTP for the two regimes are

more close to each other as well as that of the single regime model.

Figure 12: Conditional Transition Density Functions for the Model C-R1 and C-R2TVTP
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The cross sections at Y0 = 0.045 of conditional transition density functions and their 95%

confidence bands for the C-R1 model and the C-R2TVTP model are showed in Figure 13.
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Figure 13: Conditional Transition Density Functions and 95% Confidence Bands for the

Model G-R1 and G-R2TVTP

In order to compare three families of continuous time stochastic volatility models, we

calculate likelihood ratio statistics for the nested models as Aït-Sahalia and Kimmel (2007)

do. The H-R1 and G-R1 models are rejected in favor of the model C-R1 by reporting LRT

statistic of 330.800 and 671.298, respectively. This result is cohere with Aït-Sahalia and

Kimmel (2007). The LRT statistic for the model H-R1-1 against the model C-R1-1 is 5.282

and the corresponding p-value is 0.071. Hence, the H-R1-1 model can’t be rejected. However,

the statistic for the model G-R1-1 is 279.168 and cannot reject the hypothesis of the model

C-R1-1. Considering the H-R1-2 and the G-R1-2 models, the LRT statistics against the C-

R1-2 model are 206.752 and 266.926 respectively. So the C-R1-2 model is rejected. Moving

to the regime-switching models with time varying transition matrix, the H-R2TVTP and G-

R2TVTP models are rejected in favor of the model C-R2TVTP by reporting LRT statistic of

833.028 and 921.251, respectively. To conclude, the CEV model outperforms the Heston and

GARCH models not only for the single regime models but also for the two-regime models.

6 Conclusions

Our estimation results show four main findings. First, the regime switching models are

significantly different from the single regime models. Second, there are strong evidences for
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the existence of high and low volatility regimes, for the time varying transition probability

of the regime variable, and for high persistence of the high regime. Third, the time varying

transition probability mainly depends on the underlying asset price rather than its volatility.

Fourth, except the H-R1-1 model, the other regime switching Heston and GARCH models

are all rejected in favor of the regime switching CEV models. Furthermore, the regime

switching CEV model with time varying transition matrix and additional parameter for the

probability of initial state performs better than the other regime switching models.

References

Aït-Sahalia, Y. (2002): “Maximum Likelihood Estimation of Discretely Sampled Diffu-

sions: A Closed-Form Approximation Approach,”Econometrica, 70(1), 223—262.

(2008): “Closed-Form Likelihood Expansions for Multivariate Diffusions,”Annals

of Statistics, 36(2), 906—937.

Aït-Sahalia, Y., and R. Kimmel (2007): “Maximum likelihood estimation of stochastic

volatility models,”Journal of Financial Economics, 83, 413—452.

Ang, A., and G. Bekaert (2002): “Regime Switches in Interest Rates,”Journal of Busi-

ness and Economic Statistics, 20(2), 163—182.

Bansal, R., and H. Zhou (2002): “Term Structure of Interest Rates with Regime Shifts,”

LVII(5), 1997—2043.

Black, F. (1976): “Studies of stock price volatility changes,”pp. 171—181, In: Proceedings

of the 1976 Meetings of the American Statistical Association.

Black, F., and M. Scholes (1973): “The Pricing of Options and Corporate Liabilities,”

Journal of Political Economy, 81(3), 637—654.

Chacko, G., and L. M. Viceira (2003): “Spectral GMM Estimation of Continuous-Time

Processes,”Journal of Econometrics, 116, 259—292.

Chan, K., Karolyi, F. Longstaff, and A. Sanders (1992): “An Empirical Comparison

of Alternative Models of the Short-Term Interest Rate,”47(3), 1209—1227.

39



Cho, J. S., and H. White (2007): “Testing for Regime Switching,” Econometrica, 75,

1671—1720.

Choi, S. (2009): “Regime-Switching Univariate Diffusion Models of the Short-Term Interest

Rate,”Studies in Nonlinear Dynamics & Econometrics, 13(1), Article 4.

(2013): “Closed-Form Likelihood Expansions for Multivariate Time-Inhomogeneous

Diffusions,”Journal of Econometrics, 174(2), 45—65.

(2015a): “Approximate Transition Probability Density Function of a Multivari-

ate Time-inhomogeneous Jump Diffusion Process in a Closed-Form Expression,”Working

paper, University of Seoul.

(2015b): “Explicit Form of Approximate Transition Probability Density Functions

of Diffusion Processes,”Journal of Econometrics, 187, 57—73.

Cox, J. C., J. E. Ingersoll, and S. A. Ross (1985): “A Theory of the Term Structure

of Interest Rates,”Econometrica, 53(2), 385—408.

Dai, Q., K. J. Singleton, and W. Yang (2007): “Regime Shifts in a Dynamic Term

Structure Model of U.S. Treasury Bond Yields,”Review of Financial Studies, 20(5), 1669—

1706.

Davis, R. B. (1987): “Hypothesis Testing When a Nuisance Parameter is Present Only

under the Alternative,”Biometrika, 74, 33—43.

Diebold, F., J.-H. Lee, and G. Weinbach (1994): “Regime Switching with Time-Varying

Transition Probabilities,”in C. Hargreaves, ed., Nonstationary Time Series Analysis and

Cointegration, pp. 283—302, Oxford University Press. Oxford.

DiPietro, M. (2001): “Bayesian Inference for Discretely Sampled Diffusion Processes with

Financial Applications,”Ph.D. thesis, Department of Statistics, Carnegie-Mellon Univer-

sity.

Durham, G. B., and Y.-H. Park (2013): “Beyond Stochastic Volatility and Jumps in

Returns and Volatility,”Journal of Business and Economic Statistics, 31(1), 107—121.

Egorov, A. V., H. Li, and Y. Xu (2003): “Maximum Likelihood Estimation of Time

Inhomogeneous Diffusions,”Journal of Econometrics, 114, 107—139.

40



Feller, W. (1952): “The Parabolic Differential Equations and the Associated Semi-Groups

of Transformations,”55, 468—519.

Gray, S. F. (1996): “Modeling the conditional distribution of interest rates as a regime-

switching process,”42, 27—62.

Hamilton, J. D. (1989): “A New Approach to the Economic Analysis of Nonstationary

Time Series and the Business Cycle,”Econometrica, 57(2), 357—384.

(1994): Time Series Analysis. Princeton University Press.

Hansen, B. E. (1992): “The Likelihood Ratio Test Under Nonstandard Conditions: Testing

the Markov Switching Model of GNP,”Journal of Applied Econometrics, 7, S61—S82.

(1996): “Erratum:The Likelihood Ratio Test Under Nonstandard Conditions: Test-

ing the Markov Switching Model of GNP,”Journal of Applied Econometrics, 11(2), 195—

198.

Heston, S. L. (1993): “A Closed-Form Solution for Options with Stochastic Volatility with

Applications to Bond and Currency Options,”Review of Financial Studies, 6(2), 327—343.

Hull, J., and A. White (1987): “The pricing of options on assets with stochastic volatili-

ties,”Journal of Finance, 42, 281—300.

Jones, C. S. (2003): “The dynamics of stochastic volatility: evidence from underlying and

options markets,”Journal of Econometrics, 116, 181—224.

Lewis, A. (2000): Option Valuation Under Stochastic Volatility. Finance Press, Newport

Beach.

Li, M. (2010): “A damped diffusion framework for financial modelingand closed-form max-

imum likelihood estimation,”Journal of Economic Dynamics and Control, 34, 132—157.

Liechty, J. C., and G. O. Roberts (2001): “Markov Chain Monte Carlo Methods for

Switching Diffusion Models,”Biometrika, 88(2), 299—315.

Lo, A. W. (1988): “Maximum Likelihood Estimation of Generalized Ito Processes with

Discretely Sampled Data,”Econometric Theory, 4, 231—247.

Meddahi, N. (2001): “An eigenfunction approach for volatility modeling,”Working paper,

Université de Montréal.

41



Merton, R. C. (1973): “Theory of Rational Option Pricing,”Bell Journal of Economics

and Management Science, 4, 141—183.

Naik, V., andM. H. Lee (1998): “Yield Curve Dynamics with Discrete Shifts in Economics

Regimes: Theory and Estimation,”Working paper, University of Saskatchewan.

Nelson, D. (1990): “ARCH models as diffusion approximations,”Journal of Econometrics,

45, 7—38.

Schaumburg, E. (2001): “Maximum Likelihood Estimation of Jump Processes,” Ph.D.

thesis, Princeton University.

Scott, L. (1987): “Option Pricing When the Variance Changes Randomly: Theory, Esti-

mation, and an Application,”Journal of Financial and Quantitative Analysis, 22, 419—438.

Stein, E., and J. Stein (1991): “Stock Price Distributions with Stochastic Volatility: An

Analytic Approach,”Review of Financial Studies, 4, 727—752.

Stramer, O., M. Bognar, and P. Schneider (2010): “Bayesian Inference for Discretely

Sampled Markov Processes with Closed-Form Likelihood Expansions,”Journal of Finan-

cial Econometrics, 8(4), 450—480.

Yu, J. (2007): “Closed-Form Likelihood Approximation and Estimation of Jump-Diffusions

with an Applicaiton to the Realignment Risk of the Chinese Yuan,”Journal of Economet-

rics, 141, 1245—1280.

42


