
 

Highlights 

- Incorporating uncertainty about risk aids better performance of the volatility forecasting 

models. 

- Uncertainty about risk increases the influence of implied volatility on future volatility. 

- Considering uncertainty about risk improves the forecasting performance in both in-sample 

and out-of-sample analyses. 
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Abstract 

This paper investigates the forecasting performance of new volatility forecasting models exploiting 

uncertainty about risk. We propose a new class of volatility forecasting models that allow the parameter 

of implied volatility to vary with uncertainty about risk. By implementing the new models for the S&P 

500 index, we find that uncertainty about risk enhances the relation between implied volatility and 

future volatility. Our findings also suggest that incorporating uncertainty about risk into the volatility 

forecasting models improves the forecasting powers among both in- and out-of-sample analyses. 

Furthermore, this effect of uncertainty becomes stronger during financial crisis.  
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1. Introduction 

Modeling volatility process and forecasting volatility are crucial in economic and financial decision 

making processes, such as asset pricing and risk management. Hence, many researchers have introduced 

and improved their own versions of the volatility forecasting model. Previous literature on volatility 

forecasting suggests that the option-implied information is useful for volatility forecasting (Jiang and 

Tian, 2005; Busch, Christensen, and Nielsen, 2011; Byun and Kim, 2013), because the informed traders 

first trade in the options market to exploit the financial leverage (Black, 1975).1 Furthermore, literature 

has recently provided various empirical evidences of the time-varying relation between future volatility 

and the option-implied and historical information. Bollerslev, Patton, and Quaedvlieg (2016) and Li, 

Tsionas, and Izzeldin (2016) find that the volatility forecasting power of past realized volatility varies 

with the degree of measurement errors and the fluctuation of daily realized volatility compared to the 

monthly realized volatility, respectively. Seo and Kim (2015) show that the relation between option-

implied information and future volatility varies with the level of investor sentiment. Along with this 

strand of research, we suggest a new class of volatility forecasting models that the forecasting power of 

option-implied volatility is set to vary with uncertainty. 

A strand of the prior literature (Knights, 1921; Keynes, 1937; Ellsberg, 1961) explains that 

uncertainty is defined as a situation with unknown outcomes and the unknown distribution of the 

investment, while risk is defined as an environment in which the investors have unknown outcomes of 

the investment under the known distribution. Thus, a high level of uncertainty about risk indicates that 

the environment of the investment is unstable and that the future market conditions are likely to be very 

different from past or present market conditions. 

We expect uncertainty about risk extracted from the options market to have a significant effect on the 

relation between implied volatility and future volatility for the following two reasons: First, a high level 

of uncertainty about risk leads to a large amount of uninformed trading in the stock market. Since the 

                                          
1 The literature on the information of options market for future stock price movements includes Easley, O’Hara, 
and Srinivas (1998), Pan and Poteshman (2006), Bali and Hovakimian (2009), Cremers and Weinbaum (2010), 
Doran and Krieger (2010), Xing, Zhang, and Zhao (2010), and An, Ang, Bali, and Cakici (2014). 



distribution of the stock market investors’ investment returns is more turbulent with higher uncertainty, 

the investors in the stock market cannot exploit the historical information of the stock market to predict 

their investment returns. While uncertainty influences on the option market investors, the effect of 

uncertainty on the stock market investors is larger than that on the option market investors, because the 

option market investors are relatively more informative than the stock market investors. Therefore, there 

are more uninformed noise trading in the stock market with higher uncertainty. According to An, Ang, 

Bail and Cakici (2014), the uninformed noise trading in the stock market strengthens the return 

predictive power of option-implied information. Similarly, when the level of uncertainty is high, implied 

volatility is strongly related to future volatility. Second, a high uncertainty about risk changes 

information content of implied volatility. Prior study by Antonakakis, Chatziantoniou, and Filis (2013) 

and Bekaert, Hoerova, and Duca (2013) find that implied volatility varies with market uncertainty and 

that the VIX can be decomposed into two components, namely risk aversion and uncertainty. In this 

regard, the information contained on the implied volatility can be decomposed into the information on 

investors’ expectations of future volatility (e.g., risk) and disagreement in investors’ opinions on future 

volatility (e.g., uncertainty). Since a high level of uncertainty about risk indicates that the investors’ 

opinions of risk diverge (Diether, Malloy, and Scherbina, 2002; Park, 2005; Andersen, Ghysels, and 

Juergens, 2009; Beber, Breedon, and Buraschi, 2010; Yu, 2011; Buraschi, Trojani, and Vedolin, 2013), 

the composition of information content from implied volatility changes with higher uncertainty. Thus, 

we hypothesize that the predictive power of implied volatility on future volatility depends significantly 

on uncertainty about risk. 

In our empirical investigation, we find that the role of option-implied volatility depends significantly 

on the market uncertainty. With the in-sample regression analysis, we find that the coefficient on an 

interaction term between implied volatility and uncertainty measure is significantly positive. In other 

words, when forecasting volatility, the load on the implied volatility increases as the market becomes 

more uncertain. The result is robust after accounting for other variables that are known to interact with 

implied volatility. In addition, we find that the relation between uncertainty and forecasting power of 

implied volatility is magnified during periods of heightened uncertainty, such as financial crisis. 



Furthermore, we find that forecasting power is significantly improved for both in- and out-of-sample 

analyses when the uncertainty is accounted for. By introducing uncertainty about risk to time-varying 

parameters, we find that in the in-sample analysis, volatility forecasting models improve their 

explanatory power for future daily volatility by roughly 1.5%, regardless of which benchmark model 

we choose. We also document significant improvement of daily volatility forecasts in the out-of-sample 

analysis using various loss functions and statistical tests. 

To the best of our knowledge, this is the first research to study the effect of uncertainty on volatility 

forecasting. We find that in the volatility forecasting model, the weight on the implied volatility depends 

significantly on the level of uncertainty about risk. Furthermore, our new models with considering 

uncertainty about risk outperform the benchmark models in the in- and out-of-sample analyses. 

Therefore, our findings shed light on improving the volatility forecasting models. Additionally, our 

research contributes to the increasing literature on uncertainty.2 Prior research including Drechsler and 

Yaron (2011), Drechsler (2013), Buraschi, Trojani, and Vedolin (2014), and Konstantinidi and 

Skiadopoulos (2016) documents the significant role of uncertainty in variance risk premium in 

particular. Along with this strand of research, we fill a gap in the literature on volatility forecasting with 

uncertainty by showing that uncertainty about risk has an important impact on the volatility forecasting 

power of the information on options market. 

The remainder of this paper is organized as follows. Section 2 introduces variables and time-varying 

volatility forecasting models. Section 3 presents the data and examines empirical results. Section 4 

describes the application to constant parameter volatility forecasting models and sub-sample analysis 

in the financial crisis to check the robustness of our empirical results. Lastly, Section 5 concludes the 

paper. 

                                          
2 The literature including Diether, Malloy, and Scherbina (2002), Park (2005), Buraschi and Jiltsov (2006), 
Andersen, Ghysels, and Juergens (2009), Ozoguz (2009), Beber, Breedon, and Buraschi (2010), Yu (2011), 
Barinov (2013), Buraschi, Trojani, and Vedolin (2013), Kouwenberg, Markiewicz, Verhoeks, and Zwinkels 
(2013), and Baltussen, Van Bekkum, and Van der Grient (2014) investigates the relation between uncertainty and 
asset pricing in the financial markets, such as the stock market, the options market, the currency market, and the 
bond market.  



 

2. Variables and volatility forecasting models 

There are three main variables in our empirical research: realized volatility, implied volatility, and 

uncertainty about risk. We use realized variance (RV) and the square of VIX (IV) as our measure of 

realized volatility and implied volatility, respectively. Our measure of uncertainty about risk is vol-of-

vol (VoV) introduced by Baltussen, Van Bekkum, and Van der Grient (2014). 

 

2.1. Realized variance 

As our realized volatility measure, we employ realized variance (RV), which is a consistent estimator 

of the true latent volatility. Let us consider a logarithmic asset price at time t, Pt, for which the return 

process is determined by a standard jump diffusion process: 

dPt = μtdt + σtdWt + κtdqt,                              (1) 

where μt and σt are the drift with a continuous and locally finite variation sample path and the 

instantaneous volatility process, respectively. Wt is a standard Brownian motion, κt is the jump size, and 

a pure jump process qt with time-varying intensity is normalized so that dqt = 1 whenever a jump occurs 

at time t, and dqt = 0 otherwise. 

True latent volatility, or the quadratic return variation (QV) over daily and longer horizons can be 

written as the sum of the Integrated Variance (ITV) and the cumulative squared jumps over daily and 

longer horizons. For simplicity and ease of notation, we normalize the unit time interval to a day; the 

QV over a day is defined as,  
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where κt is non-zero only if there is a jump at time t.  

Previous literature (Andersen, Bollerslev, Diebold, and Ebens, 2001; Andersen, Bollerslev, Diebold, 

and Labys, 2001; Barndorff-Nielsen and Shephard, 2002a, 2002b) shows that the summation of high-

frequency returns (e.g., intraday returns) is a consistent estimator of the QV. On day t, the realized 



variance (RV), the consistent estimator of the QV, is defined by 
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where M = 1/Δ, and Δ-period intraday return is defined by rt,i ≡ (Pt-1+i×  – Pt-1+(i-1)× ). If Δ → 0,

t P tRV QV . For the multi(h)-period, the realized variances are denoted as 

RVt-1,t-h = (RVt-1+RVt-2+…+RVt-h)/h,                  (4) 

where h = 5 (weekly) and h = 22(monthly). 

 

2.2. Uncertainty measurement 

We employ the uncertainty measure suggested by Baltussen, Van Bekkum, and Van der Grient (2014). 

To derive the uncertainty measure, Baltussen, Van Bekkum, and Van der Grient (2014) utilize the 

modeling of the preference with risk and uncertainty in Klibanoff, Marinacci, and Mukerji (2005).3 

Klibanoff, Marinacci, and Mukerji (2005) suggest that the preference V is represented by a function of 

the double expectational form,  

 ( ) ( ) ,
P S

V f u f d d                               (5) 

where f is a real-valued function defined on a state space S, called “an act”, u is a von Neumann-

Morgenstern utility function, which is affected by risk, and π is a probability measure on S; φ is the 

function of the attitude toward uncertainty, and P is the set of possible probabilities, πis, over S.  

  Assume that investors want to maximize the expected utility of the mean-variance utility function, 

they face uncertainty about two parameters; the mean and variance of the returns from their investments. 

For the case of the investment in the stock market, f is the return from the investment. If there are K 

possible probability distributions over S, the probability set of possible outcomes is represented by 

                                          
3 Examples for uncertain asset, risky asset (not uncertain), and safe asset are the investments in the stock market, 
lottery, and the government bond market, respectively. 
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where Πi is the true probability distribution for future stock market returns with the mean ,S i  and 

variance 2
,S i . Ψ = (ψ1, …, ψK) represents the investor’s assessment of P in that ψi is the subjective 

probability for Πi. As K tends to infinity, the subjective beliefs about Πi (i = 1, …, K) with finite mean, 

finite variance, and independence of distribution will be distributed normally by the central limit 

theorem. Hence, the probability measure Ψ can be represented by a normal distribution over P:  

P ~ N (μP(μS), μP(σS), σP(μS), σP(σS)),                      (7) 

where μP(μS) (σP(μS)) is the mean (standard deviation) of the distributions of the expected stock market 

returns from subjective beliefs, and μP(σS) (σP(σS)) is the mean (standard deviation) of the distributions 

of the expected stock market return volatilities from subjective beliefs. Among the four components, 

Baltussen, Van Bekkum, and Van der Grient (2014) focus on σP(σS), which captures uncertainty about 

risk, and suggest the VoV as a measure of uncertainty about risk.4 VoV is calculated on day t as follows: 
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  , and σi is the implied volatility extracted from options price (i.e., VIX) at day 

i.5  

 

2.3. Time-varying parameter volatility forecasting models 

Motivated from the consistency of the RV, Corsi (2009) proposes the heterogeneous autoregressive 

                                          
4 Park (2015) utilizes VoV to predict the return on the tail risk hedging options, such as S&P 500 puts and VIX 
calls and provides empirical evidence supporting uncertainty premiums of a time-varying uncertain belief in 
volatility. Konstantinidi and Skiadopoulos (2016) employ VoV to explain the variation of the market variance risk 
premium and find a positive relation between VoV and market variance risk premium. 

5 Baltussen, Van Bekkum, and Van der Grient (2014) use the implied volatilities over the past 20-days (i.e., past 
month) to calculate the VoV. In this paper, one month corresponds to 22-trading days. Thus, we utilize the implied 
volatilities over the past 22-trading days for construction of the VoV. The results with the VoV in Baltussen, Van 
Bekkum, and Van der Grient (2014) are similar to the results in this paper and are available upon request. 



realized volatility (HAR) model.6 Motivated by the ease of implementation, much of the literature 

suggests the extension of the HAR model.7  

Recently, the literature on volatility forecasting suggest the HAR model with time-varying parameter 

depending on conditions, such as the variation of the measurement error and the discrepancy between 

recent short-term volatility and long-term volatility. Bollerslev, Patton, and Quaedvlieg (2016) suggest 

the heterogeneous autoregressive realized volatility and quarticity (HARQ) model to consider the 

variation of the measurement error of RV for ITV in volatility forecasting model. Bollerslev, Patton, 

and Quaedvlieg (2016) show that as the volatility of the measurement error increases, the magnitude of 

measurement error of RV for ITV also increases. Thus, the information of the previous day’s RV is less 

important for future volatility forecasting. Additionally, we set the benchmark model, which 

incorporates the implied volatility into the HARQ model, because we consider the effect of VoV on the 

volatility forecasting power of the information on options. Hence, the heterogeneous autoregressive 

realized volatility, quarticity, and implied volatility (HARQ-IV) model as our first benchmark model is 

defined as,   

 1 2
1, 0 1 1 1, 5 1, 22 1,t h t D DQ t t W t t M t t IV tRV RQ RV RV RV IV                           (9) 
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  (realized quarticity), and IVt is the implied volatility (i.e., square of VIX) at day 

t. 

Based on the HARQ-IV model, we introduce heterogeneous autoregressive realized volatility, 

quarticity, implied volatility, and vol-of-vol (HARQ-IV-VOV) model, which can be expressed as: 

                                          
6 Previous literature on volatility forecasting (Andersen, Bollerslev, and Diebold, 2007; Corsi, 2009; Andersen, 
Bollerslev, and Huang, 2011; Busch, Christensen, and Nielsen, 2011; Chen and Ghysels, 2011; Byun and Kim, 
2013; Liu, Patton, and Sheppard, 2015; Seo and Kim, 2015; Bollerslev, Patton, and Quaedvlieg, 2016; Li, Tsionas, 
and Izzeldin, 2016) investigates the volatility forecasting models with the RV. 

7 HAR models with realized absolute value (Forsberg and Ghysels, 2007), jump and continuous components of 
the realized volatility (Andersen, Bollerslev, and Diebold, 2007), past negative returns (Corsi and Renò, 2012), 
and realized variation depending on the sign of intraday returns (Patton and Sheppard, 2015) have been introduced 
in the literature. 



 1 2
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where VoVt is the uncertainty measure at day t. In this model, we add an interaction between VoV and 

implied volatility. In other words, we allow the coefficient on the implied volatility to vary over time 

depending on the level of uncertainty about risk. 

For the second benchmark model, we employ the time-varying parameter HAR (TVP-HAR) model 

introduced by Li, Tsionas, and Izzeldin (2016). Li, Tsionas, and Izzeldin (2016) allow the autoregressive 

parameter of daily realized volatility time varying in the HAR model to consider realized volatility’s 

long-term persistence. If the previous day’s realized volatility has relatively large increment or decrease 

compared to its long-term average level (e.g., monthly realized volatility), today’s realized volatility 

tends to revert to long-term average level and hence the parameter of daily realized volatility should 

decrease. Similar to the HARQ-IV model, we include the implied volatility in the TVP-HAR model. 

The time-varying parameter HAR and implied volatility (TVP-HAR-IV) model as our second 

benchmark model is defined as: 

 1, 0 1 1, 22 1 1, 5 1, 22 1.t h t D TVP t t t t W t t M t t IV tRV RV RV RV RV RV IV                        (11) 

Analogous to the first benchmark model, we add an interaction term between VoV and implied 

volatility. The time-varying parameter HAR, implied volatility, and vol-of-vol (TVP-HAR-IV-VOV) 

model is expressed as: 

 1, 0 1 1, 22 1 1, 5 1, 22 1 1( ) .t h t D TVP t t t t W t t M t t IV IVV t tRV RV RV RV RV RV VoV IV                        

(12) 

  

3. Empirical analysis 

3.1. Data 



We focus our empirical analysis on the S&P 500 index. High-frequency S&P 500 index futures trade 

data are obtained from the Chicago Mercantile Exchange (CME) DataMine, and the five-minute returns 

are used to calculate the realized variance.8 VIX, which is used to calculate IV and VoV, is from 

Chicago Board Options Exchange. Our sample period covers the period from February 1, 1996 to 

August 29, 2014, yielding a total of 4,671 observations.9 

 

[Table 1 about here] 

 

Table 1 provides the summary statistics of the S&P 500 index futures for daily RV, IV, and VoV. On 

average, IV is larger than RV, which is consistent with Byun and Kim (2013). Variation in the RV 

(2.2084) is close to that of the IV (2.0829); however, the VoV (0.0412) is less volatile than both RV and 

IV. RV (10.5372) is more positively skewed than IV (4.4617), and the distributions of the three variables 

are leptokurtic. The differences between the maximum and minimum of RV, IV, and VoV are 61.2991, 

25.5577, and 0.3155, respectively, which is consistent with the pattern of the standard deviations across 

the three variables. The Ljung-Box statistics of the three variables are very high and significant at the 

1% level, which indicates that the time-series of the three variables exhibit a high degree of own serial 

correlation.  

 

[Figure 1 about here] 

 

                                          
8 Sampling frequency is related to accuracy, which is theoretically improved by higher sampling frequency, and 
microstructure noise, which can occur because of the bid-ask bounce, infrequent trading, and other factors. Liu, 
Patton, and Sheppard (2015) find empirical evidence that it is difficult to significantly beat five-minute realized 
variance by any other variation measures from high-frequency data.  

9 High-frequency data spans the period from January 1, 1996 to September 30, 2014. Since the first and last 
months of the data are used to calculate VoV and monthly realized volatility, our sample period is from February 
1, 1996 to August 29, 2014. 



The time-series of the daily RV, IV, and VoV during the whole sample period is illustrated in Figure 

1. As expected, it shows that during the period with large movements in the realized volatility, 

uncertainty tracks the realized volatility in particular. For example, during the financial crisis 

(November 2007 to June 2009),10 the realized volatility reaches a peak with a large increment of 

uncertainty.11 

 

3.2. In-sample analysis 

We first consider the in-sample results to evaluate the volatility forecasting power that has been 

improved by utilizing uncertainty.  

 

[Table 2 about here] 

 

Table 2 reports the coefficient estimates obtained from the regression models of equations (9), (10), 

(11), and (12). Following Andersen, Bollerslev, and Diebold (2007), all regressions are estimated by 

the ordinary least square using the Newey and West (1987) robust standard errors with 5, 10, and 44 

lags for the daily, weekly, and monthly forecast horizon, respectively. The t-statistics based on the 

standard errors of Newey and West (1987) are reported in parentheses.  

As expected, the βIVV coefficient estimates in the HARQ-IV-VOV and TVP-HAR-IV-VOV models 

are positive and statistically significant at the 5% level in the daily forecast horizon.12 Furthermore, the 

                                          
10 Following Byun and Kim (2013), we specify the financial crisis as the period from November 2007 to June 
2009.  

11 While the correlation between daily realized volatility and VoV during the whole sample period is 0.3086, the 
correlation between daily realized volatility and VoV during the financial crisis is 0.5970.  

12 In an unreported result, we find that including the interaction terms between the realized volatilities and VoV 
does not influence the βIVV, and their coefficient estimates are insignificant. Thus, the informativeness of the 
realized volatilities is not affected by uncertainty about risk. Result is available upon request. 



coefficient estimates on IV and the daily, weekly, and monthly RVs are not affected after including the 

interaction term between IV and VoV. This result suggests that uncertainty provides unique information 

on the role of implied volatility in volatility forecasting. Consistent with our hypothesis, as the 

uncertainty about risk increases, the informativeness of the implied volatility for future realized 

volatilities increases. In addition, we find that the βDQ and βTVP coefficient estimates in the daily forecast 

horizon are negative and statistically significant at the 1% level, consistent with Bollerslev, Patton, and 

Quaedvlieg (2016) and Li, Tsionas, and Izzeldin (2016). 

Interestingly, compared to our benchmark models, the HARQ-IV-VOV model and TVP-HAR-IV-

VOV model improve their adjusted R2 by 1.47% and 1.71% in the daily forecast horizon, respectively. 

Therefore, incorporating uncertainty not only provides information on the role of implied volatility, but 

also improves the forecasting power of the model.  

Despite being insignificant, the βIVV coefficient estimates have a positive sign in the weekly and 

monthly forecast horizons. Generally, the magnitude and t-statistics of the βIVV coefficient estimates 

decreases with the forecast horizon. It is noteworthy that in comparison to the benchmark models, the 

HARQ-IV-VOV model (TVP-HAR-IV-VOV model) increases adjusted R2 by 1.02% (1.02%) and 1.01% 

(1.04%) in the weekly and monthly forecast horizons, respectively.  

The predictive power of uncertainty is insignificant in a longer horizon because two opposing forces 

are in play. On one hand, as the uncertainty increases, the information from the options market increases 

as we argue in this paper. On the other hand, as the market becomes volatile and sways rapidly, the 

predictive power of past information deteriorates rapidly. When the market is uncertain (e.g., VoV is 

high), the information from a week ago gives investors little information on the current or future state 

of the market. The interaction of these two opposing forces can explain why the coefficient on the 

interaction term between IV and VoV is insignificant in the weekly and monthly forecast horizons.  

 

[Figure 2 about here] 



 

The averages of the standard deviations of future daily RVs sorted by VoV deciles are depicted in 

Figure 2. We group our 4,671 daily observations into deciles based on the previous day’s VoV. Then, 

for each observation, we take standard deviation of future five or 22-days’ daily RV. The solid (dotted) 

line depicts the average standard deviations of future five (22) days’ daily RV for each decile. Consistent 

with our hypothesis, we find that as the previous day’s uncertainty increases, the fluctuation of future 

volatility becomes larger, which in turn decreases the predictive power of stale information. Therefore, 

for forecasting future long-term volatility, while the information on the implied volatility from informed 

investors’ perspective about future volatility is still useful (the significance of the βIV coefficient 

estimates), the information on the implied volatility from informed investors’ perception for uncertain 

prospects losses the forecasting power (the significance of the βIVV coefficient estimates).   

   

3.3. Out-of-sample analysis 

In this subsection, we compare out-of-sample fits to assess the robustness of improved forecasting 

power that considers uncertainty. Following Patton (2011) and Bollerslev, Patton, and Quaedvlieg 

(2016), we rely on three loss functions to get results that are robust to noise in the proxy of volatility as 

follows: 
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where Ft+h-1,t refers to the forecast of future h-day realized volatility at day t from the models, RVt+h-1,t is 

the actual value of future h-day realized volatility at day t, and N is the number of the forecasts. In the 



rolling window (RW), the forecast of future realized volatility is obtained by re-estimating the 

coefficient estimates of the models with the observations of the previous 1,000 days. In the increasing 

window (IW), the models utilize all of the available observations to forecast future realized volatility. 

While the MSE and MAE are symmetric loss functions, the QLIKE is an asymmetric loss function. 

Thus, we can consider the symmetry of loss functions. 

We employ the model confidence set (MCS) test of Hansen, Lunde, and Nason (2011) and the 

Diebold-Mariano test of Diebold and Mariano (1995) to confirm the statistical significance. The 

purpose of the MCS test is to determine the confidence set, M*, that consists of the best models from 

the original set of models, M0. The best models are selected based on the loss functions. The null 

hypothesis of the MCS test is no difference in the forecasting ability based on the loss function among 

the models, and the p-values for the null hypothesis are reported. If the model rejects the null hypothesis 

at the confidence level, the model is excluded from M*. Thus, given a confidence level, the surviving 

models in M* yield the best forecasts based on the specified loss function. The Diebold-Mariano test 

has the null hypothesis that is no difference in the accuracy of two competing volatility forecasting 

models, and reports the significant difference among the two models based on the t-statistics. If the t-

statistic of the comparison between the two models is negative (positive), the forecasting error of the 

former (latter) model is smaller than that of the latter (former) model.  

 

[Table 3 about here] 

 

Table 3 reports the values of three loss functions and the p-values of the MCS test. We conduct the 

MCS test for two groups of the models (the HARQ-IV and HARQ-IV-VOV models, and the TVP-

HAR-IV and TVP-HAR-IV-VOV models), and the p-values are calculated based on a block bootstrap 

procedure with 10,000 resamples. For all loss functions in the daily forecast horizon, the p-values of 

the HARQ-IV-VOV and TVP-HAR-IV-VOV models are equal to or close to 1 in Panels A (RW) and B 



(IW). Thus, the HARQ-IV-VOV and TVP-HAR-IV-VOV models are included in the confidence set. 

For RW, the HARQ-IV model is excluded from the confidence set at the 1% level with MAE and QLIKE. 

For IW, the HARQ-IV model is eliminated from the confidence set at the 1% level with QLIKE. In the 

case of the TVP-HAR-IV model, the model is excluded from the confidence set at the 1% level with 

MAE and QLIKE of RW and QLIKE of IW. Additionally, the TVP-HAR-IV model is eliminated from 

the confidence set at the 10% level with MAE of IW. These results are consistent with significant 

improvement by considering VoV for the daily forecast horizon of the in-sample analysis.  

Considering uncertainty shows poor performance in the weekly and monthly forecast horizons. For 

example, the HARQ-IV-VOV model is eliminated from the confidence set at the 1% level with MAE 

and QLIKE of IW in the weekly forecast horizon, and the TVP-HAR-IV-VOV model is excluded from 

the confidence set at the 5% level with MAE and QLIKE of IW in the monthly forecast horizon. These 

patterns are also consistent with insignificant βIVV coefficient estimates for weekly and monthly forecast 

horizons of the in-sample analysis. 

 

[Table 4 about here] 

 

Table 4 shows the t-statistics of the Diebold-Mariano test. Except for MSE (RW) of the comparison 

between the HARQ-IV-VOV and HARQ-IV models, the sign of all t-statistics is negative in the daily 

forecast horizon. In addition, 7 out of 12 loss functions are significantly negative at the 1% or 5% levels. 

On the other hand, the sign of all t-statistics in the weekly and monthly forecast horizons is positive, 

and 10 out of 24 loss functions are statistically significant. These results indicate that in the daily 

forecast horizon the forecasting errors of the HARQ-IV-VOV and TVP-HAR-IV-VOV models are less 

than those of the HARQ-IV and TVP-HAR-IV models.  

To summarize, the in-sample regressions and the results of the MCS test and the Diebold-Mariano 

test confirm that the volatility forecasting models considering uncertainty outperform those that do not 



consider uncertainty in the daily forecast horizon.  

 

4. Robustness checks 

4.1. Constant parameter volatility forecasting models 

In Section 3, we examined the incremental role of uncertainty using two benchmark models that employ 

a time-varying parameter. In this subsection, we find that our results are robust under alternative 

benchmark models with a fixed parameter. In particular, we employ the heterogeneous autoregressive 

realized volatility and implied volatility (HAR-IV), heterogeneous autoregressive realized absolute 

value and implied volatility (HARAV-IV), continuous HAR and implied volatility (CHAR-IV), 

heterogeneous autoregressive realized volatility, jump, and implied volatility (HARJ-IV), and semi-

variance HAR and implied volatility (SHAR-IV) models as our alternative benchmark model.13  

Corsi (2009) proposes the HAR model to consider different volatility components realized over 

different investment time horizons based on heterogeneity of investors. The HAR model is readily 

modified in a manner entirely analogous to the HARQ-IV-VOV and TVP-HAR-IV-VOV models, 

resulting in the heterogeneous autoregressive realized volatility, implied volatility, and vol-of-vol 

(HAR-IV-VOV) model, 

1, 0 1 1, 5 1, 22 1 1( ) .t h t D t W t t M t t IV IVV t tRV RV RV RV VoV IV                       (16) 

Ghysels, Santa-Clara, and Valkanov (2006) find empirical evidence that the realized absolute value 

(RAV) outperforms the realized volatility measure in the mixed data sampling (MIDAS) regression for 

volatility forecasting. Forsberg and Ghysels (2007) apply the RAV to the HAR model, resulting in the 

heterogeneous autoregressive realized absolute value (HARAV) model. Analogous to previous models, 

                                          
13 For brevity, we report results only for the daily forecast horizon. In unreported results, we find that consistent 
with the results in Section 3, uncertainty about risk plays an insignificant role in weekly and monthly horizons. 
Results are available upon request. 

 



we define the heterogeneous autoregressive realized absolute value, implied volatility, and vol-of-vol 

(HARAV-IV-VOV) model as, 

1, 0 1 1, 5 1, 22 1 1( ) ,t h t D t W t t M t t IV IVV t tRV RAV RAV RAV VoV IV                     (17) 

where 1 1/2
1 ,i

1

M

t t
i

RAV M r 



  ( 1 ( ), ~ (0,1)E u u N  ), and RAVt-1,t-h = (RAVt-1+RAVt-2+…+RAVt-h)/h. 

Following Andersen, Bollerslev, and Diebold (2007), we include the continuous HAR (CHAR) and 

heterogeneous autoregressive realized volatility and jump (HARJ) models in constant parameter 

volatility forecasting models. The CHAR model implements the bi-power variation (BPV), an estimate 

of the continuous variation in the presence of jumps, introduced by Barndorff-Nielsen and Shephard 

(2004), instead of realized volatility. With the addition of the implied volatility and the consideration of 

VoV, the CHAR-IV-VOV model can be expressed as: 

1, 0 1 1, 5 1, 22 1 1( ) ,t h t D t W t t M t t IV IVV t tRV BPV BPV BPV VoV IV                      (18) 

where 
1

2
1 ,i ,i 1

1

M

t t t
i

BPV r r







  ( 1 ( ), ~ (0,1)E u u N  ), and BPVt-1,t-h = (BPVt-1+BPVt-2+…+BPVt-h)/h. 

The HARJ model includes a jump variation measure in the HAR model, and the HARJ-IV-VOV 

model is defined as,  

1, 0 1 1, 5 1, 22 1 1 1( ) ,t h t D t W t t M t t J t IV IVV t tRV RV RV RV J VoV IV                        (19) 

where  max ,0t t tJ RV BPV  . 

Patton and Sheppard (2015) investigate the forecasting power of the variation of positive and negative 

returns (e.g., realized semivariances), proposed by Barndorff-Nielsen, Kinnebrock, and Shephard 

(2010), for future volatility and find empirical evidence that negative realized semivariance is more 

important for volatility forecasting than positive realized semivariance. The SHAR model decomposes 

daily total variations into positive and negative realized semivariances, and the SHAR-IV-VOV models 

may be expressed as, 



1, 0 1 1 1, 5 1, 22 1 1( ) ,t h t D t D t W t t M t t IV IVV t tRV RV RV RV RV VoV IV         
                  (20) 

where  ,

2
, 0

1
t i

M

t t i r
i

RV r I




 , and  ,

2
, 0

1
t i

M

t t i r
i

RV r I




 . 

 

[Table 5 about here] 

 

  We report the results of the in-sample regressions for the constant parameter volatility forecasting 

models in Table 5. With the constant parameter volatility forecasting models, the βIVV coefficient 

estimates are positive and statistically significant at the 1% or 5% levels. The improvement of adjusted 

R2 from considering VoV is 1.16%, 2.17%, and 0.90% for the HAR-IV-VOV, HARAV-IV-VOV, and 

CHAR-IV-VOV models, respectively. Additionally, the HARJ-IV-VOV and LHAR-IV-VOV models 

increase by 1.06% and 0.85% in adjusted R2 compared to their benchmarks. These results confirm that 

the information of VoV is valuable for volatility forecasting with the constant parameter volatility 

forecasting models commonly used in the literature.  

 

[Table 6 about here] 

 

Table 6 reports the results of the out-of-sample analysis for the constant parameter volatility 

forecasting models. Consistent with the results in Table 5, the models that consider uncertainty 

outperform benchmark models. In Panels A and B of the MCS test, all of the models that consider 

uncertainty are not rejected at the 10% level. This result indicates that we can include the models that 

consider uncertainty in the confidence set. On the other hand, 14 out of 30 loss functions of the 

benchmark models are rejected at the 10% level. Compared to the models that consider uncertainty, the 

benchmark models show underperformance.  



In Panels C and D of the Diebold-Mariano test, 20 t-statistics are negative and, in particular, 15 out 

of 20 negative t-statistics are statistically significant. However, there is no significant t-statistic among 

10 positive t-statistics. Since a negative sign in the t-statistic means that the forecasting error of the 

models that consider uncertainty is smaller than that of the benchmark models, we find only evidence 

that the decrease in the forecasting error with considering uncertainty is statistically significant. The 

results with constant parameter volatility forecasting models are consistent with the results in Tables 3 

and 4. Therefore, we confirm that considering uncertainty is valuable irrespective of whether other 

parameters in the volatility forecasting models are set as time-varying or constant.  

 

4.2. Financial crisis 

In this subsection we examine the interaction between uncertainty and implied volatility during 

financial crisis to confirm that the interaction is robust to sample periods, and pronounced during times 

of high uncertainty. We restrict our sample periods to the financial crisis from November 2007 to June 

2009, and replicate the in-sample and out-of-sample analyses. The mean of VoV during the financial 

crisis (0.1008) is larger than that during the whole sample period (0.0857), which confirms that the 

financial crisis is indeed a highly uncertain period.  

 

[Table 7 about here] 

 

Table 7 provides the results during the financial crisis. In Panel A, the βIVV coefficient estimates are 

positive and significant at the 5% level. Additionally, since the magnitude of the βIVV coefficient 

estimates is larger than that in Table 3, the importance of considering uncertainty increases during the 

financial crisis compared to those during the whole sample period. The increment in the adjusted R2 by 

considering VoV is 6.58% and 6.18% in the HARQ-IV-VOV and TVP-HAR-IV-VOV models, 

respectively. These improvements are about four times larger than those during the whole sample period. 



In Panels B and C, the results of the MCS test and the Diebold-Mariano test are similar to those in 

Tables 4 and 5. For the MCS test, while 5 out of 12 loss functions of the HARQ-IV and TVP-HAR-IV 

models are rejected at the 1% level, all p-values of the loss functions of the HARQ-IV-VOV and TVP-

HAR-IV-VOV models are equal to 1.0000. Furthermore, all the t-statistics in the Diebold-Mariano test 

are negative, and 6 out of 12 t-statistics are statistically significant at the 1% level. These results are 

consistent with the results in Section 3. Taken together with Tables 6 and 7, the empirical evidence of 

the results obtained for the period during the financial crisis confirms the robustness of the improved 

forecasting performance, taking VoV into consideration.  

 

5. Conclusion 

We propose novel volatility forecasting models that exploit uncertainty about risk. First, we find that 

the forecasting power of option-implied volatility increases as market becomes uncertain. Second, the 

models improve the accuracy of daily futures volatility forecasts. Compared to the time-varying 

parameter HAR-class models, in-sample fit and out-of-sample forecasting power significantly increases 

when the uncertainty is incorporated into the models. Furthermore, we find that our results are more 

pronounced in the recent financial crisis period. We find our results to be robust to the estimation 

technique and to the choice of benchmark models. 

Our models contribute to both volatility forecasting literature and uncertainty literature by filling the 

gap between the two. The models can be applied in many other areas, such as forecasting variance risk 

premium and construction of profitable trading strategies based on volatility forecasts. We leave the 

further work pertaining to such applications of the volatility forecasting models with considering 

uncertainty about risk to the future research.  
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Table 1. Summary statistics  

The table reports the summary statistics of S&P 500 index futures daily RV, IV, and VoV. Summary statistics for all variables are reported based on daily frequency. LB10 

denotes the Ljung-Box test statistic for up to tenth-order serial correlation. The sample period is from February 1, 1996 to August 29, 2014.  

 

Statistics RV IV VoV 

Mean 1.1103 2.0922 0.0857 

S.D. 2.2084 2.0829 0.0412 

Skewness 10.5372 4.4617 1.9767 

Kurtosis 182.9422 30.2573 6.1226 

Min 0.0499 0.3881 0.0197 

Max 61.3490 25.9458 0.3352 

LB10 13,532.1792 38,591.9530 28873.1229 

 

  



Table 2. In-sample regression 

The table provides estimates of the coefficients in the in-sample analysis. Robust Newey and West (1987) t-statistics with 5 (daily), 10 (weekly), and 44 (monthly) lags are 

reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

Model  β0 βD βDQ βTVP βW βM βIV βIVV Adj. R2 

Daily          

HARQ-IV -0.3149*** 

(-3.32) 
0.4563*** 

(6.33) 
-0.0050*** 

(-4.03) 
 0.2882** 

(2.32) 
-0.2187* 
(-1.69) 

0.4217*** 
(5.89) 

 0.5834 

HARQ-IV-VOV -0.1837*** 

(-3.32) 
0.4479*** 

(6.23) 
-0.0054*** 

(-3.28) 
 0.1588* 

(1.86) 
-0.2041* 
(-1.84) 

0.2549*** 
(3.30) 

1.6952** 
(2.00) 

0.5981 

TVP-HAR-IV -0.3153*** 

(-3.32) 
0.4191*** 

(6.38) 
 -0.0094*** 

(-7.31) 
0.2983** 

(2.35) 
-0.2330* 
(-1.66) 

0.4400*** 
(5.73) 

 0.5803 

TVP-HAR-IV-
VOV 

-0.1720*** 

(-3.16) 
0.4279*** 

(6.91) 
 -0.0109*** 

(-6.53) 
0.1531* 

(1.79) 
-0.2167* 
(-1.79) 

0.2520*** 
(3.44) 

1.8474** 
(2.07) 

0.5974 

Weekly          

HARQ-IV -0.1178* 

(-1.70) 
0.3015*** 

(3.71) 
-0.0029*** 

(-3.86) 
 0.2664** 

(2.31) 
0.0074 
(0.06) 

0.2928*** 
(6.76) 

 0.6719 

HARQ-IV-VOV -0.0272 

(-0.50) 
0.2957*** 

(3.90) 
-0.0031*** 

(-3.49) 
 0.1769* 

(1.75) 
0.0175 
(0.15) 

0.1776** 
(2.29) 

1.1713 
(1.59) 

0.6821 

TVP-HAR-IV -0.1194* 

(-1.65) 
0.2119*** 

(2.86) 
 -0.0030** 

(-2.15) 
0.2894** 

(2.46) 
-0.0060 
(-0.04) 

0.3298*** 
(6.02) 

 0.6643 

TVP-HAR-IV-
VOV 

-0.0277 

(-0.50) 
0.2170*** 

(2.94) 
 -0.0039** 

(-2.28) 
0.1964* 

(1.92) 
0.0045 
(0.04) 

0.2093*** 
(2.61) 

1.1831 
(1.56) 

0.6745 

Monthly          

HARQ-IV 0.1788** 

(2.39) 
0.2055** 
(2.55) 

-0.0022** 
(-2.26) 

 0.2632*** 

(2.60) 
0.1401 
(1.22) 

0.1303* 
(1.78) 

 0.5712 

HARQ-IV-VOV 0.2586** 

(2.39) 
0.2004*** 

(2.66) 
-0.0024** 
(-2.21) 

 0.1844** 

(2.15) 
0.1489 
(1.25) 

0.0288 
(0.22) 

1.0312 
(1.48) 

0.5823 

TVP-HAR-IV 0.1777** 

(2.31) 
0.1441** 
(2.00) 

 -0.0025 
(-1.33) 

0.2790*** 

(2.74) 
0.1305 
(1.11) 

0.1558** 
(2.28) 

 0.5669 

TVP-HAR-IV-
VOV 

0.2591** 

(2.36) 
0.1486** 
(2.15) 

 -0.0033* 
(-1.69) 

0.1965** 

(2.30) 
0.1397 
(1.14) 

0.0490 
(0.40) 

1.0496 
(1.50) 

0.5773 



Table 3. Out-of-sample test: Model confidence set test 

The table reports the results of the model confidence set test. The losses are reported, and the p-values of the model confidence set test are reported in parentheses. Panels A 

and B are based on rolling and increasing window forecasts, respectively.   

 

Horizon Daily Weekly Monthly 
Model  HARQ-

IV 
HARQ-IV-

VOV 
TVP-HAR-

IV 
TVP-HAR-

IV-VOV 
HARQ-

IV 
HARQ-IV-

VOV 
TVP-HAR-

IV 
TVP-HAR-

IV-VOV 
HARQ-

IV 
HARQ-IV-

VOV 
TVP-HAR-

IV 
TVP-HAR-

IV-VOV 
Panel A: RW         
MSE 2.5036 

(0.5507)
2.3564 

(1.0000) 
2.5683 

(0.5406) 
2.4127 

(1.0000) 
1.3894 

(1.0000)
1.6103 

(0.4157) 
1.4989 

(1.0000) 
1.6022 

(0.6424) 
1.7641 

(1.0000)
1.8871 

(0.3323) 
1.7887 

(1.0000) 
1.8897 

(0.4416) 
MAE 0.5922 

(0.0001)
0.5471 

(1.0000) 
0.5892 

(0.0002) 
0.5480 

(1.0000) 
0.4487 

(1.0000)
0.4646 

(0.2088) 
0.4535 

(1.0000) 
0.4637 

(0.3393) 
0.5436 

(1.0000)
0.5573 

(0.1085) 
0.5434 

(1.0000) 
0.5548 

(0.1815) 
QLIKE 0.2688 

(0.0035)
0.2431 

(1.0000) 
0.2637 

(0.0005) 
0.2366 

(1.0000) 
0.1206 

(1.0000)
0.1469 

(0.0541) 
0.1186 

(1.0000) 
0.1414 

(0.0310) 
0.1999 

(1.0000)
0.2056 

(0.4539) 
0.1992 

(1.0000) 
0.2003 

(0.8924) 
Panel B: IW      
MSE 2.2334 

(1.0000)
2.2393 

(0.9474) 
2.2374 

(0.7193) 
2.2014 

(1.0000) 
1.2632 

(1.0000)
1.2653 

(0.9591) 
1.3157 

(1.0000) 
1.3198 

(0.9384) 
1.3646 

(1.0000)
1.5122 

(0.1940) 
1.3862 

(1.0000) 
1.5628 

(0.1291) 
MAE 0.5254 

(0.1635)
0.5166 

(1.0000) 
0.5325 

(0.0536) 
0.5194 

(1.0000) 
0.4279 

(1.0000)
0.4547 

(0.0000) 
0.4354 

(1.0000) 
0.4614 

(0.0000) 
0.4996 

(1.0000)
0.5159 

(0.0435) 
0.5030 

(1.0000) 
0.5216 

(0.0270) 
QLIKE 0.2394 

(0.0083)
0.2195 

(1.0000) 
0.2478 

(0.0015) 
0.2244 

(1.0000) 
0.1046 

(1.0000)
0.1235 

(0.0000) 
0.1055 

(1.0000) 
0.1255 

(0.0000) 
0.1486 

(1.0000)
0.1620 

(0.0316) 
0.1485 

(1.0000) 
0.1647 

(0.0163) 

 

  



Table 4. Out-of-sample test: Diebold-Mariano test  

The table reports the t-statistics of the Diebold-Mariano test. Panel A and B are based on rolling and increasing window forecasts. ***, **, and * denote significance at the 1%, 

5%, and 10% levels, respectively.  

 

Panel A: RW   
Horizon Daily Weekly Monthly 
Comparison HARQ-IV-VOV vs. 

HARQ-IV 
TVP-HAR-IV-VOV 

vs. TVP-HAR-IV 
HARQ-IV-VOV vs. 

HARQ-IV 
TVP-HAR-IV-VOV 

vs. TVP-HAR-IV 
HARQ-IV-VOV vs. 

HARQ-IV 
TVP-HAR-IV-VOV 

vs. TVP-HAR-IV 
MSE -0.63 -0.65 0.97 0.49 1.17 0.94 
MAE -4.51*** -4.15*** 1.52 1.09 1.96 1.62 
QLIKE -3.06*** -3.61*** 2.27** 2.19** 0.95 0.16 
Panel B: IW   
Horizon Daily Weekly Monthly 
Comparison HARQ-IV-VOV vs. 

HARQ-IV 
TVP-HAR-IV-VOV 

vs. TVP-HAR-IV 
HARQ-IV-VOV vs. 

HARQ-IV 
TVP-HAR-IV-VOV 

vs. TVP-HAR-IV 
HARQ-IV-VOV vs. 

HARQ-IV 
TVP-HAR-IV-VOV 

vs. TVP-HAR-IV 
MSE 0.06 -0.36 0.05 0.09 1.52 1.69* 
MAE -1.56 -2.15** 5.83*** 5.66*** 2.42** 2.61*** 

QLIKE -2.95*** -3.46*** 7.19*** 7.69*** 2.49** 2.78*** 

 

 

  



Table 5. In-sample regression: Constant parameter volatility forecasting models 

The table reports the results of in-sample regressions for the constant parameter volatility forecasting models. The coefficient estimates and adjusted R2s are reported. Robust 

Newey and West (1987) t-statistics with 5 lags are reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.  

 

Model  β0 βD βD
+ βD

- βW βM βJ βIV βIVV Adj. R2 

HAR-IV -0.3205*** 

(-3.16) 
0.1507 
(1.41) 

  0.3661**

(2.49) 
-0.2533* 
(-1.88) 

 0.5441*** 
(5.43) 

 0.5616 

HAR-IV-VOV -0.2048*** 

(-3.25) 
0.1237 
(1.03) 

  0.2565**

(2.35) 
-0.2427** 
(-2.03) 

 0.4043*** 
(5.95) 

1.5010** 
(1.96) 

0.5732 

HARAV-IV -0.5118*** 

(-5.54) 
0.9794*** 

(3.30) 
  1.0002*

(1.89) 
-1.7478*** 

(-3.30) 
 0.6801*** 

(6.05) 
 0.5567 

HARAV-IV-
VOV 

-0.4049*** 

(-3.60) 
1.0145*** 

(3.32) 
  0.5636

(1.42) 
-1.1228*** 

(-3.73) 
 0.3454*** 

(3.50) 
1.9005*** 

(2.95) 
0.5784 

CHAR-IV -0.2935*** 

(-3.32) 
0.1939* 
(1.90) 

  0.3725**

(2.30) 
-0.2473* 
(-1.83) 

 0.5109*** 
(6.11) 

 0.5705 

CHAR-IV-VOV -0.1946*** 

(-3.33) 
0.1700 
(1.51) 

  0.2660**

(2.13) 
-0.2395** 
(-1.96) 

 0.3897*** 
(6.16) 

1.3433** 
(1.98) 

0.5795 

HARJ-IV -0.2966*** 

(-3.23) 
0.2722*** 

(3.55) 
  0.3231**

(2.45) 
-0.2332*

(-1.89) 
-0.8868** 
(-2.35) 

0.5177*** 
(5.98) 

 0.5732 

HARJ-IV-VOV -0.1870*** 

(-3.34) 
0.2411*** 

(2.88) 
  0.2202**

(2.23) 
-0.2238**

(-2.04) 
-0.8480** 
(-2.39) 

0.3851*** 
(6.26) 

1.4353* 
(1.95) 

0.5838 

LHAR-IV -0.2492*** 

(-3.37) 
 -0.3169 

(-1.38) 
0.8929*** 

(3.13) 
0.3375***

(2.68) 
-0.1662 
(-1.49) 

 0.4084*** 
(5.56) 

 0.5938 

LHAR-IV-VOV -0.1524*** 

(-3.28) 
 -0.3194 

(-1.35) 
0.8365*** 

(3.15) 
0.2442**

(2.55) 
-0.1609 
(-1.58) 

 0.2937*** 
(3.98) 

1.2961* 
(1.89) 

0.6023 

 

  



Table 6. Out-of-sample analysis: Constant parameter volatility forecasting models 

The table reports the results of out-of-sample analysis for the constant parameter volatility forecasting models. The losses and the p-values of the model confidence set test 

are reported. In Panels A and B, the results of the model confidence set test based on rolling and increasing window forecasts are reported. In Panels C and D, the results of 

the Diebold-Mariano test based on rolling and increasing window forecasts are reported.  ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

Model  HAR-IV HAR-IV-
VOV 

HARAV-IV HARAV-IV-
VOV 

CHAR-IV CHAR-IV-
VOV 

HARJ-IV HARJ-IV-
VOV 

SHAR-IV SHAR-IV-
VOV 

Panel A: Model Confidence Set Test (RW)   
MSE 2.6656 

(1.0000) 
2.6756 

(0.9514) 
2.6787 

(0.3906) 
2.5712 

(1.0000) 
2.6298 

(1.0000) 
2.6507 

(0.8686) 
2.4722 

(1.0000) 
2.5003 

(0.8737) 
2.5026 

(1.0000) 
2.5148 

(0.9493) 
MAE 0.6051 

(0.0050) 
0.5779 

(1.0000) 
0.6889 

(0.0000) 
0.5995 

(1.0000) 
0.5825 

(0.0266) 
0.5641 

(1.0000) 
0.5895 

(0.0105) 
0.5648 

(1.0000) 
0.5693 

(0.0321) 
0.5475 

(1.0000) 
QLIKE 0.2674 

(0.0004) 
0.2423 

(1.0000) 
0.3343 

(0.0000) 
0.2715 

(1.0000) 
0.2555 

(0.0008) 
0.2310 

(1.0000) 
0.2528 

(0.0000) 
0.2259 

(1.0000) 
0.2428 

(0.0000) 
0.2169 

(1.0000) 
Panel B: Model Confidence Set Test (IW)   
MSE 2.3711 

(1.0000) 
2.4083 

(0.6900) 
2.4485 

(0.4997) 
2.3867 

(1.0000) 
2.3106 

(1.0000) 
2.3504 

(0.6159) 
2.2980 

(1.0000) 
2.3310 

(0.6932) 
2.2198 

(1.0000) 
2.2482 

(0.6588) 
MAE 0.5398 

(1.0000) 
0.5406 

(0.8839) 
0.6672 

(0.0000) 
0.6229 

(1.0000) 
0.5229 

(1.0000) 
0.5272 

(0.4151) 
0.5228 

(0.9142) 
0.5222 

(1.0000) 
0.5048 

(0.8462) 
0.5039 

(1.0000) 
QLIKE 0.2421 

(0.0695) 
0.2293 

(1.0000) 
0.3538 

(0.0000) 
0.3225 

(1.0000) 
0.2295 

(0.2229) 
0.2210 

(1.0000) 
0.2398 

(0.0327) 
0.2162 

(1.0000) 
0.2118 

(0.1132) 
0.2024 

(1.0000) 
Comparison HAR-IV-VOV vs. 

 HAR-IV 
HARAV-IV-VOV vs. 

HARAV-IV 
CHAR-IV-VOV vs. 

 CHAR-IV 
HARJ-IV-VOV vs. 

 HARJ-IV 
SHAR-IV-VOV vs. 

 SHAR-IV 
Panel C: Diebold-Mariano Test (RW) 

MSE 0.05 -0.74 0.15 0.14 0.05 

MAE -3.16*** -11.63*** -2.55** -2.84*** -2.30** 

QLIKE -3.54*** -7.81*** -3.57*** -4.25*** -5.04*** 

Panel D: Diebold-Mariano Test (IW) 
MSE 0.34 -0.51 0.44 0.35 0.38 
MAE 0.16 -7.01*** 0.92 -0.12 -0.21 
QLIKE -2.01** -4.51*** -1.31 -2.23** -1.69* 

 



Table 7. Sub-sample analysis: Financial crisis 

The table reports the in- and out-of-sample results during the financial crisis. In Panel A, the coefficient estimates and adjusted R2s are reported. In Panel B-1 (B-2), the 

losses and the p-values of the model confidence set test based on rolling window (increasing window) forecasts are reported. In Panel C-1 (C-2), the t-statistics of the 

Diebold-Mariano test based on rolling window (increasing window) forecasts are reported. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. The 

financial crisis is from November 2007 to June 2009. 

 

Panel A: In-sample regression 
Model  β0 βD βDQ βTVP βW βM βIV βIVV Adj. R2 
HARQ-IV -0.9125*** 

(-2.87) 
0.5144*** 

(3.85) 
-0.0075***

(-4.66) 
 0.4086** 

(2.52) 
-0.4668* 
(-1.84) 

0.6019*** 
(3.40) 

 0.5954 

HARQ-IV-
VOV 

-0.1912 

(-0.77) 
0.4383*** 

(4.08) 
-0.0085***

(-5.83) 
 0.0056 

(0.05) 
-0.4799** 
(-2.27) 

0.2504* 
(1.71) 

4.4426** 
(2.50) 

0.6612 

TVP-HAR-
IV 

-0.7945** 

(-2.57) 
0.3792*** 

(3.23) 
 -0.0095***

(-3.58) 
0.4101** 

(2.49) 
-0.4444* 
(-1.73) 

0.6227*** 
(3.63) 

 0.5844 

TVP-HAR-
IV-VOV 

-0.0809 

(-0.31) 
0.2824*** 

(3.00) 
 -0.0107***

(-4.03) 
0.0216 

(0.16) 
-0.4547** 
(-2.10) 

0.2875** 
(2.19) 

4.3007** 
(2.31) 

0.6462 

Model  HARQ-IV HARQ-IV-VOV TVP-HAR-IV TVP-HAR-IV-
VOV 

Comparison HARQ-IV-VOV vs. 
HARQ-IV 

TVP-HAR-IV-VOV vs. 
TVP-HAR-IV 

Panel B-1: Model Confidence Set Test (RW) Panel C-1: Diebold-Mariano Test (RW) 
MSE 15.8088 

(0.3904) 
13.9885 
(1.0000) 

16.5182 
(0.4256) 

14.7543 
(1.0000) 

MSE -0.91 -0.85 

MAE 1.8568 
(0.0000) 

1.5154 
(1.0000) 

1.8910 
(0.0001) 

1.5882 
(1.0000) 

MAE -4.80*** -4.22*** 

QLIKE 0.1794 
(0.3436) 

0.1579 
(1.0000) 

0.1805 
(0.5083) 

0.1670 
(1.0000) 

QLIKE -0.87 -0.62 

Panel B-2: Model Confidence Set Test (IW) Panel C-2: Diebold-Mariano Test (IW) 
MSE 14.1353 

(0.7909) 
13.9489 
(1.0000) 

14.1173 
(0.5023) 

13.5433 
(1.0000) 

MSE -0.23 -0.68 

MAE 1.5708 
(0.0009) 

1.4493 
(1.0000) 

1.5807 
(0.0004) 

1.4363 
(1.0000) 

MAE -3.43*** -4.65*** 

QLIKE 0.1271 
(0.0006) 

0.1178 
(1.0000) 

0.1288 
(0.1853) 

0.1226 
(1.0000) 

QLIKE -3.93*** -5.80*** 



Figure 1. Daily RV, IV, and VoV 

This figure plots the time-series of the S&P 500 index futures daily RV, IV, and VoV. The left scale presents daily RV and IV, and the right scale presents VoV. The sample 

period is from February 1, 1996 to August 29, 2014. 

 



Figure 2. Standard deviation of future daily RVs by VoV deciles 

This figure plots the average of the standard deviations of future daily RVs sorted by VoV deciles. Each VoV decile is defined based on the last day’s VoV. The dashed 

(weekly) line is constructed based on future five days daily RVs of S&P 500 index futures. The solid (monthly) line is constructed based on future 22 days daily RVs of S&P 

500 index futures. The sample period is from February 1, 1996 to August 29, 2014. 

 

 


