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Abstract 

Does sovereign risk contagion exist between East Asian economies? How did the Global 

Financial Crisis affect dependence structures between the sovereign risks of East Asian Economies? 

This paper aims to answer these questions by measuring pair-wise dynamic dependences among 

weekly CDS spreads of four East Asian economies (China, Hong Kong, Japan and Korea) for the 

period from December 2004 to September 2015. We filter the CDS spreads using AR-GARCH-t 

models controlling for global and economy-specific factors and apply mixture of conditional (time-

varying) Gaussian and symmetrized Joe-Clayton copulas for modeling dependence. 

We first find that there exists contagion between the East Asian sovereign CDS markets. Second, 

It is shown that the perceived impact of contagion could be different according to whether it is 

measured by the linear (Gaussian) or the upper tail dependence using our mixture of copulas 

approach which successfully reflects this heterogeneity of sovereign risk contagion across different 
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dependence measures. Third, our results indicate that Japan plays the most important role in the East 

Asian sovereign CDS market in terms of the linear dependence whereas China and Korea are crucial 

in terms of the upper tail dependence. Lastly, we also confirm that the GFC has structurally increased 

the linear dependence and the upper tail dependence in the pair of China and Korea and the pair of 

Japan and Hong Kong. 
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1. Introduction 

Does sovereign risk contagion exist between East Asian economies? If so, how does it appear in 

terms of the co-movements between their CDS markets? How did the Global Financial Crisis affect 

dependence structures between the sovereign risks? This paper aims to answer these questions by 

exploring pair-wise dependence between sovereign credit default swap (CDS) markets of four East 

Asian economies – China (CN), Hong Kong (HK), Japan (JP), and South Korea (KR) - for the period 

from December 2004 to September 2015. Figure 1 exhibits CDS spreads of these economies over the 

analyzed period. It shows that CDS spreads of the East Asian economies move together in general as 

well as the degree of the co-movements seems to be stronger during the Global Financial Crisis 

(GFC) in 2008-2009 and afterword. 

 

 

Figure 1. Weekly series of sovereign CDS spreads of China (CN), Hong Kong (HK), Japan (JP) and Korea (KR) in 

basis points (bps, left axis) and average of 2-year rolling Spearman correlation (left axis) between weekly changes of 

the CDS spreads for the period from December 2004 to September 2015. Correlations for the first 2-years are not 

plotted since our raw data starts from December 2004. 

 

There are several sources of biases for testing financial contagion. Forbes and Rigobon (2002) 

report that heteroscedasticity biases tests for contagion based on the conventional correlation 

coefficients. Also, Corsetti et al. (2005) show that failing to distinguish between common and 

country-specific components of market returns induces a bias in testing for contagion. In this regard, 
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we first filter out determinants of sovereign risk and heteroscedasticity from CDS spreads using AR-

GARCH-t models to prevent these potential biases. The mean equation of our AR-GARCH-t filter 

has global and local variables affecting sovereign risk as regressors. We then apply time-varying 

bivariate copulas to the standardized filtered residuals for assessing dynamic pair-wise dependence 

structures. Parameters of copula are assumed to follow dynamic processes conditional on the 

available information as in Patton (2006). To account for the linear dependence and the tail 

dependences together, we employ a mixture of the Gaussian and the symmetrized Joe-Clayton copulas. 

Throughout the paper, we define contagion as a significant increase in markets’ dependence due 

to an economy-specific shock to one economy
1
. In order to identify contagion arose from economy-

specific shocks, we introduce dummy variables in the dynamic processes of copula parameters. 

Our study makes several contributions to the extant financial contagion literature. First, we focus 

on sovereign risk contagion between East Asian economies. Unlike studies on stock or currency 

market contagion, little attention has been paid to sovereign risk contagion among Asian economies.
2
 

Most of previous research on sovereign risk contagion analyzed contagion between Eurozone 

economies after the 2010 Eurozone debt crisis
3
. Second, we investigate contagion in terms of both 

the linear (Gaussian) and the upper tail dependence using a time-varying mixture copula model. 

Time-varying mixture copulas are useful to analyze different kinds of dynamic dependence 

structures simultaneously. There are a few studies analyzing financial markets’ dependence using 

time-varying mixture copulas.
4
 However, they only combined the upper and the lower tail 

                                      
1
 Our definition of contagion is a slight modification of Forbes and Rigobon (2002) where financial contagion is defined 

as “a significant increase in cross-market linkage after a shock to one country”. Metiu (2012) used a similar definition. 
 

2
 There are studies on sovereign risk spillover or contagion among international markets including Asia, such as López-

Espinosa et al. (2014) and Sasha et al. (2016). However, they do not analyze dependence and contagion structure 

between Asian markets in detail. To the best of our knowledge, Caceres and Unsal (2013) and Wong and Fong (2011) 

are the only sovereign risk contagion literature focusing on Asian economies. 
 

3
 Afonso, A., Furceri, D., & Gomes, P. (2012), Fong and Wong (2012), Giordano et al. (2013), Gómez-Puig and 

Sosvilla-Rivero (2014), Gorea and Radev (2014), Kalbaska and Gątkowski (2012), Metiu (2012) and Suh (2015),  
 

4
 Chang (2012) used a time-varying mixture of the Gumbel and the Clayton copulas to model for asymmetric 

dependence between crude oil spot and futures markets, Hsieh and Huang (2012) also adopted a time-varying mixture 

of the Gumbel and the Clayton copulas for asymmetric dependence between Asian currency markets, and Wu et al. 
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dependence and focus on dependence structure rather than contagion effect between financial 

markets. In addition, contagion studies using copulas have employed extensions of static copulas
5
 or 

time-varying non-mixed copulas
6
. We combined the linear dependence and the tail dependence in a 

time-varying manner to explore contagion effect as well as dependence structure between the East 

Asian sovereign CDS markets. Our suggested model is probably the most general to analyze 

contagion using copulas. 

We have five main findings. First, our analysis shows that there exists contagion between the East 

Asian sovereign CDS markets. That is, sovereign CDS shocks from one economy can spill over to 

others. As such, the pair-wise dependences are significantly changed even after controlling potential 

biases of testing for contagion. Second, the perceived impact of contagion could be different 

according to whether it is measured by the linear or the upper tail dependence. In this regard, an 

economy having contagious effect on other economies in terms of one dependence measure can be 

ineffective in terms of another dependence measure. Third, our mixture of copulas approach 

successfully reflects this heterogeneity of sovereign risk contagion across different dependence 

measures by not only combining the linear dependence and the tail dependences but also allowing 

each measure to respond to shocks through its own dynamic processes. Our empirical study shows 

that contagion occurs exclusively either in the linear or the upper tail dependence. Fourth, our results 

indicate that JP is the most important in the East Asian sovereign CDS market in terms of the linear 

dependence whereas CN and KR are crucial in terms of the upper tail dependence. Lastly, the linear 

dependence has structurally increased after the GFC in general, which is related to the cluster of 

shocks after the GFC. On the other hand, the upper tail dependence has increased for (CN, KR) and 

                                                                                                                             
(2012) employed a time-varying mixture of the Clayton and the Survival Clayton copulas to explore the asymmetric tail 

dependence structure between the oil prices and the U.S. dollar exchange rate. 
 

5
 Rodriguez (2007), Aloui et al. (2011), Abbara and Zevallos (2014), Weiß (2012), Ye et al. (2012), Loaiza-Maya et al. 

(2015) and many others. 
 

6
 Chen et al. (2014), Kenourgios et al. (2011), Manner and Candelon (2010), Philippas and Siriopoulos (2010), Samitas 

and Tsakalos (2013) and Wen et al. (2012). 
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(JP, HK), but it decreased for the other economy pairs after the GFC. The structural change in the 

upper tail contagion is consistent with our findings about contagion.  

The remainder of this paper is organized as follows. Section 2 introduces the econometric 

methodologies for our research. Section 3 deals with the data used in this paper. Section 4 explains 

the empirical results. Lastly, Section 5 concludes. 

 

2. Econometric Methodology 

We take advantage of a conditional (time-varying) copula to analyze time-varying co-movements 

between East Asian sovereign CDS spreads. Main advantage of copulas is that they enable us to 

analyze dependence structures of random variables entirely separate from their marginal distributions. 

Let X, Y be continuous random variables with marginal distributions (densities) 
X

F (
X

f ), 
Y

F (
Y

f ) 

respectively and the joint distribution (density) ,X Y
F ( ,X Y

f ). According to Sklar’s theorem (Sklar, 

1959), their joint density of (X, Y) can be decoupled into marginal densities and their dependence 

density using a function 
2

( , ) : [0,1] [0,1]C u v   called a “copula”: 

 
,

( , ) ( ( ), ( ))
X Y X Y

F x y C F x F y  or ,
( , ) ( ) ( ) ( ( ), ( ))

X Y X Y X Y
f x y f x f y c F x F y   , (Eq. 1) 

where 
2( , ) ( , ) /c u v C u v u v    . Note that the above copula is unconditional and static. 

Patton (2006) extended Sklar’s theorem in (Eq. 1) to a conditional version: 

, | | |

, | | | | |

or

( , | ) ( ( | ), ( | ) | )

( , | ) ( | ) ( | ) ( ( | ), ( | ) | ),

t t t

t t t t t

X Y t X t Y t t

X Y t X t Y t X t Y t t

F x y C F x F y

f x y f x f y c F x F y

  

    

    

        
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where 
t

  denotes a time-varying conditioning information set given at time t. The function

( , | )
t

C u v   is called a conditional (or time-varying or dynamic) copula. This extension allows us to 

apply copula theory to a dynamic dependence analysis. 

Another advantage of copulas is that they allow tail dependences, which represent the probability 

of two random variables having upward or downward extreme co-movements together. From risk 

measurement and management perspectives, tail dependences play an important role to measure 

dependence between extreme events around the tails of a distribution. The upper and the lower tail 

dependence of two random variables X and Y are defined and obtained from copula functions as 

 
1 1 1

0 0 0

1 2 ( , )
lim Pr[ | ] lim Pr[ | ] lim (0,1]

1

( , )
lim Pr[ | ] lim Pr[ | ] lim (0,1]

U

X Y Y X

L

X Y Y X

C
F F F F

C
F F F F

  

  

  
    



 
    



  

  

  

  

 
       



       

 (Eq. 2) 

, where 0U  ( 0L  ) implies no upper (lower) tail dependence. 

 

2.1. Marginal distribution specification 

It is well known that financial returns have some stylized facts such as serial correlation, fat tail, 

and volatility clustering. Ignoring heteroscedasticity can lead to misidentification of contagion 

(Forbes and Rigobon, 2002). Thus, we adopted “AR-GARCH-t” type models to control the stylized 

features of financial asset returns. 

Let 
i

t
y  be the change of CDS spread of economy i between week t-1 and week t, i.e. 

1

i i

t t

i

t
CDS CDSy


   for i = CN, HK, JP, KR. For each i, we suppose that 

 

, ,

0 , ,

1 1

1 1 ,  ( 2) / ,

G L
i i g i g l i i i

t k k t k k t t

k k

i i i i i i i i i i i

t t t m t m t t t

y x x

df df

   

        

 

 

   

    

 
 (Eq. 3) 
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where ,

g

k t
x ’s represent common (global) factors influencing sovereign risk of all the East Asian 

economies, ,

i

k t
x ’s represent economy-specific factors of economy i ’s sovereign risk, and 

2
( )

i

t
  

represents conditional variance with heteroscedasticity. The standardized AR-GARCH-t filtered 

residual 
i

t
  is assumed to follow an i.i.d. student-t distribution with degrees of freedom, 

i
df . 

To evaluate goodness-of-fit, we employed the Ljung-Box statistic for serial correlations and the 

Engle’s Lagrange multiplier (LM) statistic to examine heteroscedasticity of the { }i
t

  series. 

For GARCH specification, we considered various GARCH type models: the standard GARCH, 

the GJR-GARCH, the Integrated-GARCH (I-GARCH), the GARCH in Mean (GARCH-M) and the 

I-GARCH-M (Integrated GARCH in Mean) models. In our empirical analysis, CN and KR were 

fitted to the I-GARCH-M model with the existence of risk premium effect. For JP and HK, the I-

GARCH models were chosen. But the GJR-GARCH model was not selected for any economy.
 7

 

 

2.2. Explanatory variables in the conditional mean equation 

Corsetti et al. (2005) has pointed out that failing to distinguish between common and country-

specific components of market returns can result in a bias for testing contagion. Thus, we included 

various global and local variables as regressors in the mean equation for the individual filter of CDS 

spread. The variables were selected based on sovereign risk literature such as Gadanecz et al. (2014), 

Erdem and Varli (2014), Longstaff et al. (2011), Hilscher and Nosbusch (2010) and many others. 

 

2.2.1. Global variables 

Five common risk factors ( ,

g

k tx ) were considered: the global stock market proxied by weekly 

returns reported by MSCI World (%), global financial market sentiment proxied by weekly changes 

of the VIX (%), funding liquidity in the banking sector proxied by weekly changes of the TED 

                                      
7
 See Tsay (2010) for more details on GARCH models. 
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spread (bp), term-structure of interest rates proxied by weekly changes of the US treasury 10-year 

and 3-month yield spread (bp), and commodity market proxied by weekly returns of the WTI spot 

price (%). Note that raw data of MSCI and WTI prices are denominated by USD. 

 

2.2.2. Local variables 

Five economy-specific risk factors ( ,

i

k tx ) were considered: local stock markets proxied by weekly 

returns of the MSCI for each country (%), currency markets proxied by weekly appreciation of each 

currency against the USD (%), overall local economic conditions proxied by weekly changes of the 

annual growth rate of the quarterly GDP (%), government debt condition proxied by weekly changes 

of government debt divided by the annual GDP (%), and liquidity buffers proxied by weekly 

increasing rates of foreign reserve (%). Note that all raw data of GDP, government debt, and foreign 

reserve before normalizing are denominated by USD. 

 

2.3. Copula function specification 

In this paper, the conditional Gaussian (GA) and symmetrized Joe-Clayton (SJC) copula 

functions
8
 and their mixture (GASJC) were used to explore the dynamic relationship between the 

East Asian sovereign CDS markets. Among the various copula models, we chose the GA and the 

SJC copulas since they describe dynamic movements of linear dependence and the tail dependences 

in both sides, all together. The processes of time-varying dependence parameters are assumed to 

follow those suggested in Patton (2006) and we include additional dummy variables to test for the 

existence and the direction of contagion in the processes of dependences. More details of these 

dummies are presented in Section 2.3.2. Goodness-of-fit for the selected copulas were evaluated by 

the joint hit test proposed by Patton (2006). 

 

2.3.1. Mixture of the Gaussian and the SJC copulas 

                                      
8
 See Patton (2006) for more details about the GA and the SJC copulas. 
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Based on the fact that a convex liner combination of a finite set of copulas is again a copula 

(Nelsen, 2013), we define the mixture of the GA (
GA

C ) and the SJC (
SJC

C ) copulas as 

( , ; , , ) ( , ; ) ( , ; , )
U L U L

GASJC GA GA SJC SJC
C u v w C u v w C u v       , 

where   is the Gaussian correlation, 
U

  is the upper tail dependence, 
L

  is the lower tail 

dependence in (Eq. 2) and , [0,1]
GA SJC

w w   satisfying 1
GA SJC

w w  . Our mixture copula can 

reflect both the linear dependence and the tail dependences by combining the GA and the SJC 

copulas. The density of the GASJC copula can be written as 

2 ( , ; , , )
( , ; , , ) ( , ; ) ( , ; , )

U L
U L U LGASJC

GASJC GA GA SJC SJC

C u v
c u v w c u v w c u v

u v

  
     


  

 
, 

where 
2( , ; ) ( , ; ) /GA GAc u v C u v u v      and 

2( , ; , ) ( , ; , ) /U L U L

SJC SJCc u v C u v u v       . 

The upper and the lower tail dependence of the GASJC copula are calculated as 

1

0

1 2 ( , )
lim

1

( , )
lim

U U U UGASJC
GA SJC SJC

L L L LGASJC
GA SJC SJC

C
w w w

C
w w w





  
   



 
   











 
   



   

 

unless 1 . Therefore, both the upper and lower tail dependence of the GASJC copula are 

inherited from the SJC copula. 

 

2.3.2. Dependence parameter specification 

We employ time-varying dependence specification as in Patton (2006) with additional dummy 

variables to test for the existence and direction of sovereign risk contagion. 

2.3.2.1. Dummy variables for economy-specific shocks. We tested for the existence and direction 

of sovereign risk contagion by including dummy variables indicating economy-specific shocks in the 

copula parameter equations defined as below. 
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A shock to economy i is defined as a situation of Pr[ ] 95%
i i i

t t t
U     , where 

i

t
  is the 

unstandardized residual in (Eq. 3) and 
i

t
  is a realization of 

i

t
  for , , ,i CN HK JP KR . An 

occurrence of this type of shock can be interpreted as a situation of jump in the economy-specific 

component of a CDS spread. Several recent studies report empirical evidence that jumps in asset 

prices are related to contagion between financial markets. Li and Zhang (2013) provided evidence of 

asymmetric contagion from jumps between international stock markets: the US market typically 

having more influence on other markets than the reverse. Aït-Sahalia et al. (2015) found that cojump 

behavior of the US and the Chinese stock markets has been stronger since the subprime crisis, which 

is closely linked with contagion. Jawadi et al. (2015) reported asymmetric and nonlinear spillover 

effects between jumps in the US and the European stock markets. 

To investigate the effect of shocks on dependence between CDS markets, we defined two dummy 

variables 
( , )

1,

i j

t
D  and 

( , )

2,

i j

t
D  for each pair ( , )i j  of economies, representing the time of economy-

specific shocks to the economy i and j, respectively, as 

 
( , )

1,
,

{ }
i j i i k

t t t t
k i j

D d d Max d


    and ( , )

2,
,

{ }i j j j k

t t t t
k i j

D d d Max d


   , (Eq. 4) 

where 
{ 0.95}

1 k

t

k

t U
d


  for , , , , ,i j k CN HK JP KR . Here, 

i

t
d  indicates shocks to economy i and 

,

{ }
i k

t t
k i j

d Max d


  stands for shocks occurring to economy ,k i j  as well as to economy i 

contemporaneously. Thus, 
( , )

1,

i j

t
D  and 

( , )

2,

i j

t
D  denote the times of economy-specific shocks to 

economies i and j only not occurring to outside economies i and j. 

Figure 2 shows a graphical example of these dummy variables. The four rectangles represent 

times of shocks to CN, HK, JP and KR. Assume that we are investigating contagion of (CN, KR) and 

consider the two points 
1

P  in the CN rectangle and 
2

P  in the intersection of the CN and the KR 
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rectangles. 
1

P gives 1
CN

t
d  . However, it gives 

( , )

1,
0

CN KR

t
D   since it lies in the rectangle for HK 

(that is, 1
HK

t
d  ) as well. 

2
P  also produces 

( , )

1,
0

CN KR

t
D   since 1

CN

t
d   and 1

KR

t
d  , but 

2
P  

belongs to the rectangle for JP (that is, 1
JP

t
d  ). In this way, the regions 

( , ) ( , )

1, 2,
{ | 1, 0}CN KR CN KR

t t
A t D D    (blue colored), 

( , ) ( , )

1, 2,
{ | 0, 1}CN KR CN KR

t t
B t D D    (red colored) 

and 
( , ) ( , )

1, 2,
{ | 1}CN KR CN KR

t t
C t D D    (violet colored) are considered as shocks to test contagion in the 

pair (CN, KR). 

(CN )

(HK)

A

(JP)

(KR )

C B

P1

P2

 

Figure 2. A graphical example of the dummy variables in (Eq. 4). The four rectangles represent times 

of shocks to CN, HK, JP and KR. The regions 
( , ) ( , )

1, 2,
{ | 1, 0}

CN KR CN KR

t t
A t D D    (blue colored), 

( , ) ( , )

1, 2,
{ | 0, 1}

CN KR CN KR

t t
B t D D    (red colored), 

( , ) ( , )

1, 2,
{ | 1}

CN KR CN KR

t t
C t D D    (violet colored) 

are considered as shocks related to contagion of (CN, KR). 

Note that we remove the effects of shocks occurring to outside the pair ( , )i j  by defining 
( , )

1,

i j

t
D  

and 
( , )

2,

i j

t
D  from 

i

td  and 
j

td , respectively. This is because we want to explore the “pure” contagion 

relationship between economies i  and j  without any interference from outside, such as possible 

systematic shocks remaining unfiltered in the conditional mean and volatility equations in the 

GARCH filters. The remaining systematic effects could be incorporated through frailty factors, 

however, we just removed their possible impacts by defining 
( , )

1,

i j

t
D  and 

( , )

2,

i j

t
D  as (Eq. 4) for the 

sake of simplicity. 



- 11 - 

2.3.2.2. Specification of time-varying dependence parameters. Using the dummy variables 

defined in (Eq. 4), we slightly modified Patton’s (2006) original specifications. We define the time-

varying Gaussian dependence (
t

 ) and the time-varying upper and the lower tail dependence (
U

t
  

and 
L

t
 ) of each pair of economies ( , )i j  as 

 

10
1 1

0 1 1 2 3

1

10

0 1 1 2 3

1

10

0 1 1 2

1

1
( ) ( )

10

1
| |

10

1
| | ,

10

t t t s t s t

s

U U U U U U

t t t s t s t

s

L L L L L

t t t s t s

s

u v D

u v D

u v

     

     

    

 

  



  



  



      

     

    

 
 
 

 
 
 

 
 
 







 (Eq. 5) 

where ( )   is the CDF of (0,1)N , 
i

t t
u U , 

j

t t
v U  and 

( , )

1,

i j

t t
D D  or 

( , )

2,

i j

t
D . The logistic 

transformations of 
(1 )

( )
(1 )

x

x

e
x

e






 


 and 

1
( )

(1 )
x

x
e


 


 are used to keep 1 1
t

   , 0 1
U

t
   

and 0 1
L

t
  , respectively. 

It is worth to mention two comments on the dummies for better understanding as follows. First, 

we ran the regression twice for each pair ( , )i j  of economies: one with 
( , )

1,

i j

t tD D , and the other 

with 
( , )

2,

i j

t tD D . Positive significance of 
( , )

1,

i j

t
D  (

( , )

2,

i j

t
D ) would imply existence of contagion from 

economy i  ( j ) to economy j ( i ), whereas negative or insignificant estimates would be natural 

because our definitions of dummies are based on economy-specific shocks. The second point is that 

we applied dummy variables asymmetrically. They are included in the upper tail dependence, but not 

in the lower tail dependence.
9
 The reason for this asymmetric modeling is to improve the 

identification of our mixture of copulas. In addition, we are interested in analyzing the impact of 

extreme “bad” news related to a sharp “increase” in CDS spreads and the upper tail dependence. 

                                      
9
 Chen et al. (2014) measured the contagion effect between U.S. and Chinese stock markets during the financial crisis 

using a modified Clayton copula which considers effects of contagion on the lower tail dependence only. 
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2.4. Parameter estimation 

We applied the canonical maximum likelihood (CML) method for estimation. The CML method 

is a semi-parametric two-step estimation method, as a variation of the inference function for the 

marginal (IFM) method proposed by Joe and Xu (1996). The difference between the CML and the 

IFM is that the CML uses empirical marginal distributions instead of parametric margins. 

Let  
1

,
T

t t t
x y


 be the observed paired data of two random variables X and Y. The joint probability 

density function of X and Y can be represented as 

 
,

( , ; ) ( ), ( ); ( ; ) ( ; )
X Y X Y C X X Y Y

f x y c F x F y f x f y      

from (Eq. 1), where 
C

  is the vector of parameters in a copula, X  and Y  denote the vector 

of parameters in the marginal distributions of X and Y respectively, and   is the union of X , 

Y  and 
C

 . The log-likelihood function can be decomposed into the sum of the log-likelihood 

functions of the marginals and the copula density: 

    
1 1

; ; ; ; ; .( ) ln ( ), ( ) ln ( ) ln ( )
X Y C X Y

T T

X t Y t X t Y t

t t

L c F x F y f x f y
 

           (Eq. 6) 

The CML method is a two-step procedure using the decomposition in (Eq. 6). As the first step, the 

margins are estimated by the empirical distributions: 

 
1

1ˆ ( ) 1
t

T

X X x
t

F x
T




   and  
1

1ˆ ( ) 1
t

T

Y Y y
t

F y
T




  . 

In the second step, the copula parameters are obtained conditional on the estimated empirical 

distributions ˆ
X

F  and ˆ
Y

F  by 

 
1

ˆ ˆ ˆmax ln ( ), ( );
C

T
CML

C X t Y t C

t

c F x F y




   . 

 

3. Data 
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We empirically examined all possible pair-wise dynamic dependence structures between the four 

East Asian sovereign CDS markets to analyze sovereign risk contagion due to extreme shocks. CDS 

spreads are probably the most popular market-based measure of sovereign credit risk because they 

reflect the change of both global and local economic conditions (Longstaff et al., 2007). Our CDS 

data covers 561 Wednesday to Wednesday weekly differences of the CDS spreads from 29 

December 2004 to 15 September 2015. For missing date, we used the previous trading date’s data. 

Table 1 shows summary statistics of the weekly changes of the CDS spreads. 

Table 1. Summary statistics of weekly differences of the CDS spreads 

Economy Min 1Q* Median 3Q* Max Mean Stdev Skew Kurt 

CN -60.32 -2.44 -0.07 2.45 131.72 0.18 9.94 3.63 58.43 

HK -32.10 -1.38 -0.04 1.73 24.10 0.05 4.92 -0.34 8.48 

JP -40.98 -1.45 -0.03 1.43 41.44 0.08 5.58 0.59 16.53 

KR -264.02 -2.74 -0.26 2.65 174.45 0.08 18.48 -2.95 93.36 

Note: This table provides summary statistics of Wednesday-to-Wednesday weekly changes of CDS spreads (in bps) of 

the four East Asian economies: CN (China), HK (Hong Kong), JP (Japan), and KR (Korea). The data covers from 

December 29, 2004 to September 30, 2015, which corresponds to a sample of 561 observations. 

*1Q and 3Q means 25% and 75% quartiles respectively. 

In Table 1, the means of the weekly changes are close to zero for all economies. Volatilities are 

relatively low for developed economies (HK and JP) but high for emerging economies (CN and KR). 

The skewnesses of HK and JP are nearly zero whereas those of CN and KR are substantially different 

from zero (positive for CN but negative for KR), respectively. It is natural to expect a nonnegative 

skewness of CDS spread changes since financial asset prices are more sensitive to bad news than 

good news. The negative skewness of KR is caused by of the minimum value (-264.02 bp)
10

 which 

happened for the period between 29 October 2008 and 05 November 2008
11

. All economies exhibit 

                                      
10

 Skewness of KR without this minimum value became 6.8639 which is positive. Furthermore, when we exclude the 

minimum value and the maximum value (174.45 bps) together, the result became 3.8304 which is also positive. 
 

11
 For this period, there were economic and political events causing global CDS spreads to decrease. On 29 October 

2008, FRB decided to lower the target federal funds rate 0.5% to 1.0% and the discount rate 0.5% to 1.25%. On 04 

November 2008, Barack Obama was elected the 44
th

 president of the United States. A relatively larger decrease in the 

CDS spread of KR might be due to the currency swap arrangement of up to 30 billion U.S. dollars between U.S. and KR 

on 30 October 2008. 
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excess kurtosis implying heavy tails for the unconditional distributions of the weekly changes. These 

observations are consistent with assumptions of the AR-GARCH-t models considered in Section 2.1. 

Moreover, the relatively high kurtosis for CN and KR may imply strong tail dependence between 

these two economies which will be tested in Section 4.4. 

Our data source for weekly CDS spreads, MSCI’s, VIX, U.S. 3-month LIBOR, U.S. 90-day T-bill 

rate and monthly foreign reserves is Bloomberg.
12

 Weekly U.S. Treasury yields and WTI spot prices 

were obtained from the U.S. Department of Treasury
13

 and the U.S. Energy Information 

Administration (EIA)
14

 respectively. For weekly currency rates, we used the U.S. Board of 

Governors of the Federal Reserve System.
15

 We collected quarterly GDP and government debt data 

from the General Government Debt to GDP provided by BIS.
16

 Note that we ran our regressions on 

a weekly basis. To accommodate the data of different frequencies, we transformed monthly or 

quarterly data into weekly frequency using linear transformation similar to Gorea and Radev (2014). 

 

4. Empirical Results 

 

4.1. Estimation results of marginal distribution 

The candidates of AR(m)-GARCH(p,q)-t models in Section 2.1 were evaluated for various 

combinations of (m, p, q) using maximum likelihood and the most suitable models are selected based 

on the AIC and SBC. Table 2 summarizes estimates for the conditional mean equation of the final 

AR(m)-GARCH(p,q)-t models for each economy. 

                                      
12

 Ticker (Variable): “SOVR” (Sovereign CDS spreads), “MXWO Index” (MSCI World), “MXCN Index”/“MXHK 

Index”/“MXJP Index”/“MXKR Index” (MSCI’s of CN/HK/JP/KR), “VIX Index” (VIX), “US0003M Index” (U.S. 3-

month LIBOR), “USGB090Y Index” (U.S. 90-day T-bill rate), “WIRACHIN Index”/“532.055 Index”/“WIRAJAPA 

Index”/“542.055 Index” (Foreign reserve of CN/HK/JP/KR). 
 

13
 https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldAll 

 

14
 http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm 

 

15
 https://www.federalreserve.gov/releases/h10/hist/ 

 

16
 http://www.bis.org/statistics/totcredit.htm 
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Table 2. Estimates of marginal distributions : Conditional mean equations 

  Variable   CN   HK   JP   KR 

Conditional mean equation                 

  
Constant 

 
0.5427** 

 
-0.0303 

 
-0.0277 

 
0.5398* 

  
  

 
(0.2635) 

 
(0.0637) 

 
(0.0260) 

 
(0.2802) 

 
Global Stock   -0.4217***   -0.1752**   -0.0314   -0.7035*** 

 
Factor   

 
(0.1018) 

 
(0.0756) 

 
(0.0219) 

 
(0.1184) 

  
Vol 

 
0.1364** 

 
0.0210 

 
-0.0061 

 
0.1690** 

  
  

 
(0.0595) 

 
(0.0491) 

 
(0.0183) 

 
(0.0690) 

  
TED 

 
0.0332*** 

 
0.013 

 
0.0061*** 

 
0.0023 

  
  

 
(0.0124) 

 
(0.0101) 

 
(0.0022) 

 
(0.0124) 

  
10Y-3M 

 
-0.0288*** 

 
-0.0106 

 
-0.0022 

 
-0.0182* 

  
  

 
(0.0100) 

 
(0.0072) 

 
(0.0019) 

 
(0.0110) 

  
WTI 

 
0.0207 

 
-0.0158 

 
-0.0046 

 
0.0166 

 
      (0.0241)   (0.0168)   (0.0041)   (0.0263) 

 
Economy- Stock 

 
0.0007 

 
-0.0705* 

 
0.0099 

 
-0.0725 

 
specific   

 
(0.0385) 

 
(0.0418) 

 
(0.0104) 

 
(0.0518) 

 
factor FX 

 
0.1303 

 
1.1159 

 
-0.0057 

 
0.1076 

  
  

 
(0.4883) 

 
(1.2866) 

 
(0.0174) 

 
(0.1097) 

  
GDP 

 
-0.3850 

 
-1.0279* 

 
-0.0871 

 
1.8839 

  
  

 
(1.5272) 

 
(0.5489) 

 
(0.2813) 

 
(1.4745) 

  
Debt 

 
4.6586** 

 
0.7926 

 
-0.1617 

 
0.4947 

  
  

 
(2.1589) 

 
(3.7488) 

 
(0.3889) 

 
(1.1810) 

  
Foreign 

 
-0.5602* 

 
0.0908 

 
-0.0231 

 
-0.7634 

 
  reserve   (0.3322)   (0.2429)   (0.1005)   (0.5235) 

Note: This table provides the estimates of conditional mean equations in the marginal distribution models. Values in 

parentheses are standard errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels, 

respectively. 

In Table 2, the estimated coefficients of the conditional mean equation are consistent with the 

previous literature on determinants of sovereign risk. Stock markets, term structure, GDP growth, 

and foreign reserve decrease the sovereign risk, whereas volatility, TED spread, currency rate, and 

government debt increase it. Furthermore, global variables play more important roles than local 

variables, a result coincides with findings by Longstaff et al. (2011). 

Table 3 shows the estimated results for the residual and the conditional variance equations of the 

marginal distributions. All CDS markets are fitted to the I-GARCH model, meaning that each of the 

unfiltered CDS spreads has heteroscedasticity with infinite unconditional variance. Additionally, CN 
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and KR fit the I-GARCH-M model with a risk premium effect. The results of negative risk premium 

parameters of CN and KR are consistent with the skewness values of CN and KR in Table 1.
17

 

Table 3. Estimates of marginal distributions: Residual and conditional variance equations 

  Variable   CN   HK   JP   KR 

Residual equation               

  
AR(1) 

   
0.1266*** 

   
-0.0739** 

      
(0.0404) 

   
(0.0337) 

  
AR(2) 

 
0.1266*** 

 
0.0720* 

   
0.1801*** 

    
(0.0400) 

 
(0.0414) 

   
(0.0286) 

  
AR(3) 

   
0.0730* 

   
0.1004*** 

      
(0.0393) 

   
(0.0258) 

  
AR(4) 

       
0.1260*** 

          
(0.0206) 

  
AR(6) 

       
0.0521* 

          
(0.0278) 

  
AR(7) 

   
0.0889** 

    

      
(0.0376) 

    

  
AR(13) 

       
-0.0790** 

          
(0.0326) 

  
Risk   -0.1731*           -0.2460** 

    premium   (0.1049)           (0.1149) 

Conditional variance equation             

  
Constant 

 
0.1380** 

 
0.0640* 

 
0.0030** 

 
1.5225*** 

    
(0.0647) 

 
(0.0337) 

 
(0.0015) 

 
(0.4539) 

  
ARCH(1) 

 
0.1703*** 

 
0.1417*** 

 
0.2231*** 

 
0.5470*** 

    
(0.0255) 

 
(0.0237) 

 
(0.0203) 

 
(0.0476) 

  
GARCH(1) 

 
0.8297*** 

 
0.8583*** 

 
0.7769*** 

  

    
(0.0255) 

 
(0.0237) 

 
(0.0203) 

  

  
GARCH(6) 

       
0.4530*** 

  
                (0.0476) 

  
Degree of   3.7850***   3.7693***   3.4200***   3.4014*** 

    Freedom   (0.0254)   (0.0294)   (0.0210)   (0.0271) 

    lnL   1598   1363   1289   1677 

  
AIC 

 
-3227 

 
-2763 

 
-2606 

 
-3396 

    SBC   -3297   -2841   -2667   -3487 

Note: This table provides the estimates of residual and conditional variance equations. Values in parentheses are standard 

errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels, respectively. lnL means a 

log likelihood value. 

Table 4 reports the results of the goodness-of-fit tests for the filtered marginals, i.e. 
i

t
 ’s in (Eq. 

3). All marginal distribution models passed the Ljung-Box tests at the 10% significance level, 

                                      
17

 Negative sign of the risk premium parameter in the I-GARCH-M model means that a protection seller on a more 

volatile reference asset will expect higher profit from a larger decrease in the CDS spread. Also, see the footnote 10. 
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meaning that there are no serial correlations in the 1
st
 – 4

th
 moments of the standardized residuals. 

Also, all models passed the LM tests at the 10% significance level, indicating no heteroscedasticity 

in the standardized residuals. These results imply that the estimated models are well specified 

enough to describe the weekly changes of the CDS spreads and the standardized filtered residuals 

satisfy the i.i.d. assumptions. 

Table 4. Goodness-of-fit test of marginal distributions 
  

Statistic Variable   CN   JP   KR   HK 

Q(6-24)*  1
st
 moment 

 
7.8000  

 
21.5900  

 
9.8500  

 
6.2600  

   
[0.2532] 

 
[0.6035] 

 
[0.1311] 

 
[0.3945] 

 
2

nd
 moment 

 
3.6000  

 
0.2600  

 
4.7600  

 
2.1900  

   
[0.7303] 

 
[0.9997] 

 
[0.5752] 

 
[0.9017] 

 
3

rd
 moment 

 
0.6200  

 
0.0400  

 
0.0200  

 
4.3000  

   
[0.9961] 

 
[1.0000] 

 
[1.0000] 

 
[0.6355] 

 
4

th
 moment 

 
0.6200  

 
0.0300  

 
0.0100  

 
1.8100  

      [0.9961]   [1.0000]   [1.0000]   [0.8519] 

LM(1-12)** 1
st
 moment   3.3102    0.0010    4.1228    0.2925  

      [0.6523]   [0.9742]   [0.1273]   [0.5886] 

*Q(6~24) stands for the Ljung-Box statistic with the minimum p-value among Q(6), Q(12), Q(18) and Q(24), where 

Q(m) represents the Ljung-Box statistic of order m. P-values (in brackets) indicate acceptance of the null hypothesis of 

no serial correlation. 
 

**LM(1-12) stands for the Engle's LM statistics with the minimum p-value among LM(1)-LM(12), where LM(m) 

represents the LM statistic of order m. P-values (in brackets) indicate acceptances of the null hypothesis of no 

heteroscedasticity. 

 

4.2. Estimation results of static copulas 

Table 5 reports the parameter estimates for the static copula functions of the GA, the SJC and 

their mixture. In the GA copula, all pairs of CDS markets have significant and positive static 

Gaussian correlations. In the static SJC copula, all pairs of CDS markets except for ( , )KR HK  show

0U L   , meaning they have asymmetric tail dependences with stronger co-movements in the 

upper tail than the lower tail, as expected. 

In Table 5, the static GASJC copula also shows overall positive Gaussian dependences and 

asymmetric tail dependences skewed upward. These results are consistent with the non-mixed static 

copulas, implying that the static GASJC copula harmonizes the static GA with the static SJC copulas 
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well. In addition, the mixed model has higher p-values from the Hit tests than the non-mixed model, 

suggesting better goodness-of-fit. In conclusion, all results in Table 5 support our mixture of copulas 

approach. 

Table 5. Estimates of static copulas 

Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Static non-mixed copulas           

 
GA   0.4387*** 0.7513*** 0.4631*** 0.4115*** 0.3378*** 0.4638*** 

  
  (0.0013) (0.0006) (0.0013) (0.0014) (0.0015) (0.0013) 

  
lnL 58 229 66 50 33 66 

 
  Hit Test 0.0283  0.3519  0.5398  0.9885  0.8972  0.6502  

 
SJC U  0.3062*** 0.5727*** 0.3166*** 0.2451*** 0.2287*** 0.2486*** 

   
(0.0021) (0.0009) (0.0022) (0.0022) (0.0022) (0.0025) 

  
L  0.2296*** 0.5453*** 0.2659*** 0.2051*** 0.0946*** 0.2954*** 

   
(0.0024) (0.0024) (0.0024) (0.0023) (0.0023) (0.0022) 

  
lnL 66 227 72 53 37 66 

  
Hit Test 0.2002  0.7084  0.7082  0.9979  0.9312  0.6564  

Static GASJC copulas 
     

 
GA   0.1503*** 0.8433*** 0.2842*** 0.4817*** -0.3881 0.6926*** 

  
  (0.0067) (0.0009) (0.0106) (0.0093) (0.3918) (0.0066) 

  
Weight 0.4233*** 0.7997*** 0.6703*** 0.2556*** 0.0500* 0.6152*** 

   
(0.5242) (0.1773) (0.7976) (0.2450) (0.2558) (0.0100) 

 
SJC U  0.5242*** 0.1773*** 0.7976*** 0.2450*** 0.2558*** 0.0100 

   
(0.0053) (0.0112) (0.0004) (0.0039) (0.0038) (0.0123) 

  
L  0.4201*** 0.2026*** 0.5012*** 0.1754*** 0.1192*** 0.0101 

  
  (0.0061) (0.0082) (0.0031) (0.0047) (0.0050) (0.0109) 

 
  lnL 69  242  81  53  37  73  

  
Hit Test 0.3199  0.7664  0.8007  0.9975  0.9168  0.7527  

Note: This table presents parameter estimates of static copulas with standard errors in parentheses. ***, **, * indicate 

statistical significance at the 1%, 5%, and 10% significance levels, respectively. lnL means a log likelihood value and Hit 

Test means a p-value from the Hit test. 

 

4.3. Estimation results of non-mixed dynamic copulas 

As stated in (Eq. 5), the Gaussian and the upper tail dependence equations in our dynamic copulas 

have one of the dummies defined in (Eq. 4) to identify sovereign risk contagion. The sets  

( , )
1,{ | 1, 1 561}i j

tt D t    and 
( , )
2,{ | 1, 1 561}i j

tt D t    contain the times of extreme economy-
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specific shocks to economies i  and j  for the economy pair ( , )i j . Table 6 shows the number of 

the dummies equal to 1 for each pair of economies. Numbers in parentheses in Table 6 indicate sizes 

of the samples after the GFC. 

Table 6. Number of the dummies equal to 1 

Dummy (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

( , )

1
1

i j
D   7 (6) 12 (9) 10 (8) 18 (18) 15 (15) 8 (6) 

( , )

2
1

i j
D   15 (15) 11 (7) 15 (11) 9 (7) 12 (9) 14 (11) 

( , ) ( , )

1 2
1

i j i j
D D   1 (1) 6 (4) 4 (3) 4 (4) 1 (1) 3 (3) 

1
i j

dd    8 (7) 15 (12) 12 (11) 10 (9) 6 (6) 10 (10) 

Note: This table reports the number of samples where the values of dummy variables are equal to 1 for each economy 

pair ( , )i j . Numbers in parentheses indicate sizes of the samples after September 2008. 

It is worth to mention two points about Table 6. First, the number of observations satisfying 

( , )

1,
1

i j

t
D   or 

( , )

2,
1

i j

t
D   is smaller than 28 which is the size of { | 1, 1 561}k

tt d t   , 5% of 561 

observations, for all economy pairs. Furthermore, Sample sizes of 
( , ) ( , )

1, 2,
1

i j i j

t t
D D   are also smaller 

than those of 1
i j

t t
d d   for all economy pairs. These are because we removed shocks that occurred 

outside the pair ( , )i j  from 
i

td  (
j

td ) to define 
( , )

1,

i j

t
D  (

( , )

2,

i j

t
D ) based on economy-specific shocks. 

Second, most of the economy-specific shocks appeared after the GFC. For example, total number of 

samples of 
( , ) ( , )

1, 2,
1

i j i j

t t
D D   is 19 and 16 out of them lie after the GFC. This cluster of shocks after 

the GFC is related to the structural increase in the dependence after the GFC which will be tested in 

Section 4.5. 

As mentioned in Section 2.3.2, positive significance of 
( , )

1,

i j

t
D (

( , )

2,

i j

t
D ) would imply the existence of 

contagion from economy i ( j ) to economy j ( i ), whereas negative or insignificant estimates 

would be natural because our definitions of dummies are based on economy-specific shocks. Thus, 

we are only interested in the cases of dummies with positive coefficients which represent contagion. 
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4.3.1. Estimation results of the non-mixed dynamic copulas 

4.3.1.1. Results of the dynamic GA copula. Tables 7 reports estimated results of the dynamic GA 

copula with dummy variables 
1

D  and 
2

D , respectively. Both dynamic GA copula models exhibit 

better goodness-of-fit than the static GA copula resulting in overall higher p-values of the Hit test. 

Table 7. Estimates of dynamic GA copulas 

  Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Copula parameters with D1 as a regressor 

 
  Constant 0.0319*** 5.6038*** 0.3076*** 0.3190*** 0.9658*** 2.0649*** 

  
  (0.0034) (0.0015) (0.0109) (0.0156) (0.0254) (0.0143) 

  
AR(1) 1.9289*** -4.9079*** 1.2817*** 0.8579*** -0.7829*** -2.1236*** 

  
  (0.0115) (0.0023) (0.0287) (0.0547) (0.0678) (0.0180) 

  
MA(10) 0.2205*** 0.2014*** 0.2669*** 0.4948*** 0.1059*** -0.0606*** 

  
  (0.0045) (0.0015) (0.0074) (0.0172) (0.0094) (0.0129) 

  1
D  -0.2728*** -0.0603*** -0.0937*** 0.0132** -0.1633*** -0.4186*** 

  
  (0.0064) (0.0011) (0.0070) (0.0061) (0.0061) (0.0082) 

  
lnL 67  235  69  58  34  70  

 
  Hit Test 0.0354  0.3628  0.5422  0.9981  0.9138  0.6713  

Copula parameters with D2 as a regressor 

 
  Constant 1.1124*** 0.4297*** 0.4734*** 0.2045*** 0.5743*** 0.5890*** 

  
  (0.0221) (0.0292) (0.0089) (0.0067) (0.0199) (0.0116) 

  
AR(1) -1.3079*** 1.9975*** 0.9893*** 1.2065*** 0.3335*** 0.8630*** 

  
  (0.0527) (0.0383) (0.0203) (0.0242) (0.0599) (0.0244) 

  
MA(10) 1.0123*** 0.0952*** 0.3177*** 0.3904*** 0.1203*** 0.1381*** 

  
  (0.0136) (0.0038) (0.0060) (0.0088) (0.0087) (0.0054) 

  2
D  -0.1328*** -0.4762*** -0.3444*** 0.3694*** -0.1626*** -0.3724*** 

  
  (0.0069) (0.0072) (0.0053) (0.0082) (0.0059) (0.0062) 

  
lnL 64  235  74  60  34  70  

 
  Hit Test 0.0346  0.3415  0.5349  0.9981  0.9149  0.6626  

Note: This table provides parameter estimates of dynamic GA copulas with D1. Values in parentheses are standard 

errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels, respectively. lnL means a 

log likelihood value and Hit Test means a p-value from the Hit test. 

In Table 7, only ( , )JP KR  has positive and significant 
1

D . This implies contagion from JP to KR 

meaning that the linear dependence of sovereign risks between JP and KR will increase by 

(0.0132) , on average, if a shock hits JP.  Also, ( , )JP KR  is the only pair having positive and 

significant 2
D . This indicates that a shock on KR will increase the linear dependence of sovereign 

risks between JP and KR as much as (0.3694) , on average. Combining these results, we can infer 
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that there exists a two-way sovereign risk contagion in terms of the linear dependence (“linear 

contagion” ) between JP and KR. 

4.3.1.2. Results of dynamic SJC copulas. Tables 8-1 and 8-2 report estimated results of the 

dynamic SJC copula with dummy variables 
1

D  and 
2

D , respectively. Similar to the case of the GA 

copula, the dynamic model outperforms the static model in terms of goodness-of-fit in general. 

Table 8-1. Estimates of dynamic SJC copulas with D1 

  Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Copula parameters with D1 as a regressor 

 
U  Constant 0.7491*** 5.5062*** 5.6589*** 7.8579*** 0.3720*** 2.8676*** 

  
  (0.1014) (0.0052) (0.0776) (0.1185) (0.0812) (0.1194) 

  
AR(1) 1.6832*** -3.0794*** -2.4605*** -5.1118*** -3.0246*** 2.1992*** 

  
  (0.1752) (0.0144) (0.0713) (0.0585) (0.1118) (0.0841) 

  
MA(10) -7.0494*** -17.0008*** -22.2439*** -27.2779*** -0.8929*** -19.1836*** 

  
  (0.2311) (0.0799) (0.2854) (0.4920) (0.2435) (0.4974) 

  1
D  -6.6845*** 1.0123*** 0.6943*** -13.0895*** -1.8394*** -6.5863*** 

  
  (0.1077) (0.0039) (0.0348) (0.1904) (0.0617) (0.2115) 

 
L  Constant 2.4965*** 8.4394*** 3.9960*** 0.9862*** 4.9922*** 1.0768*** 

  
  (0.0675) (0.0247) (0.0625) (0.0920) (0.0814) (0.2517) 

  
AR(1) -3.5336*** -6.2654*** -1.3806*** -2.6688*** -4.8488*** -2.3736*** 

  
  (0.1329) (0.0157) (0.0616) (0.2857) (0.0568) (0.6410) 

  
MA(10) -11.1605*** -26.9429*** -22.2471*** -6.2307*** -26.4740*** -3.9385*** 

 
    (0.2996) (0.0144) (0.3272) (0.2268) (0.2539) (0.4053) 

 
  lnL 72  243  95  64  41  79  

    Hit Test 0.1984  0.8908  0.6125  0.9996  0.9578  0.7320  

Note: This table provides parameter estimates of dynamic SJC copulas with D. Values in parentheses are standard errors. 

***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels, respectively. lnL means a log 

likelihood value and Hit Test means a p-value from the Hit test. 

In Table 8-1, ( , )CN KR  and ( , )CN HK  exhibit positive and significant 
1

D ’s. This means that 

there exists one-way contagion from CN to KR and from CN to HK in terms of the upper tail 

dependence (“upper tail contagion”). For ( , )CN KR  as an example, the CDS market’s expectation 

on the likelihood of the default of KR increases by (1.0123) , on average, if a shock hits CN.
18

 In 

                                      
18

 Recall that tail dependences are defined as limits of conditional probabilities from (Eq. 2). 
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Table 8-2, however, no dummy has positive significance. All parameter estimates of 
2

D ’s are 

negative except one for ( , )CN KR , which is positive but insignificant. 

Table 8-2. Estimates of dynamic SJC copulas with D2 

  Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Copula parameters with D2 as a regressor 

 
U  Constant 5.4366*** 6.3979*** 4.5820*** 4.7254*** -0.4322*** 1.3314*** 

  
  (0.0785) (0.0108) (0.0872) (0.0846) (0.0839) (0.1030) 

  
AR(1) -5.2551*** -4.0660*** -1.0536*** -1.5963*** -1.2437*** 1.9115*** 

  
  (0.0376) (0.0749) (0.0744) (0.0960) (0.2608) (0.0977) 

  
MA(10) -16.5001*** -17.7788*** -18.6548*** -20.4246*** 0.1006 -9.4080*** 

  
  (0.2968) (0.3482) (0.3107) (0.2903) (0.2338) (0.3416) 

  2
D  -1.0202*** 0.0157 -17.1909*** -0.7285*** -1.1912*** -8.5013*** 

  
  (0.0332) (0.0125) (0.1312) (0.0453) (0.0486) (0.1993) 

 
L  Constant 2.2781*** 8.5959*** 4.0866*** 1.0275*** 4.7885*** -1.4544*** 

  
  (0.0644) (0.0483) (0.0653) (0.0677) (0.1328) (0.0248) 

  
AR(1) -3.1054*** -6.8159*** -1.5422*** -3.0180*** -4.8618*** 4.8615*** 

  
  (0.1189) (0.0095) (0.1048) (0.1601) (0.0576) (0.0328) 

  
MA(10) -11.3643*** -27.3753*** -22.9565*** -5.8050*** -24.9880 -2.3375*** 

  
  (0.2723) (0.3716) (0.1977) (0.2210) (0.6635) (0.1042) 

 
  lnL 73  244  96  63  41  80  

    Hit Test 0.1864  0.8964  0.6051  0.9997  0.9547  0.7284  

Note: This table provides parameter estimates of dynamic SJC copulas with D2. Values in parentheses are standard 

errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels, respectively. lnL means a 

log likelihood value and Hit Test means a p-value from the Hit test. 

4.3.1.3. Motivation for mixture of dynamic copulas. Note that the economy pairs with linear 

contagion and those with upper tail contagion are not only different but also separated completely. 

This implies that the East Asian economies have sovereign risk contagion and its impact could be 

different according to whether it is measured by the linear or the upper tail dependence. Therefore, 

non-mixed copula models are not enough to fully describe this complex dependence structure. These 

results motivates simultaneous consideration of the linear dependence and the tail dependences to 

improve the ability of a model for investigating contagion effects on dependence structures between 

the East Asian sovereign CDS markets. 

 

4.4. Estimation results of the mixture of dynamic copulas 
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4.4.1. Estimation results 

Tables 9-1 and 9-2 present estimated results of the dynamic GASJC copulas with dummy 

variables 
1

D  and 
2

D , respectively. 

 

 

Table 9-1. Estimates of dynamic GASJC copulas with D1 

  Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Copula parameters with D1 as a regressor 

 
  Constant -0.2315*** 6.2258*** 0.3608*** -0.5963*** 2.2459*** 2.5828*** 

  
  (0.0029) (0.0731) (0.0097) (0.0115) (0.0608) (0.0325) 

  
AR(1) 2.5015*** -5.5146*** 2.7109*** 2.2061*** -2.1974*** -2.4240*** 

  
  (0.0076) (0.0508) (0.0147) (0.0238) (0.0319) (0.0158) 

  
MA(10) 0.9839*** 0.3579*** 0.0189*** 0.8717*** 1.3053*** -1.0395*** 

  
  (0.0119) (0.0179) (0.0062) (0.0176) (0.1028) (0.0258) 

  1
D  1.3753*** -0.0115 -2.0454*** 1.8503*** -5.1198*** -1.9621*** 

  
  (0.0723) (0.0145) (0.0269) (0.0496) (0.0450) (0.0451) 

  
Weight 0.2010*** 0.4703*** 0.2442*** 0.0990*** 0.0963*** 0.2912*** 

 
    (0.0125) (0.0299) (0.0129) (0.0050) (0.0062) (0.0180) 

 
U  Constant -0.2694*** 7.4279*** 5.9823*** 8.7370*** -0.4385*** 4.5594*** 

  
  (0.1042) (0.1239) (0.0830) (0.0606) (0.0884) (0.0758) 

  
AR(1) 1.4574*** -2.6917*** -1.9363*** -5.4478*** -2.3979*** 2.8500*** 

  
  (0.2044) (0.1055) (0.0352) (0.0336) (0.1912) (0.0660) 

  
MA(10) -1.8590*** -29.9853*** -29.9932*** -29.9965*** 0.7644*** -29.9983*** 

  
  (0.2303) (0.8210) (0.2675) (0.2352) (0.2350) (0.2942) 

  1
D  -6.6830*** 1.5583*** 4.9611*** -13.0880*** -1.0093*** 0.9089*** 

  
  (0.0423) (0.0870) (0.0541) (0.0423) (0.0562) (0.1140) 

 
L  Constant 2.4052*** 8.6721*** 4.2056*** 0.8764*** 5.5549*** 3.8036*** 

  
  (0.0721) (0.1820) (0.0517) (0.0452) (0.1416) (0.0570) 

  
AR(1) -3.6085*** -6.5034*** -3.0991*** -3.0180*** -4.8448*** -4.5676*** 

  
  (0.1272) (0.0491) (0.0945) (0.0783) (0.0481) (0.0733) 

  
MA(10) -13.2509*** -29.9787*** -25.9827*** -3.8538*** -29.9956*** -10.7459*** 

  
  (0.3992) (0.8295) (0.1912) (0.1564) (0.6681) (0.2322) 

 
  lnL 78  254  100  67  42  84  

    Hit Test 0.4173  0.8821  0.5551  0.9990  0.9624  0.7870  

Note: This table provides parameter estimates of dynamic GASJC copulas with D1. Values in parentheses are standard 

errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels, respectively. lnL means a 

log likelihood value and Hit Test means a p-value from the Hit test. 
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Table 9-2. Estimates of dynamic GASJC copulas with D2 

  Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Copula parameters with D2 as a regressor 

 
  Constant 4.2037*** 2.1364*** 7.4991*** -0.8891*** 0.3199*** 0.9435*** 

  
  (0.0883) (0.1137) (0.0477) (0.0195) (0.0437) (0.0294) 

  
AR(1) -2.6189*** 0.7384*** -1.8078*** 3.3219*** 0.0926** 1.3111*** 

  
  (0.0638) (0.0649) (0.0387) (0.0307) (0.0418) (0.0367) 

  
MA(10) 6.3427*** -0.3569*** -5.5858*** 0.9464*** 0.6349*** -0.0872*** 

  
  (0.0817) (0.0711) (0.0530) (0.0183) (0.0545) (0.0227) 

  2
D  5.2611*** -3.0252*** -3.5329*** 6.5393*** -2.5954*** -1.5538*** 

  
  (0.1641) (0.0356) (0.0352) (0.0649) (0.0981) (0.0312) 

  
Weight 0.0988*** 0.4139*** 0.1253*** 0.0684*** 0.0888*** 0.4741*** 

  
  (0.0066) (0.0267) (0.0080) (0.0049) (0.0053) (0.0244) 

 
U  Constant 5.2846*** 5.9133*** 5.3239*** 5.1999*** -0.3536*** 2.7074*** 

  
  (0.0590) (0.0003) (0.0292) (0.0377) (0.0250) (0.1231) 

  
AR(1) -5.0578*** -2.5728*** -1.6076*** -1.6990*** -1.3809*** 5.6964*** 

  
  (0.0373) (0.0001) (0.0572) (0.0848) (0.0416) (0.0756) 

  
MA(10) -18.6757*** -22.8412*** -23.1027*** -22.4970*** 0.1814*** -29.9994*** 

  
  (0.2213) (0.0005) (0.0579) (0.0858) (0.0418) (0.6709) 

  2
D  -1.4458*** 5.3406*** -17.1858*** -1.0434*** -0.8168*** -8.4946*** 

  
  (0.0440) (0.0002) (0.0423) (0.0584) (0.0429) (0.0423) 

 
L  Constant 1.8014*** 8.2824*** 4.4490*** 0.8303*** 4.9787*** 1.5634*** 

  
  (0.0367) (0.0004) (0.0259) (0.0304) (0.0409) (0.0865) 

  
AR(1) -2.3332*** -6.7026*** -1.3778*** -3.6813*** -4.8988*** 5.7830*** 

  
  (0.0451) (0.0007) (0.0625) (0.0516) (0.0447) (0.0530) 

  
MA(10) -13.2470*** -27.3115*** -26.0719*** -3.9821*** -24.9103*** -29.9986*** 

  
  (0.1935) (0.0006) (0.0502) (0.0528) (0.0433) (0.7426) 

 
  lnL 77 257 103 67 41 86 

    Hit Test 0.3246  0.8777  0.5158  0.9992  0.9568  0.7487  

Note: This table provides parameter estimates of dynamic GASJC copulas with D2. Values in parentheses are standard 

errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels respectively. lnL means a 

log likelihood value and Hit Test means a p-value from the Hit test. 

 The results in Tables 9-1 and 9-2 support usefulness of our mixture approach. The GASJC 

copula shows consistent results with non-mixed copulas: (1) the two-way linear contagion in 

( , )JP KR  and (2) the one-way upper tail contagion in ( , )CN KR  and ( , )CN HK . In addition, our 

dynamic GASJC copulas identify further contagions that are not detected by the non-mixed copulas: 
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(1) the two-way linear contagion in ( , )CN JP  and (2) the one-way upper tail contagion from KR to 

HK. The pair ( , )CN JP  in Tables 9-1 and 9-2 has positive and significant 
1

D  and 
2

D  in 
t

 , which 

is negative in Table 7 for the dynamic GA copula. Also, ( , )KR HK  in Table 9-1 has positive and 

significant 
1

D  in 
U

t
 , which is negative in Table 8-1 for the dynamic SJC copula. Therefore, these 

results confirm that our mixture of dynamic copulas approach reflects the complexity of sovereign 

risk contagion more comprehensively by incorporating the linear and the tail dependence measures 

together. 

Notice that no pair of economies has linear and upper tail contagion simultaneously: if contagion 

exists, the coefficient estimates of the corresponding dummies in t  and 
U

t  have opposite signs. 

Furthermore, if a pair of economies have linear (upper tail) contagion not in the non-mixed models 

but in the mixture model, generally the coefficient estimate of the corresponding dummy in the 
U

t

( t ) of the mixture model is smaller than that of the non-mixed model. Based on these results, we 

can infer that contagion between two economies has only one type of contagion of either linear or 

upper tail dependence. Thus, shocks increasing the upper tail dependence will decrease the linear 

dependence and shocks increasing the linear dependence will decrease the upper tail dependence. 

Figure 3 summarizes our inferences about the significant direction of sovereign risk contagion 

between East Asian economies based on Tables 9-1 and 9-2 for the dynamic GASJC copula model. 

It shows that a significant contagious effect between two economies in terms of one dependence 

measure become ineffective in terms of another dependence measure. For example, CN and KR have 

a significant two-way upper tail contagion but no linear contagion. 

In Figure 3, JP plays the most important role in the East Asian sovereign CDS market in terms of 

linear contagion, but CN and KR are crucial in terms of upper tail contagion when economy-specific 

shocks are presented. The strongest upper tail contagion can be inferred by the fact that CN and KR 
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have the highest kurtosis in Table 1 and share the most tail events in Table 6. Furthermore, HK is the 

most vulnerable but JP is the most robust to upper tail contagion among the four economies. 

 

Linear (Gaussian) Contagion  Upper tail Contagion 

   

 

Figure 3. Existence and direction of contagion between the East Asian sovereign CDS market, where contagion is 

defined as a significant increase in market dependence due to an economy-specific shock to one economy. 

Why is JP related to the linear contagion only and robust to tail events of other economies? First, 

the size of shocks to JP is not large enough to spillover to other economies as shown in skewness 

and kurtosis of Table 1. Second, JP has the least trade linkage to other economies. Table 10 exhibits 

ratios of foreign trade to GDP for the analyzed economies. As shown in Table 10, JP has the lowest 

Total Trade to GDP and Net Export to GDP ratios among the economies, meaning low economic 

linkage with other economies. Thus, shocks to JP could be less transmitted to other economies and 

thus, JP’s tail events may cause not upper tail contagion but at most linear contagion. Inversely, 

shocks to other economies such as CN and KR are also less transmitted to JP due to the same reason. 

Third, this is also related to the fact that JP is a developed markets regarded as a safe haven by 

global investors, resulting in a low vulnerability to outer shocks. Thus, JP is the most robust against 

tail events from other economies. 

The importance of CN and KR in the upper tail contagion can be interpreted in a similar way. First, 

as shown in high kurtosis of Table 1 the size of shocks to CN and KR are fairly large which is feature 

of emerging markets. In fact, CN and KR are classified as emerging markets by global investors. 

Second, as shown in Table 10, CN and KR have large economic scales and strong trade linkages to 

JP 

KR 

HK 

CN 
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other economies. Thus, their tail events can be easily transmitted and cause upper-tail contagion to 

each other and other economies. 

Table 10. Economic scale and openness of East Asian economies 

Economic Characteristic CN HK JP KR World 

GDP (in $tri) 6,062 237 5,214 1,117 64,970 

Export / GDP 29.08  198.93  15.53  47.63  29.68  

Import / GDP 24.17  192.56  15.49  44.96  28.93  

Total Trade / GDP 53.25  391.49  31.02  92.59  58.61  

Net Export / GDP 4.91  6.38  0.04  2.67  0.74  

Note: This table exhibits GDP’s and ratios of foreign trade to GDP for analyzed East Asian economies. Larger GDP 

means larger economic scale and higher ratio means higher economic openness. World in the last column represents 

global average. All values are calculated using statistics from World Bank and averaged from 2005 to 2014. 

Lastly, HK does not cause upper tail contagion but receives impacts of tail events of other 

economies. This vulnerability of HK basically seems to be related with its high economic openness 

and the small economic scale. Especially, the upper tail contagion from CN to HK is a result of the 

heavy economic dependence of HK on CN. Thus, HK is vulnerable to CN-specific shock. On the 

other hand, the upper tail contagion from KR to HK seems to be related with not only KR-specific 

shocks but also the high systemic risk during the GFC period. Actually, shocks related to the tail 

contagion from KR to HK satisfying  
( , ) ( , )

1, 2, 1HK KR HK KR

t tD D   clustered between March 2009 and 

August 2009.
19

 For this period, investors were still worrying about the ability of repayment of KR 

although the peak of the GFC crisis already passed and thus, the upper tail contagion from KR to HK 

can be interpreted as investors in the HK sovereign CDS market were sensitive to KR because HK 

was a representative international financial center in Asia having various financial linkage with other 

economies.
20

 

The vulnerability of HK to the upper tail dependence can also be understood with respect to 

spillover from lower rated economies to higher rated economies. Afonso et, al (2012) showed 

                                      
19

 The 1
st
 week of March, the 2

nd
 week of June, and the 2

nd
 week of August in 2009. 

 

20
 Complex financial products such as derivatives played an important role in amplifying and propagating the systemic 

risk for the GFC period. 
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spillovers in the government bond markets from lower rated countries to higher rated countries in the 

case of negative announcements on credit ratings, especially among EMU countries. In this regard, 

tail events on the CN and KR, lower rated economies, could spill over to HK, a higher rated economy. 

Of course, there are limitations in this aspect because Afonso et, al (2012)’s finding is obtained from 

the sovereign bond yields of the EU countries, whereas we are analyzing the sovereign CDS spreads 

of the Asian economies. 

 

4.4.2. Goodness-of-fit test 

In Table 11, we present the results of the bivariate hit tests for all estimated copulas. We divided 

the support of the copulas into seven regions and tested whether the copula models are well specified 

in all regions for each economy pair.
21

 A p-value less than 0.05 indicates a rejection of the null 

hypothesis that the model is well specified. 

Table 11. Joint hit test results for the copula models 

Model (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Static GA 0.0283  0.3519  0.5398  0.9885  0.8972  0.6502  

 
SJC 0.2002  0.7084  0.7082  0.9979  0.9312  0.6564  

 
GASJC 0.3199  0.7664  0.8007  0.9975  0.9168  0.7527  

Dynamic GA(
1

D ) 0.0354  0.3628  0.5422  0.9981  0.9138  0.6713  

 
SJC(

1
D ) 0.1984  0.8908  0.6125  0.9996  0.9578  0.7320  

 
GASJC(

1
D ) 0.4173  0.8821  0.5551  0.9990  0.9624  0.7870  

 
GA(

2
D ) 0.0346  0.3415  0.5349  0.9981  0.9149  0.6626  

 
SJC(

2
D ) 0.1864  0.8964  0.6051  0.9997  0.9547  0.7284  

  GASJC(
2

D ) 0.3246  0.8777  0.5158  0.9992  0.9568  0.7487  

Note: This table reports the p-values from the joint Hit tests. A p-value less than 0.05 rejects the null hypothesis that the 

model is well specified. 

Regardless of static or dynamic in Table 11, none of GA copulas passed the test at the 5% 

significance level for the pair (CN, JP), but SJC and GASJC copulas passed the test for all economy 

pairs. This implies the strong tail contagion existence between four Asian economies. Furthermore, 

                                      
21

 All detailed settings of the test are the same as in Patton’s (2006) study. 
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the highest p-values for GASJC copulas across all economy pairs imply that the mixture approach 

combining the tail and the Gaussian dependence is more appropriate for studying dependence 

structure and contagion. 

 

4.5. Effect of the GFC on dependence structure 

Our sample period covers the GFC and EDC which are regarded as the two most important events 

in the financial markets in the past decade. Remolona et al. (2015) report the GFC has structurally 

changed the sovereign credit risks and their relationships. In this regard, this section explores how 

the dependence changed after the GFC. 

In order to test whether the dependences have increased or decreased after the GFC, we define a 

new dummy variable 
GFC

t
D  whose value is equal to 1 for the period from October 2008

22 and 

substitute 
t

D in (Eq. 6) to 
GFC

t
D  as following: 
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 (Eq. 7) 

Positive significance would imply structural increase in dependence after the GFC whereas negative 

significance would imply structural decrease in dependence. 

Table 12 reports estimation results for testing structural breaks in time-varying dependences. It 

gives consistent results with the inferences about contagion based on GASJC copula in a sense that 

all the economy pairs with two-way contagion have structural increase in the corresponding 

dependence. 

                                      
22 

Lehman Brothers collapsed on Sep 2008. 
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Table 12. Estimates of dynamic GASJC copulas with D
GFC

 

  Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

 
  Constant -0.2800*** 7.8918*** 2.1894*** -5.7725*** -3.6861*** -0.1660*** 

   
(0.0078) (0.0404) (0.0874) (0.0545) (0.0556) (0.0025) 

  
AR(1) 2.2833*** -6.8915*** -2.0916*** -2.6442*** -2.3028*** 2.5259*** 

   
(0.0133) (0.0370) (0.0095) (0.0403) (0.0107) (0.0040) 

  
MA(10) 0.7864*** 0.6876*** -1.7393*** 2.7419*** 3.2018*** 0.0852*** 

   
(0.0149) (0.0114) (0.0632) (0.0296) (0.0242) (0.0024) 

  
D

GFC
 0.6283*** 0.0667*** 0.1593** 7.9891*** 4.4125*** -0.0171*** 

   
(0.0172) (0.0055) (0.0639) (0.1052) (0.0699) (0.0016) 

  
Weight 0.2185*** 0.5565*** 0.3555*** 0.1086*** 0.0938*** 0.2704*** 

 
  

 
(0.0139) (0.0342) (0.0185) (0.0064) (0.0060) (0.0167) 

 
U  Constant 6.7616*** 1.3182*** 8.3274*** 5.1128*** 0.0798*** 5.4497*** 

   
(0.0786) (0.1321) (0.2038) (0.0385) (0.0306) (0.0434) 

  
AR(1) -6.0993*** 0.8141*** 0.6139*** -1.1075*** -6.5597*** 1.4178*** 

   
(0.0215) (0.2042) (0.0834) (0.0634) (0.0429) (0.0659) 

  
MA(10) -18.7392*** -12.3805*** -29.9962*** -22.2352*** 1.0853*** -29.9845*** 

   
(0.2781) (0.4968) (0.5798) (0.1129) (0.0656) (0.0847) 

  
D

GFC
 -2.4590*** 1.0894*** -1.2852*** -0.5307*** 0.2456*** -0.3501*** 

   
(0.0559) (0.0499) (0.0582) (0.0368) (0.0097) (0.0349) 

 
L  Constant 1.4051*** 6.9894*** 2.5877*** 0.4927*** 4.4175*** 0.4861*** 

   
(0.0988) (0.0745) (0.1041) (0.0322) (0.0851) (0.0408) 

  
AR(1) -2.9495*** -6.3254*** 6.2758*** -3.8824*** -4.8043*** -0.7477*** 

   
(0.2332) (0.0354) (0.0633) (0.0634) (0.0641) (0.0815) 

  
MA(10) -9.4425*** -29.9998*** -29.9942*** -2.5729*** -22.8452*** -4.0534*** 

   
(0.4211) (0.4859) (0.7258) (0.0620) (0.2457) (0.2240) 

 
  lnL 77  253  100  67  41  83  

    Hit Test 0.4086 0.8969 0.7975 0.9993 0.9396 0.7664 

Note: This table provides parameter estimates of dynamic GASJC copulas with D
GFC

 as the dummy. Values in 

parentheses are standard errors. ***, **, * indicate statistical significance at the 1%, 5%, 10% level, respectively. lnL 

means a log likelihood value and Hit Test means a p-value from the Hit test. 

We mention two inferences from these results. First, Gaussian dependence generally increased 

after the GFC including economy pairs without two-way contagion. This means overall dependence 

of sovereign risk between East Asian economies perceived in their CDS markets structurally 
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increased after the GFC, regardless of their contagion in linear dependence. This result is consistent 

with Table 6, where most of economy-specific shocks are located in the period after the GFC.  

Second, the upper-tail dependence structurally increased after the GFC for the cases of (CN, KR) 

and (JP, HK) only. Global investors usually classify JP and HK as advanced markets whereas CN 

and KR are regarded as emerging markets. Thus we can summarize this result that the upper tail 

dependences between economies of similar economic development status structurally increased after 

the GFC whereas the upper tail dependences between economies of different economic development 

status structurally decreased among the East Asian sovereign CDS markets. The case of (CN, KR) is 

also related to their two-way tail contagion. Note that other economy pairs with one-way contagion 

such as CN→HK and KR→HK do not show structural increases in their upper-tail dependences. This 

implies that impact of one-way upper tail contagion is temporary whereas that of two-way upper tail 

contagion lasts for a longer period of time. 

  

5. Conclusion 

This paper examined sovereign risk contagion and the impact of the GFC on dependence  

between East Asian economies using a mixture of dynamic GA and SJC copulas based on the 

sovereign CDS spreads of CN, HK, JP and KR. Throughout the paper, contagion is defined as a 

significant increase in markets’ dependence due to an economy-specific shock. In order to identify 

contagion that arose from this type of shock, we introduced dummy variables into parameter 

equations of the dynamic copulas. We filtered the CDS spreads using AR-GARCH-t models 

controlling for global and economy-specific factors to prevent potential biases of testing for financial 

contagion reported in by Forbes and Rigobon (2002) and Corsetti et al. (2005). Then we applied 

mixture of conditional (time-varying) Gaussian and symmetrized Joe-Clayton copulas to the 

standardized residuals for modeling pair-wise dependence between economies. 
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The main findings of our study are as follows. First, we found evidence that contagion exists 

between the East Asian sovereign CDS markets. Second, the perceived impact of contagion could be 

different according to whether it is measured by the linear or the tail dependence. That is, an 

economy with a contagious effect in terms of one dependence measure can be ineffective in terms of 

another dependence measure. Third, our mixture of copulas model successfully reflects this 

heterogeneity of sovereign risk contagion across different dependence measures by combining the 

linear and the tail dependences together and allowing the individual dependence measures to respond 

to shocks through their own dynamic processes. It showed that the linear and the upper tail 

dependence trade off each other once contagion occurs. Fourth, JP plays the most important role in 

the East Asian sovereign CDS market in terms of the linear dependence, whereas CN and KR are 

crucial in terms of the upper tail dependence. Lastly, the linear dependence has structurally increased 

after the GFC in general, which is related to the concentration of shocks after the GFC. On the other 

hand, the upper tail dependence has increased for (CN, KR) and (JP, HK), but it decreased for the 

other economy pairs after the GFC. The structural change in the upper tail contagion is consistent 

with our findings about contagion. 
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