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1. Introduction 

The recent financial crises have renewed interest in complex network topology, 

through market connectedness (Askari et al., 2018; Majapa and Gossel, 2018). In fact, 

connectedness is a crucial component of risk and risk management, in particular portfolio 

concentration risk (Diebold and Yilmaz, 2014).1 In addition, the measurement of network 

connectedness provides an “early warning system” for possible upcoming crises, and a system 

to track the progress of extant crises (Yu et al., 2018). Network connectedness visualizes the 

propagation path of volatility shocks across financial markets (Cimini, 2015; Liu et al., 2017; 

Zho et al, 2018). Therefore, portfolio investors examine connectedness with the aim of 

designing strategies for optimal asset allocation, portfolio optimization, downside risk 

reductions, and hedging strategies (Majdoub and Mansour, 2014; Kang et al., 2017; Mensi, et 

al., 2017).  

Researchers have recently proposed a variety of methodologies to measure the 

complex network that exists in financial markets (see An et al., 2018; Dastkahan and 

Gharneh, 2018; Dimitros and Charakopoulos, 2018; Xi and An, 2018). In earlier studies, Eom 

et al., (2009) used cross-correlations between stock prices and proposed the minimal spanning 

tree approach to measure network topology across international stock markets. Adrian and 

Brunnermeier (2010) introduced the conditional value-at-risk (CoVaR) method, which 

measures the value-at-risk (VaR) of financial institutions conditional on other institutions 

experiencing financial distress. Billio et al., (2012) applied principal components analysis and 

pairwise Granger-causality networks to measure systemic risk in the financial industry. 

Diebold and Yilmaz (2014) used the spillover index approach to measure both system-wide 

and pairwise connectedness in US financial firms. Most recently, using the Granger-causality 

                                                           
1  Diebold and Yilmaz (2014) stated that, to minimize portfolio risk, optimal portfolio allocation requires 

awareness and measurement of connectedness.    
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network approach, Baumöhl et al. (2018) analyzed the volatility network across international 

stock markets. Also, Shahzad, et al. (2018) introduced a bivariate cross-quantilogram 

approach to examine the net transmitters and receivers of spillovers in complex financial 

networks.  

In order to measure the volatility connectedness network, this paper utilizes the 

spillover index approach of Diebold and Yilmaz (2014) which assess the magnitude and 

direction of connectedness across financial variables over time, and hence it provides an 

alternative way to check the decoupling hypothesis (contagion effect) across global futures 

markets. In recent years, this spillover index approach has been widely used to examine the 

connectedness network across different assets (Maghyereh, et al., 2016; Zhang, 2017), 

institutions (Diebold and Yilmaz, 2014; 2016), CDS sectors (Shahzad, et al., 2018) and 

markets (Greenwood-Nimmo et al., 2016; Fernández-Rodríguez et al., 2016; Shahzad et al., 

2017). Nevertheless, a few studies have explored the network connectedness across global 

futures markets, while accounting for recent financial crises. In this context, this study 

analyzes the network connectedness to understanding the transmission of risk spillover across 

global futures markets. 

Our study contributes to the literature in several ways. First, this study uses a 

multivariate equicorrelation (DECO)-Fractionally Integrated GARCH (FIGARCH) model to 

assess time-varying correlations between global index and commodity futures markets. The 

model allows us to capture the long memory property in volatility. Second, this study 

investigates net and directional connectedness within the network topology of the spillover 

framework.  The spillover index approach provides accurate information on the direction and 

intensity of risk spillover to investors, thus aiding precise asset allocation and investment 

decisions. Third, we analyze a rolling sample approach to detect the time-varying dynamics of 

the spillover index and observe how the recent financial crises may have affected the intensity 
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and direction of volatility spillovers between index and commodity future markets. The 

rolling sample approach allows us to examine the risk spillovers over time without having to 

use a cutoff date to create sub-samples. Similarly, possible economic and financial events 

must be considered when analyzing a financial time series because arbitrarily chosen sub-

samples or non-overlapping intervals cannot capture this dynamic. Fourth, we emphasize the 

connectedness in each market as a measure of how volatility shocks are transmitted across 

these markets. That is, we provide a visualization of the complex network to understand the 

net pairwise connectedness across global index and commodity futures markets. From a 

practical point of view, our network connectedness informs the price discovery and has 

profound importance to portfolio managers.  

The remainder of this study is organized as follows. Section 2 discusses the 

methodology used in this study. Section 3 describes the data and presents the preliminary 

analysis. In section 4 we report and discuss the results, while Section 5 provides concluding 

remarks. 

 

2. Empirical method 

2.1. The DECO-FIGARCH model 

In this section, we estimate the multivariate DECO model, allowing us to assess the 

average of the conditional correlations set equal to the average of all correlation pairs (Engle 

and Kelly, 2012). In the first stage, we estimate the univariate fractionally integrated GARCH 

(FIGARCH) model and we presume that the index return (𝑟𝑡)  is expressed by an 

autoregressive moving average (ARMA (1,1)) model as follows:  

𝑟𝑡 = 𝜇 + 𝜑1𝑟𝑡−1 + 𝜀𝑡 + 𝜃1𝜀𝑡−1,  t ∈ N   with 𝜀𝑡 = 𝑧𝑡 √ℎ𝑡 ,                                              

(1)  
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where 𝜑1 is the AR(1) parameter,  𝜃1  is the MA(1) parameter, 𝑧𝑡  are assumed under the 

Student-t distribution (𝑧𝑡~𝑆𝑇(0,1, 𝑣)) , and ℎ𝑡  is the conditional variance. The 

FIGARCH(1, 𝑑, 1)
  model of Baillie et al., (1996) is defined as follows: 

ℎ𝑡 = 𝜔 + 𝛽1(𝐿)ℎ𝑡 + [1 − (1 − 𝛽1𝐿)−1(1 − 𝜙𝐿)(1 − 𝐿)𝑑]𝜀𝑡
2,                                   (2) 

where, ω > 0, 𝜙1, 𝛽1 < 1, 0 ≤ 𝑑 ≤ 1.  d is the fractional integration parameter and L is the 

lag operator. For 0 ≤ d ≤ 1  , the FIGARCH process captures persistence of shocks to 

conditional volatility. The fractional differencing operator (1 − 𝐿)𝑑  is defined as: 

(1 − 𝐿)𝑑 = ∑
Γ(𝑘−𝑑)𝐿𝑘

Γ(−𝑑)Γ(𝑘+1)
∞
𝑘=0                                                                                                 

(3) 

In the second stage, the conditional correlation is estimated using the transformed 

return residual, which is estimated from the univariate FIGARCH (1, 𝑑, 1)  model. The 

conditional variance-covariance matrix 𝐻𝑡 can be written as:   

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡,                                                                                                                (4) 

where 𝑃𝑡  denotes the (𝑛 × 𝑛)  symmetric matrix of dynamic conditional correlation, and 

 ,  represents the conditional variances of each return series. 

The dynamic conditional correlation matrix 𝑃𝑡 decomposes to: 

𝑅𝑡 = (𝑑𝑖𝑎𝑔𝑄𝑡)−1/2𝑄𝑡(𝑑𝑖𝑎𝑔𝑄𝑡)−1/2,                                                                            (5) 

𝑄𝑡 = (1 − 𝜆1 − 𝜆2)𝑄̅ + 𝜆1𝑢𝑡−1𝑢𝑡−1
′ + 𝜆2𝑄𝑡−1,                                                            (6) 

where 𝑄𝑡 defines the covariance matrix of the standardized residuals . 𝑄̅ =

𝑐𝑜𝑣(𝑢𝑡, 𝑢𝑡
′ ) = 𝐸(𝑢𝑡, 𝑢𝑡

′ ) is the 𝑛 × 𝑛  unconditional covariance matrix of  , while 𝜆1 and 𝜆2 

are non-negative scalars, and 𝜆1 + 𝜆2 < 1. The framework of the DECO model is derived 

from the consistent DCC (cDCC) model of Aielli (2013) by the correlation-driving process: 

tu
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𝑄𝑡 = (1 − 𝜆1 − 𝜆2)𝑄̅ + 𝜆1(𝑄𝑡−1
∗1/2

𝑢𝑡−1𝑢𝑡−1
′ 𝑄𝑡−1

∗1/2
) + 𝜆2𝑄𝑡−1,                                    (7) 

Using the cDCC framework, Engle and Kelly (2012) document that  is calculated 

from the off-diagonal elements of conditional correlation matrix . This model is named the 

dynamic equicorrelation (DECO). The equicorrelation is specified as (see Mensi et al., 2017): 

 ,                         (8) 

where , which is the th 

element of matrix  from the cDCC model. The scalar equicorrelation is used to estimate the 

conditional correlation matrix: 

,                                                                                            (9) 

where 𝐴𝑛 is the  matrix of ones, and  is the -dimensional identity matrix. This process 

allows us to generate a single time-varying correlation coefficient in large sets of assets.  

 

2.2. Spillover Index  

To analyze directional volatility spillover across global futures markets, we utilize the 

generalized VAR of the spillover index of Diebold and Yilmaz (2014) as follows: 

,                                                                                                (10) 

where 𝑋𝑡 is an Nx1 vector of endogenous variables, Ψ𝑖  are  autoregressive coefficient 

matrices, and  is a vector of error terms with an i.i.d. process. The above VAR 

process can be rewritten as a moving average process:  

 𝑋𝑡 = ∑ Ζ𝑖
∞
𝑖=1 𝜀𝑡−1  ,                                                                                                       

(11) 

t

tQ

( ) ( ), , 1 , 1 ,

DECO DECO DECO

i j t t DECO i t j t t DECO i j t tq a u u b q  − −= + − + − ),( ji

tQ

n n nI n
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where the N × N coefficient matrixes Z𝑖  are recursively defined as 𝑍𝑖 = ∑ 𝑍𝑖−𝑘
𝑃
𝑘=1 , with 𝑍0 

being the N × N identity matrix, and 𝑍𝑖 = 0 for i < 0. We analyze the generalized version of 

𝐻-step-ahead forecast-error variance decomposition as follows:  

𝑐𝑖𝑗
𝑔(𝐻) =

𝜎𝑗𝑗
−1 ∑ (𝑒𝑖

′Zℎ Σ 𝑒𝑗)
2𝐻−1

ℎ=0

∑ (𝑒𝑖
′Zℎ Σ Zℎ

′ 𝑒𝑗)𝐻−1
ℎ=0

,                                                                                       (12) 

where the term 𝛴 is a non-orthogonalized covariance matrix of errors corresponding to the 

VAR system. The term 𝜎𝑗𝑗  is a vector of standard deviations of the error term for the 𝑗𝑡ℎ 

equation and 𝑒𝑖  is an 𝑁 × 1 vector, which has 1 as the 𝑖𝑡ℎ  element and zero as the other 

elements.  

In the connectedness decomposition table, 𝐶𝑖←𝑗
𝐻  indicates pairwise directional 

spillovers from the futures market  𝑗 to another futures market 𝑖 as follows: 

𝐶𝑖←𝑗
𝐻 = 𝑐𝑖𝑗

𝑔(𝐻),                                                                                                            (13) 

The directional connectedness from all other futures markets to the futures market 𝑖 

are calculated as: 

𝐶𝑖←∙
𝐻 = ∑ 𝑐𝑖𝑗

𝑔
(𝐻)𝑁

𝑗=1
𝑗≠𝑖

,                                                                                                   (14) 

Conversely, the directional connectedness to others from 𝑗 are calculated as:  

            𝐶∙←𝑖
𝐻 = ∑ 𝑐𝑖𝑗

𝑔
(𝐻)𝑁

𝑖,𝑗=1
𝑗≠𝑖

,                                                                                                  (15) 

We can also define net directional connectedness as:  

𝐶𝑖
𝐻 = 𝐶∙←𝑖

𝐻 − 𝐶𝑖←∙
𝐻  ,                                                                                                      (16) 

Finally, total connectedness (system-wide connectedness) is the ratio of the sum of the 

“To” (“From”) elements of the variance decompositions matrix to the sum of all elements:  

𝐶𝐻 =
1

𝑁
∑ 𝑐𝑖𝑗

𝑔
(𝐻)𝑁

𝑖,𝑗=1
𝑗≠𝑖

.                                                                                                 (17) 
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To build visual network connectedness, we interpret our connectedness table as the 

adjacency matrix of a weighted directed network (Diebold and Yilmaz, 2014, 2016). The 

elements of the adjacency matrix are our pairwise directional connectedness, 𝐶𝑖←𝑗
𝐻 ; the row 

sums of the adjacency matrix (node in-degrees) are our total directional connectedness 

“From”, 𝐶𝑖←∙
𝐻 ; and the column sums of the adjacency matrix (node out-degrees) are our total 

directional connectedness “To”, 𝐶∙←𝑖
𝐻 .  

 

3. Data and preliminary analysis 

3.1. Data  

We use daily price data for twelve equity index futures: iBovespa index futures 

(BOVESPA) for Brazil, CAC 40 index futures for France, DAX index futures for Germany, 

the UK FTSE 100 futures index (FTSE 100), Hang Seng index futures (HANGSENG) for 

Hong Kong, IBEX 35 futures index (IBEX 35) for Spain, the Korean KOSPI 200 index 

futures (KOSPI 200), NIFTY index futures (NIFTY) of India, Nikkei 225 index futures 

(NIKKEI 225) for Japan, the US S&P 500 index futures (S&P 500), S&P/ASX index futures 

(SPI 200) of Australia, and Singapore’s Straits Times index futures (Strait Times). We also 

consider two commodity futures markets, WTI crude oil and gold futures contracts. The study 

period is January 1, 2002 to July 19, 2018, which covers several turbulent periods and crises, 

including the 2008–2009 Great Financial Crisis (GFC) and the 2010–2012 European 

Sovereign Debt Crisis (ESDC). The data for all series are extracted from DataStream.  

We calculate continuously compounded daily returns by taking the difference in the 

logarithm percentage of two consecutive prices. To avoid biases from different trading time 

across borders (i.e. nonsynchronous trading and short-term correlations from noise), we apply 
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the average two-day rolling returns to account for different market trading time (Forbes and 

Rogobon, 2002).  

Figure 1 below plots the dynamic two-day average returns of global futures for each of 

the above futures indices, together with crude oil and gold for the sample period. This figure 

shows periods of significant fluctuations with all futures returns exhibiting volatility 

clustering. We apply the Markov-switching-dynamic regression (MS-DR) to detect two 

tranquil and volatile regimes in the return series that allows one to identify the beginning and 

the end of each phase of the financial crises, which is of great importance when one deals 

with the cross-futures market spillovers issue. The shaded regions [Regime 1] show the 

regimes of excess volatility according to the MS-DR and show the effects of the 2002 dotcom 

crisis, 2008-2009 GFC, and 2010-2012 ESDC. Comparing the two commodity markets shows 

that oil is more volatile than gold.  
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Fig. 1. Dynamics of the global futures market returns  

Note: The MS-DR model highlight the excess volatility in the shaded areas [Regime 1]. 
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3.2. Preliminary analysis 

Table 1 below provides descriptive statistics of daily futures returns and unit root tests, 

for the index and commodity futures markets. We can see that NIFTY has the highest average 

returns for the sample period. The standard deviation is the highest for WTI oil futures, 

indicating the highest risk among all futures markets. All skewness coefficients are negative 

and the kurtosis coefficients are higher than three for all return series, indicating that the 

probability distributions of the futures returns are skewed and leptokurtic, supporting non-

normality; this is confirmed by Jarque-Bera statistics. According to the ADF unit root 

statistics test, and the stationarity test of the KPSS test results, all return series are stationary. 

Further, the Ljung-Box Q(30) and Q2(30) tests for serial correlation of residuals and square 

residuals, respectively, as well as the ARCH effect in the return series by applying the ARCH 

LM(10) tests. The results highlight the presence of both serial correlation and the ARCH 

effect in all cases. Therefore, we apply a FIGARCH model to capture some stylized facts, 

such as fat-tails, clustering volatility and persistence for index and commodity futures returns.  

Fig. 2 displays the heat map of Pearson’s correlation matrix among global futures 

markets. Note that the color indicates the strength of the correlation, from blue (positive) to 

red (negative). As shown in Fig. 2, the global futures returns have a significantly strong and 

positive correlation, indicating the connectedness among global futures markets. In particular, 

the Eurozone futures markets (IBEX35, FTSE 100, CAC 40, DAX) are significantly related to 

one another. For commodity futures markets, gold is negatively and weakly correlated with 

other futures markets, implying that gold futures as a refuge asset provide a possible 

diversification benefit for investors.  
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Table 1. Descriptive statistics of global equity and commodity futures markets 

 Mean(%) Max. Min. Std. dev. Skewness 
Excess 

Kurtosis 

Jarque-

Bera 
Q(30) Q2(30) ADF KPSS 

ARCH-

LM(10) 

BOVESPA 0.00276 7.8723 -8.0414 1.1978 -0.2612 2.7813 1434.6*** 556.9*** 8272.*** -31.19*** 0.0866 182.37*** 

CAC40 0.00365 6.7124 -6.7216 0.9805 -0.1993 4.4685 3605.1*** 432.0*** 7116. *** -31.28*** 0.1082 135.02*** 

DAX 0.01714 7.4452 -6.3284 1.0063 -0.3172 4.3954 3532.7*** 438.9*** 8131. *** -29.78*** 0.1636 157.62*** 

FTSE100 0.00880 5.4437 -6.7481 0.7997 -0.2903 6.6569 7998.2*** 398.0*** 8988. *** -30.56*** 0.0634 181.93*** 

HANGSENG 0.02969 6.6695 -10.519 0.9952 -0.3874 6.8982 8631.3*** 432.4*** 6052. *** -30.58*** 0.0364 155.54*** 

IBEX35 0.01291 6.3624 -7.5929 1.018 -0.2593 4.1127 3078.0*** 431.3*** 4820. *** -31.23*** 0.0486 133.18*** 

KOSPI200 0.02801 7.2308 -7.2553 0.9849 -0.3882 4.5112 3753.4*** 449.8*** 7162. *** -30.15*** 0.1082 204.70*** 

NIFTY 0.04635 9.5267 -11.67 1.0294 -0.6881 12.185 26934. *** 297.0*** 1949. *** -29.35*** 0.2599 88.634*** 

NIKKEI225 0.01804 7.7977 -6.8094 0.9871 -0.4075 4.0694 3085.2*** 502.7*** 4311. *** -29.73*** 0.1463 120.22*** 

S&P500 0.02069 6.3931 -7.3791 0.8028 -0.5541 8.7822 14035. *** 300.9*** 12281. *** -30.47*** 0.2184 256.57*** 

SPI200 0.02020 4.5405 -4.5688 0.6965 -0.3616 4.3007 3406.8*** 491.2*** 9059. *** -31.18*** 0.0874 194.23*** 

Strait Times 0.01568 4.7977 -6.4426 0.7637 -0.2467 5.8928 6263.7*** 443.8*** 6828. *** -29.25*** 0.1122 208.44*** 

WTI 0.02769 10.779 -9.235 1.5879 -0.1626 3.5509 2277.5*** 517.0*** 5695. *** -28.59*** 0.2346 107.66*** 

Gold 0.03441 6.9042 -6.8776 0.7950 -0.4246 5.2230 5015.6*** 455.4*** 1829. *** -28.77*** 0.2944 84.792*** 

Notes: The asterisk *** denotes rejection of the null hypotheses of normality, no autocorrelation, unit root, stationarity, and conditional homoscedasticity. 

 

 

 

 

 

 

 



14 

 

 

Fig. 2. Heat map of the correlation matrix 

Note: This figure shows a visual correlation matrix across global futures markets. The color boxes indicate the 

strength of the correlation. Blue indicates a positive correlation, while red indicates a negative correlation. 
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4. Empirical results  

4.1 Estimation of DECO-FIGARCH model 

Table 2 reports the estimate results of the multivariate DECO-FIGARCH (1, d, 1) for 

global index and commodity futures markets. In Panel A, the moving average parameter is 

statistically significant at the 1% level for all futures returns. Both ARCH  (𝜙1) and GARCH 

(𝛽1) terms are significant. More importantly, the fractional integrated coefficient (𝑑)  is 

significant for all markets, thus revealing the presence of long memory behavior in global 

futures markets.  

In Panel B, the parameter (𝑎𝐷𝐸𝐶𝑂)  is positive and significant at the 1% level, 

indicating the importance of shocks across the global futures markets. The parameter 

(𝑏𝐷𝐸𝐶𝑂) is significant and very close to one, confirming the higher persistence of volatility 

across the global index and commodity futures markets. We also show that the dynamic 

equicorrelation (𝜌𝑡
𝐷𝐸𝐶𝑂)is positive and weak (0.1976), providing the diversification benefits 

between index and commodity futures. The diagnostic results in the bottom row of Table 2 

suggest no serial correlation estimated by Ljung-Box statistics for the squared standardized 

residuals thus validating our DECO-FIGARCH model.    
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Table 2. Estimation of multivariate ARMA(1,1)-FIGARCH(1,d,1)-DECO model 

 
BOVES

PA 
CAC40  DAX 

FTSE 

100 

HANGS

ENG 

IBEX 

35 

KOSPI 

200 
NIFTY 

NIKKEI

225 

S&P 

500 

SPI 

200 

Strait 

Times 
WTI Gold 

Panel A: Estimates of ARMA-FIGARCH(1,d,1) model 

Const.
 

 
0.025 

(0.022) 

0.055*** 

(0.014) 

0.073*** 

(0.016) 

0.040*** 

(0.011) 

0.059*** 

(0.016) 

0.066*** 

(0.016) 

0.043*** 

(0.015) 

0.064*** 

(0.017) 

0.061*** 

(0.017) 

0.063*** 

(0.011) 

0.047*** 

(0.011) 

0.039*** 

(0.011) 

0.064** 

(0.027) 

0.028* 

(0.015) 

AR(1) 
-0.028 

(0.015) 

-0.029** 

(0.016) 

-0.001 

(0.015) 

-0.033** 

(0.015) 

-0.010 

(0.015) 

0.003 

(0.017) 

-0.025* 

(0.014) 

0.025 

(0.017) 

-0.019 

(0.015) 

-0.060*** 

(0.015) 

-0.024 

(0.016) 

0.003 

(0.015) 

-0.040** 

(0.016) 

-0.014 

(0.015) 

MA(1) 
0.984*** 

(0.003) 

0.979*** 

(0.002) 

0.982*** 

(0.002) 

0.991*** 

(0.001) 

0.986*** 

(0.002) 

0.979*** 

(0.002) 

0.989*** 

(0.001) 

0.983*** 

(0.002) 

0.987*** 

(0.002) 

0.987*** 

(0.002) 

0.989*** 

(0.001) 

0.989*** 

(0.002) 

0.983*** 

(0.002) 

0.986*** 

(0.001) 

Const.   
0.856*** 

(0.267) 

0.538** 

(0.216) 

0.642*** 

(0.275) 

0.267*** 

(0.105) 

0.580*** 

(0.193) 

0.533*** 

(0.225) 

1.369*** 

(0.686) 

0.696** 

(0.292) 

0.988** 

(0.392) 

0.860* 

(0.446) 

0.191*** 

(0.056) 

1.047*** 

(0.584) 

2.496** 

(1.051) 

0.306*** 

(0.086) 

d-

FIGARCH 

0.358*** 

(0.075) 

0.496*** 

(0.042) 

0.513*** 

(0.044) 

0.494*** 

(0.041) 

0.456*** 

(0.060) 

0.467*** 

(0.043) 

0.585*** 

(0.059) 

0.525*** 

(0.054) 

0.536*** 

(0.052) 

0.534*** 

(0.053) 

0.460*** 

(0.041) 

0.642*** 

(0.062) 

0.563*** 

(0.077) 

0.409*** 

(0.063) 

ARCH (𝜙1) 
0.112 

(0.130) 

0.081 

(0.058) 

0.080* 

(0.047) 

0.148*** 

(0.047) 

0.189*** 

(0.051) 

0.110*** 

(0.042) 

0.110*** 

(0.031) 

0.228*** 

(0.054) 

0.179*** 

(0.043) 

0.098 

(0.076) 

0.290*** 

(0.047) 

0.178*** 

(0.039) 

0.313*** 

(0.046) 

0.345*** 

(0.069) 

GARCH 
(𝛽1) 

0.449** 

(0.181) 

0.512*** 

(0.074) 

0.550*** 

(0.065) 

0.552*** 

(0.061) 

0.624*** 

(0.086) 

0.514*** 

(0.054) 

0.696*** 

(0.056) 

0.680*** 

(0.051) 

0.643*** 

(0.058) 

0.526*** 

(0.090) 

0.650*** 

(0.053) 

0.747*** 

(0.047) 

0.783*** 

(0.057) 

0.708*** 

(0.068) 

Panel B: Estimates of the DCC model 

DECO

t  0.1976*** 

(0.0432) 
             

DECOa  0.0140*** 

(0.0032) 
             

DECOb  0.9857*** 

(0.0033) 
             

df 
7.3539*** 

(0.2288) 
             

Q2(30) 
29.70 

[0.480] 

32.19 

[0.358] 

14.86 

[0.990] 

22.95 

[0.817] 

43.16 

[0.056] 

26.76 

[0.635] 

21.49 

[0.871] 

25.88 

[0.681] 

33.20 

[0.313] 

33.68 

[0.293] 

29.62 

[0.484] 

36.80 

[0.182] 

20.47 

[0.903] 

31.76 

[0.307] 

Notes: The p-values are reported in brackets [.]. The standard error values are reported in parentheses (.). ** and *** indicate significance at the 5% and 1% levels, respectively. 

 

( )

( )
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Fig. 3 plots the dynamic equicorrelation between the index and commodity futures 

markets. As shown in Fig. 3, we observe time-varying correlations over the sample period, 

suggesting that institutional investors do or should frequently change their portfolio structure. 

A significant increase in correlation is observed during the two recent crises (2008–2009 GFC 

and 2010–2012 ESDC), supporting the market contagion among the global futures markets. 

Between 2013 and 2014, equicorrelation among futures markets decreased, before 

subsequently rising due to increased uncertainties relating to the 2015 commodity market 

collapse, Chinese market crash, 2016 Brexit, and the 2018 US Fed interest rate hike. Thus, 

portfolio investors reconstruct their portfolio structures based on the increase/decrease phases 

in time-varying correlations during the sample period.  

 

Fig. 3. Dynamic equicorrelation among the global futures markets  
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4.2 Total volatility spillovers 

Tables 3-4 report the estimates of the static volatility spillover matrix. The (i, j)th entry 

in each panel is the estimated contribution to the forecast-error variance of variable i, coming 

from innovations to market j. The row sums, excluding the main diagonal elements (termed 

“From”) and column sums (termed “To”), report the total spillovers to (received by) and from 

(transmitted by) each volatility.  

Table 3 presents the total spillovers across the global index futures markets only. In the 

lower right corner of Table 3, the total spillover reaches 62.90%, implying a high 

connectedness across the global index futures markets. Looking at the directional spillovers 

transmitted ‘To,’ the FTSE 100 is the largest transmitter to other futures markets, contributing 

148.2%, followed by CAC 40 (130.1%) and the S&P 500 (96.3%). The results suggest that 

the UK futures market is the main source of volatility spillover shock to other index futures 

markets. Notably, the KOSPI 200 index futures market of the Korean Exchange (KRX) 

contributes only 4% of total volatility spillover to other index futures markets, and it receives 

a total of 69.2% of its return spillover from other index futures markets. This indicates that the 

KOSPI 200 index futures market is the largest receiver of volatility spillover from other 

futures markets.   

Table 4 presents total volatility spillovers across index futures markets by adding 

commodity futures markets (WTI futures and gold futures). The lower right corner in Table 4 

reveals that the total spillover reaches 55.6%. Although the overall spillover shock is still 

high, there is a reduction of total volatility spillover from 62.90%, the total spillover of the 

index futures markets only in Table 3. The results also show the role of commodity futures 

markets as refugee index futures markets, consistent with results from previous studies 

including, among others, Baur and Lucey (2010), Baur and McDermott (2010), and Bredin et 

al. (2015).  
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Using a rolling window approach, Fig. 3 plots the time-varying total volatility 

spillover index of the index futures markets, adding commodity futures markets. Fig. 3 

highlights significant variation in the volatility spillover index, which is shown to be very 

responsive to the various financial and economic events. It can be seen that the total volatility 

spillovers attain their maximum level during 2008–2009 and 2010-2012, corresponding to the 

GFC and two ESDC stages. Moreover, (d) the Chinese stock market collapse and commodity 

market crash in August 2015, and the changes of interest rates by (e) the U.S. Federal Reserve 

in March 2018, intensify the spillovers among global futures markets, which reduces the 

diversification opportunities for these markets. Therefore, the economic and financial crises 

intensify the total spillovers across global futures markets.  
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Table 3. Total volatility spillovers within equity index futures markets 

 
BOVES

PA 
CAC40  DAX 

FTSE 

100 

HANGS

ENG 

IBEX 

35 

KOSPI 

200 
NIFTY 

NIKKEI

225 

S&P 

500 
SPI200 

Strait 

Times 
From 

BOVESPA 35.9 9.17 4.93 16.26 1.27 6.02 0.1 1.16 0.52 16.64 1.96 6.06 64.1 

CAC40 1.31 27.74 11.71 22.08 1.46 18.28 0.24 0.55 0.56 10.55 1.39 4.13 72.3 

DAX 1.39 21.99 23 19.73 1.58 12.7 0.02 0.55 0.73 12.85 0.9 4.55 77 

FTSE100 1.39 21.13 9.29 32.93 1.25 10.71 0.44 0.65 0.67 13.98 1.61 5.96 67.1 

HANGSENG 3.93 6.06 3.57 9.16 31.72 5.1 0.04 4.09 4.93 6.28 10.99 14.13 68.3 

IBEX35 0.78 23.56 7.14 14.41 0.96 39.7 0.26 0.47 0.81 6.29 1.93 3.68 60.3 

KOSPI200 5.09 7.39 6.27 8.92 7.86 4.95 30.83 3.31 3.86 10.25 1.74 9.53 69.2 

NIFTY 3.47 1.69 0.7 3.44 2.59 2.07 0.33 70.67 0.5 0.75 2.96 10.81 29.3 

NIKKEI225 2.81 6.73 2.79 8.24 8 5.31 0.13 1.34 44.56 4.38 6.19 9.52 55.4 

S&P500 2.17 12.28 6.67 18.05 1.68 8.37 0.5 0.47 0.91 39.78 2.93 6.19 60.2 

SPI200 2.41 10.81 3.43 13.42 4 7.2 2.6 1.65 3.55 7.04 34.17 9.7 65.8 

Strait Times 4.43 9.29 3.2 14.48 7.63 5.54 0.19 3.26 3.67 7.27 6.67 34.38 65.6 

To  29.2 130.1 59.7 148.2 38.3 86.3 4.9 17.5 20.7 96.3 39.3 84.3 754.6 

All 65.1 157.9 82.7 181.1 70 125.9 35.7 88.2 65.3 136.1 73.4 118.6 62.90% 

Net -34.9 57.8 -17.3 81.1 -30 26 -64.3 -11.8 -34.7 36.1 -26.5 18.7  

Notes: The (i,j)th element of the table shows the estimated contribution to the variance of the 10-day-ahead forecast error of i from innovations to variable j. The diagonal elements (i=j) 

are the own variance shares estimates, which indicate the fraction of the forecast error variance of market i that is the result of its own shocks.  
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Table 4. Total volatility spillovers within index and commodity futures markets 

 
BOVE

SPA 
CAC40  DAX 

FTSE 

100 

HANG

SENG 

IBEX 

35 

KOSPI

200 
NIFTY 

NIKKEI

225 

S&P 

500 

SPI 

200 

Strait 

Times 
WTI Gold From 

BOVESPA 35.74 9.01 4.92 15.97 1.27 6.04 0.06 1.13 0.45 16.46 1.76 5.77 1.11 0.31 64.3 

CAC40 1.33 27.63 11.84 21.77 1.45 18.44 0.19 0.46 0.54 10.41 1.21 4.01 0.59 0.13 72.4 

DAX 1.4 21.87 23.2 19.5 1.57 12.74 0.02 0.49 0.7 12.77 0.79 4.45 0.44 0.03 76.8 

FTSE100 1.38 20.89 9.37 32.66 1.24 10.75 0.34 0.55 0.63 13.82 1.38 5.75 1.07 0.19 67.3 

HANGSENG 3.96 5.92 3.57 8.91 32.2 5.1 0.02 4 4.9 6.21 10.74 14.01 0.36 0.1 67.8 

IBEX35 0.82 23.42 7.15 14.2 0.94 39.76 0.24 0.42 0.81 6.2 1.85 3.65 0.44 0.1 60.2 

KOSPI200 5.35 7.39 6.23 9.01 7.76 4.88 29.95 3.21 4.02 10.3 1.85 9.94 0.05 0.07 70 

NIFTY 3.69 1.46 0.7 3.08 2.58 1.98 0.38 70.93 0.52 0.66 2.76 10.98 0.05 0.23 29.1 

NIKKEI225 2.74 6.62 2.8 8.01 8.12 5.34 0.15 1.28 45.08 4.27 5.93 9.24 0.39 0.03 54.9 

S&P500 2.16 12 6.68 17.66 1.67 8.34 0.44 0.41 0.87 39.76 2.71 6.03 0.98 0.3 60.2 

SPI200 2.41 10.56 3.46 13.03 4.06 7.26 2.4 1.48 3.53 6.9 34.29 9.53 0.75 0.34 65.7 

Strait Times 4.36 9.08 3.23 14.09 7.89 5.64 0.12 3.17 3.54 7.13 6.22 34.59 0.76 0.16 65.4 

WTI 0.13 1.61 0.07 4.35 0.38 0.53 0.23 0.04 0.1 0.82 0.37 0.15 88.53 2.69 11.5 

Gold 0.58 0.83 0.12 3.13 0.41 0.78 0.2 0.8 0.38 0.51 2.63 0.54 1.88 87.22 12.8 

To  30.3 130.7 60.1 152.7 39.3 87.8 4.8 17.4 21 96.4 40.2 84.1 8.9 4.7 778.4 

All 66.1 158.3 83.3 185.4 71.5 127.6 34.7 88.4 66.1 136.2 74.5 118.7 97.4 91.9 55.60% 

Net -34 58.3 -16.7 85.4 -28.5 27.6 -65.2 -11.7 -33.9 36.2 -25.5 18.7 -2.6 -8.1  

Notes: See Table 3. 
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Fig. 3. Dynamics of the volatility spillover index  

Notes: The time evolution of spillovers indices is estimated using 200-day rolling windows. 

 

We now discuss the pairwise directional volatility spillover across global futures 

markets. Fig. 4 shows the system-wide network connectedness of the pairwise direction 

volatility spillover index based on Table 4. Note that the pairwise spillovers between index 

futures and commodity futures markets are shown as nodes and edges, respectively, making it 

a typical complex network. We observe clear clustering between index futures markets, while 

the two commodity futures markets (gold and WTI) are isolated. In addition, we identify 

FTSE 100, CAC 40, S&P 500, IBEX 35, and Strait Times (red nodes) as transmitters of 

volatility shocks, whereas the remaining markets (green nodes) are receivers of shocks of 

different magnitudes. The graphical evidence is consistent with the results in Table 4. 
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Fig. 4. System-wide network connectedness among the global futures markets 

Note: This figure shows system-wide network connectedness among the global futures markets. A node’s red 

(green) color indicates the most significant transmitter (receiver). The edge size indicates the magnitude of the 

pairwise spillover, whereas the magnitude is also reflected in the color type (green (weak), light blue (medium), 

or blue and red (strong)). 

 

4.3 Network connectedness 

To further explore the dynamic connectedness of risk spillovers, we depict net 

pairwise network connectedness, which reveal information about risk spillover among the 

stock-commodity futures markets. Fig. 5(a)-(e) give results for network connectedness of net 

pairwise directional spillovers, focusing on cases where the intensity was especially 

significant. The directional spillover network diagram shows the pathway of shocks from one 

asset class to another, depicted through idiosyncratic shocks. The width of the arrows 
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indicates the intensity of volatility spillovers and node diameter indicates the size of net 

spillover. For example, for the first event (November 19, 2008 Global financial crisis in Fig 

5(a)), the US futures market is the strongest sender of volatility shocks to gold, and Strait 

Times of Singapore futures market gives pairwise shocks to Hong Seng of Hong Kong, 

Nikkei 225 of Japan and SPI 200 of Australia. However, KOSPI 200 (Korea) and Hang Seng 

(Hong Kong) futures markets are net pairwise receivers of volatility shocks during the global 

financial crisis. This picture is reasonable because both the Korean and Hong Kong futures 

markets have the highest foreign (especially US and Europe) ownership ratio among the 

sample markets.  

Network connectedness depicted in Fig 5(b) shows that during the Greek crisis (ESDC 

I) net pairwise connectedness is more complex. It can be noted that European countries 

(FTSE 100, IBEX35, CAC40, DAX) become strong or moderate net pairwise transmitters of 

volatility shocks during the ESDC I. Fig 5(c) illustrates, for the ESDC 2, that SPI 200 futures 

of Australia is the strongest net pairwise transmitter market of volatility shocks, while KOSPI 

200 futures of Korea is the weakest.  

Moreover, the US and UK index futures markets dominate network connectedness 

during the 2015 Chinese and commodity market crashes (in Fig 5(d)). More interestingly, the 

commodity futures (WTI and gold) markets are net receivers of volatility shocks in the 

commodity-stock pairwise connectedness. This can be accounted for by the global economic 

recession leading to lower growth in China and lower demand for commodities. Finally, the 

US index futures market is the hub market of volatility shocks on 21st March 2018 due to the 

increase in the US Fed’s interest rate, as per Fig 5(e). Overall, it is evident that the direction 

and magnitude of net volatility spillovers can be difficult to identify and are sensitive to 

financial and economic events. These results have important implications for portfolio risk 

assessments. 
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(a) November 19th, 2008                                   (b) September 10th, 2010 

                       Global financial crisis                                        ESDC I Greek crisis  

 
(c) September 9th, 2011                                            (d) August 31st, 2015 

                 ESDC II U.S. credit rating fall down        Chinese and commodity markets crashes 
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(e) March 21st, 2018 

U.S. Fed’s rate hike 
 

Fig. 5. Net pairwise directional network during financial and economic events 

Note: This figure shows the net pairwise directional connections among the global futures markets. The size of a 

node indicates the magnitude of a net pairwise connection. The edge size indicates the magnitude of the net 

pairwise connectedness, and the magnitude is also reflected through the color type (green (weak), light blue 

(medium), and blue and red (strong)). 

 

5. Conclusions 

In this study, we aim to understand dynamic connectedness between global index and 

commodity futures markets, using both the multivariate DECO-FIGARCH model and the 

spillover index model of Diebold and Yilmaz (2014). In particular, we analyze the dynamics 

of directional and net spillovers that reveal the intensity and direction of network 

connectedness in complex futures markets.  

Our empirical results are summarized as follows. First, we observe a significant 

increase in the dynamic correlations between global futures indices and commodity futures 

during the recent global financial crisis and European sovereign debt crisis. The increase in 

correlation in 2008 is found to be related to the historical that time, indicating a contagion 

effect. Between 2013 and 2014 the correlation between commodity and index futures markets 

decreased. This result supports the evidence on the decoupling hypothesis and diversification 

opportunities. The increase/decrease phases in the time-varying correlations during the 
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sample period indicate that investors frequently change their portfolio position. Second, we 

document that total spillovers reach peaks during the 2008-2009 GFC and 2010-2012 ESDC, 

highlighting that economic and financial crises intensify the spillovers across global futures 

markets, which reduces the diversification opportunities for these markets. Third, we identify 

the FTSE 100 as the most significant spillover contributor within our system, while the 

KOSPI 200 is the largest net receiver of shocks. Fourth, we depict the main results for a 

network of net pairwise connectedness, focusing on financial and economic events. We find 

that the net pairwise direction and intensity of network connectedness are sensitive to 

financial and economic events.  

To conclude, from our study of network connectedness we are able to reveal 

information about direction and intensity of volatility spillovers across global futures markets. 

Moreover, this study explores the implications of connectedness’ information on risk 

diversification, in the context of index and commodity portfolios involving different trading 

strategies or even across global futures markets.  
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