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Abstract

Black-Scholes implied volatilities are one important ingredient in the derivatives markets.

When it comes to manufacturing and managing of financial products, a production model needs

to be calibrated to market implied volatilities in order to find model parameters that could

reproduce option prices data. In this procedure, it has been long known that an asymptotic

expansion of model implied volatilities can be very useful rather than brute force matching

of model option prices with market data. In this paper, we extend the existing small-time

asymptotics for implied volatilities under the Heston stochastic volatility model to the multi-

factor volatility Heston model, which is also known as the Wishart multi-dimensional stochastic

volatility model. More explicitly, we show that the approaches taken in Forde and Jacquier [11]

and Forde et al. [13] are applicable to the WMSV model under mild conditions, and obtain

explicit small-time expansions of implied volatilities. Our results open new possibilities for the

use of multi-factor stochastic volatilities, and they are potentially useful for understanding the

behaviors of option portfolios.
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1 Introduction

Multi-factor volatility Heston model or Wishart multidimensional stochastic volatility (WMSV)

model has received much attention in the quantitative finance community. Since Duffie et al. [10],

the general theory of affine processes has been developed rapidly, which provides powerful analytical

tools in asset pricing via the transform analysis. In the relevant literature, multiple volatility

factors have played key roles. Stochastic volatility based on Wishart process was initially suggested

by Gourieroux and Sufana [19], while maintaining computational convenience. Such a modeling

approach appears to be useful and effective as its enlarged flexibility helps explain stylized facts

observed in the markets. Many studies such as Chrisoffersen et al. [4] or Gruber et al. [21] support

the strength of multiple stochastic volatility modeling empirically. The model proposed by Da

Fonseca et al. [8] is a successful modeling specification in this direction in that their model captures

the essential ingredients of multivariate volatility factors and provides an explicit and tractable

analytical framework.

In this paper, we study the small-time asymptotics of implied volatilities for the model of

Da Fonseca et al. [8]. Asymptotic expansions of implied volatilities have been studied for more

than a decade due to their practical usage for model calibration. This procedure of matching

model parameters to observed market data is performed on a regular basis, and reliable and fast

operations are needed for successful model implementation in practice. For this reason, if there

is a closed form of implied volatilities, then it could facilitate the calibration procedure and could

provide beneficial insights about model behaviors. There is indeed a large literature on implied

volatility expansions for a wide range of models, including Lee [25] one of early works in this area.

Particularly for the Heston model and its variants, small and large maturity smiles are extensively

studied by Forde and Jacquier [11, 12], Forde et al. [13], etc. For a more complete historical account

of volatility expansion, we refer the reader to the previously mentioned references.

On the other hand, when it comes to the multi-dimensional version of the Heston model,

resources are somewhat limited. Benabid et al. [1] embark on the study of volatility asymptotics

in small-time inspired by Fouque et al. [15, 16]. Da Fonseca and Grasselli [7] report the form of

limiting implied volatility in terms of the so called vol-of-vol scale factor α as well as asymptotics

for the biHeston model and the Wishart affine stochastic correlation model. Compared to these

approaches based on perturbation method, we take a different route which helps us avoid the use

of extra parameter α. Additionally, we derive a correction term which accounts for the small but

nonzero maturity. Essentially, ours are based on the developments of asymptotic expansions taken

by Forde and Jacquier [11] and Forde et al. [13].
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Our main contributions can be summarized as follows. First, the large deviations approach

which has been quite popular for asymptotic expansions is proved applicable to the WMSV model.

For this, the explicit form of the limiting cumulant generating function of the log stock price is

derived for which a similar idea can be found in Gauthier and Possamai [17]. One could utilize the

results of Gnoatto and Grasselli [18] on the explicit moment generating function under the WMSV

model which works for any time t, but our approach imposes a weaker condition. Second, Laplace

type expansion is shown to be applicable to the WMSV model as done for the Heston model [13].

With a slightly more stringent condition on model parameters, we obtain an explicit and higher

order expansion of the cumulant generating function. And this helps a better fit to the true implied

volatility curve.

The structure of this paper is as follows. In Section 2, we introduce the WMSV model first,

and derive the limiting cumulant generating function based on which the large deviation principle

is stated. In the last subsection, the expansion of the limiting implied volatility is computed.

Section 3 then reports a more elaborate form of the cumulant generating function under a small

time scale so that we can derive the explicit form of small-time smiles. The performance of the

resulting formulae is examined in Section 4. Section 6 concludes.

2 Limiting Implied Volatilities

2.1 Wishart multifactor stochastic volatility process

Da Fonseca et al. [8] suggest that in an arbitrage-free frictionless financial market, the Wishart

multidimensional stochastic volatility model (WMSV) can represent a dynamics of a return of a

risky asset price St,

dYt = −1

2
Tr [Σt] dt+Tr

[√
Σt

(
dWtR

⊤ + dBt

√
I−RR⊤

)]
,

dΣt =
(
ΩΩ⊤ +MΣt +ΣtM

⊤
)
dt+

√
ΣtdWtQ+Q⊤ (dWt)

⊤√Σt, (1)

where Yt = lnSt, I is the n-dimensional identity matrix, Ω, R,M,Q ∈ Mn (the set of square

matrices), and Wt, Bt ∈ Mn are composed of n2 independent Brownian motions under the risk-

neutral measure. Here, the risk-free rate r is assumed to be zero without loss of any generality. As

noted in Da Fonseca et al [8], (1) represents the matrix analogue of the square-root diffusion of the

Heston model [22]. The random shocks to the stock return and the volatility process are correlated

by the matrix R.

There are additional assumptions on model parameters. The matrixM is negative semi-definite,

which is related to the mean-reverting feature in the typical volatility modeling practice. It is also
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assumed that Q is nonsingular and ΩΩ⊤ = βQ⊤Q with real parameter β > n− 1. These standard

conditions ensure that the resulting symmetric matrix Σt is positive semi-definite. For the rest of

this paper, such conditions are treated as part of the WMSV model.

The usefulness of the WMSV model lies in that the transform techniques widely studied in the

literature, including Duffie et al. [10], are still applicable. The transform formula is well documented

in Da Fonseca et al. [6]. We here record a version that fits our purpose: for a scalar p,

lnE
[
epYt

]
= pY0 +Tr [A(p, t)Σ0] + b(p, t). (2)

Here A(p, t) is a solution to the matrix Riccati differential equation given as

dA

dt
= A

(
M + pQ⊤R⊤

)
+
(
M⊤ + pRQ

)
A+ 2AQ⊤QA+

p(p− 1)

2
I (3)

with the initial condition A(p, 0) = 0. Lastly, b(p, t) = β
∫ t
0 Tr

[
Q⊤QA(p, s)

]
ds. There are many

results in the literature regarding solutions to the above differential equation. For completeness,

we provide a statement that is used in the next section.

Proposition 1 Consider a matrix differential equation for a fixed p:

d

ds

(
G F

)
=
(

G F
) M + pQ⊤R⊤ −2Q⊤Q

p(p−1)
2 I −

(
M⊤ + pRQ

)


with G(p, 0) = 0 and F (p, 0) = I. As long as F (p, t) is invertible, (3) has a solution A(p, s) =

F (p, s)−1G(p, s) on [0, t]. Conversely, if (3) has a solution A(p, s) on [0, t], then F (p, s) is invertible

on [0, t] so that A(p, s) = F (p, s)−1G(p, s). In such a case, b(p, t) is simplified to

b(p, t) = −β

2
Tr
[
lnF (p, t) + t

(
M + pQ⊤R⊤

)]
.

The first statement is already noted in Da Fonseca et al. [8] and Da Fonseca [5] where full

details are referred to Grasselli and Tebaldi [20]. The second statement is a slight modification of

a result reported in Choi [3] and Reid [27]. Hence, we have the equivalence between the existence

of A and the non-singularity of F (p, t). In addition, the validity of the affine transform formula (2)

for general affine processes is proved in Keller-Ressel and Mayerhofer [24], that is, the region for

p in which exponential moments of Yt exist coincides with the region for p such that the solution

to (3) exists at a given time t. Consequently, we see that the blow-up condition of exponential

moments at time t is specified as detF (p, t) = 0.

4



2.2 Large deviations principle

A large deviations principle for the Heston stochastic volatility model is nicely derived in Forde

and Janquier [11]. The authors compute the limiting cumulant generating function (CGF)

Λ(p) = lim
t↓0

t lnE
[
ep(Yt−Y0)/t

]
on some open interval (p−, p+) including 0. Subsequently, its Fenchel-Legendre transform Λ∗(x) =

supp∈(p−,p+){px−Λ(p)} is shown to determine the small-time limit of implied volatilities under the

Heston model.

Lemma 1 Suppose that RQ is symmetric in the WMSV model. We further assume that I−R⊤R

is invertible. Then, the limiting cumulant generating function Λ(p) is given by

Λ(p) = Tr
[(
cos(pΓ)− Γ−1 sin(pΓ)RQ

)−1
(p
2
Γ−1 sin(pΓ)

)
Σ0

]
on some open interval (p−, p+) which includes 0. Here, Γ is a square root of Q⊤(I−R⊤R)Q. The

scalars p± are the largest negative and the smallest positive numbers such that

det
(
cos(pΓ)− Γ−1 sin(pΓ)RQ

)
= 0.

Proof: By definition, the target function is given as follows:

Λ(p) = lim
t→0

t lnE
[
ep(Yt−Y0)/t

]
= lim

t→0

{
Tr
[
tA
(p
t
, t
)
Σ0

]
+ tb

(p
t
, t
)}

= Tr
[
lim
t→0

tA
(p
t
, t
)
Σ0

]
+ lim

t→0
tb
(p
t
, t
)

provided the limits exist. We compute those limits by looking at the solution to the matrix differ-

ential equation in Proposition 1. It is easy to see that the solution is given as

(
G
(p
t , t
)

F
(p
t , t
) )

=
(

0 I
)
etM+Nt , M =

 M 0

0 −M⊤

 ,Nt =

 pA tB

c(t)I −pA


where A = Q⊤R⊤ = RQ, B = −2Q⊤Q, and c(t) = p(p−t)

2t . For notational simplicity, we simply

write c if there is no risk of confusion.

We will later show that M does not affect the limit as t decreases to zero. Provided this is valid,

it is enough to compute limt→0 e
Nt . Straightforward computations yield that

N2k
t =

 Zk
t Πk

0 Zk
t

 , N2k+1
t =

 ∗ ∗

cZk
t −pZk

tA


5



where Zt = p2A2 + ctB and Πk is given by cΠk = p
(
AZk

t − Zk
tA
)
with Π1 = pt(AB − BA). Since

limt Zt = p2A2 + p2

2 B =: Z0, the matrix norm |Zt| is bounded by some constant for all small t.

Consequently, by looking at the lower block matrices of eNt , we obtain

G
(p
t
, t
)

= c
∞∑
k=0

1

(2k + 1)!
Zk
t ,

F
(p
t
, t
)

=

∞∑
k=0

1

(2k)!
Zk
t − p

∞∑
k=0

1

(2k + 1)!
Zk
tA.

Since the convergence of infinite sums is uniform on a finite interval, we get the following limits:

G∗(p) := lim
t→0

tG
(p
t
, t
)

=
p2

2

∞∑
k=0

1

(2k + 1)!
Zk
0,

F ∗(p) := lim
t→0

F
(p
t
, t
)

=
∞∑
k=0

1

(2k)!
Zk
0 − p

∞∑
k=0

1

(2k + 1)!
Zk
0A.

On the other hand, we notice that Z0 = −p2Q⊤ (I−R⊤R
)
Q. Hence, it is represented by −p2Γ2.

The final expression is easily obtained by the definitions of matrix sine and cosine.

Let us turn our attention to etM+Nt . We note that

etM+Nt − eNt =

∞∑
l=0

1

(2l)!

{
(tM+ Nt)

2l − N2l
t

}
+

∞∑
l=0

1

(2l + 1)!

{
(tM+ Nt)

2l+1 − N2l+1
t

}
=

∞∑
l=0

1

(2l)!

{
(tM+ Nt)

2l − N2l
t

}
+

∞∑
l=0

1

(2l + 1)!
(tM+ Nt)

2l tM

+

∞∑
l=0

1

(2l + 1)!

{
(tM+ Nt)

2l − N2l
t

}
Nt.

It is easy to verify that the matrix norm |(tM + Nt)
2| is bounded by a constant for all small

t values. This implies that the second term converges to zero as t decreases to zero. Indeed,

(tM+ Nt)
2 = t2M2 +M(tNt) + tNtM+ N2

t and each term is at most O(1) in t.

Regarding the first and third terms on the right hand side, we are concerned with their lower

left, say (i), and lower right (ii) block matrices of size n-by-n as they are relevant to matrices G

and F . Simple calculations show that

(tM+ Nt)
2 =

 O(t) + Zt O(t)

O(1) O(t) + Zt

 , N2
t =

 Zt O(t)

0 Zt

 .

As a result, it can be verified that (i) and (ii) are of O(1) and O(t), respectively. Therefore, as t

decreases to zero, (i) multiplied by t does not affect the limit G∗(p). Likewise, F ∗(p) is independent

of (ii). Similar arguments can be made for the third summation. Hence, the limit in the statement

is valid for any M .
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Now we notice that F ∗(0) = I and thus there is a maximal open interval (p−, p+) including zero

such that detF ∗(p) ̸= 0. The equivalence of this and the finiteness of Λ(p) comes from the limit

Λ(p) = Tr
[
F ∗(p)−1G∗(p)Σ0

]
=

1

detF ∗(p)
× some non-blow-up function of p,

and detF ∗(p) = limt detF
(p
t , t
)
, in addition to that the matrix A exists if and only if detF is

nonzero. Hence, for Λ(p) to be finite, each detF
(p
t , t
)
must be nonzero for all small t values with

a nonzero limit.1 The last statement then follows.

So far we have not discussed the limit limt→0 tb
(p
t , t
)
. However, from Proposition 1, we notice

that

lim
t→0

b
(p
t
, t
)

= −β

2
lim
t

Tr
[
lnF

(p
t
, t
)
+ tM + pQ⊤R⊤

]
= −β

2
Tr
[
lnF ∗(p) + pQ⊤R⊤

]
as long as p ∈ (p−, p+). As a result, this term does not appear in Λ(p).

Remark 1 The above lemma imposes the assumption that RQ is symmetric. This condition is

arguably mild. Da Fonseca et al. [8] show that the stochastic correlation ρt between the stock noise

and the volatility noise depends on the product RQ by ρt =
Tr[RQΣt]√

Tr[Σt]Tr[Q⊤QΣt]
. Symmetric RQ does

not affect the flexibility of this model to reflect the stochastic skew effect. The same condition

appears in other related works. For instance, in Gnoatto and Grasselli [18] or Da Fonseca [5],

the authors derive the explicit Laplace transform for the WMSV model under technical conditions

including the symmetric RQ.

The CGF lnE
[
ep(Yt−Y0)/t

]
is convex in p for each t by Hölder’s inequality. Therefore, its limit

Λ(p) is convex as well. On the other hand, its derivative Λ′(p) can be computed as

Λ′(p) = Tr
[
F ∗(p)−1

(
−F ∗′(p)F ∗(p)−1G∗(p) +G∗′(p)

)
Σ0

]
=

f(p)

detF ∗(p)2
(4)

for some non-blow-up function f . Here the derivative of a matrix with respect to a scalar p is

computed by componentwise differentiation. Recall G∗ and F ∗ are the limits of tG
(p
t , t
)
and

F
(p
t , t
)
defined in Lemma 1. Consequently, |Λ′(p)| → ∞ at the boundary of (p−, p+) as long as

f(p) does not vanish at the boundary points. Based on this essential smoothness of Λ and its

convexity, we obtain the next result.

1Alternatively, one might apply arguments similar to Lemma B.1 of Forde and Jacquier [11].
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Proposition 2 Assume that all of the conditions in Lemma 1 hold and that f(p) of (4) does not

vanish at p±. Then, (Yt − Y0) satisfies the large deviation principle as t approaches zero, with the

rate function Λ∗(x) = supp∈(p−,p+){px−Λ(p)} for all x ∈ R. As a result, if Tr[Σ0] > 0, then we get

Λ∗(k) =


− lim

t→0
t lnP

(
Yt − Y0 > k

)
, if k ≥ 0,

− lim
t→0

t lnP
(
Yt − Y0 < k

)
, if k ≤ 0.

Proof: The large deviations principle follows from the well known Gärtner-Ellis Theorem in Dembo

and Zeitouni [9]. The Fenchel-Legendre transform Λ∗ is a good rate function. A version in our

context for {Yt − Y0} is

− inf
x>k

Λ∗(x) ≤ lim inf
t→0

t lnP
(
Yt − Y0 > k

)
≤ lim sup

t→0
t lnP

(
Yt − Y0 > k

)
≤ − inf

x≥k
Λ∗(x)

for k ≥ 0. This version is similar to the one summarized in Forde et al. [14]2. Since Λ is convex,

Λ∗ is also convex. Furthermore, the essential smoothness of Λ implies it is a closed proper convex

function whose convex dual Λ∗ is closed and convex with Λ∗∗ = Λ. Theorem 26.3 of Rockafellar [28]

then tells us that Λ∗ is strictly convex.

Straightforward computations yield F ∗(0) = I, G∗(0) = G∗′(0) = 0, and G∗′′(0) = I. And

this results in Λ(0) = Λ′(0) = 0 and Λ′′(0) = Tr[Σ0]. Therefore if Tr[Σ0] > 0, then there is a

small interval around 0, say I = [−ε, ε] on which Λ′(p) is monotonically increasing and Λ′′(p) is

strictly positive. Outside of I, the convexity of Λ implies Λ′ is non-decreasing. Now let us consider

x ∈ [Λ′(−ε),Λ′(ε)]. Note this last interval includes 0 in its interior. For such x, Λ∗(x) = p∗x−Λ(p∗)

where p∗ = p∗(x) is a unique solution to the equation Λ′(p) = x. It is clear that p∗(0) = 0.

Non-degeneracy of Λ′′ around 0 then implies the differentiability of p∗(x) thanks to the Implicit

Function Theorem. Finally, we observe

Λ∗′(x) = p∗′(x)x+ p∗(x)− Λ′(p∗)p∗′(x) = p∗(x), Λ∗(0) = Λ∗′(0) = 0.

From the strict convexity of Λ∗, we can conclude that Λ∗′ is positive on the positive real and

negative on the negative real. In turn, we see that Λ∗ is non-decreasing on the positive real and

non-increasing on the negative real. As a consequence, − infx≥k Λ
∗(x) = − infx>k Λ

∗(x) = −Λ∗(k)

for k ≥ 0. We can draw a similar conclusion for k ≤ 0. The desired statement is immediate.

In the above proposition, the assumption that f(p) does not vanish at the boundary points is

a mild one as it is expected that the two nonlinear functions f and detF ∗ do not share zeros in

common settings. We note that the large deviations results above are the extension of Theorem

2We refer the reader to an extended version available at the authors’ websites
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2.1 in Forde and Jacquier [11] to the WMSV model. Since their subsequent analyses are general in

nature, we adopt those results in order to connect Proposition 2 to implied volatilities in the next

subsection.

2.3 First order expansion

For the reader’s convenience, we record relevant results.

Proposition 3 (Forde and Jacquier [11]) Assume that all of the assumptions in Proposition 2

hold. Then, we have the following small-time behaviors of vanilla option prices and implied volatil-

ities:

1. for out-of-the-money call option with the log-moneyness x = ln K
S0

≥ 0,

Λ∗(x) = − lim
t→0

t lnC(S0,K, t);

2. for out-of-the-money put option with the log-moneyness x ≤ 0,

Λ∗(x) = − lim
t→0

t lnP (S0,K, t);

3. for the option implied volatility σt(x) with the log-moneyness x ̸= 0,

I(x) = lim
t→0

σt(x) =
|x|√
2Λ∗(x)

.

Here, C(S0,K, t) and P (S0,K, t) are the respective prices of call and put options with initial price

S0, strike K, and maturity t.

Theorem 1 Assume that all of the conditions in Proposition 2 hold. Then, in some neighborhood

of zero for the log-moneyness x = ln K
S0
, the following expansion is valid: with y = x

Tr[Σ0]
,

I(x) =
√

Tr[Σ0]

[
1 +

1

2

Tr[RQΣ0]

Tr[Σ0]
y +

(
1

6

Tr
[
Q⊤QΣ0

]
Tr[Σ0]

+
1

3

Tr
[
(RQ)2Σ0

]
Tr[Σ0]

− 3

4

Tr[RQΣ0]
2

Tr[Σ0]2

)
y2 +O(y3)

]
.

Proof: The formula above is derived by tedious but straightforward computations of Taylor ex-

pansions. In the proof of Proposition 2, we already argued that Λ′ is smooth and strictly monotone

in a neighborhood of p = 0. Its convex dual Λ∗ is then given by Λ∗(x) = p∗(x)x− Λ(p∗(x)) where
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p∗ is a smooth solution to Λ′(p) = x in a small neighborhood of x = 0. Then, Taylor expansions

yield

Λ(p) =
1

2
Tr[Σ0]p

2 +
1

2
Tr[RQΣ0]p

3 +
1

6
Tr
[(

Q⊤Q+ 2(RQ)2
)
Σ0

]
p4 +O(p5),

p∗(x) =
1

Tr[Σ0]
x− 3

2

Tr[RQΣ0]

Tr[Σ0]3
x2 +O(x3).

For notational convenience, we denote Λ(p) = p2
∑2

i=0 aip
i+O(p5) and p∗(x) = x

∑2
i=0 bix

i+O(x4).

It can be shown that

b2 =
9

2

Tr [RQΣ0]
2

Tr [Σ0]
5 − 2

3

Tr
[(
Q⊤Q+ 2(RQ)2

)
Σ0

]
Tr [Σ0]

4 .

Recall that in Proposition 3, for all sufficiently small nonzero log-moneyness x, we have I(x)2 =

x2

2Λ∗(x) . On the other hand, the above expansions give us

2Λ∗(x)

x2
=

2

x2

(
p∗(x)x− Λ (p∗(x))

)
= c0 + c1x+ c2x

2 +O(x3)

for some constants ci’s. Those values are readily obtained by collecting relevant terms carefully as

functions of ai’s and bi’s. To be explicit, they are given by c0 =
1

Tr[Σ0]
, c1 = −Tr[RQΣ0]

Tr[Σ0]3
, and lastly

c2 =
9

4

Tr[RQΣ0]
2

Tr[Σ0]5
− 1

3

Tr
[(
Q⊤Q+ 2(RQ)2

)
Σ0

]
Tr[Σ0]4

.

The reciprocal of the above expansion is not difficult to get:

I(x)2 =
1

c0
− c1

c20
x+

(
c21
c30

− c2
c20

)
x2 +O(x3),

I(x) =
1

√
c0

− c1
2c1.50

x+
3c21 − 4c0c2

8c2.50

x2 +O(x3).

The formula in the statement then easily follows.

The expansion in Theorem 1 reduces to that of the Heston model in Theorem 3.2 of Forde and

Jacquier [11]. We also note that the above result, in particular I(x)2, is analogous to one of the

main results in Da Fonseca and Grasselli [7], Proposition 3.6 for the WMSV model. Their method is

based on the direct expansion of the call option price in terms of the vol-of-vol scale factor α. In fact,

two formulae are the same if α = 1 and RQ is symmetric. Nevertheless, we find the large deviations

approach is useful because, first, the validity of the expansion is obtained without introducing an

extra control parameter α and, second, the information about tail probability behaviors of Yt is

provided via the convex dual of the limiting CGF Λ(p).
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3 Small-time Smiles

The program in Forde et al. [13] applies to the WMSV model as well. This extension is the main

focus of the current section.

Lemma 2 Assume that all of the conditions in Proposition 2 hold. We further assume that the

matrix M is symmetric. Then, for each p ∈ (p−, p+)\{0}, we have

E
[
e

p
t
(Yt−Y0)

]
= U(p)e

Λ(p)
t (1 +O(t))

as t decreases to zero where Λ(p) is the limiting cumulant generating function and U(p) is given by

lnU(p) = Tr

[
F ∗−1

[
−1

2
sin pΓ · Γ−1 +

1

2
(pD1 − D2)

]
Σ0

]
+Tr

[
F ∗−1

[
sin pΓ ·Υ′

0 +
1

p
sin pΓ · Γ−1M +

(
D1 −

1

p
D2

)
RQ

]
F ∗−1G∗Σ0

]
−β

2
Tr [lnF ∗ + pRQ] .

Here, F ∗(p), G∗(p) and Γ are as in Lemma 1. New symbols D1,D2,Υ
′
0 satisfy

D1 = cos pΓ ·Υ′
0Γ

−1,

D2 = sin pΓ · Γ−1Υ′
0Γ

−1,

vecΥ′
0 = −(Γ⊕ Γ)−1vec

(
MRQ+RQM +Q⊤Q

)
where vec is the vectorization operator and ⊕ means the Kronecker sum.

Proof: In the proof of Lemma 1, we showed that the matrix M does not affect the limiting CGF.

However, for small-time smiles, we need to calculate the behaviors of the CGF for small t values,

which turn out to depend on M . Let us repeat the arguments of the lemma as follows. Recall the

solution A
(p
t , t
)
is F−1G where

(
G
(p
t , t
)

F
(p
t , t
) )

=
(

0 I
)
eLt , Lt =

 tM + pA tB

cI −(tM + pA)


where A = RQ, B = −2Q⊤Q, and c = p2

2t−
p
2 . For notational convenience, we denote (tM+pA)2+ctB

by Zt. Then, thanks to the symmetry of M , it can be readily shown that

L2kt =

 Zk
t Πk

0 Zk
t



11



for some matrix Πk. More explicitly, it is given by cΠk = (tM + pA)Zk
t − Zk

t (tM + pA). We can

rewrite

Zt = Z0 + tC+ t2M2, Z0 = p2A2 +
p2

2
B, C = p

(
MA+ AM − 1

2
B

)
.

From these calculations, we can find the matrices G and F as

G
(p
t
, t
)

= c
∞∑
k=0

1

(2k + 1)!
Zk
t ,

F
(p
t
, t
)

=
∞∑
k=0

1

(2k)!
Zk
t −

∞∑
k=0

1

(2k + 1)!
Zk
t (tM + pA).

Under the assumed conditions, −Zt converges to a nonsingular −Z0 = (pΓ)2 as t approaches

zero. Here Γ is as given in Lemma 1. Since Zt is symmetric, we can find a nonsingular Υt such

that Zt = −Υ2
t for some symmetric and nonsingular Υt and for all sufficiently small t. Clearly,

limt→0Υt = pΓ. Consequently, more compact representations are possible:

G
(p
t
, t
)

= c sinΥt ·Υ−1
t ,

F
(p
t
, t
)

= cosΥt − sinΥt ·Υ−1
t (tM + pA).

Let us now make the next observations: direct differentiations yield

G
(p
t
, t
)

= c sinΥ0 ·Υ−1
0 + cDt+ cO(t2)

=
1

t
G∗(p)− p

2
sinΥ0 ·Υ−1

0 +
p2

2
D+O(t),

F
(p
t
, t
)

= F ∗(p)− sinΥ0 ·Υ′
0t− Dt(tM + pA)− sinΥ0 ·Υ−1

0 Mt+O(t2)

= F ∗(p)−
[
sinΥ0 ·Υ′

0 + sinΥ0 ·Υ−1
0 M + pDA

]
t+O(t2).

Here, D is defined as d
dt sinΥt ·Υ−1

t

∣∣∣
t=0

and computed as

D = cosΥ0 ·Υ′
0Υ

−1
0 − sinΥ0 ·Υ−1

0 Υ′
0Υ

−1
0 .

We note that Υ′
0 satisfies the special case of Sylvester’s equation: Υ′

0Υ0 + Υ0Υ
′
0 = −C by differ-

entiating the defining equation of Υ2
t . Thanks to the symmetry and the positive definiteness of

Υt for small t, it is known that there exists a unique solution Υ′
0 and the solution is obtained by

vecΥ′
0 = − (Υ0 ⊗ I+ I⊗Υ0)

−1 vecC where ⊗ is the Kronecker product operator and vec is the

vectorization operator.

Using the definition of Kronecker sum, we get Υ0 ⊕Υ0 = Υ0 ⊗ I+ I⊗Υ0. It is then immediate

to see vecΥ′
0 = −(Γ⊕ Γ)−1vec

(
MA+ AM − 1

2B
)
. We also write for notational simplicity,

D =
1

p
D1 −

1

p2
D2,

D1 =cos(pΓ)Υ′
0Γ

−1

D2 =sin(pΓ)Γ−1Υ′
0Γ

−1.

12



Finally, it only takes several simple algebraic manipulations until we arrive at

A
(p
t
, t
)

=
1

t
F ∗−1G∗ + F ∗−1

[
−1

2
sin pΓ · Γ−1 +

1

2
(pD1 − D2)

]
+F ∗−1

[
sin pΓ ·Υ′

0 +
1

p
sin pΓ · Γ−1M +

(
D1 −

1

p
D2

)
A

]
F ∗−1G∗ +O(t).

This first order expansion of A combined with the known formula b
(p
t , t
)
in the proof of Lemma 1

helps us get

lnE
[
e

p
t
(Yt−Y0)

]
=

1

t
Λ(p) + Tr

[
F ∗−1

[
−1

2
sin pΓ · Γ−1 +

1

2
(pD1 − D2)

]
Σ0

]
+Tr

[
F ∗−1

[
sin pΓ ·Υ′

0 +
1

p
sin pΓ · Γ−1M +

(
D1 −

1

p
D2

)
A

]
F ∗−1G∗Σ0

]
−β

2
Tr [lnF ∗ + pA] +O(t).

It is possible to obtain an asymptotic expansion of lnU(p) which becomes handy for approxi-

mating small-time smiles. Since the derivation is tedious and long, we briefly sketch some relevant

computations.

Corollary 1 Assume that all of the conditions in Lemma 2 hold. Then, in a small neighborhood

of zero for p, the following asymptotic expansion is valid:

lnU(p) = −1

2
Tr[Σ0]p+

{
−1

2
Tr[RQΣ0] +

1

2
Tr [MΣ0] +

β

4
Tr
[
Q⊤Q

]}
p2

+

{
Tr

[(
−1

6
Γ2 − 1

6
Γ2Υ′

0Γ
−1 − 1

2
(RQ)2

)
Σ0

]
+
1

2
Tr
[(
ΓΥ′

0 +MRQ+RQM
)
Σ0

]
+

β

6
Tr
[
Q⊤QRQ

]}
p3 +O(p4)

where Γ and Υ′
0 are as in Lemma 2.

Proof: Useful expansions are given as follows:

F ∗−1 = I+ Ap+

(
A2 +

1

2
Γ2

)
p2 +O(p3),

G∗ =
p2

2
I− 1

12
Γ2p4 +O(p6),

sin pΓ = Γp− 1

6
Γ3p3 +O(p5),

cos pΓ = I− 1

2
Γ2p2 +

1

24
Γ4p4 +O(p6).
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Then, expansions for D1, D2 can be calculated accordingly. Regarding the last term in lnU(p) of

Lemma 2, we do the formal expansion of lnF ∗ = α0 + α1p+ · · · and find matching coefficients via

elnF ∗
= F ∗ = I− Ap− 1

2
Γ2p2 +

1

6
Γ2Ap3 +O(p4).

This leads to α0 = 0, α1 = −A, α2 = −1
2Γ

2 − 1
2A

2, and α3 = − 1
12Γ

2A − 1
4AΓ

2 − 1
3A

3. Then, we

eventually find that

−β

2
Tr [lnF ∗ + Ap] = −β

2
Tr
[
α2p

2 + α3p
3
]
+O(p4)

=
β

4
Tr
[
Q⊤Q

]
p2 +

β

6
Tr
[
Q⊤QA

]
p3 +O(p4).

Carefully collecting relevant terms, we obtain the desired result.

Lemma 3 Assume that all of the conditions in Lemma 1 hold. Let us define h(q) = Re
(
Λ(p∗(x)+

iq)
)
, q ∈ R, where p∗(x) is a solution to the equation Λ′(p) = x for x in a small neighborhood of

zero. If Tr[Σ0] > 0, then h(q) attains a unique maximum at q = 0.

Proof: Under the given assumptions, it is argued in the proof of Proposition 2 that there is a

small interval x ∈ [Λ′(−ε),Λ′(ε)] for a small ε > 0 with the following properties. First, this interval

includes 0 in its interior. Second, Λ′′ is strictly positive on [−ε, ε]. Third, for such x, there is a

unique solution p∗(x) to Λ′(p) = x thanks to the strict monotonicity of Λ′.

Let us denote z = p∗ + iq. The CGF of (Yt − Y0) is defined as Λt

(
z
t

)
= lnE

[
e

z
t
(Yt−Y0)

]
. Then,

observe that ∣∣∣E [e z
t
(Yt−Y0)

]∣∣∣ = ∣∣∣exp(ReΛt

(z
t

)
+ i ImΛt

(z
t

))∣∣∣ = exp
(
ReΛt

(z
t

))
.

On the other hand, the left hand side of the above equation is clearly less than or equal to

E
[∣∣∣e z

t
(Yt−Y0)

∣∣∣] = E
[
e

p∗
t
(Yt−Y0)

]
= exp

(
Λt

(
p∗

t

))
.

Since this holds for all t, we obtain the limiting result after multiplying t, ReΛ(p∗ + iq) ≤ Λ(p∗),

making q = 0 a maximum.

In order to see that q = 0 is a unique maximum, we note that

h′′(0) = Re
(
Λ′′(p∗ + iq)i2

)∣∣∣
q=0

= −Λ′′(p∗).

The strict convexity of Λ on [−ε, ε] implies that −Λ′′(p∗) < 0 so that the function h becomes strictly

concave at q = 0. This proves the uniqueness of the maximum.
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Based on the two lemmas above, the procedure of Forde et al. [13] can be applied. For the

reader’s convenience, we summarize its outline. Assume that the log-moneyness x = ln K
S0

is in the

small neighborhood of Lemma 3. Then, for sufficiently small t, it holds that

1

S0
E
[(
eYt − S0e

x
)+]

= (1− ex)1{x<0} −
ext

2π
Re

(∫
P

eixu/tϕt

(
−u

t

)( 1

u2
+O(t)

)
du

)
where ϕt(z) = E

[
eiz(Yt−Y0)

]
for complex number z with −Im(z) ∈ (p−, p+). The integration path

P is from −∞+ ip∗(x) to ∞+ ip∗(x). Then, Lemma 2 implies∫
P

eixu/tϕt

(
−u

t

)( 1

u2
+O(t)

)
du

=

∫
P

eixu/tU(−iu)eΛ(−iu)/t(1 +O(t))

(
1

u2
+O(t)

)
du

=

∫
P

e−H(u)/tU(−iu)

u2
du(1 +O(t))

where H(u) = −ixu − Λ(−iu). With nonzero x, Lemma 3 is then utilized to apply the Laplace

expansion of Theorem 7.1, Chapter 4, of Olver [29]. More specifically, Re(H(u)−H(u0)) is positive

on P for u0 = ip∗(x). The first order expansion of the resulting formula is

2
√
πte−H(u0)/t U(−iu0)

u20
√

2F ′′(u0)
(1 +O(t)) = −2

√
πte−(xp∗−Λ(p∗))/t U(p∗)

p∗2
√
2Λ′′(p∗)

(1 +O(t)).

By definition of the convex dual of Λ, we see that xp∗ − Λ(p∗) = Λ∗(x). The next result is simply

the WMSV version of Theorem 3.1 of Forde et al. [13].

Proposition 4 Assume that all of the conditions in Lemma 2 hold. Then, for a nonzero log-

moneyness x = ln K
S0

in a small neighborhood of zero, the asymptotic behavior for European call

options is given by

1

S0
E
[(
eYt − S0e

x
)+]

= (1− ex)1{x<0} + e−Λ∗(x)/t

(
A(x)√
2π

t1.5 +O(t2.5)

)
where A(x) = exU(p∗(x))

p∗(x)2
√

Λ′′(p∗(x))
as t decreases to zero.

Comparison of the above expansion with the call price expansion under the Black-Scholes model

leads us to the asymptotic expansion of the small-time smile as in Theorem 4.2 of Forde et al. [13]:

for nonzero and small x,

σ2
t (x) ≈ I(x)2 +

2I(x)4

x2

[
ln

A(x)x2

I(x)3
− x

2

]
t.

Here, I(x) is as in Proposition 3. Since this step is straightforward, we refer the reader to the main

reference. This expression still depends on the implicitly defined function p∗(x). Nevertheless,
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we can utilize asymptotic results obtained so far. Specifically, recall that we derived expansions

for Λ(p), p∗(x), and I(x) previously. By plugging in estimates for Λ′′ and U using Lemma 1 and

Corollary 1, we get an approximation to A(x). And Theorem 1 provides us with an approximation

to I(x). Alternatively, an asymptotic expression can be produced by expanding necessary quantities

to suitable degrees.

Theorem 2 Assume that all of the conditions in Lemma 2 hold. Then, for a nonzero log-moneyness

x = ln K
S0

in a small neighborhood of zero, the small-time smile is approximated by

σ2
t ≈ I(x)2 + 2I(x)4(d0 + d1x)t

for some constants d0 and d1. In particular, d0 is equal to

1

4

Tr [RQΣ0]

Tr [Σ0]
2 +

1

2

Tr [MΣ0]

Tr [Σ0]
2 +

β

4

Tr
[
Q⊤Q

]
Tr [Σ0]

2 +
3

8

Tr [RQΣ0]
2

Tr [Σ0]
4 − 1

6

Tr
[(
Q⊤Q+ 2(RQ)2

)
Σ0

]
Tr [Σ0]

3 .

Proof: For notational convenience, we write lnU(p) = u0p+u1p
2+u2p

3+O(p4). We also retrieve

the expressions Λ(p) =
∑3

i=0 aip
i+2 + O(p6) and p∗(x) =

∑3
i=0 bix

i+1 + O(x5) = xp̃(x). Lastly,

I(x)−2 = 2Λ∗(x)
x2 =

∑3
i=0 cix

i +O(x4). Then, we have[
ln

A(x)x2

I(x)3
− x

2

]
=

x

2
+ lnU(p∗) + 2 lnx− 2 ln p∗ − 1

2
lnΛ′′(p∗)− 3 ln I(x)

=
x

2
+ lnU(p∗)− 2 ln p̃(x) +

1

2
ln p∗′(x) +

3

2
ln I(x)−2

=
x

2
+ u0(b0x+ b1x

2 + b2x
3) + u1(b

2
0x

2 + 2b0b1x
3) + u2b

3
0x

3 +O(x4)

−2 ln
[
b0 + b1x+ b2x

2 + b3x
3 +O(x4)

]
+
1

2
ln
[
b0 + 2b1x+ 3b2x

2 + 4b3x
3 +O(x4)

]
+
3

2
ln
[
c0 + c1x+ c2x

2 + c3x
3 +O(x4)

]
.

Here we utilized the relation Λ′(p∗) = x so that Λ′′(p∗)p∗′(x) = 1 by differentiating with respect

to x. Our previous computations show us that a0 = 1
2Tr[Σ0] and b0 = c0 = 1

Tr[Σ0]
. We also have

u0 = −1
2Tr[Σ0]. This simplifies the formula a bit and leads us to[

ln
A(x)x2

I(x)3
− x

2

]
= u0(b1x

2 + b2x
3) + u1(b

2
0x

2 + 2b0b1x
3) + u2b

3
0x

3

−2 ln

[
1 +

b1
b0
x+

b2
b0
x2 +

b3
b0
x3 +O(x4)

]
+
1

2
ln

[
1 + 2

b1
b0
x+ 3

b2
b0
x2 + 4

b3
b0
x3 +O(x4)

]
+
3

2
ln

[
1 +

c1
b0
x+

c2
b0
x2 +

c3
b0
x3 +O(x4)

]
.
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It is easy to check that c1 = 2
3b1. Hence, the Taylor expansions of the log functions cancel out x

terms because −2b1 + b1 +
3
2c1 = 0. Finally, 1

x2

[
ln A(x)x2

I(x)3
− x

2

]
boils down to d0 + d1x+O(x2) for

some suitable constants d0 and d1.

Carefully collecting relevant terms and utilizing the relationships b1 =
3
2c1, b2 = 2c2, we can see

that d0 = u0b1 + u1b
2
0 +

b2
4b0

− b21
3b20

from which we obtain the expression in the statement.

In the previous theorem, it is possible to compute d1 explicitly, in which case b3 and c3 are

required. Depending on the time scale for which the user applies implied volatility expansions,

however, the expansion I(x)2 + 2I(x)4d0t might suffice. In our numerical tests in the next section,

we use d0 only with the quadratic expansion in Theorem 1 for I(x).

4 Numerical Results

In this section, we conduct several numerical comparisons to test the effectiveness of the derived

formulae in Theorems 1 and 2. The limiting implied volatility I(x) is also denoted by σ0 and the

small-time smile by σt. Our experiments use the following parameters: β = 3, S0 = 100, r = 0,

T = 0.1, 0.05, 0.01, and

M =

 −3 0

0 −4

 , Q =

 .5 0

0 .25

 , R =

 −.5 0

0 −.5

 , Σ0 =

 .09 0

0 .09

 .

Since the original paper by Da Fonseca et al. [8] presents detailed sensitivity analyses of param-

eters on option prices, we focus on the numerical performance of our implied volatility expansions.

In order to assess the accuracy of σ0 and σt, we numerically calculate call option prices based on

the WMSV model via the widely used Fourier transform method, which we refer the reader to

any of many available references such as Da Fonseca et al. [8], Carr and Madan [2], or Duffie et

al. [10] to name a few. Nevertheless, for the reader’s convenience, we document the details of our

Matlab implementation. The documentation can be found on the corresponding author’s personal

web page or can be requested via email.
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Figure 1: Comparison of true implied volatility, limiting implied volatility σ0, and small-time smile

σt for (1) option maturity 0.1 (2) option maturity 0.05 (3) option maturity 0.01.
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Figure 2: Relative differences (true val - approx val)/true val for (1) limiting implied volatil-

ity σ0 (2) small-time smile σt (3) true call prices vs. approximate call prices from σt.
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5 Implications for the Pension Fund Management

From the manager’s viewpoint, there are several potentially useful directions that implied volatility

asymptotics can be utilized. Their primary use lies in improving calibration efficiency. By matching

asymptotic implied volatilities with model parameters to market implied volatilities, we obtain

numerically more stable solutions when compared to matching model option prices with market

option prices as we circumvent computational steps in option pricing. The computational gain is

large. A similar example where approximate schemes prove to be powerful is American options.

In managing portfolios of financial products, it is vital to maintain suitably calibrated models and

the results in this paper could be of use for products whose underlyings are assumed to follow the

multi-factor volatility Heston model.

Another, possibly more important, application of implied volatility asymptotics is that they

provide information about derivatives prices in certain regions. For given model parameters, the

small-time smile in this paper tells us the behavior of vanilla option prices near expiry. More

generally, if the price of a derivatives product can be written using implied volatility, the price

movement can be better understood by decomposing it in terms of option greeks (e.g., vega) and

implied volatility asymptotics. A related application is optimal construction of stock portfolios.

It has been well known that option implied information can improve the portfolio performance

compared to when historical volatilities are used in the model. As a future research topic, it would

be interesting to see the explanatory power of the near-expiry implied volatility asymptotics on the

behavior of optimal portfolios where assets follow the geometric Brownian motion.

6 Conclusion

This paper showed that it is possible to extend the large deviations approach and the Laplace ex-

pansion approach for the small-time asymptotics for implied volatilities under the Heston stochastic

volatility model to its multi-dimensional version. For this, all the arguments underlying the existing

approaches were re-examined and some proofs were simplified. It should also be acknowledged that

all the analyses were possible due to the recent developments of the theory of affine processes in

general. The tractability of the resulting formulae depends on the specific assumptions on model

parameters, that is, RQ and M are symmetric. Such assumptions do not restrict the flexibility of

the Wishart process based model. However, the full consequences of those assumptions are beyond

the scope of this paper.
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