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ABSTRACT

We show that structured equity derivatives could cause a significant
price dislocation of the underlying stock caused by an abrupt delta-
hedging triggered by a predefined event in the payoff. Moreover, one
event causes another: the cascade of event-driven liquidation ampli-
fies the magnitude of the market impact. We find that a single liq-
uidation event is associated with about -4% return on the event day.
The non-informational price shock increases, in turn, the probability
of a subsequent event by 15.7%. Given the negative price pressure,
traders try to liquidate ahead of each other, exacerbating the degree
of price dislocation. Our results reveal the chain-reaction mechanism
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provoke a substantial stock-price deviations.
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In finance theory and also in practice, the value of derivatives is computed on the assumption
that the derivatives themselves do not affect the prices of underlying assets. It has been
widely documented, however, that this is not the case in vanilla option markets.1 The
exogeneity assumption is more broadly violated in the case of over-the-counter (OTC) exotic
derivatives. Using structured equity products (SEPs), a package of complex options that
are marketed aggressively to retail investors, Henderson, Pearson and Wang (2020a) show
that issuers have an incentive to inflate the initial fixing of their contracts. They argue that
the way that fixings are determined imposes a significant manipulative incentive. In this
paper, we explore another contractual feature of SEPs: how a particular payoff can trigger a
price dislocation in the context of strategic complementarity among issuers regarding their
issuance and hedging.

For this task, we explore SEPs issued in Korea from 2006 through 2017. Several unique
features of this market make it an ideal laboratory in which to study the asset-price im-
plications of SEPs. First, the Korean SEP market is exceptionally big relative to its cash
equity markets when compared with corresponding markets in other developed economies.2

Second, Korean SEPs share a largely homogeneous payoff structure based on a particular
feature that triggers a sudden liquidity demand via delta-hedging.3 Lastly, the issuance of
SEPs in Korean market is driven predominantly by retail investors’ attention. Shin (2018),
using the U.S. data, documents that a successful placement of an SEP with a high coupon
rate causes those investors to demand more products with the same underlying asset and
contract terms. To match the demand, financial intermediaries aggressively market the high-
yield complex products to retail investors while maximizing their profits (Celerier and Vallee,
2017; Egan, 2019). Such behaviors originated from both retail investors and issuers cause
Korean SEPs on a particular underlying stock to be issued intensively over a short period,
forming an issuance wave.

These peculiarities of the market allow us to answer the following questions directly. When
a large number of SEPs with the homogeneous payoff structure share an underlying asset,

1Ni, Pearson and Poteshman (2005) and Golez and Jackwerth (2012) find that option hedging has a
substantial impact on the underlying stock price near the option maturity. Ni, Pearson, Poteshman and
White (2018) further argue that hedging amplifies the underlying volatility over the entire lifetime of options,
not only the expiration dates.

2The SRP Global Structured Product Database shows that, as of 2019, the outstanding notional amount
of SEPs in the Korean market is about 242 billion dollars. This accounts for 16% of the total market
capitalization, whereas the corresponding ratio for the U.S. is 2% and for the European market it is 6%.

3According to the SRP Global Structured Product Database, as of 2019 15.7% of SEPs with the knock-in
feature are issued in Korea, which makes Korea unarguably the largest country in terms of the outstanding
balance per total market capitalization and the second-largest country in terms of the issue volume during
2019, behind only the U.S. This particular SEP type accounts for 69.4% of the outstanding balance in the
Korean SEP market.
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would this circumstance exacerbate the price dislocation? Would one delta-hedging event
lead to another, causing a sequential price impact? As an SEP issuer conducts a delta-hedge,
would her execution behavior differ when the hedge can affect herself versus her competitors?
Relatedly, would she act differently if she could foresee the competitors’ trading strategy?
We believe that answering all these questions is essential for understanding how complex
derivatives could damage financial stability, given the mechanisms related to supply and
demand of these products (Celerier and Vallee, 2017; Egan, 2019; Shin, 2018). To the best
of our knowledge, ours is the first study to document the dynamic aspects of price dislocation
as well as the game-theoretic behavior of SEP issuers that could contribute to systematic
market disruption.

The structure of the SEPs we study involves a swap of two exotic options.4 The issuer sells a
binary call option whose payoff corresponds to the conditional coupon of the SEP to investors
in exchange for a knock-in (KI) barrier put option.5 Issuers compete on the coupon because
it determines the attractiveness of the investment product to retail investors (Celerier and
Vallee, 2017). Therefore, if two SEPs on the same stock are issued at a similar time, the
barrier levels of their puts are also likely to be similar.6 When the barrier is breached,
the knock-in put suddenly becomes a vanilla put, dramatically shrinking the delta position.
Consequently, the knock-in event forces hedgers (issuers) to dump a large quantity of the
underlying stock.

Given the homogeneity of payoffs, multiple knock-in events tend to occur simultaneously:
when an SEP’s knock-in barrier is breached, other SEPs on the same underlying asset are
likely to provoke knock-in events, exacerbating the price pressure. Exploiting this mecha-
nism, we first show that the triggered delta-neutralization significantly dislocates the un-
derlying stock price. Specifically, we observe a ‘V’-shaped pattern in the abnormal return
whose kink point coincides precisely with the timing of the knock-in events. The pattern also
indicates that the price does not revert back immediately. It is not surprising to observe a
series of negative returns prior to knock-in events because, by definition, those events occur

4About 80% of SEPs in Korea have payoffs that can be decomposed in a similar fashion.
5The put option typically has an at-the-money (ATM) strike and, therefore, a binary call with a higher

payoff has to be exchanged for a KI put option with a higher barrier. In practice, the net swap value is not
zero because it includes issuers’ upfront margins.

6On the day when the most notes were issued in our sample, 179 SEPs were issued on 49 underlying
stocks. To compare barriers on the same underlying asset, there must be two or more contracts on one
issuance day. Requiring this reduces the number of SEPs issued to 160 and underlying stocks to 30. This
means that, on average, issuance is clustered with five contracts per underlying asset. Comparison of barrier
levels shows that the percentage of SEPs with a barrier difference that is less than or equal to 5% is 73%,
the barrier difference that is less than or equal to 10% is 79%, and the barrier difference that is less than or
equal to 20% is 92%.
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as a result of the negative returns. However, without the hedging-induced price impact, the
stock price would not necessarily correspond to a local minimum or a kink point at the exact
time of any knock-in events.

To formally distinguish the hedging-related price impact from a change in firm fundamental,
we construct a proxy variable: the ratio of the outstanding notional value of SEPs to the
underlying stock’s trading volume at issuance. We denote this variable as the ‘notional-to-
volume’ (N2V ) ratio. This ratio would be correlated with the hedging intensity because the
dollar amount of the position to be neutralized is proportional to the notional value. The
ratio is, however, arguably uncorrelated to the firm fundamental change around the events
because this ratio is predetermined at the issuance of SEPs. Given that it takes on average
15 months from the time of issuance for a knock-in to occur, it is unlikely that this ratio is
correlated with changes in firm fundamental, particularly at the time of knock-in event.

Our results indicate that knock-in events are associated with an abnormal return of about
-7% at the time of the events when the N2V ratio falls into the lowest tercile. However,
when the N2V ratio falls into the highest tercile, knock-in events impose an additional -
2% of price dislocation on the event day. This result is robust to unobserved heterogeneity
regarding event time, industry, and their interaction, confirming that the hedging activities
prompt a sudden and significant price dislocation. We also observe that the price impact
does not disappear immediately. Focusing on a set of events that occur apart from each
other by more than our event window, we show that such a price impact lasts at least longer
than two weeks.7

Since multiple SEPs on a common underlying asset with largely homogeneous payoffs are
contemporaneously issued, we find that one knock-in triggers another, producing a chain
reaction. This result has an important implication for market destabilization. When a
predetermined trading strategy exists (e.g. a stop-loss policy or a 5% Value-at-Risk (VaR)
rule) and it applies to a large portion of traders, an uncoordinated policy-driven execution
can cause an undesirable market-wide impact via the chain reaction mechanism.8

7There is a trade-off in setting the event window. A wide event window that filters too many events
also creates possible unknown heterogeneity between included and excluded events. A narrow event window
alleviates those concerns, but we are not able to observe a long enough post-recovery process.

8An intraday event in the E-mini S&P 500 futures market known as the ‘Flash Crash’ occurred on May
6, 2010. According to the CFTC-SEC (2010) report, the Flash Crash was initiated by a large number of
fundamental traders who executed a program to sell E-Mini contracts to hedge their existing cash equity
positions. This collective transaction drove futures prices down by approximately 3% in less than four
minutes, from 2:41 p.m. to 2:44 p.m. The price impact in the futures market quickly spilled over to the
underlying stock market. Even after the rapid recovery of the E-Mini, a prevailing stop-loss order triggered
another crash, creating a systematic market disruption.
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Given the negative price impact upon a knock-in, the trader of a current event may exhibit
varying execution behaviors, depending on her own position as well as those of the third
parties’ that are subject to future knock-ins. Suppose that she has a large hedging position
on another SEP whose knock-in event is highly probable. If she is concerned that the current
event would lead to unfavorable market condition for unwinding the remaining position upon
a subsequent knock-in, she may execute the current position in a way that minimizes the
market impact. On the other hand, she may wish to have an additional knock-in as it would
make her a put-option holder. In this case, she would conduct aggressive liquidation to
impose a heavier price pressure. Moreover, the third parties’ positions also matter. If she
expects competitors to liquidate their hedging positions imminently, it would affect the way
she liquidates hers.

We first show that, upon a knock-in event, the outstanding notional amount of un-triggered
SEPs contributes to the price dislocation. We normalize the remaining notional amount
by trading volume of the underlying asset as in N2V , constructing a ‘remaining-to-volume’
(R2V ) ratio. Exploiting the fact that barriers of the remaining SEPs are distinct, we show
that the notional amount subject to the most imminent knock-in imposes the largest price
shock. The impact ofR2V is significant even after controlling forN2V , showing an additional
channel other than the one associated with the current event.

To further distinguish the various incentives related to R2V , we separate R2V into the
portion of SEPs issued by the same institution of the current knock-in (R2Vin) and the
remaining SEPs (R2Vex). Our results show that the degree of price dislocation is more severe
with a higher R2Vex but insignificantly related to R2Vin. This finding indicates that the
trader of the current event neither smooths out the execution process nor imposes excessive
price pressure beyond the degree associated with the current event. However, she appears to
aggressively unwind her position when her competitors are likely to liquidate a substantial
portion sometime soon.

This behavior is consistent with the ‘rat race’ mechanism documented in another context
(Brunnermeier and Oehmke, 2013). When a trader expects a negative price shock initiated
by someone else, she has an incentive to go in front of the line and pre-execute her position.
Such aggressive liquidation aggravates the price pressure and prompts future knock-ins via
the chain reaction. Such game-theoretic behavior is more probable when information on
other traders’ positions is readily available. On April 25, 2013, the Korea Stock Depository
(KSD) introduced a system in which a user can easily access SEP issuance records.We utilize
this information shock and find that the price impact via R2Vex is most prominent after this
service is implemented, supporting the ‘rat race’ explanation.
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We contribute to research investigating the possibility of price dislocation of stocks that
underlie OTC derivatives. Prior studies demonstrate that issuers of OTC derivatives affect
the prices of underlying stocks for reasons related to hedge rebalancing and stock-price
manipulation (Ahn, Choi, Kim and Liu, 2010; Henderson, Pearson and Wang, 2015; Ni
et al., 2018; Henderson et al., 2020a).9 We explore the knock-in events of SEPs and find
consistent evidence that OTC derivatives cause a substantial impact on prices and stock
market volatility. To exploit non-informational liquidity demand triggered by knock-in events
is particularly advantageous as such events provoke dramatic changes in the delta position.

Our paper is also related to research that documents a potential risk in predetermined trading
strategies. For instance, a negative price shock can trigger a portfolio insurance program that
liquidates the asset, potentially generating a vicious cycle (Gennotte and Leland, 1990; Easley
and O’Hara, 1991; Jacklin, Kleidon and Pfeiderer, 1992). Osler (2005) argues that a stop-
loss order provokes a cascade of negative price shocks in the currency market. Theoretically,
Huang and Wang (2009) provide insight into our results by showing that an endogenous
liquidity shock without a fundamental reason could crash the market. In this context, we
find empirical evidence that the predetermined barrier associated with OTC derivatives
prompts sudden liquidity demand, destabilizing the underlying stock market.

Our findings provide policy implications for market regulation and information transparency.
In particular, we find it problematic that issuers competitively issue homogeneous SEPs on
specific underlying stocks within a short time window. Although each issuing institution
imposes a risk budget on the issuance, such a budget must depend on competitors’ activities.
We show that, in spite of the likely individual limit, the collective issue quantity can be
excessive, necessitating a coordination device or a regulation. Also, our finding that traders
jump ahead of each other suggests that enhancing market transparency does not benefit
market stabilization.

Relatedly, our paper speaks to discussions related to the dark side of financial innovation.
Existing studies have focused on financial intermediaries exploiting uninformed retail in-
vestors (Henderson and Pearson, 2011; Vokata, 2018). The room for investor exploitation
with a complex product such as SEPs incentivizes intermediaries to generate issuance wave
which is highly correlated with a measure of investor sentiment (Henderson, Pearson and
Wang, 2020b). We complement these arguments by showing that financial innovation can
impair market stability, especially when the issuance wave interacts with issuers’ own trading

9Ni et al. (2018) focus on expiration dates, Ahn et al. (2010) examine redemption or maturity dates,
while Henderson et al. (2015) focus on pricing (issuance) dates or determination (redemption) dates, and
Henderson et al. (2020a) investigate issuance dates.
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to manage the complex risk.

The rest of the paper is organized as follows. In Section 1, we describe our data in detail. In
Section 2, we provide empirical evidence that hedging-induced liquidity demand dislocates
underlying stock prices. In Section 3, we discuss the chain reaction of knock-in events such
that the contemporaneous event increases the future knock-in probability. In Section 4, we
examine the strategic behavior of delta-neutralizing traders. In Section 5, we conduct several
robustness tests. Section 6 concludes.

1. Data Description

1.1. Overview of structured equity product (SEP) market

The Korean SEP market has experienced rapid growth over time. As shown in Panel (a)
in Figure 1, the annual average growth in issue volume was 23% from 2003 through 2017
10. Also, as of 2017, the outstanding notional amount of SEPs was 73 billion U.S. dollar-
equivalent, accounting for almost 4.9% of total equity market capitalization.

Compared with the SEP markets in other countries, the Korean market exhibits an excep-
tional concentration on one payoff type. Using the SRP Global Structured Product Database,
in Panel (b) of Figure 1 we can see the share of outstanding balances across markets for SEPs
whose payoffs feature a specific ‘knock-in’ barrier.11 As shown in Panel (a) of Table I, the
open interest is uniformly distributed across the U.S., European, and Asian market. How-
ever, Korea accounts for a predominant portion in Asia, making it the largest single country
in terms of open interest relative to stock market capitalization (16% of the open interest
in the world). Although the U.S. has the largest outstanding volume in terms of the abso-
lute amount, (108 billion dollars in the U.S. versus 64 billion dollars in Korea), Korea has
the highest proportion relative to the size of the underlying stock market (0.3% in the U.S.
versus 4.3% in Korea).

[Insert Figure 1 and Table I here.]

It is interesting to observe that the growth steepens after the 2008 financial crisis (23.1%
versus 19.4% in the pre-crisis period), during the low-interest-rate regime (Korea’s bench-
mark rate on average is 2.1% in the post-crisis period versus 4.3% in the pre-crisis period).

10This figure uses issuance data from 2003 while our sample starts from 2006. Although the data from
2003 through 2005 has sufficient information for the aggregate pattern, it lacks specific payoff information,
and consequently, we exclude this portion from the main sample.

11This type of payoff is classified as ‘protected tracker’ or ‘reverse convertible’ in SRP Global Structured
Product Database.
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Investors have been attracted by higher yields offered by those investment products. Al-
though they are derivatives contracts, the products are marketed as a kind of fixed-income
securities. As is the case with a typical bond, here investors initially invest the par value of
the note in exchange for future payoffs (the ‘coupon’ and the ‘principal’) at maturity. The
maturity payoff of SEPs depends, however, on the underlying asset’s performance and the
payoff structure of an individual SEP. These products are noticeably popular among retail
investors.12

1.2. Data construction

Given the non-transparent nature of OTC derivatives contracts, we exploit several infor-
mation sources to construct a comprehensive data set on SEP issuance. We start from a
commercial data provider called FnGuide that provides the notes’ issuance histories. For each
issuance, we hand-collect contractual details such as knock-in barrier levels and maturities
from individual prospectus filed with the Korea Security Depository (KSD) and Financial
Supervisory Services (FSS). The collected information includes 38,035 SEPs in total on a
basket of stocks, both publicly and privately issued during 2006 and 2017.

Panel (b) of Table I illustrates the sample construction process. We use the following filters to
construct the final sample for our study. First, we restrict our focus to SEPs whose underlying
assets contain a domestic stock. SEPs are typically written on a basket of underlying assets
that could be individual stocks as well as equity indices; we exclude SEPs if they are underlain
by a basket of indices only. Furthermore, we require SEPs to have the ‘knock-in’ feature
in the payoff because we treat knock-in events as instruments that trigger extreme delta-
hedging activities. The resulting data set contains 16,736 unique SEPs, associating these
with 122 unique underlying stocks.

In our sample, usually, an SEP is written on a basket of individual stocks. In this case,
the worst performer triggers the knock-in event. For our purposes, this worst performer is
recognized as the affected stock by the knock-in event. Therefore, we identify 8,174 unique
knock-in events (or unique SEPs that experience knock-in events), covering 90 unique stocks.
When a stock triggers multiple knock-in events on the same day, we aggregate those events.
This process converts our data structure to the stock × day-of-event level. Consequently,
the transformed data contain 1,296 unique observations (stock × event days) on 492 unique
days-of-event. On average, two or three stocks are affected per day.

12According to a 2018 report from Korea Financial Supervisory Services, retail investors hold 47% of the
SEP (known in practice as Equity Linked Securities; ELS) and 76% of the marketing channel is comprised
by bank trusts, 12% by financial institutions, and 10% by funds.
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Panel (c) of Table I presents the time trend for SEP issuance and knock-in events. The
issuance column of the table includes the total number of SEPs, the aggregated notional
amount, and the unique number of underlying stocks by year of issuance. Column ‘Knock-
In’ presents the comparable quantities, conditioned on the assumption that the knock-in
event has been triggered in the corresponding year.

1.3. Issuance herding and knock-in crowding

Since SEPs are largely marketed to retail investors, the choices of underlying stocks are
significantly influenced by investor attention. Once a product with an attractive payoff
(typically a higher coupon rate) is initially issued, it draws investors’ attention and leads
them to demand that more SEPs with the equivalent terms be issued. This behavior creates
the pattern of issuance herding: over a short period of time, a disproportionately large
number of SEPs on a particular underlying stock are being issued. Given a set of underlying
stocks, the competition makes the coupon rates of SEPs similar across issuers. To keep the
coupon rate competitive, the knock-in barriers of the SEPs tend to be largely identical to
each other.

In practice, no issuer can supply the SEPs indefinitely because issuing these notes is equiva-
lent to writing option contracts, and each issuer is bound by its risk budget. Therefore, each
issuer typically issues SEPs up to the maximum amount allowed. In aggregate, however,
this mechanism can still create excessive issuance concentration at a certain time.

Panel (a) and Panel (b) in Figure 2 visualize this pattern. We select the top five stocks from
our sample (for a total 90 stocks) based on the total number of SEPs whose barriers are
breached during our sample period, and place them along the vertical axis (ranging from the
biggest stock to the fifth-biggest stock). Circle size represents the notional size (Panel (a))
or the number (Panel (b)) of newly issued notes corresponding to each stock in each month
on the horizontal axis.

In the absence of issuance herding, we would expect these circles to be equal in size and
spread proportionally across the time period. However, the figure shows the contrary: we
observe that larger circles are concentrated in specific times but are asynchronous for different
stocks, illustrating issuance herding.

As a result of the issuance herding among nearly identical SEPs, the knock-in events are
also concentrated during certain periods, which we call ‘knock-in crowding’. Panel (c) and
Panel (d) in Figure 2 display this pattern. We match the same firms with those from panel
(a). The sizes of circles (the amount or the number of SEPs subject to knock-in events) are
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largely concentrated in a certain month.

[Insert Figure 2 here.]

1.4. Event window selection criteria

To analyze the dynamic price impact around each knock-in event, we use the performance
of the corresponding stock for five days before and after the event day (i.e. for a total of
11 days). Unlike other studies that analyze synchronous events, in our study events could
overlap with each other because SEPs of the same underlying assets may experience the
knock-in event on different days. Therefore, for a given stock, we select non-overlapping
events where each event is unique during the event window.

The selection of the window involves a trade-off between the sample size of the non-overlapping
events and the number of post-event observations. For example, choosing the narrowest pos-
sible window (i.e. a 1-day window) would give us the largest samples because the fewest
events would overlap each other. Doing so would, however, fail to provide any post-event
information. On the other hand, choosing a wide window (e.g. a 6-month window) would
allow us to observe the post-event dynamics, at the cost of having samples that are large
enough to meet such a strict condition. In this trade-off, we choose an 11-day window to
study the dynamic effects around the event, while a 1-day window when analyzing the event
day only is sufficient. As a robustness check, we present the results with alternative windows
to ensure that the dynamic results are not sensitive to window size.

2. Price Impacts of Knock-In Events

2.1. Structured equity products

The advantage we have for studying how open interest influences the stock market relies on
the fact that payoff structures across SEPs are largely homogeneous. Typically, SEPs are
composed of multiple underlying assets. For a given set of underlying assets, an investor
in an SEP buys a Bermudan style digital call option that can be exercised only on a set of
dates (observation dates). The investor finances this position by selling a knock-in barrier
put option on the same underlying set to the issuer. This transaction forms a swap of the
digital call and the knock-in put, with the complication that the swap is path-dependent:
if the digital call is in the money on any observation dates (redemption events), the entire
structure is cancelled. Once the redemption event occurs, the investor receives a ‘coupon’
corresponding to the digital call payoff. The issuer packages this swap in note form by
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Illustration 1. Payoff Structure and Delta Variation of SEPs with Knock-In
Barrier

(a) Simplified Payoff (b) Delta of Knock-In Put

combining it with a zero coupon bond that will be called at par upon the redemption event.
The note is therefore ‘auto-callable’ with the coupon as a call payout. The coupon and the
barrier level involve a trade-off. To earn a higher coupon the investor also has to accept a
higher barrier, making the entire structure riskier.13

We simplify the payoff by assuming that there is only one observation date, as illustrated in
Panel (a) of Illustration 1. The horizontal axis indicates the price of the underlying stock at
maturity (the only observation date). For this illustration, we assume that the stock price
at inception (S0) is 100, the digital call strike (K) is 80% of S0 (80) with payout of 6%,
and the knock-in barrier (B) is 70% of S0 (70). This means that the investor receives 6%
of the coupon if the underlying stock ends up higher than 80 (redemption event). If the
redemption event does not occur, the investor may experience a loss because she short-sells
the put. Because it is a barrier option, however, the put option becomes active only when
the knock-in barrier is breached during the life of the option (the knock-in event). There is
no loss to the investor as long as the stock price stays above the barrier throughout the time
period even if redemption did not occur.

The knock-in event causes a sudden change in the payoff. Suppose that the minimum stock
price during the lifetime of the option was 71 (knock-in event did not happen). If the stock

13Because the note is sold at par, the maximum net swap value that the investor can afford is the difference
between par and the discounted zero-coupon bond. Since these products’ main target is retail investors (Cha,
2017), issuers compete along the dimension of the coupon rate. If two SEPs on the same underlying assets
are issued at the same time, it is likely that their barrier levels are close to each other, because coupons
cannot be very different as they determine the success of the placement.
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price at maturity (ST ) is 72, the investor would not receive the coupon but also would incur
no loss. If the minimum price was 70 (knock-in event happened), however, she would lose
28% (=(100-72)/100) in spite of the same stock price at maturity (72). This dramatic payoff
change also heavily alters the risk profile of the derivatives upon the knock-in event.

Panel (b) of the Illustration 1 shows the delta of the knock-in put. While the minimum delta
that a vanilla put can have is -1, the knock-in put delta can be much smaller than -1 prior
to the knock-in event. The delta-hedging issuer needs to build a long position on the stock
to neutralize the negative delta of the put. Prior to the knock-in event, the hedging position
can be substantially large because of the huge negative delta. When knocked-in, however,
the put option becomes a vanilla one, bounding its delta above at -1. The delta-neutralizing
issuer is then left with an excessive stock position. As a result, the issuer is forced to liquidate
it immediately.

2.2. Measuring the price impact of knock-in events

We first test whether aforementioned hedging-driven liquidation imposes price pressure, caus-
ing the stock price to dislocate from the fundamental value. The biggest challenge is to
distinguish price changes caused by the hedging-driven liquidation from the change in fun-
damental value. The knock-in event is likely to be triggered when the fundamental value also
decreases. Our set up provides us with a particular advantage to address this challenge: the
fundamental value does not necessarily differ much in the neighbourhood of the barrier level.
Therefore, should there be any price dislocation, its magnitude would be most pronounced
precisely at the moment of the knock-in event.

We next construct a variable that is associated with liquidation intensity but is unlikely to
be correlated with changes in the firm fundamental value. The dollar value of the delta is
positively correlated with the size of the SEPs. Given issuance clustering (see Panels (a) and
(b) of Figure 2) and the homogeneity of the payoffs, the knock-in events would also cluster
(see Panels (c) and (d) of Figure 2). For this reason, there often exist multiple knock-ins
from separate SEPs on the same underlying asset at the same time. Using this fact, we
define the following ‘notional-to-volume’ or ‘N2V ’ measure.

We aggregate the notional amount of a set of SEPs ks whose knock-in barrier is touched by
their underlying stock i on day t.14 We then divide the aggregated notional amount by the

14Often, such SEPs have multiple underlying stocks. In this case, contractually, the knock-in event is
deemed to occur when any of those stocks touches the barrier. In other words, the event is triggered by the
worst performer of the underlying basket.
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average trading volume of stock i. Formally,

N2Vi,t =
∑
k∈Ki,t

Notionalk

V olumei,t̄(Ki,t)
, (1)

where Ki,t is a set of SEPs whose underlying assets contain stock i and whose knock-in events
are triggered at t by i, Notionalk is the notional size of SEP k ∈ Ki,t divide by total number
of underlying assets, and V olumei,t̄(Ki,t) is the 6-month average dollar volume of stock i as
of the earliest issue date among SEPs in Ki,t denoted by t̄(Ki,t).

We aggregate across multiple SEPs on the same knock-in day t as stock i triggers the event,
so the observation unit for N2V naturally becomes event j, pinning down the affected stock
i(j) at the knock-in event time t(j).15 Therefore, for the sake of notational simplicity, we
rewrite (1) as follows:

N2Vj = N2Vi(j),t(j). (2)

According to Equation (1), N2V is predetermined at the time of SEP issuance, which is
long before the knock-in event day t.16 In Table II, we present summary statistics of all
measures and control variables used in this test, including N2V . The mean of N2V is about
0.10, which generally implies that when a knock-in event occurs, the notional amount of all
SEPs whose knock-in barriers are touched corresponds to about 10% of the average trading
volume of associated underlying stocks.

[Insert Table II here.]

The aggregation across SEPs also reflects the fact that multiple knock-ins often occur si-
multaneously. It is reasonable to expect that a higher N2V is associated with greater price
pressure on related underlying stock. There is no obvious reason, though, that a higher N2V
would be correlated with a bigger drop in fundamental value in the future, because it is dif-
ficult to envision that this predetermined variable in the OTC derivatives market changes
firm fundamental values or that investors invest more on a firm whose fundamental value
is expected to drop. One may argue that issuers can benefit by selling SEPs on overpriced
stocks and leaving the position unhedged. If this is the case, however, knock-in events would
not incur any changes in issuers’ position and therefore we should not observe any price

15When SEP k has a basket of underlying stocks, the affected stock i(j) in our analysis is the worst
performer of the basket that triggers the knock-in event j, making the mapping of j 7→ i unique.

16Average time gap between issuance date and knock-in event day is over 1 year (15 month). The trading
volume around knock-in events may be a consequence of hedging position liquidation. In an unreported result,
we find that the trading volume increases significantly around events. Such an endogeneity discourages using
the volume around knock-in, and it can be circumvented by using the volume at the issue date of event-
experiencing-notes.
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impact upon knock-in events.

It is possible, however, that N2V is correlated with future economic conditions. In particular,
retail investors may chase the past stock return. A stock that had recently generated a high
return may draw investor attention and drive a large SEP issuance. When such issue-timing
occurs near the peak of the economic cycle, multiple SEPs will be simultaneously knocked-
in (resulting in high N2V ) during a subsequent downturn. In this case, a high N2V may
coincide with a more negative return because of the issuance timing. To circumvent this
concern, we use N2V with an interactive industry fixed effect and event calendar time fixed
effect that controls for the industry-wide economic condition.

2.3. Empirical design

As a first step, we examine the pattern of underlying stock price movements around knock-in
events. To this end, we use the event window that ranges from 5 trading days prior to and
5 trading days after a knock-in event. To focus on stock-specific price movements, we use
standard market-adjusted cumulative abnormal returns (CARs) following Ritter (1991) and
MacKinlay (1997). Specifically, for event j that occurs at t(j), the CAR of affected stock
i(j) on event day τ ∈ [−5,+5] is calculated in the following way:

CARj,τ =
τ∑

q=−5

{
Ri(j),t(j)+q −Rm,t(j)+q

}
, (3)

where Ri,t is the return on stock i on day t, Rm,t is the return on the market index (KOSPI
Composite) on day t, i(j) is the affected stock at event j, and t(j) is the event day of j. The
reference point of the CAR is 5 days prior to the event day (t − 5), which corresponds to
the inception point of the event window.

To show the event-time-variation price pattern, we use the following specification. For event
j that occurs at t = t(j), we regress the CAR of affected underlying stock i = i(j) on
event-day-dummy variables D:

CARj,τ = αI(i)×M(t) +
5∑

τ=−5
βτ ·Dτ + γXi,t−10 + εj,τ , (4)

where I(i) is the industry of stock i as per the Korea SIC 2-digit classification, M(t) is the
calendar month of day t, Dτ is an indicator variable whose value is 1 only on event day τ

and 0 otherwise, and X is a vector of control variables using the most recent information
on firm i known at t − 10. We lag the control variable to avoid an endogenous event-
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driven correlation between the control variable and the outcome variable. Specifically, we
use 10-day lag because events are distanced from each other by more than 10 days in our non-
overlapping sample. Although we adjust for the market return via CAR, economic conditions
across industries at the event time may vary. To control for industry-wide variation, we use
Industry × Month fixed effects αI(i)×M(t) that correspond to each event. Therefore, our
results are robust to heterogeneity in industry-specific economic conditions or unobservable
expectations around the event time. Our coefficients of interest are βτ (τ = {−5, ...,+5}).
The estimated dynamics of the abnormal return would suggest whether a knock-in event
imposes a price dislocation.

More formally, we use N2V in Equation (2) to distinguish the effects of unwinding from
changes in firm fundamentals. For event j, we regress the CAR of affected underlying stock
i = i(j) on the event day t = t(j) on N2V of the same event j:

CARj = αI(i)×M(t) + βN2Vj + γXi,t−10 + εj. (5)

Other variable definitions are identical to those used in Equation (2) and Equation (4). The
coefficient β in Equation (5) would differentiate the CAR on stock i on the event day across
the variation by predetermined N2V . As a higher N2V corresponds to higher hedging inten-
sity, a negative β would provide strong evidence that hedging causes price dislocations while
alleviating the concern that the abnormal return is a consequence of unobserved changes in
firm fundamentals that happen to coincide with knock-in events.

2.4. Dynamic price impact

The results reported in Panel (a) of Figure 3 illustrate the dynamics of CAR as defined in
Equation (3). Using Equation (4), we plot the point estimates of each βτ and its 90% confi-
dence interval. The knock-in events are asynchronous. To clearly investigate the dynamics
around an event, we use the non-overlapping sample in this analysis. In this subset, we
allow only one event to exist in the 11-day window to avoid convolution from event overlap.
The 11-day (5 days before and 5 days after) window is chosen under the consideration of
the trade-off between the sample size and pre/post-event observations. Consequently, the
total sample size for Panel (a) is 3,300 (300 unique events × 11 days). We note that, on
the knock-in day (the vertical line), the CAR becomes noticeably negative at 8 percent on
average. This magnitude is both economically and statistically very significant. We first
observe that the CAR is already negative prior to the event. This result may simply reflect
the fact that a knock-in event occurs as a result of the negative return. It is also possible
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that the issuer foresees the knock-in and begins unwinding the position in advance. Such a
pre-hedging activity may contribute to the declining CAR pattern. On the other hand, the
negative CAR pattern flips over immediately after the knock-in.

This notable ‘V’ shape yields an implication regarding the source of the negative CAR prior
to the knock-in. The negative CAR itself cannot sufficiently imply dislocation from the
fundamental value resulting from the hedging activity. If the negative CAR peaks precisely
at the moment of the knock-in event and CAR recovers immediately after, however, it is
likely that the event-driven liquidation induces substantial price dislocation.

[Insert Figure 3 here.]

In Table III, we present the results derived from Equation (5). This analysis uses all sam-
ples because we estimate the price impact only on the event day and therefore there are
no overlapping events. Since our events occur at different times and with different stocks,
our outcome variables are subject to time-series as well as cross-sectional heterogeneity. To
address the potentially confounding effects that this might cause, we include five specifica-
tions of control variables such as firm-specific variables (size and book-to-market) as well
as past market information (past returns, the volatility of the affected stock and market
returns) in addition to industry-time fixed effects. Across these specifications, the coefficient
βs are consistently negative and highly significant. Upon a knock-in event, there is substan-
tial price pressure on the underlying stock via hedging-driven liquidation. Quantitatively,
a one-standard-deviation increase in N2V corresponds to a 70 basis points more negative
CAR.17

[Insert Table III here.]

These results also imply that, when knock-in events are clustered in time, the downward
price pressure will be severe. If multiple SEPs are knocked-in on the same day, many ag-
gregate shares would need to be liquidated, corresponding to a high N2V . Such a large
scale unwinding, relative to the stock’s intrinsic volume, would result in greater price dislo-
cation. The original source of this amplification channel is that the issuance of SEPs itself
was clustered. Although each institution limits its own issue size, the aggregate quantity
can be far larger in the absence of a coordination device, partially defeating the purpose of
the individual limit.

Several patterns regarding control variables are worth noting. Price dislocation is more severe
for small firms, as measured by the natural log of the book value of assets. Also, a higher

17The standard deviation of N2V is 0.1946. The estimated coefficient on N2V is -0.036. Therefore, the
magnitude of a one-standard-deviation of N2V is about -0.70% (-0.0070=0.1946*(-0.036)).
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degree of negative abnormal return is associated with a higher level of return volatility for the
affected stock.18 These patterns are consistent with Duffee (1995), who provides evidence
that a stock’s return is negatively correlated with its volatility, also suggesting that this
relationship is strongest among small firms. During the event period when the affected stock
return is likely to be negative, smaller firms with greater volatility earn relatively worse
returns.

Finally, we repeat the estimation of the dynamic pattern separately for each subset of the
event by N2V . We categorize our sample events into two groups using the median of N2V .
We report the regression result with the subsample in the top and bottom groups in Panel
(b) of Figure 3. This figure displays the point estimates of βτ in Equation (4) when the
events belong to the bottom N2V group (the triangle marker) rather than the top N2V
group (the circle marker).

Both patterns form a similar ‘V’ shape. We further note that, on the event day, the CAR
from events with high N2V is significantly lower than in the case of low N2V . These figures
are not statistically different from each other prior to the event, however, suggesting that
the N2V measure is not strongly correlated with variations other than the intensity of the
immediate hedging. This result further supports our claim that the delta-hedging unwinding
is the main driver of the price dislocation upon the knock-in event. In both cases, we observe
the direct reversion after the event day. However, given the bigger drop on the event day, it
takes longer for high-N2V events to recover from the liquidation shock.

2.5. Parametric analysis of the knock-in barrier

In the previous section, we find that greater hedging intensity leads to more severe price
dislocation. In the following analysis, we adopt a parametric approach to test whether price
dynamics vary near the barriers. If the hedging activity distorts a stock’s price, the existence
of the barrier may alter the price dynamics near it. To test this, we divide the price range
into two stages: Stage I (‘Over’) and Stage II (‘Near’), based on the SEP barrier level. In
Illustration 2, we show a simplified illustration of the stage classification by distance-to-
barrier.

Consider an underlying stock i with t-price S(t) and its associated SEP k whose barrier
level is B and maturity is T . At reference time t, we set the ‘Over’ boundary BO such
that probability P(BO ↓ BN) = P . Similarly, we set the ‘Near’ boundary BN such that the
probabilistic distance to B is identical, i.e. P(BN ↓ B) = P . Note that P(S(t) ↓ B) is the

18Return volatility is annualized volatility using 1-month stock returns.
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Illustration 2. Illustration of Stage Classification by Distance-to-Barrier

BOi,k

BNi,k

Bi,k (KI Barrier)

Stage I (Over B)

Stage II (Near B)

Estimate Θ
(Reference Point)

probability of hitting boundary B from S(t) before the SEP’s maturity T , as defined below
using the first-passage time (Bielecki and Rutkowski, 2004):

P(S(t) ↓ B) ≡ P(s ≤ T | Ft) =Φ
(
−ln(S(t)

B
)− ν(T − t)

σ
√
T − t

)
+

e
− 2ν
σ2 ln

(
S(t)
B

)
Φ
(
−ln(S(t)

B
) + ν(T − t)

σ
√
T − t

)
, (6)

where Φ(·) is the standard normal cumulative density function, the stock price S(t) follows
a standard Geometric Brownian Motion with the Wiener process W : dS(t) = µS(t)dt +
σS(t)dW (t), and B is the barrier of interest. 19 Also, s is the first-passage time, i.e.,
s = inf{t ≥ 0 : S(t) ≤ B} and ν = µ − 1

2σ
2. The parameter set as Θ = {µ, σ} is estimated

via Maximum Likelihood Estimation (MLE) using prior 252-day (12-month) returns at the
reference point S(t) = BO.

Specifically, on each day t, we estimate the Θ for stock i that underlies SEP k. With the
estimated Θ, we use P = 90% to define BO and BN using Equation (6).20 We first determine
BN such that it satisfies P(BN ↓ B) = 90%. We then subsequently find BO to meet the
equidistance requirement: P(BO ↓ BN) = 90%. Next, we compare the current stock price
S(t) with BO, and set t as a reference date if S(t) = BO. We repeat this process for each
day during the k contract period. Once a reference date is set, we fix BO and BN to define
the intervals, as follows:

Stage I (Over KI Barrier) : Si ∈ (BN
i,k, B

O
i,k]

Stage II (Near KI Barrier) : Si ∈ (Bi,k, B
N
i,k]

19Ft is a filtration within time t, and so represents the information known at time t.
20The choice of 90% is arbitrary. However, our results are robust to several reasonable threshold choices.
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In Stage I, the stock price level is relatively distant from the knock-in barrier, as it lies
between BN

i,k and BO
i,k. On the other hand, as the stock price enters Stage II, the knock-in is

far more probable. We compare parameters estimated in both stages against those estimated
at the reference point. We conjecture that the existence of the knock-in barrier alters the
return dynamics of the underlying stock. In this case, we should be able to observe that
distortion of the dynamics is most pronounced near the barrier.

If the boundaries that define Stages I and II are static, we may have two returns for com-
pletely separate periods in the same stage. Imagine that a stock enters Stage I at t as
S(t) ≤ BO and then the next day immediately exits the stage as S(t+1) > BO. If this stock
re-enters Stage I, say, a year later, as S(t+ 252) ≤ BO, these two returns assigned in Stage
I are one-year apart, and they may reflect different macro or firm-specific conditions. To re-
duce this noise, we reset the boundaries by a cycle.21 A cycle c is initiated by entering Stage
I and terminated by exiting Stage I. Our earlier illustration, therefore, encompasses two
cycles and the boundaries become cycle-specific. This process makes our observation unit
also cycle-specific i−k−c, as opposed to the observation level used in the previous analyses:
stock(i)-contract(k). Also, in this analysis, we include all i − k pairs even if the knock-in
events had never occurred. When the stock hits the barrier B, however, the corresponding
i− k is never assigned to any cycle and is removed from the subsequent analysis.

When stock i that underlies SEP k touches below the ‘Over’ boundary or BO
i,k, we classify

the daily return into either stage g (g=I or II) depending on the location of the stock price
in the interval, as long as the returns belong to the same cycle c.

Figure 4 plots the fitted normal distribution for returns in Stage I (‘Over’) and Stage II
(‘Near’). The graph represents the mean and volatility distribution of average returns esti-
mated for each i − k − c pair combination from a total of 16,736 contracts. The blue (red)
solid line represents the distribution of daily returns that belong to Stage I (II). The blue
(red) vertical dotted line represents the location of the sample mean of Stage I (II). This
figure shows that Stage II has a lower mean and greater volatility than Stage I, indicating
that the stock price gravitates to the barrier as it approaches it. We refer to this phenomenon
as the ‘magnet effect’ of the knock-in barrier.

To analyze the magnet effect formally, we compare these distributions while controlling for
firm characteristics or market conditions. For each classification p by which an i− k− c pair
touches BO

i,k,c,
µp = αI(p)×M(p) + β · IIp + γXi(p),t(p) + εp, (7)

21In this set-up, the boundaries are c-dependent, i.e. BNi,k,c, BOi,k,c. For the sake of brevity, we describe the
construction process and define the boundaries without the c notation, assuming that only one cycle exists.
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where µp is the drift term of the return dynamics in classification p. IIp is an indicator
function that equals to 1 when the price falls in Stage II. X is a vector of firm characteristics
and αI(p)×M(p) is the Industry × Month fixed effect corresponding to each classification.
Stage I is the omitted category.

Similarly, we estimate the regression on the standard deviation as follows:

σp = αI(p)×M(p) + β · IIp + γXi(p),t(p) + εp, (8)

where σp is the diffusion term of the return dynamics in classification p. Definitions for IIp,
X, and αI(p)×M(p) are identical to those used for Equation (7).

Table IV shows the results of the regression. We find consistently that the parameters
estimated in Stage I and Stage II differ from one another. The results reported in Panel
(a) show that the drift term in Stage II is significantly smaller than the one in Stage I.
The results are robust after controlling for firm characteristics and market conditions as well
as unobserved heterogeneity across industries at different times. Specifically, the estimated
drift of Stage II is lower by -20 basis points in daily terms compared with what occurs in
Stage I. The results reported in Panel (b) indicate that the diffusion term in Stage II is larger
than that in Stage I by an economically huge margin: about 40-50 basis points in daily term.
Generally, we find a strong support for the magnet effect of the knock-in barrier.

[Insert Figure 4 and Table IV here.]

3. Event Chain Reaction

3.1. Knock-in cascade

The parametric results as well as declining CAR prior to a knock-in event shown in Figure 3
indicate that the stock price gravitates toward the barrier level (magnet effect), shortening
the distance to the next adjacent barrier for this mechanism to repeat itself. On the other
hand, as a result of competition, contemporaneously issued SEPs on the same underlying
assets are likely to have similar knock-in barriers. Given the magnet effect as well as the
homogeneity of barrier level, a knock-in event may cause another, creating a cascade of
events.

The possibility of multiple issue waves imposes an empirical challenge. The barrier levels
are alike within a cluster. However, if there is another wave that occurred at a sufficiently
different time, the average barrier levels across two clusters may differ. While the cascading is
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plausible within a cluster, it is difficult to separate waves and perform within-cluster analysis
because they are not separated by clear borders.

To address this problem, we exploit a variable that allows us to select candidate SEPs whose
barriers are within a certain proximity. Specifically, for knock-in event j, its corresponding
stock i = i(j) and event time t = t(j), we construct the variable as follows:

Zj ≡ Zi,t = 1
n[K′

i,t]
∑

k∈K′
i,t

P(s ≤ T | Ft)i,k,t, (9)

where K′
i,t is a set of outstanding SEPs underlaid by stock i whose barriers have never been

touched as of t, n[K′
i,t] is the number of SEPs in K′

i,t, and finally P(s ≤ T | Ft)i,k,t is the
probability of hitting the barrier before the SEP’s maturity T as defined in Equation (6). Z
is therefore the average of this probability across SEPs in K′

i,t. A high Zj = Zi(j),t(j) implies
that, on average, outstanding SEPs on stock i = i(j) have barriers close to be touched
sometimes subsequent to t = t(j).

3.2. Empirical design

We propose a model to test whether a contemporaneous knock-in event increases the future
knock-in probability. To this end, for each event j, we construct an indicator variable
KIi,(t+1,t+10) that yields 1 if there is any knock-in on the same underlying i = i(j) in the
next 10 days from the event time t = t(j) and 0 otherwise. With this variable, we specify a
Probit model using N2V as the measure of hedging activity intensity as follows:

KIi,(t+1,t+10) = Φ
(
αI(i)×M(t) + βN2Vj + γXi,t−10 + εj

)
, (10)

where Φ(·) is the standard normal cumulative density function, KIi,(t+1,t+10) is as defined
above, and all other variable definitions are identical to those used in Equation (2) and
Equation (4). The coefficient β of the above equation would reveal whether the price shock
driven by one event would lead another to occur, underpinning the chain reaction mechanism.

Further, to observe whether such a shock is propagated to other SEPs with barriers close by,
we divide total events into terciles of N2V and Z. The SEPs that belong to the top tercile
of Z are likely those issued during the same issue wave, and therefore interactions between
these two terms allows us to observe the cascading effect within an issue cluster. We propose

21



the following categorical Probit specification:

KIi,(t+1,t+10) =Φ
(
αI(i)×M(t) + β1N2V M

j + β2N2V H
j + β3Z

M
j + β4Z

H
j + β5N2V M

j · ZM
j

+ β6N2V M
j · ZH

j + β7N2V H
j · ZM

j + β8N2V H
j · ZH

j + γXi,t−10 + εj

)
,

(11)

where Z is defined as it is for Equation (9), and N2V H,M
j and ZH,M

j are dummy variables
that indicate if i belongs to the top tercile (H) or mid tercile (M) of the respective measure.
N2V L

j and ZL
j are the omitted category. All other variable definitions are identical to those

used in Equation (4). The coefficients of interest are those on the interaction terms (β5−8),
as they would reveal the chain reaction mechanism.

3.3. Results of event chain reactions and related discussion

Table V presents the results derived from Equation (10). For ease of interpretation, we
report the marginal effect of each variable at the mean with five sets of control variables.
The coefficients therefore measure the instantaneous rate of change at the mean of each
variable. Across all specifications, our results show that higher N2V of the contemporaneous
event increases the probability of knock-in during the following 10 days. We find that event-
driven liquidity demand leads other SEPs to knock-in. The effect on future knock-ins is both
statistically and economically significant. Using the specification reported in Column (5),
we estimate that a one-standard-deviation increase in N2V increases the future knock-in
probability by 5.3%, holding all other explanatory variables constant.22

[Insert Table V here.]

In Table VI, we report the regression results derived from Equation (11) and further clarify
how N2V -related effects are propagated to subsequent knock-ins. Our results show that price
pressure caused by a current event increases the knock-in probability in a sequential order
measured by Z. Neither N2V nor Z alone appears to induce future knock-ins. However, a
high N2V (indicated by N2V H) is more likely to lead to subsequent knock-ins of SEPs when
their barriers are closer to the barrier of the current event (indicated by ZH). According
to the results reported in Column (5), for example, an event corresponding to the high-Z,
high-N2V group is 15.7% more likely to trigger future knock-in than the high-Z, low-N2V

22The mean of N2V is 0.0995 and the standard deviation is 0.1946. The predicted probability of N2V
at the mean level is 0.7284 and the predicted probability at a one-standard-deviation increase above the
mean level (0.2941 = 0.0995+0.1946) is 0.7814. Therefore, the marginal effect of a one-standard-deviation
increment of N2V at the mean is 5.3% (0.0530=0.7814-0.7284).
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group.23

These results not only provide additional support for the chain reaction mechanism, but they
also further alleviate the concern that N2V correlates with a market condition in a particular
way. In the previous analysis of events that are contemporaneous with N2V , we address this
with Industry × Month fixed effects. As we examine future events, however, Z helps us rule
out the possibility of there being a spurious relationship between N2V and future knock-ins.
We are concerned in particular that N2V could be larger in the period of negative returns
for reasons unrelated to the liquidity demand measured by N2V . Then, N2V would be
positively correlated with the future knock-ins, but not because of liquidity demand. On the
other hand, during the period of negative returns, Z would decrease continuously as more
SEPs from the same issue-vintage experience knock-ins and eventually disappear from the
subsequent calculation of Z.

To illustrate this point, suppose that there is only one SEP of a specific vintage whose barrier
remains untouched. Also suppose that a latent variable orthogonal to liquidity demand drives
N2V larger and the underlying asset’s return more negative, as we have surmised. Once
the SEP is knocked-in, the corresponding Z would become small since it is based entirely
on SEPs from another cluster with a substantially lower barrier level. Then, the positive
correlation of N2V and the future knock-in probability must be stronger when Z is small.

Our results show the opposite: the N2V is positively correlated with future knock-ins only
when Z is higher. This finding bolsters the explanation based on the chain reaction mecha-
nism that a knock-in leads to the occurrence of another knock-in, and rules out the spurious
relationship.

[Insert Table VI here.]

4. Strategic Hedging Activity

4.1. Measures of a future knock-in

In the presence of event-driven price pressure and event cascading, changes in an expected
shock can alter hedging behavior upon a knock-in. Also, how a trader executes hedging
operation may differ depending on her incentives. In this section, we examine this possibility.
To this end, we construct a ‘remaining-to-volume,’ or ‘R2V ’ ratio. This variable, like N2V ,

23In the high Z group (ZH), the predicted probability associated with the high-N2V group is 0.8550,
and the predicted probability of low-N2V group is 0.6977. Therefore, the marginal effect of N2V H on the
dependence of the future knock-in probability ZH is 15.7% (0.1573=0.8550-0.6977).
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measures the price impact of a contemporaneous knock-in, except that R2V is related to the
price impact of unrealized future knock-ins. Specifically, for underlying stock i and event
time t corresponding to event j (i.e., i = i(j), t = t(j)), we aggregate the notional amount
of SEP k in the relevant set K′′

i,t, and then normalize it by the average volume of stock i:

R2Vj ≡ R2Vi(j),t(j) =
∑
k∈K′′

i,t
Notionalk

V olumei,t̄(K′′
i,t)

, (12)

where K′′
i,t is a set of outstanding SEPs underlaid by stock i whose barriers have never been

touched as of t, Notionalk is the notional size of SEP k ∈ K′′
i,t divide by total number of

underlying assets, and V olumei,t̄(K′′
i,t)

is the 6-month average dollar volume of stock i as of
the earliest issue date among SEPs in K′′

i,t denoted by t̄(K′′
i,t).

From this baseline measure, we construct three additional sub-R2V variables. R2V 1
j uses

only SEPs whose distance between their barriers and the barrier associated with event j
is the smallest among K′′

i,t. In other words, R2V 1 is based on SEPs whose barriers are
immediately below the currently touched barrier (the first immediate barrier). R2V 2

j and
R2V 3

j are created in the same way with the second and third immediate barriers, respectively.
Given the strict knock-in order among R2V 1, R2V 2, and R2V 3, we conjecture that R2V 1

provides the most relevant information while the three ratios may have differential impacts
on the hedging behavior.

To study strategic hedging behaviors, we further decompose R2V 1 based on issuer identity.
Specifically, we split R2V 1 into an in-house portion and an external portion. The in-house
portion (R2V 1

j,in) exploits only SEPs issued by the same issuer at event j in the corresponding
set K′′

i,t with i = i(j) and t = t(j), whereas the external portion (R2V 1
j,ex) uses the remaining

SEPs in the same set whose issuers differ.

4.2. Incentives for strategic execution

Rational delta-hedging traders may have numerous incentives that affect how they execute
a transaction triggered by a knock-in event. We first discuss three distinct incentives and
explore their testable implications for execution behavior.

1. Price manipulation: An issuer of SEP is typically long the down-and-in barrier
put option. If the trader is not sufficiently delta-neutralized, she may benefit from
a knock-in event because it would activate the barrier option and the trader then
becomes a holder of the vanilla put. In this case, if she has a large position with an
imminent knock-in (high R2V 1

in), she may unwind the current hedging in a relatively

24



more aggressive way to increase the probability of knock-in for her imminent position.
2. Execution smoothing: If a trader at the current event has additional positions to

liquidate when subsequent knock-ins occurs with high likelihood (high R2V 1
in), she may

want to avoid the price pressure from the current unwinding. In this case, she would
liquidate the portion related to the current event in a smoother way to minimize the
market impact.

3. Liquidation ‘rat race’: Suppose a trader needs to unwind a part of her position
in response to the current knock-in and sees that other unaffiliated traders have large
positions that are subject to imminent knock-ins (high R2V 1

ex). In this case, beyond the
position related to the current event, she may go in front of the line and pre-execute the
remaining position before the third-party trader imposes a negative price dislocation.
In general, the presence of other parties’ positions can induce current delta-hedgers
to competitively pre-execute their positions, aggravating the price dislocation. This
collective behavior resembles the ‘rat race’ mechanism that Brunnermeier and Oehmke
(2013) analyze.

4.3. Empirical design

We first examine whether expected future knock-ins have any effect on the price shock when
the current event occurs. In the spirit of Equation (5), we regress the CAR of underlying
stock i = i(j) on event day t = t(j) upon knock-in event j on the future hedging-intensity
measure R2Vj:

CARj = αI(i)×M(t) + βR2V q
j + γXi,t−10 + εj (q = 1, 2, 3), (13)

where R2Vj follows Equation (12) and all other variable are defined as for Equation (4). Our
coefficients of interest are β, as they would indicate whether the future knock-ins influence
the abnormal return in response to the current event as well as the relative importance
depending on the immediacy.

Next, we decompose the contribution to the price dislocation into a portion that is related to
the contemporaneous liquidity demand and a portion that is related to the expected future
unwinding. For this task, we simultaneously exploit the measures of contemporaneous effects
(N2V ) and future effects (R2V 1) of knock-in events as follows:

CARj = αI(i)×M(t) + β1N2Vj + β2R2V 1
j + γXi,t−10 + εj, (14)

where N2V and R2V 1 are defined as they are for Equations (2) and (12), respectively. Also,

25



the definitions of all other variables are identical to those for Equation (4). Comparing β1

and β2 should reveal the relative importance of the two sources of the negative price impact.

Using issuer identity, we further discriminate the effects of future knock-ins when the next
immediate position to be liquidated is an in-house position and when it is an external posi-
tion. Given event j, its underlying stock i = i(j) and event time t = t(j), we use intensity
measures of future knock-ins by issuer type:

CARj = αI(i)×M(t) + β1N2Vj + β2R2V 1
j,in + β3R2V 1

j,ex + γXi,t−10 + εj. (15)

R2Vin and R2Vex in Equation (15) are defined as they are for Equation (12) and the descrip-
tion following the equation. Controlling for liquidity demand related to the current event
(N2V ), comparing β2 and β3 should show the heterogeneous effects depending on issuer type
on the price pressure upon the current event. All other variable definitions are identical to
those used in Equation (4).

The external position measure R2Vex is subject to information accessibility. Practically
speaking, the opaqueness of OTC derivatives markets makes it difficult for any issuer to
discover its competitors’ outstanding positions. Under the rat race explanation, the effects
of R2Vex would be pronounced when the unwinding trader has an easy way to learn of the
unaffiliated traders’ outstanding SEPs and their terms. To test this possibility, we exploit
an institutional shock to the information accessibility. On April 25, 2013, information on
SEP issuance became electronically accessible to market participants. The database was
prepared by the Korea Security Depository to enhance market transparency. Previously,
such information had to be hand-collected from each institution’s issuance report.

To formally test this possibility, we use the following specification. Given event j, for affected
stock i = i(j) and at event time t = t(j):

CARj =αI(i)×M(t) + β1N2Vj + β2R2V 1
j + β3Ex+ β4Post

+ β5R2V 1
j · Ex+ β6R2V 1

j · Post+ β7Ex · Post

+ β8R2V 1
j · Ex · Post+ γXi,t−10 + εj,

(16)

where N2V and R2V 1 are defined as they are for Equations (2) and (12). Ex is an indicator
variable whose value is 1 if the dominant portion of R2V 1 is competitors’ and 0 otherwise.24

24In a simple case, Ex equals 1 when R2V is composed entirely of external positions. In most cases,
however, R2V is composed of both in-house and external positions. In this case, we calculate the median of
the external portion using these samples, and assign the value of 1 when the external portion is higher than
the calculated median.
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Post is also an indicator variable that equals to 1 if t is on or after the inception time of
the data service (April 25, 2013) and 0 otherwise. All other variable definitions are identical
to those for Equation (4). The coefficient on the triple interaction term, β8, should reveal
the differential effects of R2V when it corresponds to mostly external positions and after
competitors’ information becomes readily available.

4.4. Results and discussion on strategic hedging behavior

Table VII presents estimation results derived from Equation (13). We find strong evidence
that the imminent risk of price dislocation is priced in across all R2V s; however, the magni-
tudes of the R2V s varies. Specifically, R2V 1 as shown in Column (1) has the largest negative
coefficient at the 1% significance level. As the degree of immediacy drops (R2V 2 and R2V 3),
both the magnitude and statistical significance decrease. A one-standard-deviation increase
of R2V 1 corresponds to a 72 basis points more negative CAR.25 The economic magnitude
is comparable to that associated with N2V . Our results reveal the pre-execution behavior
of investors and indicate that R2V 1 is of first-order importance regarding price dislocation.

[Insert Table VII here.]

To compare the price impact of a current knock-in with that of future knock-ins, we estimate
Equation (14) and report the results in Table VIII. We find that the economic magnitudes
of R2V 1 are in line with the results reported in Table VII, even after controlling for liquidity
demand the current event stimulates. This result confirms that those channels are indepen-
dent. A one-standard-deviation increase in R2V 1 corresponds to a 61 basis points decrease
in CAR, which is almost identical to the 60 basis points decrease that is associated with
N2V , supporting the conclusion that, in terms of price impact, the expectation of a future
knock-in is as important as the intensity of liquidation as a result of the current event.26

[Insert Table VIII here.]

We next estimate Equation (15) to reveal traders’ strategic hedging behavior in the context of
the incentives we have discussed. The results are presented in Table IX. While the magnitude
of N2V remains qualitatively unchanged, we find that the coefficients on R2V 1

in are negative
but not statistically different from zero. These results suggest that traders do not try to

25The standard deviation of R2V 1 is 0.0542 and the coefficient on R2V 1 is -0.132. Therefore, the marginal
effect of a one-standard-deviation increment of R2V 1 is -0.72% (-0.0072=0.0542*(-0.132)).

26Insofar as N2V ’s standard deviation is 0.1946 and the coefficient is -0.031, the marginal effect of a one-
standard-deviation increment in N2V is -0.60% (-0.0060=0.1946*(-0.031)). Since R2V 1’s standard deviation
is 0.0542 and the coefficient of R2V 1 is -0.113, while the marginal effect of a one-standard-deviation increment
in R2V 1 is -0.61% (-0.0061=0.0542*(-0.113)).
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minimize the market impact of the knock-in event even if they have a substantial position
to liquidate imminently. Also, we do not find sufficient evidence of price manipulation
through traders, conducting overly aggressive executions to trigger future knock-in. Our
interpretation of this result is that issuers are largely delta-neutralized and therefore they
do not have a particular incentive to trigger a knock-in event: a potential gain from the put
is likely to be offset by their hedging positions.

On the other hand, the coefficients on R2V 1
ex are consistently negative and highly significant.

This result supports the conclusion that a trader employs a preemptive hedging strategy. As
she unwinds the position related to the current event (as measured by N2V ), she appears to
jump in front of the line and liquidates excess positions before competitors impose a negative
price pressure, exhibiting liquidation ‘rat race’ behavior (Brunnermeier and Oehmke, 2013).
Our findings suggest that such a game-theoretic strategy exacerbates the price dislocation.

[Insert Table IX here.]

Lastly, in Table X we report the estimation results derived from Equation (16). We find
that the coefficients on N2V are comparable to previous outcomes. Interestingly, the effect
on R2V 1 is concentrated when the outstanding notional amount is composed predominantly
of external positions and traders have easy access to information about outstanding SEPs
issued by their competitors (R2V 1 ×Ex× Post). In this case, we estimate a one-standard-
deviation change on R2V 1 corresponds to a 2.8% decrease in CAR.27

This finding further supports the rat race explanation. Allowing traders easy access to com-
petitors’ positions induces strategic hedging behavior. Given the previous finding that one
knock-in can trigger another, the game-theoretic incentive that unaffiliated traders have to
front-run can create a significant market disruption. We find that improving the transparency
of the market can sometimes serve as a mis-coordination device.

[Insert Table X here.]

5. Robustness Test

A selection of event windows involves a trade-off between sample size and the observable
length of the dynamics. In our main analysis, we select an 11-day window, ranging from
5 days before to 5 days after the event, [-5,+5]. An alternative selection would compose a
different sub-sample. To check whether our choice is subject to any particular selection bias

27The standard deviation of R2V 1 is 0.0542 and the coefficient of R2V 1×Ex×Post is -0.509. Therefore,
the magnitude of a one-standard-deviation increment in R2V 1 is -2.76% (-0.0276=0.0542*(-0.509)).
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that might contribute to the ‘V’-shaped pattern, we repeat the dynamic analysis with three
alternative event windows: [-3,+3], [-10,+10], and [-15,+15].

On the one hand, in an effort to ensure that we collect non-overlapping events, we reduce
our window size to [-3,+3] and increase the numer of events from 300 to 373 at the expense
of the event period. In Panel (a) of Figure 5 we plot the point estimates of each βτ and its
90% confidence interval: for event j, we regress CAR of the affected underlying stock i of
event j, i.e. i(j), on event-day-dummy variables D,

CARj,τ = αI(i)×M(t) +
T∑

τ=−T
βτ ·Dτ + γXi,t(j)−(2∗T ) + εj,τ , (17)

where all the settings are identical to those used for in Equation (4) except the period of the
window: T = 3. Our coefficients of interest are βτ .

The results depicted in Panel (a) of Figure 5 consistently present a ‘V’-shaped price dislo-
cation in the [-3,+3] case. The magnitude of CAR drop on the event day t is about 3%,
compared with the drop on the previous day, t − 1. It is worth noting that the confidence
interval in this case is much tighter than for our earlier results obtained with [-5,+5], con-
firming that there is no selection bias and having larger samples increases the statistical
power.

On the other hand, to check the post-event reversion pattern, we expand the event window
to roughly two weeks ([-10,+10]). In Panel (b) of Figure 5 we plot the point estimates βτ
and their 90% confidence intervals as defined for Equation (17), with T = 10.

Widening the window means that the total number of non-overlapping events decreases from
300 events to 206 events. The post-event window widens, however, enabling us to observe a
recovery pattern. In Panel (b) of the same figure, we find a more explicit ‘V’-shaped CAR

on the event day, and it recovers about half of the lose in CAR after two weeks. Given the
possibility of return momentum or a cyclical trend in firm fundamentals, we do not expect
CAR to recover up to the inception level of the event window. For the same reason, it is
hard to define the reversion period in the absence of the counterfactual. Based on this figure,
however, we confirm that the sharply reduced price impact does not disappear quickly: it
takes roughly at least a week to recover.

Finally, we expand our window size to [15,+15] and the number of events drops further, from
206 to 179 events. In Panel (c) of Figure 5 we plot the point estimates βτ and their 90%
confidence intervals as defined for Equation (17), with T = 15. This result reiterates the
‘V’-shaped pattern and also suggests that the acute price pressure does not resolve within
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a week. In this section, we test our model through various event windows and confirm that
price dislocation caused by a hedging-driven liquidity shock exists regardless of window size.

[Insert Figure 5 here.]

6. Conclusion

In this paper, we document a salient case in which financial innovation can sometimes entail
price disruption. In particular, a certain type of SEPs triggers a sudden and dramatic change
in the delta position, forcing hedgers to immediately unwind a large position. This event
occurs when the stock price breaches a pre-determined boundary. Such liquidity demand
dislocates the underlying stock price from the fundamental value by a significant degree and
for a considerable time period.

This mechanism can be amplified in two ways. When a large number of products with similar
triggering conditions have been issued in the market, one event can cause another, creating a
cascade of price dislocations. In this case, the impact of a shock can last substantially longer.
On the other hand, when a trader can observe her competitors’ outstanding positions, she
has an incentive to front-run others. This strategic hedging behavior can lead to coordination
failure.

We believe that our results imply that issuance coordination is necessary. Practically ev-
ery financial institution imposes a risk budget by itself. We show, however, that it is not
sufficient to keep an aggregated quantity under a desirable level. Also, in the presence
of pre-determined execution conditions, we find that a policy that requires other market
participants’ interest to be revealed does not necessarily enhance market stability.

More broadly, our finding has theoretical implications for options pricing. Our findings
suggest that pricing derivatives can be more complex than a typical option-pricing model
without a hedging-related price impact implies. This complexity is particularly severe with
exotic derivatives. Such options often induce dramatic transactions involving the underlying
assets, generating notable price impacts that feed back to the option value. This character-
istic exacerbates the complexity of pricing already-complex derivatives.
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Figure 1. Overview of Structured Equity Products (SEPs) Market

Panel (a) shows the aggregate pattern of SEP issuance in Korea. From 2003 through 2017, the annual average
growth rate of the issue volume has been 23 percent. The solid line represents the aggregate issuance amount
of SEPs and the dotted line illustrates the portion of the aggregated issuance amount of SEPs of Korean
equity market capitalization. The growth steepens after the 2008 Global Financial Crisis (19.4% versus
23.1%), during the low-interest-rate regime (Korea’s benchmark rate on average is 2.1% in the post-crisis
versus 4.3% in the pre-crisis period). Panel (b) illustrates the share of outstanding balances across markets
for SEPs whose payoffs feature a specific ‘knock-in’ barriers. The pie chart on the left shows the portion of
products distributed across the U.S., European, and Asian markets, and the right presents the share of the
Korean market.

(a) SEPs Issuance in the Korean Market

(b) Distribution of ‘Knock-In’ Type SEPs in the Global Market
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Figure 2. Issuance Herding and Knock-in Crowding

The figure visualizes how issuance and knock-in events are concentrated at a certain time. We select the
top 5 stocks from our sample (for a total of 90 stocks) based on the total amount of SEPs whose barriers
are breached during our sample period, and place them along the vertical axis (ranging from the biggest
stock to the fifth-biggest stock). Circle size on the horizontal axis represents the notional size (Panel (a)) or
the number (Panel (b)) of newly issued notes corresponding to each stock in each month on the horizontal
axis. Likewise, circle size represents the notional size (Panel (c)) or the number (Panel (d)) of SEPs that
are subject to knock-in events. We match the same firms across the panels.
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Figure 3. Cumulative Abnormal Return Variations around Knock-in Events
[-5,+5]

This figure plots the event-time pattern of CARs. For event j that occurs at t = t(j), we regress the CAR
of affected underlying stock i = i(j) on event-day-dummy variables D:

CARj,τ = αI(i)×M(t) +
5∑

τ=−5
βτ ·Dτ + γXi,t−10 + εj,τ ,

where I(i) is the industry of stock i as per the Korea SIC 2-digit classification, M(t) is the calendar month
of day t, Dτ is an indicator variable whose value is 1 only one event day τ and 0 otherwise, and X is a
vector of control variables using the most recent information on firm i known at t − 10. αI(i)×M(t) is the
Industry × Month fixed effects corresponding to each event. The figure presents the point estimates of
each βτ (τ = {−5, ..., 5}) and its 90% confidence intervals. Panel (a) shows the average knock-in effect of
non-overlapping samples on CAR. Total sample size of Panel (a) is 3,300 (300 events × 11 days). In Panel
(b), we categorize our sample events into two groups using the median of N2V . Panel (b) displays the point
estimates when the events fall into the bottom N2V group (triangle marker) versus the top N2V group
(circle marker). Both of the sample size for the bottom N2V and the sample size for the top N2V groups
are 1,650 (150 events × 11 days). The knock-in days are plotted by the vertical line and t− 5 is an omitted
category.
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Figure 4. Comparison of Return Distribution between the Stages

This chart illustrates the fitted normal distribution for returns in Stage I and Stage II. For underlying stock
i, its SEP contract k, and cycle c, each stage is defined using each threshold (BO, BN , B) through Equation
(6). Each i− k− c pair has a return distribution available to estimate the average return in each stage. The
graph represents the mean and volatility distributions of average returns estimated for each i − k − c pair
combination from a total of 16,741 contracts. The blue (red) solid line represents the distribution of daily
returns that belong to Stage I (II). The blue (red) vertical dotted line presents the locations of the sample
means of Stage I (II). The x-axis of the graph represents the return in percentages, and the y-axis represents
the density of probability.
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Figure 5. Cumulative Abnormal Return around Knock-in Events with Various
Event Windows

The figure describes the event-time pattern of CARs. For event j that occurs at t = t(j), we regress the
CARs of affected underlying stock i = i(j) on event-day-dummy variables D:

CARj,τ = αI(i)×M(t) +
T∑

τ=−T
βτ ·Dτ + γXi,t(j)−(2∗T ) + εj,τ ,

where I(i) is the industry of stock i as per the Korea SIC 2-digit classification, M(t) is the calendar month of
day t, Dτ is an indicator variable whose value is 1 only on event day τ and 0 otherwise, and X is a vector of
control variables using the most recent information on firm i known at t− (2 ∗T ). αI(i)×M(t) is the Industry
× Month fixed effects corresponding to each event. This figure presents the point estimates of each βτ and
its 90% confidence intervals. Since the window size of Panel (a) is [-3,+3], T = 3. Similarly, T = 10 is set
for Panel (b) and T = 15 is set for Panel (c). The total sample size for Panel (a) is 2,611 (373 events × 7
days), for Panel (b) it is 4,326 (206 events × 21 days), and for Panel (c) it is 5,549 (179 events × 31 days).
The knock-in days are plotted by the vertical lines and t− T is an omitted category.
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Table I. Data Description

In Panel (a), the first two rows show the amounts and shares of outstanding balances across markets for
structured equity products (SEPs) whose payoffs feature specific ‘knock-in’ barriers in 2019. The following
two rows include total stock market capitalization and the ratio of the outstanding balance of SEPs to
total stock market capitalization in 2019. Amounts are presented in millions of U.S. Dollars and ratios are
in percentages. Panel (b) illustrates the process of sample selection from 2006 through 2017. The results
reported in Panel (c) indicate the time trends of SEP issuance and knock-in events. The issuance column
of the table includes the total number of SEPs, the aggregate notional amounts, and the unique numbers of
underlying stocks by year of issuance. The knock-in column presents the comparable quantities, conditioned
on the assumption that the knock-in event has been triggered in the corresponding year.

(a) Distribution of SEPs by Region

US EU Asia Korea

SEPs (USDm) 107,929 145,749 153,560 63,876
SEPs/Gobal SEPs (%) 26.50% 35.79% 37.71% 15.69%
Exchange ME (USDm) 37,689,256 8,078,749 23,820,189 1,489,611
SEPs/Exchange ME (%) 0.29% 1.80% 0.64% 4.29%

(b) Sample Selection

Filter Sample Size No. of Stock

Initial Sample: SEPs between 1/2006 - 12/2017 38,035 141
Excluding SEPs (w/ foreign underlying stocks, 21,273
non-downside knock-in barrier,
missing barrier and issue amount info)

Filtered SEPs 16,736 122

Excluding SEPs with un-knock-in event 8,562

Final Sample: SEPs with knock-in event 8,174 90

Final Sample: SEPs knock-in event days (Aggregate the events 1,296 90
when a stock triggers multiple knock-in events on the same day)

(c) Time Trend of SEPs in Korea

Issuance Knock-In

Year N.Obs Amount Stock N.Obs Amount Stock
(1 unit) (bil. KRW) (1 unit) (1 unit) (bil. KRW) (1 unit)

2006 237 1,544 43 . . .
2007 882 5,808 62 16 83 4
2008 1,228 5,736 61 1,604 9,342 65
2009 1,456 2,900 55 14 19 3
2010 2,551 3,878 73 25 27 6
2011 3,231 4,105 78 2,152 3,028 59
2012 3,339 3,307 72 386 481 27
2013 2,106 1,630 79 756 832 28
2014 796 377 59 1,915 1,784 28
2015 135 54 38 1,186 814 29
2016 139 135 27 109 53 11
2017 636 499 52 11 3 3

Total 16,736 29,974 122 8,174 16,466 90
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Table II. Summary Statistics

In this table we report the summary statistics for selected variables. N2V (‘notional-to-volume’) is associated
with the extent of liquidation intensity, where we normalize the notional amounts SEPs related to knock-ins
by trading volume of the underlying stocks. Z measures the average future knock-in probability across SEPs
on the same underlying stocks of a givien knock-in event. R2V (‘remaining-to-volume’) is related to the
price impact of unrealized future knock-ins, where we normalize the remaining notional amount by trading
volume of the underlying asset. From this baseline R2V , we construct three sub-R2V variables. R2V 1 is
based on SEPs whose barriers are immediately below the currently touched barrier (the first immediate
barrier). R2V 2

j and R2V 3
j are created in the same way with the second and the third immediate barriers,

respectively. We further decompose R2V 1 based on issuer identity. Specifically, we split R2V 1 into an
in-house portion and an external portion. The in-house portion (R2Vin) indicates only the portion of R2V
when an issuer who has knocked-in SEPs still has remaining SEPs under the same underlying stock, whereas
the external portion (R2Vex) uses the remaining SEPs in the same set whose issuers are different. Detailed
functional definitions of N2V , Z, and R2V s are given for Equations (1), (9), and (12), respectively. For
N2V , Z, and R2V , we aggregate the structured note information based on stock level to convert the data
structure to event-day × stock-level information. Size is the logarithm of the book value of asset (values
given in thousands). Book-to-market is the book value of equity / the market value of equity. RVol is
annualized volatility using 1-month stock return. The sample size for N2V , Size, Book-to-market, Average
1-month stock returns, and Average 6-month index returns is 1,296, which is the same as the total sample
represented in Table I, while the sample size for Z and R2V s is 1,229 because we rule out cases in which
R2V s equals zero.

Mean St.Dev 25th Pct. Median 75th Pct. N

N2V 0.0995 0.1946 0.0096 0.0288 0.1035 1,296
Z 0.7999 0.2138 0.7202 0.8714 0.9662 1,229
R2V1 0.0274 0.0542 0.0039 0.0101 0.0254 1,229

R2V1
in 0.0045 0.0215 0.0000 0.0000 0.0017 1,229

R2V1
ex 0.0230 0.0484 0.0027 0.0077 0.0202 1,229

R2V2 0.0528 0.0952 0.0107 0.0235 0.0530 1,229
R2V2

in 0.0086 0.0311 0.0000 0.0010 0.0057 1,229
R2V2

ex 0.0442 0.0842 0.0081 0.0189 0.0443 1,229
R2V3 0.0777 0.1274 0.0186 0.0374 0.0801 1,229

R2V3
in 0.0117 0.0350 0.0000 0.0021 0.0096 1,229

R2V3
ex 0.0660 0.1152 0.0146 0.0307 0.0694 1,229

Size 23.8154 1.1347 23.0511 23.5989 24.3806 1,296
Book-to-Market 1.2276 0.8107 0.7356 1.0500 1.5361 1,296
Avg. 1-month ret -0.0801 0.0957 -0.1368 -0.0775 -0.0203 1,296
Avg. 6-month index ret -0.0381 0.1144 -0.0758 -0.0181 0.0356 1,296
RVol 0.4250 0.2492 0.2521 0.3616 0.5324 1,296
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Table III. Impact of Knock-in Events on Cumulative Abnormal Returns

This table shows the result of regressing CAR on N2V :

CARj = αI(t)×M(t) + βN2Vj + γXi,t−10 + εj ,

where, for a given event j, we regress the CAR of underlying stock i = i(j) of the event on the event day
t(j) on the N2V of the same event. N2V is defined in Table II. I(i) is the industry of stock i as per the
Korea SIC 2-digit classification, M(t) is the calendar month of day t, and X is a vector of control variables
using the most recent information on firm i known at t−10. The definitions of control variables are identical
to those given in Table II. αI(i)×M(t) is the Industry × Month fixed effects corresponding to each event.
The t-statistics with standard errors clustered at the event level are reported below the coefficients. The
superscripts ***, **, and * refer to the 1%, 5%, and 10% levels of statistical significance, respectively.

Dependent: CAR (1) (2) (3) (4) (5)

N2V -0.035** -0.035*** -0.036** -0.037** -0.036***
(-2.53) (-2.69) (-2.53) (-2.56) (-2.64)

Size 0.018*** 0.017***
(3.28) (3.23)

Book-to-Market 0.004 0.004
(0.63) (0.77)

Avg. 1-month ret -0.042 -0.031 -0.056
(-1.02) (-0.65) (-1.17)

RVol -0.130*** -0.129*** -0.128***
(-4.00) (-3.94) (-3.93)

Avg. 6-month index ret -0.043 -0.010
(-0.42) (-0.09)

Industry FE x Time FE Y Y Y Y Y
N.Obs 1,296 1,296 1,296 1,296 1,296
R-squared 0.423 0.439 0.446 0.446 0.460
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Table IV. Comparison of Parameters between the Stages

This table compares the parameters between the two stages. For each classification p in which an i− k − c
pair touches BOi,k,c,

µp = αI(p)×M(p) + β · IIp + γXi(p),t(p) + εp,

where µp is the drift term of the return dynamics in classification p. IIp is an indicator function that equals
to 1 when the price falls in Stage II. X is a vector of firm characteristics and αI(p)×M(p) is the Industry ×
Month fixed effect corresponding to each classification. The definitions of control variables are identical to
those given in Table II. Stage I is the omitted category. Similarly, we estimate the regression on standard
deviations as follows:

σp = αI(p)×M(p) + β · IIp + γXi(p),t(p) + εp,

where σp is the diffusion term of the return dynamics in classification p. Definitions for IIp, X, and
αI(p)×M(p) are identical to those used for the previous equation. The superscripts ***, **, and * refer to the
1%, 5%, and 10% levels of statistical significance, respectively.

(a) Comparison of the drift (µ)

Dependent: µ (1) (2) (3) (4) (5)

Stage II -0.002*** -0.002*** -0.002*** -0.002*** -0.002***
(-4.24) (-4.50) (-4.21) (-4.87) (-5.21)

Size 0.001 0.001
(1.36) (1.55)

Book-to-Market 0.000 0.000
(0.97) (0.92)

RVol 0.006* 0.005* 0.005*
(1.86) (1.68) (1.86)

Avg. 6-month index ret -0.029*** -0.028***
(-8.77) (-9.09)

Industry FE x Time FE Y Y Y Y Y
N.Obs 43,062 43,062 43,062 43,062 43,062
R-squared 0.375 0.377 0.379 0.394 0.396

(b) Comparison of the diffusion (σ)

Dependent: σ (1) (2) (3) (4) (5)

Stage II 0.005*** 0.005*** 0.005*** 0.005*** 0.004***
(9.98) (9.87) (9.24) (8.66) (8.39)

Size -0.002*** -0.002***
(-2.90) (-3.10)

Book-to-Market 0.001* 0.001
(1.85) (1.53)

Avg. 1-month ret -0.013*** -0.012*** -0.012***
(-4.40) (-3.90) (-4.18)

Avg. 6-month index ret -0.011** -0.012***
(-2.17) (-2.91)

Industry FE x Time FE Y Y Y Y Y
N.Obs 43,062 43,062 43,062 43,062 43,062
R-squared 0.704 0.710 0.708 0.708 0.714
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Table V. Impact of Knock-in Events on Future Knock-in Probability

This table shows results of Probit regressions using N2V as the intensity measure of hedging activity, as
follows: for each event j, its corresponding stock i = i(j) and event time t = t(j),

KIi,(t+1,t+10) = Φ
(
αI(i)×M(t) + βN2Vj + γXi,t−10 + εj

)
,

where Φ(·) is the standard normal cumulative density function, KIi,(t+1,t+10) that yields 1 if there is any
knock-in on the same underlying i in the next 10 days from the event time t and 0 otherwise. I(i) is the
industry of stock i as per the Korea SIC 2-digit classification, M(t) is the calendar month of day t, and X
is a vector of control variables using the most recent information on firm i known at t− 10. The definitions
of control variables are identical to those used for Table II. αI(i)×M(t) is the Industry × Month fixed effects
corresponding to each event. The t-statistics with standard errors clustered at the event level are reported
below the coefficients. The superscripts ***, **, and * refer to the 1%, 5%, and 10% levels of statistical
significance, respectively.

Dependent: Future KI Indicator (1) (2) (3) (4) (5)

N2V 0.217*** 0.216** 0.260*** 0.286*** 0.288***
(2.62) (2.56) (2.90) (3.08) (3.05)

Size 0.037*** 0.036***
(2.88) (2.76)

Book-to-Market -0.034* -0.033*
(-1.92) (-1.88)

Avg. 1-month ret 0.182 0.146 0.118
(1.39) (1.10) (0.89)

RVol -0.180*** -0.114* -0.099
(-3.55) (-1.74) (-1.48)

Avg. 6-month index ret 0.245 0.285*
(1.63) (1.82)

Industry FE x Time FE Y Y Y Y Y
N.Obs 1,296 1,296 1,296 1,296 1,296
LRChi2 7.67 15.48 23.41 25.74 31.14
ProbChi2 0.022 0.004 0.000 0.000 0.000
Pseudo R-squared 0.006 0.013 0.017 0.019 0.026
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Table VI. Interaction Effect of the Knock-In Intensity and Proximity
Contributed to the Future Knock-in Probability

In this table we report the results of Probit regressions using N2V as an indicator of knock-in intensity and
Z as the average knock-in probability (proximity). We divided total events into terciles for N2V and Z. We
propose the following categorical Probit specification:

KIi,(t+1,t+10) =Φ
(
αI(i)×M(t) + β1N2VMj + β2N2V Hj + β3Z

M
j + β4Z

H
j + β5N2VMj · ZMj

+ β6N2VMj · ZHj + β7N2V Hj · ZMj + β8N2V Hj · ZHj + γXi,t−10 + εj

)
,

where Z is defined in Table II. N2V H,Mj and ZH,Mj are dummy variables that indicate if i belongs to the
top tercile (H) or the middle tercile (M) of the respective measure. N2V Lj and ZLj are omitted categories.
I(i) is the industry of stock i as per the Korea SIC 2-digit classification, M(t) is the calendar month of day
t, and X is a vector of control variables using the most recent information on firm i known at t − 10. The
definitions of control variables are identical to those used for Table II. αI(i)×M(t) is the Industry × Month
fixed effects corresponding to each event. The t-statistics with standard errors clustered at the event level
are reported below the coefficients. The superscripts ***, **, and * refer to the 1%, 5%, and 10% levels of
statistical significance, respectively.

Dependent: Future KI Indicator (1) (2) (3) (4) (5)

N2VM 0.064 0.098 0.061 0.062 0.099
(0.43) (0.64) (0.41) (0.41) (0.65)

N2VH -0.242 -0.215 -0.240 -0.234 -0.204
(-1.38) (-1.22) (-1.37) (-1.34) (-1.15)

ZM -0.055 -0.000 -0.047 -0.044 0.018
(-0.35) (-0.00) (-0.30) (-0.28) (0.12)

ZH -0.095 -0.012 -0.053 -0.053 0.045
(-0.58) (-0.07) (-0.32) (-0.32) (0.26)

N2VM × ZM 0.195 0.157 0.206 0.206 0.164
(0.86) (0.68) (0.90) (0.90) (0.71)

N2VM × ZH 0.128 0.073 0.136 0.138 0.079
(0.55) (0.31) (0.58) (0.59) (0.34)

N2VH × ZM 0.606** 0.569** 0.633*** 0.636*** 0.599**
(2.48) (2.32) (2.59) (2.60) (2.43)

N2VH × ZH 0.759*** 0.704*** 0.790*** 0.804*** 0.749***
(3.08) (2.83) (3.21) (3.25) (3.00)

Size 0.046 0.055
(1.08) (1.26)

Book-to-Market -0.110* -0.120**
(-1.95) (-2.12)

Avg. 1-month ret 0.170 0.136 0.058
(0.39) (0.31) (0.13)

RVol -0.300* -0.224 -0.261
(-1.70) (-1.03) (-1.18)

Avg. 6-month index ret 0.315 0.339
(0.64) (0.66)

Industry FE x Time FE Y Y Y Y Y
N.Obs 1,229 1,229 1,229 1,229 1,229
LRChi2 22.23 26.50 26.10 26.94 31.86
ProbChi2 0.008 0.005 0.006 0.008 0.004
Pseudo R-squared 0.017 0.020 0.019 0.020 0.023
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Table VII. Impact of Expected Future Knock-In on Cumulative Abnormal
Returns

In this table, we report the results of an analysis in which we examine whether expected future knock-ins
have any effect on the price shock upon the current event. We regress CAR of underlying stock i = i(j) at
day t = t(j) upon knock-in event j on the future hedging intensity measure R2Vj :

CARj = αI(i)×M(t) + βR2V qj + γXi,t−10 + εj (q = 1, 2, 3),

where R2Vj is defined as in Table II. From this baseline R2V , we construct three sub-R2V variables. R2V 1

is based on SEPs whose barriers are immediately below the currently touched barrier (the first immediate
barrier). R2V 2

j and R2V 3
j are created in the same way with the second and the third immediate barriers,

respectively. I(i) is the industry of stock i as per the Korea SIC 2-digit classification, M(t) is the calendar
month of day t, and X is a vector of control variables using the most recent information on firm i known
at t − 10. The definitions of control variables are identical to Table II. αI(i)×M(t) is the Industry × Month
fixed effects corresponding to each event. The t-statistics with standard errors clustered at the event level
are reported below the coefficients. The superscripts ***, **, and * refer to the 1%, 5%, and 10% levels of
statistical significance, respectively.

Dependent: CAR (1) (2) (3)

R2V1 -0.132***
(-2.72)

R2V2 -0.053*
(-1.95)

R2V3 -0.043*
(-1.90)

Size 0.017*** 0.018*** 0.017***
(3.70) (3.76) (3.69)

Book-to-Market 0.002 0.002 0.002
(0.30) (0.38) (0.43)

Avg. 1-month ret -0.086* -0.087* -0.085*
(-1.83) (-1.83) (-1.80)

RVol -0.122*** -0.121*** -0.120***
(-3.84) (-3.73) (-3.72)

Avg. 6-month index ret 0.097 0.094 0.098
(1.00) (0.97) (1.00)

Industry FE x Time FE Y Y Y
N.Obs 1,229 1,229 1,229
R-squared 0.481 0.478 0.478

44



Table VIII. Decomposition of the Impact of Knock-In Events

To obtain the results reported in this table, we decompose the contribution to the price dislocation into a
portion related to the contemporaneous liquidity demand and a portion related to expected future unwinding.
For this task, we simultaneously exploit measures of contemporaneous effects (N2V ) and future effects
(R2V 1) of knock-in events as follows:

CARj = αI(i)×M(t) + β1N2Vj + β2R2V 1
j + γXi,t−10 + εj .

N2V and R2V 1 are defined as in Table II. Comparing β1 and β2 reveals the relative importance of two sources
of the negative price impact. I(i) is the industry of stock i as per the Korea SIC 2-digit classification, M(t)
is the calendar month of day t, and X is a vector of control variables using the most recent information on
firm i known at t−10. The definitions of control variables are identical to those given in Table II. αI(i)×M(t)
is the Industry × Month fixed effects corresponding to each event. The t-statistics with standard errors
clustered at the event level are reported below the coefficients. The superscripts ***, **, and * refer to the
1%, 5%, and 10% levels of statistical significance, respectively.

Dependent: CAR (1) (2) (3) (4) (5)

N2V -0.033** -0.032** -0.033** -0.032** -0.031**
(-2.26) (-2.32) (-2.17) (-2.13) (-2.14)

R2V1 -0.113** -0.085* -0.137*** -0.139*** -0.113**
(-2.33) (-1.67) (-2.86) (-2.89) (-2.24)

Size 0.018*** 0.016***
(3.73) (3.62)

Book-to-Market 0.001 0.002
(0.18) (0.42)

Avg. 1-month ret -0.048 -0.060 -0.078*
(-1.14) (-1.26) (-1.65)

RVol -0.129*** -0.129*** -0.123***
(-3.96) (-3.98) (-3.85)

Avg. 6-month index ret 0.049 0.086
(0.51) (0.89)

Industry FE x Time FE Y Y Y Y Y
N.Obs 1,229 1,229 1,229 1,229 1,229
R-squared 0.450 0.464 0.473 0.473 0.485
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Table IX. Decomposition of the Impact of Future Knock-Ins and the Liquidity
Effect

To obtain the results reported in this table, we distinguish the effects of future knock-ins when the next
immediate position to be liquidated is an in-house position from when it is an external position. Given event
j, for its underlying stock i = i(j) and at event time t = t(j), we use intensity measures of future knock-ins
by issuer type:

CARj = αI(i)×M(t) + β1N2Vj + β2R2V 1
j,in + β3R2V 1

j,ex + γXi,t−10 + εj ,

where R2Vin and R2Vex are defined as in Table II. Controlling for the liquidity demand related to the current
event (N2V ), comparing β2 and β3 shows the heterogeneous effects depending on issuer type on the price
pressure upon the current event. I(i) is the industry of stock i as per the Korea SIC 2-digit classification,
M(t) is the calendar month of day t, and X is a vector of control variables using the most recent information
on firm i known at t − 10. The definitions of control variables are identical to those used for Table II.
αI(i)×M(t) is the Industry × Month fixed effects corresponding to each event. The t-statistics with standard
errors clustered at the event level are reported below the coefficients. The superscripts ***, **, and * refer
to the 1%, 5%, and 10% levels of statistical significance, respectively.

Dependent: CAR (1) (2) (3) (4) (5)

N2V -0.033** -0.032** -0.033** -0.032** -0.031**
(-2.26) (-2.32) (-2.17) (-2.12) (-2.14)

R2V1
in -0.119 -0.059 -0.120 -0.121 -0.062

(-1.01) (-0.53) (-1.07) (-1.08) (-0.58)
R2V1

ex -0.112** -0.089* -0.140*** -0.143*** -0.122**
(-2.22) (-1.67) (-2.85) (-2.86) (-2.33)

Size 0.018*** 0.017***
(3.73) (3.62)

Book-to-Market 0.001 0.003
(0.19) (0.45)

Avg. 1-month ret -0.049 -0.060 -0.079*
(-1.14) (-1.26) (-1.66)

RVol -0.129*** -0.129*** -0.123***
(-3.96) (-3.98) (-3.86)

Avg. 6-month index ret 0.049 0.087
(0.51) (0.90)

Industry FE x Time FE Y Y Y Y Y
N.Obs 1,229 1,229 1,229 1,229 1,229
R-squared 0.449 0.463 0.472 0.472 0.485
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Table X. The Impact of Expectation Effects depends on Information
Accessibility

In this table, we insert two dummies (Ex and Post) in the regression to identify the impact of the exterior
R2V subjected to information accessibility: given event j, for affected stock i = i(j) and at event time
t = t(j),

CARj =αI(i)×M(t) + β1N2Vj + β2R2V 1
j + β3Ex+ β4Post

+ β5R2V 1
j · Ex+ β6R2V 1

j · Post+ β7Ex · Post
+ β8R2V 1

j · Ex · Post+ γXi,t−10 + εj ,

where N2V and R2V 1 are defined in Table II. Ex is an indicator variable whose value is 1 if the predominant
portion of R2V 1 is competitors’ and 0 otherwise. We calculate the ratio of the external portion to total
portion, and assign the value of 1 when the external portion is higher than the median. Post is also an
indicator variable that equals to 1 if t is on or after the inception point of the data service (April 25, 2013)
and 0 otherwise. I(i) is the industry of stock i as per the Korea SIC 2-digit classification, M(t) is the
calendar month of day t, and X is a vector of control variables using the most recent information on firm i
known at t−10. The definitions of control variables are identical to those given in Table II. αI(i)×M(t) is the
Industry × Month fixed effects corresponding to each event. The t-statistics with standard errors clustered
at the event level are reported below the coefficients. The superscripts ***, **, and * refer to the 1%, 5%,
and 10% levels of statistical significance, respectively.

Dependent: CAR (1) (2) (3) (4) (5)

N2V -0.030** -0.030** -0.031** -0.030** -0.029**
(-2.14) (-2.19) (-2.08) (-2.03) (-2.03)

R2V1 -0.217** -0.165 -0.228** -0.230** -0.180*
(-2.00) (-1.55) (-2.11) (-2.14) (-1.70)

Ex -0.011 -0.010 -0.010 -0.011 -0.010
(-1.29) (-1.20) (-1.23) (-1.25) (-1.19)

Post 0.021 0.031 0.047 0.044 0.048
(0.80) (1.30) (1.26) (1.22) (1.52)

R2V1 × Ex 0.149 0.120 0.127 0.128 0.097
(1.25) (1.01) (1.07) (1.07) (0.82)

R2V1 × Post 0.267 0.254 0.303 0.304 0.281
(1.42) (1.36) (1.63) (1.63) (1.55)

Ex × Post 0.009 0.008 0.009 0.009 0.008
(0.76) (0.70) (0.78) (0.79) (0.75)

R2V1 × Ex × Post -0.497** -0.519** -0.501** -0.500** -0.509**
(-2.12) (-2.27) (-2.13) (-2.12) (-2.22)

Size 0.018*** 0.017***
(3.79) (3.66)

Book-to-Market 0.001 0.002
(0.13) (0.41)

Avg. 1-month ret -0.043 -0.054 -0.073
(-1.01) (-1.13) (-1.52)

RVol -0.130*** -0.130*** -0.124***
(-3.98) (-3.99) (-3.87)

Avg. 6-month index ret 0.047 0.084
(0.49) (0.86)

Industry FE x Time FE Y Y Y Y Y
N.Obs 1,229 1,229 1,229 1,229 1,229
R-squared 0.450 0.464 0.473 0.473 0.485
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