
Φ

Testing the Local Martingale Theory of

Bubbles using Cryptocurrencies

Soon Hyeok Choi*and Robert A. Jarrow�

October 13, 2020

*School of Hotel Administration, SC Johnson College of Business, Cornell University,
Ithaca, N.Y. 14850. Email: sc983@cornell.edu.

�Samuel Curtis Johnson Graduate School of Management, Cornell University,
Ithaca, N.Y. 14853 and Kamakura Corporation, Honolulu, Hawaii 96815. Email:
raj15@cornell.edu.

1



Φ

Contents

1 Introduction 1

2 The Local Martingale Theory of Bubbles 5

2.1 Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Fundamental Value . . . . . . . . . . . . . . . . . . . . . 6

2.3 Type 3 Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 The Testing Methodology . . . . . . . . . . . . . . . . . . . . 7

2.4.1 The Cryptocurrency’s Price Process . . . . . . . . . . . 7

2.4.2 The Bubble Test . . . . . . . . . . . . . . . . . . . . . 8

3 The Empirical Methodology 9

3.1 Volatility Estimation . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 The Florens-Zmirou Estimator . . . . . . . . . . . . . . 9

3.1.2 Estimation Results . . . . . . . . . . . . . . . . . . . . 10

3.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Extrapolation and Evaluation . . . . . . . . . . . . . . . . . . 13

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Results 18

5 Robustness Tests 20

5.1 Outlier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Foreign Exchange Rates . . . . . . . . . . . . . . . . . . . . . 22

6 Conclusion 25

References 27

Appendices 29

Appendix A Modified Convex Hull Algorithm (MCHA) 29

Appendix B Hypothesis Testing 33

2



Φ

Appendix C Volatility Estimation Results 34

Appendix D Interpolation (Cryptocurrency) 38

Appendix E Interpolation (Crypto, Winsorized) 43

Appendix F Extrapolation (Cryptocurrency) 48

Appendix G Interpolation (Foreign Currency) 53

Appendix H Interpolation (FOREX, Winsorized) 56

Appendix I Extrapolation (Foreign Currency) 59

Appendix J Extrapolation: Regression (Crypto, FOREX) 62

Appendix K Extrapolation: Regression (Crypto, Winsorized) 67

Appendix L Extrapolation: Regression (FOREX, Winsorized) 70

Appendix M Extrapolation (FOREX, Winsorized) 72

Appendix N Extrapolation (Crypto, Winsorized) 75

3



Φ

Abstract

Cryptocurrencies provide the ideal and natural experimental set-

ting to test the local martingale theory of bubbles, because they have

no cash flows. Using this theory, we test for the existence of price bub-

bles in eight cryptocurrencies from January 1, 2019 to July 17, 2019.

The cryptocurrencies are Bitcoin (BTC), Litecoin (LTC), Ethereum

(ETH), Ripple (XRP), Bitcoin Cash (BCH), EOS (EOS), Monero

(XMR), and Zcash (ZEC). A novel, simple, and robust testing method-

ology is created to facilitate this estimation. During this time frame,

five of the eight currencies (BTC, BCH, EOS, XMR, ZEC) exhibit

price bubbles, Litecoin does not, and the evidence for Ethereum and

Ripple is inconclusive. The paper provides strong evidence for the

prevalence of bubbles in cryptocurrencies and supports the feasibility

of applying the local martingale theory of bubbles to various asset

classes.

Key Words: Price Bubbles, Arbitrage Pricing Theory, Martingale,

Cryptocurrency

JEL Code: G12, G13, G14, G17, G18
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1 Introduction

There is a rich economics literature concerning asset price bubbles using his-

torical time series data in a discrete time and infinite horizon setting (see

Brunnermeier and Oehmke [2013] for a survey). As discussed in Jarrow

et al. [2010], in the most general model structure possible, there are three

types of bubbles: type 1, type 2, and type 3. A type 1 bubble exists only in

infinite horizon models, and it captures a bubble in fiat money, a security

with zero cash flows, but strictly positive value. A type 2 bubble also exists

only in infinite horizon models, and it corresponds to an asset whose price

process (under the risk neutral probability measure) is a martingale but not

a uniformly integrable martingale. Intuitively, the sum of the risk adjusted

expected discounted cash flows and liquidation value at time infinity (i.e.

the asset’s fundamental value) does not equal the market price. Finally, a

type 3 bubble exists only in continuous trading models, and it corresponds

to an asset whose price process is a local martingale, but not a martingale.

In economic terms, the risk adjusted expected discounted cash flows and liq-

uidation value at some finite time horizon does not equal the market price.

This translates to the asset’s fundamental value not being equal to its mar-

ket price. We study type 3 bubbles in this paper while the aforementioned

literature focuses on type 2 bubbles.

It is important to note that type 2 and 3 bubbles capture different eco-

nomic phenomena. Type 2 bubbles are studied within an infinite horizon

model where the market price of an asset is compared to its fundamental

value and estimated using a model for the asset’s dividends and discount

rate. There are two problems with these models, which explain why the evi-

dence for the existence of type 2 asset price bubbles is mixed. First, since the

model is infinite horizon, the model estimation requires a large time series

sample, which creates a problem when there are structural breaks or non-

stationarities in financial markets. Second, as there is no consensus on the

model for an asset’s fundamental value, there is a joint hypothesis issue.

In contrast, a type 3 bubble exists because investors attempt to capture
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short-term trading profits via buying and selling over some fixed and finite

horizon, an example being high frequency trading. A type 3 bubble exists

when the market price for an asset exceeds its fundamental value where the

asset’s fundamental value can be interpreted as the price paid for the asset

to buy and hold (i.e. without resale) until liquidation. That is, there are

no type 3 bubbles when the market price equals its buy and hold value.

Equally as important, Jarrow et al. [2011b,a] show it is possible to test for

the existence of type 3 bubbles without estimating an asset’s fundamental

value, thereby avoiding the joint hypothesis issue. This paper tests for the

existence of type 3 bubbles in cryptocurrency markets.

The theory surrounding the existence of type 3 bubbles is called the local

martingale theory of bubbles. Cryptocurrency markets provide the “perfect

and natural experiment” to test this local martingale theory of bubbles. The

reason is that cryptocurrencies have no cash flows; the fundamental value

corresponds to the currency’s liquidation value at the model’s horizon. This

implies that bubbles exist in cryptocurrencies when speculators buy to resell

before the model’s horizon. This seems very likely for these new assets. In-

deed, since a cryptocurrency’s purpose is to serve as a medium of exchange,

in theory, if purchased to buy and hold and to use as needed, the transaction

demand for these assets should be constrained by the usage of other more

standard currencies to execute transactions. In contrast to this expectation,

the recent expansion of the cryptocurrency market has been extraordinary. In

January 2016, Bitcoin’s market capitalization was at $15 million dollars, and

on December 17 2017, it reached $334 billion. In two years, its market capi-

talization grew 22,000 fold. And, just as abruptly, in 2018 Bitcoin’s market

capitalization decreased to a mere $6 billion to which many argue reflects

Bitcoin’s “bubble” bursting. See Geuder et al. [2019] and Cheah and Fry

[2015] who investigate the presence of price bubbles in Bitcoin. Bouri et al.

[2019] argue that the cryptocurrency market is prone to herding behavior,

and they find evidence of a high degree of co-movement in the cross-sectional

returns across different cryptocurrencies.
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One major concern associated with cryptocurrencies is their vulnera-

bility to price manipulation. Using the 2017 blockchain data, Griffin and

Shams [2019] find that Tether’s purchases are often timed following market

downturns to directly influence Bitcoin’s price, thereby generating profitable

trading strategies across the two currencies. Alternatively, Li et al. [2019]

investigate pump-and-dump schemes (P&Ds) in cryptocurrency markets and

discover that most P&Ds lead to short-term bubbles where prices, volume,

and volatility increase significantly followed by a rapid reversion.

The local martingale theory of bubbles used in this paper is consistent

with testing for cryptocurrency bubbles regardless of the activities generating

them: speculation or manipulation. The model applies to an econometrician

or trader, who uses price data to estimate bubbles and views themselves as

a price-taker with respect to trading in these markets. This theory can be

tested by examining the market price process to see whether it is a local

martingale or a martingale under the risk neutral (equivalent martingale)

probabilities. These two processes have different local characteristics, which

can be estimated without computing the asset’s fundamental value.

The testing methodology is as follows. Given an observed price evolution

over a fixed time interval, one estimates the price process’s volatility as a

function of the asset’s price level. This estimation produces a set of volatility

and price pairs. The key step is to check to see if a certain integral of

this volatility function is finite or not when computed over the entire non-

negative real line. This step requires extrapolating the volatility function

from the observed price interval to the entire non-negative real line. Jarrow

et al. [2011b,a] and ? employ a non-parametric approach to perform the

volatility estimation, and then given the estimated volatility and price pairs,

extrapolate using the theory of Reproducing Kernel Hilbert Spaces (RKHS).

Chaim and Laurini [2019] also use this approach to examine the presence of

bubbles in Bitcoin.

In contrast, we introduce a different interpolation and extrapolation tech-

nique based on the modified convex hull of the estimated volatility and price

3



Φ

pairs to provide upper and lower bounds on this integral’s value. This is the

second contribution of our paper. Our method is robust and simple to im-

plement, and it is successful in identifying price bubbles. Indeed, using this

approach we test for the existence of bubbles in eight different cryptocur-

rencies from January 1, 2019 to July 17, 2019. The cryptocurrencies are

Bitcoin (BTC), Litecoin (LTC), Ethereum (ETH), Ripple (XRP), Bitcoin

Cash (BCH), EOS (EOS), Monero (XMR), and Zcash (ZEC). We document

that five of the eight cryptocurrencies exhibit bubbles, LTC does not, and

ETH and XRP are inconclusive. This is strong evidence supporting the

existence of price bubbles in cryptocurrencies and equally strong evidence

supporting the validity of the local martingale theory of bubbles.

As a robustness test, to control for the standard errors of the volatility

estimates, we winorsorize them by replacing the largest and smallest volatil-

ities with the second largest and smallest volatility estimates. Repeating the

hypothesis testing, the conclusions are identical with the exception of XRP.

After the winsorization, the hypothesis test for XRP is inconclusive, whereas

before it indicated a bubble. This robustness test confirms the validity of

our empirical methodology.

As a second robustness test of the methodology constructed herein, we

also apply our methodology to see if bubbles exist in four standard foreign

currencies over the same time period. The four currencies are the Japanese

Yen, Great British Pound, Canadian Dollar, and Euro. The evidence in-

dicates that three of these currencies exhibit a price bubble over a similar

period, and for one - the Japanese Yen, there is no bubble. This robustness

test further supports the validity of the local martingale theory of bubbles

and provides an alternative perspective on the use of foreign currencies for

speculative purposes.

This paper also has important policy implications for cryptocurrencies.

There has been increasingly aggressive penetration of cryptocurrencies into

the market potentially for commercial use. Indeed, Facebook continues to

invest tremendous resources in launching its cryptocurrency, Libra. And, in
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March 2020, Microsoft filed a patent for new cryptocurrency system using

body activity data. Whether or not the commercial use of these currencies

will exceed their use for speculative is an open question. If cryptocurrencies

uniformly exhibit price bubbles, which appears to be the case from our lim-

ited study, then their use for speculation dominates their use as a medium

of exchange (especially given the standard alternatives), and perhaps their

introduction should be prohibited. We note that to help regulate these mar-

kets and reduce harmful speculation, the US Congress recently introduced

the Virtual Currency Tax Fairness Act of 2020.

An outline of this paper is as follows. Section 2 reviews the local mar-

tingale theory of bubbles and section 3 describes the empirical methodology.

Section 4 presents the results, section 5 presents two robustness tests, and

section 6 concludes.

2 The Local Martingale Theory of Bubbles

This section reviews the local martingale theory of bubbles in order to un-

derstand the testing methodology employed for bubble detection.

2.1 Set-Up

We assume a continuous time model over the finite horizon [0, T ]. Given

is a filtered probability space (Ω,F , F = (Ft)t∈[0,T ],P) satisfying the usual

hypotheses where Ω is the state space, F is a σ-algebra of events, F =

(Ft)t∈[0,T ] is an information filtration, and P is the statistical probability

measure (see Protter [2005] for the relevant definitions).

We assume traded continuously, in a frictionless and competitive market,

are a default-free money market account (mma) and a cryptocurrency. Fric-

tionless means there are neither transaction costs nor trading constraints.

Competitive means that the trader (using this model) believes that she can

buy and sell the traded assets without affecting their prices. Without loss of

generality, we assume that the mma has unit value at all times. We denote
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the normalized market price of the cryptocurrency by St, assumed to be a

semimartingale with respect to F .

We suppose that the market is arbitrage-free1. Hence, by the First Fun-

damental Theorem of asset pricing (see Jarrow [2018]), there exists an equiv-

alent probability measure Q with respect to P such that the cryptocurrency

price process S is a Q-local martingale. “Equivalent” means that the proba-

bility measures agree on zero probability events in F , and a local-martingale

is a generalization of a martingale. It is called “local”, because the price pro-

cess behaves like a martingale when stopped on a sequence of stopping times

approaching T . Q is also referred to as a risk-neutral probability measure.

We do not assume that the market is complete, in which case there could

be an infinite number of local-martingale measures. If incomplete, we assume

that a unique Q is chosen by the market, either via an economic equilibrium

or via the market we are studying being embedded in a larger market that

is complete. See Jarrow [2018] and Jarrow et al. [2010].

2.2 The Fundamental Value

We define the fundamental value of the cryptocurrency to be the expected

discounted liquidation value of the currency at time T using the risk-neutral

probability Q. More formally, the cryptocurrency’s fundamental value is

SFVt = EQ[ST |Ft].

Use of the risk neutral probabilities adjusts for risk in computing this present

value. If a trader finds no additional value in re-trading, then her optimal

selling time is the final date T . Hence, the fundamental value of the cryp-

tocurrency can be interpreted as its buy and hold value.

1More formally, we assume that the market satisfies No Free Lunch with Vanishing
Risk (NFLVR). See Jarrow [2018] for the definition of NFLVR.
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2.3 Type 3 Bubbles

An asset’s type 3 price bubble is defined to be the difference between the

asset’s market price and its fundamental value:

βt = St − SFVt .

This is the standard definition of a price bubble used in the economics liter-

ature.

It is now easy to see that a price bubble exists if and only if the asset’s

price is a strict local martingale under the risk neutral probability Q. Indeed,

if the price process is a martingale, then St = EQ[ST |Ft] and βt = 0. Useful in

understanding a price bubble are some of its properties, which follow directly

from the definition (see Jarrow [2018]).

1. For all t ∈ [0, T ], βt ≥ 0.

2. βT = 0.

3. If βs = 0 for some s ∈ [0, T ], βt = 0 for all t > s.

Expression (1) states that negative bubbles do not exist, (2) asserts that any

existing bubble must burst by the final date, T , and (3) implies that once a

bubble collapses, it cannot be reborn.

2.4 The Testing Methodology

In this section, we specify the price evolution of the cryptocurrency and

provide a necessary and sufficient condition for it to exhibit a price bubble.

2.4.1 The Cryptocurrency’s Price Process

We assume that the cryptocurrency’s price is a solution to the following

stochastic differential equation under P:
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dSt = σ(St)dWt + µ(St, Yt)dt with S0 = 1 (1)

dYt = s(Yt)dCt + g(Yt)dt with Y0 = 1 (2)

where Wt and Ct are independent standard Brownian motions, and Yt in (2)

is additional randomness present in the asset’s drift process which results in

an incomplete market if µ is not the constant function in Yt. Note that the

cryptocurrency’s volatility is a function of the level of the cryptocurrency. It

is this dependence that enables us to capture the existence of price bubbles.

Under the risk neutral probability Q, the evolution for the cryptocurrency

is (see Protter [2013])

dSt = σ(St)dWt with S0 = 1. (3)

There is no drift, because the price is normalized by the mma.

2.4.2 The Bubble Test

The following result is the basis for the bubble test. Given in Mijatović and

Urusov [2012] and Delbaen and Shirakawa [2002], it states that the price

process S given in expression (3) is a strict local martingale under Q if and

only if

∫ ∞
ε

s

σ(s)2
ds < ∞ for any ε > 0. (4)

Hence, testing for a price bubble is equivalent to investigating whether the

integral in (4) is finite or not. If the integral converges, there is a bubble.

If it diverges, then there is no bubble. Note that this integral is finite if

the variance function increases at a faster rate than the price implying the

bubbles are associated with large return variances at high price levels. This

is the condition underlying our statistical methodology.
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3 The Empirical Methodology

In this section, we decompose the empirical detection of cryptocurrency bub-

bles into two steps:

1. Estimating the Volatility Function. We use a non-parametric

procedure to obtain the cryptocurrency’s volatility and price pairs,

(σ̂(S), S), given the observed price data over our observation interval.

2. Interpolation, Extrapolation, and Evaluation Modified Convex

Hull Algorithm (MCHA).

(a) Interpolation: Form the upper and lower convex hulls of the esti-

mated volatility and price pairs.

(b) Extrapolation: Follow the Modified Convex Hull Algorithm (MCHA)

to fit a function to the upper and lower convex hulls.

(c) Evaluation (Point Estimation and Hypothesis Testing): Using the

bubble test criterion (4), determine if the integral under these

functions are finite (bubble) or infinite (no bubble) at the 95 pe-

cent confidence level.

The details of steps (2a) - (2b) are explained below.

3.1 Volatility Estimation

In this subsection, we perform the non-parametric estimation developed by

Florens-Zmirou [1993] to estimate the volatility function. Jarrow et al.

[2011a] use this technique to investigate the presence of a bubble in LinkedIn’s

stock price following its IPO, and Chaim and Laurini [2019] employ this

method to estimate Bitcoin’s price volatility.

3.1.1 The Florens-Zmirou Estimator

Consider a simpler version of the stochastic differential equation (1):
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dSt = σ(St)dWt + µ(St)dt with S0 = 1, t ∈ [0, T ]. (5)

The objective is to estimate the diffusion coefficient, σ(St). Florens-

Zmirou [1993] constructs a consistent estimator for σ(St) based on the local

time of this diffusion process. The local time characterizes the amount of

time a particle spends at a level or in an interval. Florens-Zmirou [1993]’s

estimator of σ(x)2 for a sample of size n is:

σ̂n(x)2 =

n−1∑
i=1

1{|Sti−x|<hn}n(Sti+1
− Sti)2

n∑
i=1

1{|Sti−x|<hn}

(6)

where hn represents a positive real sequence converging to zero as n → ∞.

Taking the square root of expression (6) yields our estimate of the volatility

function σ(x).

Given a finite horizon [0, T ], the technique employs regular sampling

following a partition of ti = T
n

for i = 1, ..., n. For confidence intervals,

a useful convergence theorem states that if nh3n converges to zero, then√∑n
i=1 1{|Sti−x|<hn}

(
σ̂n(x)2

σ(x)2
− 1
)

converges to
√

2Z where Z is the standard

normal variable (see Florens-Zmirou [1993], Theorem 1, p. 800 for details).

3.1.2 Estimation Results

This section provides the non-parametric estimation results for eight cryp-

tocurrencies from January 1, 2019 to July 17, 2019. Expressions (1) and (2)

correspond to a local stochastic volatility model. Over a short time inter-

val (e.g. our sampling period), it can be viewed as an approximation to a

more complex stochastic volatility model. Performing our estimation over

this short time interval is consistent with the economics underlying type 3

bubbles, which result from speculative trading over a finite horizon. To il-

lustrate the procedure, we first explore the Bitcoin’s estimated volatility and
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price pairs.

Figure 1: Bitcoin’s Historical Price and Estimated Volatility
(Date: 1/1/2019-7/17/2019)

(a) Bitcoin Hourly Price (n ≈ 3,400) (b) Estimated Volatility for Bitcoin

Figure (1a) displays the historical price of Bitcoin with approximately

3,400 observations. As depicted, Bitcoin’s price process exhibited exponen-

tial growth, such growth is often associated with alleged price bubbles. Fig-

ure (1b) represents Bitcoin’s price and volatility pairs. Here, the volatility

appears to increase with the price level at an increasing pace. Appendix C

contains the figures for the volatility and price pairs for all of the remaining

seven cryptocurrencies.

3.2 Interpolation

We introduce a new technique called the Modified Convex Hull Algorithm

(MCHA) that simplifies the interpolation and extrapolation steps while en-

hancing its robustness. The algorithm focuses on computing the integral in

expression (4) using various upper and lower approximations to determine if

it is finite or infinite. This approach is distinct from Jarrow et al. [2011a]

and ?. For clarity, the reason for fitting upper and lower bounds for the

volatility function instead of using a single approximating function across

price and volatility pairs is discussed after our methodology is presented (see

section 3.4).
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We illustrate the approach with Bitcoin again. Consider the price and

estimated volatility pairs for Bitcoin computed from the observations between

January 1, 2019 and July 17, 2019.

Figure 2: Bitcoin’s Modified Convex Hull
(Date: 1/1/2019-11/17/2019)

In Figure (2), the blue dots are the estimated volatility points. The green

and red dashed lines represent the lower and upper convex hulls for these set

of points, respectively. The green circles on the lower convex hull represent

the projections of the price and volatility pairs on the lower convex hull.

Similarly for the red circles on the upper convex hull. We denote the new

set of estimated volatility points on the lower convex hull as LCHB, B for

Bitcoin. Similarly, we produce the set of new estimated volatility points on

the upper convex hull and denote them as UCHB (See the Appendix A and

D for details on the exact computations).
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3.3 Extrapolation and Evaluation

In this section, we explain the methodology which consists of (i) extrapolat-

ing the modified convex hulls constructed from the interpolation step, (ii)

computing point estimates of a parameter in order to evaluate the integrals

of these extrapolated volatility functions, and (iii) performing a hypothesis

test, controlling for both Type 1 and Type 2 errors.

1. Extrapolation : We select the best power functions f(x) = αxβ to

fit the lower and upper convex hulls. We linearize the approximating

functions as

ln(σ) = ln(α) + β ln(S) + ε (7)

and perform ordinary least squares (OLS) to obtain the estimated co-

efficients β̂ for the best fitting approximations to the lower and upper

convex hulls.

2. Evaluation (Point Estimation):

(a) We first compute a point estimate of β in order to evaluate the

upper bound for the integral in expression (4). The upper bound is

evaluated using the lower 2 convex hull’s approximating function

to see if it converges. For the power function, if the estimated

coefficient β̂u > 1, then this point estimate implies the integral in

expression (4) converges.

(b) If the point estimate of β implies the lower convex hull integral

diverges, then this does not guarantee divergence of the true inte-

gral. In this case we use the upper convex hull to compute a point

estimate of the lower bound for the integral in expression (4).

(c) If the point estimate of β implies that the upper convex hull inte-

gral diverges, then because it is a lower bound for the true integral,

the true integral itself diverges, and there is no bubble. For the

2The reversal of the upper convex hull and a lower approximation to the integral is
due to the fact that the volatility is in the denominator, for details see the Appendix A.
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power function, if β̂l ≤ 1, then this point estimate implies the

integral in expression (4) diverges, and there is a no bubble.

(d) If the point estimate of β implies the upper bound integral con-

verges, then the test is inconclusive. For the power function this

occurs if β̂l > 1.

3. Evaluation (Hypothesis Testing): This section discusses how to per-

form hypothesis testing using the point estimate of β obtained in the

previous section. Since we are computing point estimates of β in order

to evaluate the lower and upper bounds on the integral, the following

algorithm controls for both Type 1 and Type 2 errors.

(a) Step 1: Test the null hypothesis of “No Bubble” using the point

estimate of β to evaluate the upper bound on the true integral

at the 0.95 confidence level. For the power function, reject the

null if β̂u > 1 + 1.645σ̂u. See Hypothesis Testing in Appendix

for the justification of this critical region. If rejected, stop. The

conclusion is that a bubble exists. Otherwise due to the fact that

this is upper bound and there is potentially a large Type 2 error,

go to step 2.3

(b) Step 2: Test the null hypothesis of “Bubble” using the point es-

timate of β to evaluate the lower bound on the true integral at

the 0.95 confidence level. For the power function, reject the null

if β̂l ≤ 1− 1.645σ̂l. If rejected, stop. The conclusion is that there

is no bubble.

(c) Step 3: Stop. The testing is inconclusive, because step 1 accepts

the hypothesis of no bubble and step 2 accepts the hypothesis of

3The explanation for why the Type 2 error in Step 1 is controlled for in Step 2 is as fol-
lows. In Step 1, the Type 2 error is P(Accept No-Bubble|No-Bubble False). To see that the
Type 2 error is potentially large, suppose that β = 1+ε for ε small, then this probability is
nearly 0.95. Note that in Step 2, the Type 1 error is 0.05 = P(Reject Bubble|Bubble True)
= P(Accept No-Bubble|Bubble True) = P(Accept No-Bubble|No-Bubble False) which is
the Type 2 error in Step 1.
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a bubble, both tests having potentially large Type 2 errors.

Table 1 summarizes the decision rule (also see Appendix A, Modified Con-

vex Hull Algorithm (MCHA)). The lower and upper convex hull integrals, as

characterized by the power function’s β exponent, provide sufficient condi-

tions for the absence and presence of bubbles.

Table 1: The Bubble Test at 95% Confidence Level
via the Modified Convex Hull Algorithm (MCHA)

Bound on Integral Null Hypothesis Conclusion

No Bubble

Step 1: Upper
Reject if β̂u > 1 + 1.645σ̂u Bubble

if β̂u ≤ 1 + 1.645σ̂u Go to Step 2

Step 2: Lower
Bubble

Reject if β̂l ≤ 1− 1.645σ̂l No Bubble

if β̂l > 1− 1.645σ̂l Go to Step 3

Step 3: Stop Accept Both Nulls Inconclusive

We illustrate this procedure with Bitcoin. Figure 3 provides the fit of the

power function to Bitcoin’s estimated volatility and price sets for its lower

convex hull. From Figure 3, we observe that the 95% confidence bandwidth

is fairly tight.
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Figure 3: Estimation on Lower Convex Hull: Bitcoin
(Date: 1/1/2019-7/17/2019)

Table 2 contains the regression estimates. As indicated, the power func-

tion provides a good fit to the lower convex hull with a large R2 and a small

standard error for β̂u.

Table 2: Estimation Results for Bitcoin
Upper Bound on Integral

Currency α̂u SE β̂u SE 95% CR R2

BTC∗ -7.920 2.987 1.884 0.332 1.5446 69.69%

Applying the decision rule, the case of Bitcoin concludes in Step 1. We

see that Bitcoin’s estimated β̂u = 1.884 > 1 + 1.645(.332) = 1.5446, which

implies that the null hypothesis of no bubble is rejected at the 95 percent

confidence level. For Bitcoin, there is no reason to consider the upper convex

hull.

3.4 Discussion

This section uses the Bitcoin example to explain the reason for fitting upper

and lower bounds for the volatility function instead of using a single approxi-

mating function across the price and volatility pairs. Figure 4 gives the graph
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of the best fitting power function to Bitcoin’s price and estimated volatility

pairs and Table 3 contains the regression estimates.

From an economic point of view, fitting the best power function to Bit-

coin’s price and estimated volatility pairs implies that we are assuming the

evolution of price process is given by a constant elasticity of variance (CEV)

process, i.e.

dSt = αSβt dWt + µ(St)dt with S0 = 1. (8)

As seen in Figure 4 and Table 3, a CEV process provides a very poor fit to

the cryptocurrency’s evolution. Indeed, the R2 is quite low (32.8%) and the

standard error of the estimated β is quite large (0.477). Using this evolution

to determine whether Bitcoin has a bubble or not is problematic, because

the CEV process provides a poor fit to the currency’s true evolution.

Figure 4: CEV Regression on Estimated Vol & Price Set
(Bitcoin, Date: 1/1/2019-7/17/2019)

Table 3: Estimation Results for Bitcoin using CEV Process

Currency α̂ SE β̂ SE R2

CEV -1.530 4.294 1.248 0.477 32.80%

In contrast, by using the MCHA algorithm (fitting the lower and upper

17



Φ

convex hulls), we do not assume a particular evolution for the cryptocurrency

(i.e. we do not determine the exact functional form of σ(St)). Instead, we

bound the “true” function with power functions from above and below. The

novelty of our technique stems from using these approximating functions to

determine whether the integral of the true volatility function converges or

diverges. The consistency of our methodology with an arbitrary volatility

function is a strength of the Modified Convex Hull Algorithm (MCHA).

4 Results

In this section, we provide the results from applying the Modified Convex

Hull Algorithm (MCHA) to determine if bubbles exists in each of the eight

cryptocurrencies. The cryptocurrencies are: Bitcoin (BTC), Litecoin (LTC),

Ethereum (ETH), Ripple (XRP), Bitcoin Cash (BCH), EOS (EOS), Monero

(XMR), and Zcash (ZEC). We illustrated these computations with Bitcoin in

the previous section. The complete set of regression results is in Appendix J.

The following table summarizes the estimation results produced from

fitting a power function to the lower convex hull for the cryptocurrencies

from January 1, 2019 to July 17, 2019.

Table 4: Hypothesis Testing of No Bubble
(Upper Bound on Integral (4))

Currency α̂u SE β̂u SE 95% CR R2

BTC∗ -7.920 2.987 1.884 0.332 1.5446 69.69%
LTC 3.627 0.711 0.143 0.162 1.2665 5.32%
ETH -0.420 0.865 1.058 0.161 1.2731 75.57%
XRP∗ 0.582 0.034 1.932 0.035 1.0576 99.55%
BCH∗ -1.117 0.661 1.238 0.117 1.1925 88.95%
EOS∗ -1.137 0.320 1.795 0.195 1.3208 85.84%
XMR∗ -2.192 1.024 1.523 0.235 1.3866 75.01%
ZEC∗ -4.184 0.305 1.944 0.069 1.1135 98.25%

Using the MCHA algorithm and as documented in Table 4, Bitcoin
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(BTC), Ripple (XRP), Bitcoin Cash (BCH), EOS (EOS), Monero (XMR),

and Zcash (ZEC) all reject the null hypothesis of no bubble at the 95% confi-

dence level. Hence, these currencies exhibit a bubble. For LTC and ETH, the

null hypothesis of no bubble cannot be rejected. Hence, for these currencies,

we need to examine the upper convex hull approximations to obtain a lower

bound to the integral.

Figure 5: Ethereum and Litecoin’s Convex Hulls
(Date: 1/1/2019-7/17/2019)

(a) Ethereum’s Convex Hull (b) Litecoin’s Convex Hull

Figure 5 demonstrates the convex hulls for Ethereum and Litecoin.

The estimation results from fitting the power function to Litecoin’s and

Ethereum’s upper convex hulls are provided in Table 5.

Table 5: Hypothesis Testing of Bubble
(Lower Bound on Integral (4))

Currency α̂l SE β̂l SE 95% CR R2

LTC∗ 4.404 1.291 0.293 0.294 0.5163 6.65%
ETH 1.450 1.200 0.895 0.223 0.6332 53.53%

It provides the hypothesis tests for the alternative null hypothesis of a

bubble. For Litecoin (LTC), the cut-off rejects the hypothesis of a bubble.
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Consequently, LTC exhibits no price bubble. For Ethereum (ETH), the

cut-off does not reject the null hypothesis of a bubble. Hence, the test is

inconclusive for ETH because both null hypotheses are accepted.

5 Robustness Tests

This section provides two robustness tests of our bubble testing methodology.

5.1 Outlier Analysis

The first robustness test can be interpreted as an outlier analysis. Given

that our volatility estimates contain error, it is important to test the ro-

bustness of the convex hulls created by the Modified Convex Hull Algorithm

(MCHA). When estimating the price and volatility pairs, the largest and

smallest volatility estimates in the sample are the most likely to contain

the largest error component. These price and volatility pairs may affect the

convex hull construction more than proportionate to their percentage in the

sample. To control for this possibility, we winsorize the data by replacing

the maximum and minimum estimated volatility points with their respective

second max and min points. This type of filter is standard in statistics when

examining the robustness of the empirical model with respect to outliers.

Then, we repeat our hypothesis testing procedure.
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Figure 6: Bitcoin’s Convex Hulls After Winsorizing Max & Min Points
(Date: 1/1/2019-7/17/2019)

(a) Bitcoin’s Original Convex Hull (b) Bitcoin’s Convex Hull Post-Filter

In Figure 6, we illustrate the post-filter convex hulls for Bitcoin. See

Appendix K for the complete set of winsorized convex hulls.

In Table 6, we provide the regression results using winsorization.

Table 6: Hypothesis Test of No Bubble
Post Winsorization: Cryptocurrencies

(Upper Bound on Integral (4))

Currency α̂u SE β̂u SE 95% CR R2

BTC∗ -6.973 2.751 1.785 0.306 1.503 70.89%
LTC 4.326 0.250 0.034 0.057 1.093 2.49%
ETH -0.398 0.855 1.055 0.159 1.261 75.87%
XRP -0.718 0.005 0.193 0.005 1.008 99.09%
BCH∗ -1.108 0.663 1.237 0.117 1.192 88.88%
EOS∗ -0.378 0.159 1.395 0.097 1.159 93.68%
XMR∗ -1.427 0.821 1.368 0.188 1.310 79.02%
ZEC∗ -2.890 0.310 1.661 0.071 1.116 97.54%

Following our decision rule in Table 1, we conclude that BTC, BCH, EOS,

XMR, and ZEC exhibit bubbles. For LTC, ETH, and XRP, we proceed to

the decision rule’s Step 2 and investigate the regression results using the

upper convex hulls.
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Table 7: Hypothesis Test of Bubble
Post Winsorization: Cryptocurrencies

(Lower Bound on Integral (4))

Currency α̂l SE β̂l SE 95% CR R2

LTC∗ 4.580 1.190 0.240 0.271 0.555 5.32%
ETH 1.542 0.973 0.859 0.181 0.703 61.70%
XRP 0.452 0.423 0.767 0.433 0.288 18.35%

LTC exhibits no bubble while the evidence for bubbles in both ETH

and XRP are inconclusive. See Appendix K for the full regression results

of the winsorized convex hulls for the cryptocurrencies. As documented, our

conclusion is adjusted for only one cryptocurrency XRP. After winsorization,

the evidence is inconclusive with respect to XRP exhibiting a bubble or not.

5.2 Foreign Exchange Rates

As a second robustness test of the MCHA algorithm, we apply it to more

standard foreign currencies: US Dollars (USD) to Japanese Yen (JPY), Great

British Pound (GBP), Canadian Dollar (CAD), and Euro (EUR) over the

same time period January 7, 2019 to July 23, 2019 using hourly exchange

rates. The purpose of which is to discover whether the methodology provides

similar or dissimilar results.
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Figure 7: USD-GBP’s Historical Exchange Rate & Estimated Volatility
(Date: 1/7/2019-7/23/2019)

(a) USD-GBP Hourly Exchange Rates
(n = 3,457) (b) Estimated Volatility for Bitcoin

For illustration, Figure 7 displays the USD-GBP historical exchange rates

and its estimated volatility and prices accompanied with the lower and upper

convex hulls.4 The estimation results for all four currencies are provided in

Table 8. The Great British Pound (GBP), the Canadian Dollar (CAD), and

the Euro (EUR) reject the null hypothesis of no bubble at the 0.95 confidence

level, implying that these currencies exhibit a bubble.

Table 8: Hypothesis Test of No Bubbles for the
Foreign Currencies

(Upper Bound on Integral (4))

Currency α̂u SE β̂u SE 95% CR R2

JPY -22.767 47.830 -1.636 10.1846 17.7534 0.18%
GBP∗ -9.297 0.408 19.818 1.6166 2.6593 91.48%
CAD∗ -4.578 0.021 7.843 0.0744 1.1224 99.87%
EUR∗ -6.568 0.013 3.780 0.1029 1.1693 98.97%

For the Japanese Yen (JPY), we cannot reject the null hypothesis of no

4Each exchange rate indicates how much a unit of the foreign currency is worth in US
Dollars (e.g. 1 Canadian Dollar equals .76 US Dollars).
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bubble. Using the MCHA algorithm, we proceed to fit the power function

on the JPY’s upper convex hull.

Figure 8: JPY Historical Price & Upper Convex Hull
(Date: 1/7/2019-7/23/2019)

(a) Historical Prices (JPY) (b) Upper Convex Hull

Figure 8 illustrates the historical prices of Japanese Yen (JYP) in US

Dollars with the upper convex hull. Table 9 provides the estimation results.

For the JPY, the upper bound test rejects the null hypothesis of a bubble.

Hence, there is no bubble for the JPY.

Table 9: Hypothesis Testing of Bubble for the
USD to Japanese Yen

(Lower Bound on Integral (4))

Currency α̂l SE β̂l SE 95% CR R2

JPY∗ -81.989 1.858 -14.557 0.3955 0.3427 98.98%

Just as for cryptocurrencies, three of the four currencies tested herein

exhibit price bubbles over the same time period. The evidence suggests that

these standard foreign currencies are not dissimilar to cryptocurrencies in

this regard and that they are also held for speculative purposes and not just

for their use as a medium of exchange. This robustness test further supports

the validity of the local martingale theory of bubbles.
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Finally, we apply the winsorized version of the MCHA to examine the

robustness of our model in the standard currencies.

Table 10: Hypothesis Test of No Bubbles for the
Foreign Currencies (Winsorized)
(Upper Bound on Integral (4))

Currency αu SE βu SE 95% CR R2

JPY -22.767 47.830 -1.636 10.185 17.754 0.18%
GBP∗ -9.297 0.408 19.818 1.617 3.659 91.48%
CAD∗ -4.578 0.021 7.843 0.074 1.122 99.87%
EUR∗ -6.568 0.013 3.780 0.103 1.169 98.97%

Following the decision rule in Table 4, our analysis yields that GBP, CAD,

and EUR exhibit bubbles. Similar to the previous results, we cannot reject

the null of no bubble with JPY. Table 10 provides the results.

Table 11: Hypothesis Testing of Bubble for the
USD to JPY (Winsorized)

(Lower Bound on Integral (4))

Currency αu SE βu SE 95% CR R2

JPY -81.989 1.858 -14.557 0.396 0.349 98.98%

Table 11 enables us to conclude that bubble is absent in JPY. In the

case of the standard foreign currencies, the winsorized version of the MCHA

yield the identical results when performed on the original estimated volatility

points. This reinforces the robustness of our model.

6 Conclusion

This paper contributes to the literature concerning asset price bubbles in

several ways. First, examining the presence of bubbles in cryptocurrencies

has enabled us to test the feasibility of applying the local martingale the-

ory of bubbles in its most natural experimental setting. The cryptocurrency
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market is known for its short-term speculation-driven momentum, which per-

fectly corresponds to the local martingale theory’s investigation of the type 3

bubbles. In addition, the absence of cash flows in the cryptocurrency market

further supports the laboratory setting. We find the prevalence of bubbles

in the major cryptocurrencies. Hence, the paper strongly supports the local

martingale theory of bubbles, and the theory easily extends to popular asset

classes such as equities, fixed income, and foreign currencies.

Although a few empirical methodologies to test the local martingale the-

ory of bubbles have been proposed, our paper creates a novel algorithm called

the Modified Convex Hull Algorithm (MCHA) to test for the presence of bub-

bles. The algorithm is simple to use and it revolves around the convergence

of an integral expression defined over the enter positive real line (4) using up-

per and lower bounds. We introduce hypothesis testing of this convergence,

controlling for Type I and especially large Type II errors.

We show that the Modified Convex Hull Algorithm (MCHA) is robust by

performing an outlier analysis that winsorizes the maximum and minimum

estimated volatility and price pairs. Winsorization yields almost identical

results with the exception of one cryptocurrency, XRP, which changes from a

bubble to being inconclusive. Moreover, we apply our testing methodology to

four standard foreign currencies. Three out of four currencies exhibit bubbles.

Applying our procedure to foreign currencies provides strong evidence for the

theory’s applicability to a wide range of asset classes.

Finally, our findings provide a cautionary note for policymakers consid-

ering the integration of cryptocurrencies into the market. As both public

and private sectors continue to make aggressive moves to do so, their daily

use as a medium of exchange seems inappropriate given the pervasiveness of

bubbles in these currencies.
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Appendix

Appendix A Modified Convex Hull Algorithm

(MCHA)

The MCHA Algorithm: The non-parametric estimation yields a set of

estimated volatility and price pairs based on the range of prices visited

by the cryptocurrency process. To compute the integral in expression

(4), we need a technique to interpolate and extrapolate the estimated

volatility and price pairs. We developed the Modified Convex Hull

Algorithm (MCHA) for this purpose. This new algorithm uses an upper

and lower approximation for the volatility function to compute bounds

on the integral. We now describe the algorithm for the general case.

1. Let S = {the set of estimated price and volatility pairs (x, σ̂(x)}.

2. Denote the upper and lower convex hull of S as ConvU(S) and

ConvL(S), respectively.

3. To compute the lower convex hull, consider the estimated ordered pair

of volatility and prices:

{(σ̂1, S1), (σ̂2, S2), ..., (σ̂N , SN)}, ordered by prices S1 < S2 < ... < SN .

4. Follow this iterative process to calculate the Modified Convex Hulls :

(a) Let Si represents the crypto-currency’s ith price in the set.

(b) Start with the lowest price and estimated volatility pair: (S1, σ̂1).

We denote this as the Reference Point (RP).

(c) Perform this iterative process5: compute the angle from the RP

5Note −90 < θRP,i < 90 otherwise the iteration has issues or the estimated points
must be revisited.
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to each of other points i ∈ {2, ..., N}.

θRP,i = arctan
( σ̂i − σ̂RP
Si − SRP

)
(9)

(d) Compute the minimum (maximum) angle in degrees for the next

lower (upper) convex hull forming point.

(e) Identify the index of the angle to which the RP has the minimum

degree.

(f) Update the RP and repeat the steps from (b) to (e) until you

reach i = N .

(g) When we are done with step (f), we have the set of points that

forms the lower and upper convex hull for each currency.

(h) Next we move onto projecting the remaining estimated points onto

the convex hull lines.

(i) Consider lower convex hull for illustration.

(j) For notation purposes, denote the lower convex hull forming point

points to be:

LCH = {S1, S4, S15, S16}. (10)

(k) Compute the parameters for the linear equation between each sub-

sequent points in LCH. For instance, if you have k elements in

LCH, then you will have k − 1 linear equations connecting the k

points. Project the remaining points above onto these lines be-

tween the forming points. This produces the new set of estimated

volatility values, σ̂i for all i = 1, ..., N .

(l) We denote the set of the newly computed estimated volatility and

price pairs as
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LCH = {(Si, σ̂i) : i = 1, ..., N}. (11)

(m) Repeat the steps from (h) to (l) for the Upper Convex Hull.

5. Computing approximations to the integral
∫∞
ε

s
σ(s)2

ds.

(a) Let σL(s), σ(s), σU(s), be the lower convex hull approximation, the

actual, and the upper convex hull approximation for the volatility

function, respectively. Note that

σL(s)2 ≤ σ(s)2 ≤ σU(s)2. (12)

Thus, the inequalities reverse with respect to the ratios yield

s

σL(s)2
≥ s

σ(s)2
≥ s

σU(s)2
. (13)

Hence, the corresponding integrals produce∫ ∞
ε

s

σL(s)2
ds ≥

∫ ∞
ε

s

σ(s)2
ds ≥

∫ ∞
ε

s

σU(s)2
ds. (14)

(b) The Algorithm and (Deterministic) Decision Rule:

i. Compute the upper bound to the integral using the modified

lower convex hull (i.e.
∫∞
ε

s
σL(s)2

ds):

A. If
∫∞
ε

s
σL(s)2

ds <∞, then∫ ∞
ε

s

σ(s)2
ds ≤

∫ ∞
ε

s

σL(s)2
ds <∞ (15)

There exists a bubble.

B. Otherwise, it is inconclusive. Go to 5(b)ii.

ii. Compute the lower bound to the integral using the modified

upper convex hull (i.e.
∫∞
ε

s
σU (s)2

ds):
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A. If
∫∞
ε

s
σU (s)2

ds =∞, then∫ ∞
ε

s

σU(s)2
ds =∞ ≤

∫ ∞
ε

s

σ(s)2
ds =∞ (16)

There is no bubble.

B. Otherwise, it is inconclusive. In this case, we have shown,

for some
∫∞
ε

s
σU (s)2

ds = K ∈ R+,∫ ∞
ε

s

σU(s)2
ds ≤

∫ ∞
ε

s

σ(s)2
ds ≤

∫ ∞
ε

s

σL(s)2
ds (17)

K ≤
∫ ∞
ε

s

σ(s)2
ds ≤ ∞ (18)

In the text, this algorithm is refined in two ways: First, the algorithlm

is modified to use the power function to approximate the lower and upper

bounds on the volatility function, and second, by second the algorithm is

modified by adding sampling error and a hypothesis test to the decision rule.
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Appendix B Hypothesis Testing

Our hypothesis testing is based on the following construct:

H0 : β ≤ 1 (19)

HA : β > 1 (20)

Let the critical region (reject the null hypothesis) be when β̂ ≥ K for

K a constant. Assume β̂ = β + σε where ε ∼ Normal(0, 1) with σ > 0 a

constant.

Based on the Central Limit Theorem, this assumption follows approxi-

mately from the regression estimation.

The power function for this test is

P(β̂ ≥ K) = P(β + σε ≥ K) = 1−N
(
K − β
σ

)
where N(.) is the cummulative standard normal distribution function.

Given K, first choose the β that solves

sup
β≤1

[
1−N

(
K − β
σ

)]
,

yielding the largest possible type 1 error across all possible β consistent with

the null hypothesis. The solution is given by β = 1.

Next, we want to choose K such that the largest type 1 error possible is

only 0.05. Hence, at the 0.95 confidence level, solving 1 − N
(
K−1
σ

)
= 0.05

gives this K, i.e. it implies that K = 1 + σz0.95 where N (z0.95) = 0.95.
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Appendix C Volatility Estimation Results

Volatility Estimation: The figures in this section provide the historical

prices and estimated volatility for the 8 cryptocurrency.
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Figure 9: Historical Price and Estimated Volatility for Bitcoin, Ethereum,
and Ripple

(a) Bitcoin Hourly Price (n ≈ 3,400) (b) Estimated Volatility for Bitcoin

(c) Ethereum Hourly Price (n ≈ 3,400) (d) Estimated Volatility for Ethereum

(e) Ripple Hourly Price (n ≈ 3,400) (f) Estimated Volatility for Ripple
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Figure 10: Historical Price and Estimated Volatility for Litecoin, Bitcoin
Cash, and EOS

(a) Litecoin Hourly Price (n ≈ 3,400) (b) Estimated Volatility for Litecoin

(c) Bitcoin Cash Hourly Price
(n ≈ 3,400) (d) Estimated Volatility for Bitcoin Cash

(e) EOS Hourly Price (n ≈ 3,400) (f) Estimated Volatility for EOS

36



Φ

Figure 11: Historical Price and Estimated Volatility for Monero and ZCash

(a) Monero Hourly Price (n ≈ 3,400) (b) Estimated Volatility for Monero

(c) ZCash Hourly Price (n ≈ 3,400) (d) Estimated Volatility for ZCash
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Appendix D Interpolation (Cryptocurrency)

Interpolation via the Modified Convex Hull Algorithm (MCHA):

The figures in this section demonstrate how the modified upper and

lower convex hulls are constructed for each cryptocurrency. They are

constructed with the original points.
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Figure 12: Bitcoin’s Modified Convex Hull
(Date: 1/1/2019-7/17/2019)

Figure 13: Litecoin’s Modified Convex Hull
(Date: 1/1/2019-7/17/2019)
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Figure 14: Ethereum’s Modified Convex Hull
(Date: 1/1/2019-7/17/2019)

Figure 15: Ripple’s Modified Convex Hull
(Date: 1/1/2019-7/17/2019)
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Figure 16: Bitcoin Cash’s Modified Convex Hull
(Date: 1/1/2019-7/17/2019)

Figure 17: EOS’s Modified Convex Hull
(Date: 1/1/2019-7/17/2019)
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Figure 18: Monero’s Modified Convex Hull
(Date: 1/1/2019-7/17/2019)

Figure 19: Zcash’s Modified Convex Hull
(Date: 1/1/2019-7/17/2019)
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Appendix E Interpolation (Crypto, Winsorized)

Interpolation via the Modified Convex Hull Algorithm (MCHA):

The figures in this section demonstrate how the modified upper and

lower convex hulls are constructed for each cryptocurrency when the

maximum and minimum volatility points are replaced with their second

highest and lowest points.
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Figure 20: Bitcoin’s Convex Hulls After Winsorizing Max & Min Points
(Date: 1/1/2019-7/17/2019)

(a) Bitcoin’s Original Convex Hull (b) Bitcoin’s Convex Hull Post-Filter

Figure 21: Litecoin’s Convex Hulls After Winsorizing Max & Min Points
(Date: 1/1/2019-7/17/2019)

(a) Litecoin’s Original Convex Hull (b) Litecoin’s Convex Hull Post-Filter
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Figure 22: Ethereum’s Convex Hulls After Winsorizing Max & Min Points
(Date: 1/1/2019-7/17/2019)

(a) Ethereum’s Original Convex Hull (b) Ethereum’s Convex Hull Post-Filter

Figure 23: Ripple’s Convex Hulls After Winsorizing Max & Min Points
(Date: 1/1/2019-7/17/2019)

(a) Ripple’s Original Convex Hull (b) Ripple’s Convex Hull Post-Filter
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Figure 24: Bitcoin Cash’s Convex Hulls After Winsorizing Max & Min
Points

(Date: 1/1/2019-7/17/2019)

(a) Bitcoin Cash’s Original Convex Hull
(b) Bitcoin Cash’s Convex Hull

Post-Filter

Figure 25: EOS’s Convex Hulls After Winsorizing Max & Min Points
(Date: 1/1/2019-7/17/2019)

(a) EOS’s Original Convex Hull (b) EOS’s Convex Hull Post-Filter
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Figure 26: Monero’s Convex Hulls After Winsorizing Max & Min Points
(Date: 1/1/2019-7/17/2019)

(a) Monero’s Original Convex Hull (b) Monero’s Convex Hull Post-Filter

Figure 27: Zcash’s Convex Hulls After Winsorizing Max & Min Points
(Date: 1/1/2019-7/17/2019)

(a) Zcash’s Original Convex Hull (b) Zcash’s Convex Hull Post-Filter
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Appendix F Extrapolation (Cryptocurrency)

Extrapolation via Power Model Fit: This section shows how power (non-

linear regression) model is fit on each of the eight cryptocurrency’s

modified convex hulls. For demonstration, we provide both lower and

upper convex hulls and their power fits. They are fit on the original

points.
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Figure 28: Estimation on Lower & Upper Convex Hulls: Bitcoin
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation

Figure 29: Estimation on Lower & Upper Convex Hulls: Litecoin
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation

49



Φ

Figure 30: Estimation on Lower & Upper Convex Hulls: Ethereum
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation

Figure 31: Estimation on Lower & Upper Convex Hulls: Ripple
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation
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Figure 32: Estimation on Lower & Upper Convex Hulls: Bitcoin Cash
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation

Figure 33: Estimation on Lower & Upper Convex Hulls: EOS
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation
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Figure 34: Estimation on Lower & Upper Convex Hulls: Monero
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation

Figure 35: Estimation on Lower & Upper Convex Hulls: Zcash
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation
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Appendix G Interpolation (Foreign Currency)

Interpolation via the Modified Convex Hull Algorithm (MCHA):

The figures in this section demonstrate how the modified upper and

lower convex hulls are constructed for each foreign currency. They are

constructed with the original points.
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Figure 36: USD-JPY’s Historical Exchange Rate & Estimated Volatility
(Date: 1/7/2019-7/23/2019)

(a) USD-JPY Hourly Exchange Rates
(n = 3,457) (b) Estimated Volatility for USD-JPY

Figure 37: USD-GBP’s Historical Exchange Rate & Estimated Volatility
(Date: 1/7/2019-7/23/2019)

(a) USD-GBP Hourly Exchange Rates
(n = 3,457) (b) Estimated Volatility for USD-GBP
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Figure 38: USD-CAD’s Historical Exchange Rate & Estimated Volatility
(Date: 1/7/2019-7/23/2019)

(a) USD-CAD Hourly Exchange Rates
(n = 3,457) (b) Estimated Volatility for USD-CAD

Figure 39: USD-EUR’s Historical Exchange Rate & Estimated Volatility
(Date: 1/7/2019-7/23/2019)

(a) USD-EUR Hourly Exchange Rates
(n = 3,457) (b) Estimated Volatility for USD-EUR
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Appendix H Interpolation (FOREX, Winsorized)

Interpolation via the Modified Convex Hull Algorithm (MCHA):

The figures in this section demonstrate how the modified upper and

lower convex hulls are constructed for each foreign currency. They are

constructed with the winsorized points.
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Figure 40: USD-JPY’s Historical Exchange Rate & Winsorized Convex Hull
(Date: 1/7/2019-7/23/2019)

(a) USD-JPY Hourly Exchange Rates
(n = 3,457) (b) Estimated Volatility for USD-JPY

Figure 41: USD-GBP’s Historical Exchange Rate & Winsorized Convex
Hull

(Date: 1/7/2019-7/23/2019)

(a) USD-GBP Hourly Exchange Rates
(n = 3,457) (b) Estimated Volatility for USD-GBP
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Figure 42: USD-CAD’s Historical Exchange Rate & Winsorized Convex
Hull

(Date: 1/7/2019-7/23/2019)

(a) USD-CAD Hourly Exchange Rates
(n = 3,457) (b) Estimated Volatility for USD-CAD

Figure 43: USD-EUR’s Historical Exchange Rate & Winsorized Convex
Hull

(Date: 1/7/2019-7/23/2019)

(a) USD-EUR Hourly Exchange Rates
(n = 3,457) (b) Estimated Volatility for USD-EUR
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Appendix I Extrapolation (Foreign Currency)

Extrapolation via Power Model Fit: This section shows how power (non-

linear regression) model is fit on each of the four foreign currency’s

modified convex hulls. We provide the linear regression on the lin-

earized model for both upper and lower convex hulls. They are fit onto

the original points.
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Figure 44: USD-JPY’s Modified Convex Hull Regression
(Date: 1/7/2019-7/23/2019)

(a) USD-JPY: Lower Convex Hull Fit (b) USD-JPY: Upper Convex Hull Fit

Figure 45: USD-GBP’s Modified Convex Hull Regression
(Date: 1/7/2019-7/23/2019)

(a) USD-GBP: Lower Convex Hull Fit (b) USD-GBP: Upper Convex Hull Fit
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Figure 46: USD-CAD’s Modified Convex Hull Regression
(Date: 1/7/2019-7/23/2019)

(a) USD-CAD: Lower Convex Hull Fit (b) USD-CAD: Upper Convex Hull Fit

Figure 47: USD-EUR’s Modified Convex Hull Regression
(Date: 1/7/2019-7/23/2019)

(a) USD-EUR: Lower Convex Hull Fit (b) USD-EUR: Upper Convex Hull Fit
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Appendix J Extrapolation: Regression (Crypto,

FOREX)

Power Model Regression Results: This section provides the full regres-

sion results for both cryptocurrencies and foreign exchange rates using

MCHA and with the (unwinsorized) original data points. It provides

their estimates for the slope and constant of the power model and their

associated t-statistic, p-value, standard errors, confidence intervals, and

R2.
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Regression (Power Model) Results:

MCHA on Cryptocurrencies

Table 12: Lower Convex Hull using MCHA on Cryptocurrencies (Slope)

Currency Slope SE t-stat p-value LowerCI UpperCI R2

BTC 1.884 0.332 5.674 0.0001 1.172 2.596 69.69%
LTC 0.143 0.162 0.887 0.3900 -0.203 0.490 5.32%
ETH 1.058 0.161 6.581 0.0000 0.713 1.403 75.57%
XRP 1.932 0.035 55.728 0.0000 1.857 2.006 99.55%
BCH 1.238 0.117 10.617 0.0000 0.988 1.489 88.95%
EOS 1.795 0.195 9.213 0.0000 1.377 2.213 85.84%
XMR 1.523 0.235 6.483 0.0000 1.019 2.026 75.01%
ZEC 1.944 0.069 28.028 0.0000 1.795 2.092 98.25%

Table 13: Lower Convex Hull using MCHA on Cryptocurrencies (Intercept)

Currency Intercept SE t-stat p-value LowerCI UpperCI R2

BTC -7.920 2.987 -2.651 0.0190 -14.327 -1.512 69.69%
LTC 3.627 0.711 5.102 0.0002 2.102 5.151 5.32%
ETH -0.420 0.865 -0.485 0.6351 -2.275 1.436 75.57%
XRP 0.582 0.034 17.171 0.0000 0.509 0.654 99.55%
BCH -1.117 0.661 -1.689 0.1133 -2.536 0.301 88.95%
EOS -1.137 0.320 -3.555 0.0032 -1.824 -0.451 85.84%
XMR -2.192 1.024 -2.141 0.0504 -4.388 0.004 75.01%
ZEC -4.184 0.305 -13.733 0.0000 -4.837 -3.530 98.25%
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Table 14: Upper Convex Hull using MCHA on Cryptocurrencies (Slope)

Currency Slope SE t-stat p-value LowerCI UpperCI R2

BTC 0.853 0.289 2.949 0.0106 0.233 1.473 38.32%
LTC 0.293 0.294 0.999 0.3348 -0.337 0.924 6.65%
ETH 0.895 0.223 4.016 0.0013 0.417 1.374 53.53%
XRP 1.660 0.668 2.486 0.0262 0.228 3.092 30.62%
BCH 1.135 0.238 4.759 0.0003 0.623 1.646 61.80%
EOS 1.358 0.144 9.439 0.0000 1.049 1.666 86.42%
XMR 1.528 0.152 10.064 0.0000 1.202 1.854 87.86%
ZEC 1.865 0.233 8.010 0.0000 1.365 2.364 82.09%

Table 15: Upper Convex Hull using MCHA on Cryptocurrencies (Intercept)

Currency Intercept SE t-stat p-value LowerCI UpperCI R2

BTC 2.826 2.601 1.086 0.2957 -2.753 8.405 38.32%
LTC 4.404 1.291 3.411 0.0042 1.635 7.174 6.65%
ETH 1.450 1.200 1.209 0.2468 -1.123 4.023 53.53%
XRP 1.230 0.653 1.884 0.0805 -0.170 2.630 30.62%
BCH 0.551 1.352 0.408 0.6895 -2.348 3.451 61.80%
EOS 0.444 0.236 1.880 0.0810 -0.062 0.951 86.42%
XMR -1.326 0.662 -2.004 0.0649 -2.746 0.094 87.86%
ZEC -3.302 1.023 -3.228 0.0061 -5.495 -1.108 82.09%
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Regression (CEV Model) Results:

Cryptocurrencies

Table 16: Convex Hull on Cryptocurrencies (Slope) using CEV

Currency Slope SE t-stat p-value LowerCI UpperCI R2

BTC 1.248 0.477 2.614 0.0204 0.224 2.271 32.80%
LTC 0.540 0.344 1.571 0.1386 -0.197 1.277 14.98%
ETH 1.030 0.309 3.329 0.0050 0.366 1.693 44.19%
XRP 1.849 0.589 3.141 0.0072 0.587 3.112 41.35%
BCH 1.146 0.291 3.938 0.0015 0.522 1.770 52.55%
EOS 1.435 0.297 4.837 0.0003 0.798 2.071 62.57%
XMR 1.771 0.292 6.073 0.0000 1.146 2.397 72.49%
ZEC 1.698 0.275 6.180 0.0000 1.109 2.287 73.18%

Table 17: Convex Hull on Cryptocurrencies (Intercept) using CEV

Currency Intercept SE t-stat p-value LowerCI UpperCI R2

BTC -1.530 4.294 -0.356 0.7269 -10.740 7.680 32.80%
LTC 2.738 1.511 1.812 0.0915 -0.503 5.978 14.98%
ETH 0.336 1.664 0.202 0.8431 -3.234 3.905 44.19%
XRP 1.246 0.575 2.165 0.0482 0.012 2.479 41.35%
BCH 0.053 1.650 0.032 0.9749 -3.487 3.593 52.55%
EOS -0.127 0.487 -0.261 0.7980 -1.172 0.917 62.57%
XMR -2.882 1.272 -2.267 0.0398 -5.609 -0.155 72.49%
ZEC -2.795 1.207 -2.316 0.0362 -5.383 -0.207 73.18%
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Regression (Power Model) Results:

MCHA on Foreign Currencies

Table 18: Lower Convex Hull on Foreign Currencies (Slope)

Currency Slope SE t-stat p-value LowerCI UpperCI R2

JPY -1.636 10.185 -0.161 0.8747 -23.479 20.208 0.18%
GBP 19.818 1.617 12.259 0.0000 16.351 23.285 91.48%
CAD 7.843 0.074 105.425 0.0000 7.683 8.003 99.87%
EUR 3.780 0.103 36.747 0.0000 3.560 4.001 98.97%

Table 19: Lower Convex Hull on Foreign Currencies (Intercept)

Currency Intercept SE t-stat p-value LowerCI UpperCI R2

JPY -22.767 47.830 -0.476 0.6414 -125.351 79.818 0.18%
GBP -9.297 0.408 -22.791 0.0000 -10.172 -8.422 91.48%
CAD -4.578 0.021 -216.383 0.0000 -4.623 -4.532 99.87%
EUR -6.568 0.013 -503.646 0.0000 -6.596 -6.540 98.97%

Table 20: Upper Convex Hull on Foreign Currencies (Slope)

Currency Slope SE t-stat p-value LowerCI UpperCI R2

JPY -14.557 0.396 -36.802 0.0000 -15.405 -13.708 98.98%
GBP 10.938 5.779 1.893 0.0792 -1.456 23.332 20.38%
CAD 17.322 14.080 1.230 0.2389 -12.877 47.521 9.76%
EUR 30.671 17.040 1.800 0.0934 -5.876 67.218 18.79%

Table 21: Upper Convex Hull on Foreign Currencies (Intercept)

Currency Intercept SE t-stat p-value LowerCI UpperCI R2

JPY -81.989 1.858 -44.137 0.0000 -85.973 -78.005 98.98%
GBP -5.930 1.458 -4.067 0.0012 -9.058 -2.803 20.38%
CAD -0.502 4.004 -0.125 0.9020 -9.090 8.085 9.76%
EUR -8.283 2.160 -3.834 0.0018 -12.915 -3.650 18.79%
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Appendix K Extrapolation: Regression (Crypto,

Winsorized)

Power Model Regression Results (Winsorized): This section provides

the full regression results for the winsorized set of estimated volatility

and price pairs for cryptocurrencies. It provides their estimates for the

slope and constant of the power model and their associated t-statistic,

p-value, standard errors, confidence intervals, and R2.
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Table 22: Winsorized Lower Convex Hull
MCHA on Cryptocurrencies (Slope)

Currency Slope SE 95 CR R2 t-stat p-value LowerCI UpperCI

BTC 1.785 0.306 1.503 70.89% 5.839 0.0000 1.008 2.422
LTC 0.034 0.057 1.093 2.49% 0.598 0.5596 -0.105 0.142
ETH 1.055 0.159 1.261 75.87% 6.635 0.0000 0.682 1.193
XRP 0.193 0.005 1.008 99.09% 39.058 0.0000 0.194 0.207
BCH 1.237 0.117 1.192 88.88% 10.577 0.0000 0.791 1.527
EOS 1.395 0.097 1.159 93.68% 14.400 0.0000 1.010 1.416
XMR 1.368 0.188 1.310 79.02% 7.262 0.0000 0.815 1.631
ZEC 1.661 0.071 1.116 97.54% 23.554 0.0000 1.557 1.690

Table 23: Winsorized Lower Convex Hull
MCHA on Cryptocurrencies (Intercept)

Currency Intercept SE t-stat p-value LowerCI UpperCI R2

BTC -6.97329 2.751182 -2.146 0.0530 -12.674 0.096 69.69%
LTC 4.325832 0.2497 17.645 0.0000 3.867 4.956 5.32%
ETH -0.39786 0.855217 0.586 0.5687 -1.007 1.748 75.57%
XRP -0.71757 0.004826 -235.991 0.0000 -0.717 -0.704 99.55%
BCH -1.10759 0.663038 -0.649 0.5284 -2.733 1.478 88.95%
EOS -0.37761 0.159098 -0.090 0.9297 -0.346 0.318 85.84%
XMR -1.42662 0.820986 -0.952 0.3601 -2.550 1.000 75.01%
ZEC -2.89044 0.309892 -20.343 0.0000 -3.042 -2.454 98.25%
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Table 24: Winsorized Upper Convex Hull
MCHA on Cryptocurrencies (Slope)

Currency Slope SE 95 CR R2 t-stat p-value LowerCI UpperCI

BTC 0.854 0.273 0.552 41.24% 3.135 0.0073 0.343 1.509
LTC 0.240 0.271 0.555 5.32% 0.887 0.3900 -0.390 0.860
ETH 0.859 0.181 0.703 61.70% 4.749 0.0003 0.483 1.266
XRP 0.767 0.433 0.288 18.35% 1.774 0.0979 -0.597 1.781
BCH 1.196 0.187 0.692 74.51% 6.398 0.0000 0.632 1.418
EOS 1.157 0.174 0.713 75.85% 6.631 0.0000 0.765 1.666
XMR 1.407 0.159 0.738 84.76% 8.825 0.0000 1.075 1.861
ZEC 1.632 0.172 0.716 86.48% 9.464 0.0000 0.779 2.088

Table 25: Winsorized Upper Convex Hull
MCHA on Cryptocurrencies (Intercept)

Currency Intercept SE t-stat p-value LowerCI UpperCI R2

BTC 2.753 2.452 0.817 0.4301 -3.293 7.240 38.32%
LTC 4.580 1.190 3.597 0.0037 1.793 7.301 6.65%
ETH 1.542 0.973 1.466 0.1683 -0.690 3.528 53.53%
XRP 0.452 0.423 0.520 0.6128 -0.877 1.426 30.62%
BCH 0.068 1.060 0.977 0.3477 -1.240 3.257 61.80%
EOS 0.694 0.286 1.786 0.0994 -0.133 1.339 86.42%
XMR -0.841 0.695 -1.410 0.1839 -2.816 0.603 87.86%
ZEC -2.256 0.757 -1.078 0.3021 -4.304 1.454 82.09%
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Appendix L Extrapolation: Regression (FOREX,

Winsorized)

Power Model Regression Results (Winsorized): This section provides

the full regression results for the winsorized set of estimated volatility

and price pairs for foreign exchange rates. It provides their estimates

for the slope and constant of the power model and their associated

t-statistic, p-value, standard errors, confidence intervals, and R2.
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Table 26: Winsorized Lower Convex Hull
MCHA on Foreign Currencies (Slope)

Currency Slope SE t-stat p-value LowerCI UpperCI R2

JPY -0.749 7.411 -0.101 0.921 -16.645 15.146 0.07%
GBP 19.277 1.626 11.852 0.000 15.788 22.765 90.94%
CAD 0.000 0.000 Inf 0.000 0.000 0.000 100.00%
EUR -19.238 0.453 -42.425 0.000 -20.210 -18.265 99.23%

Table 27: Winsorized Lower Convex Hull
MCHA on Foreign Currencies (Intercept)

Currency Intercept SE t-stat p-value LowerCI UpperCI R2

JPY -18.553 34.805 -0.533 0.602 -93.203 56.097 0.07%
GBP -9.150 0.410 -22.295 0.000 -10.030 -8.270 90.94%
CAD -6.664 0.000 -Inf 0.000 -6.664 -6.664 100.00%
EUR -3.260 0.057 -56.707 0.000 -3.383 -3.136 99.23%

Table 28: Winsorized Upper Convex Hull
MCHA on Foreign Currencies (Slope)

Currency Slope SE t-stat p-value LowerCI UpperCI R2

JPY -1.120 0.357 -3.140 0.007 -1.885 -0.355 41.32%
GBP 11.880 5.488 2.165 0.048 0.109 23.652 25.08%
CAD 14.441 12.739 1.134 0.276 -12.881 41.762 8.41%
EUR 17.058 15.292 1.115 0.283 -15.741 49.857 8.16%

Table 29: Winsorized Upper Convex Hull
MCHA on Foreign Currencies (Intercept)

Currency Intercept SE t-stat p-value LowerCI UpperCI R2

JPY -19.194 1.675 -11.460 0.000 -22.786 -15.601 41.32%
GBP -6.214 1.385 -4.487 0.001 -9.185 -3.244 25.08%
CAD -1.332 3.622 -0.368 0.719 -9.101 6.437 8.41%
EUR -6.445 1.939 -3.325 0.005 -10.603 -2.287 8.16%
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Appendix M Extrapolation (FOREX, Win-

sorized)

Extrapolation via Power Model Fit: This section shows how power (non-

linear regression) model is fit on each of the four foreign currency’s

modified convex hulls. We provide the linear regression on the lin-

earized model for both upper and lower convex hulls. They are fit onto

the winsorized points.
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Figure 48: USD-JPY’s Winsorized Convex Hull Regression
(Date: 1/7/2019-7/23/2019)

(a) USD-JPY: Lower Convex Hull Fit (b) USD-JPY: Upper Convex Hull Fit

Figure 49: USD-GBP’s Winsorized Convex Hull Regression
(Date: 1/7/2019-7/23/2019)

(a) USD-GBP: Lower Convex Hull Fit (b) USD-GBP: Upper Convex Hull Fit
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Figure 50: USD-CAD’s Winsorized Convex Hull Regression
(Date: 1/7/2019-7/23/2019)

(a) USD-CAD: Lower Convex Hull Fit (b) USD-CAD: Upper Convex Hull Fit

Figure 51: USD-EUR’s Winsorized Convex Hull Regression
(Date: 1/7/2019-7/23/2019)

(a) USD-EUR: Lower Convex Hull Fit (b) USD-EUR: Upper Convex Hull Fit
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Appendix N Extrapolation (Crypto, Winsorized)

Extrapolation via Power Model Fit: This section shows how power (non-

linear regression) model is fit on each of the eight cryptocurrency’s

modified convex hulls. For demonstration, we provide both lower and

upper convex hulls and their power fits. They are fit on the winsorized

points.
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Figure 52: Estimation on Winsorized Convex Hulls: Bitcoin
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation

Figure 53: Estimation on Winsorized Convex Hulls: Litecoin
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation
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Figure 54: Estimation on Winsorized Convex Hulls: Ethereum
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation

Figure 55: Estimation on Winsorized Convex Hulls: Ripple
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation
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Figure 56: Estimation on Winsorized Convex Hulls: Bitcoin Cash
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation

Figure 57: Estimation on Winsorized Convex Hulls: EOS
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation
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Figure 58: Estimation on Winsorized Convex Hulls: Monero
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation

Figure 59: Estimation on Winsorized Convex Hulls: Zcash
(Date: 1/1/2019-7/17/2019)

(a) Lower Convex Hull Estimation (b) Upper Convex Hull Estimation
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