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ABSTRACT

This paper studies an asset pricing model, where investors perceive idiosyncratic cash flow

risks through subjective expectation on firms’ cash flows to impact equilibrium quantities.

Investigating empirical implications of the model, we find that cash flow fluctuations are

mainly idiosyncratic, and stocks with higher cash-flow risks have higher belief dispersion, larger

book-to-market ratios, and higher return volatility. Our model provides a data-consistent

equilibrium cross-section: assets with higher cash flow volatility and belief differences have

higher expected returns, producing the value premium. Conversely, a growth premium prevails

when belief dispersion is low. Furthermore, the model generates a downward-sloping equity

term structure.
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I. Introduction

In this paper, we study a continuous-time asset pricing model that features heterogeneous

beliefs regarding idiosyncratic cash flows of firms. This task is of importance in developing

a workhorse model of asset pricing, and the value premium anomaly illustrated in Figure 1,

and the related equity term structure puzzle are key issues in this enterprise for the following

reasons.

[Insert Figure 1]

The cash flow risk, defined as the covariance between a firm’s cash flow and the aggregate

cash flow, plays an instrumental role in explaining the cross section of stock returns, as

emphasized in the literature.1 When prototypical asset pricing models produce a cross-

sectional return variation associated with cash flows, a puzzling feature arises in that these

models predict a growth premium that is opposite to the empirically observed value premium.

Simply put, value stocks have a smaller risk premium in light of discount risk than growth

stocks, because value (growth) stocks tend to have the shorter (longer) cash flow duration.

Thus, economic models that explain the time series properties of market returns struggle

to match empirical cross-sectional return variations, as pointed out by Lettau and Wachter

(2007) and Santos and Veronesi (2010). Related, Binsbergen, Brandt, and Koijen (2012)

show that widely used, standard asset pricing models such as Bansal and Yaron (2004),

Campbell and Cochrane (1999), and Gabaix (2012) generate either upward sloping or flat

equity term structures while the data show that the historical equity term structure tends

to have a negative slope.

To justify the value premium, Lettau and Wachter (2007, 2011) let discount effect not

translate into the cross section. Thus, while investors do not fear stocks with long duration

cash flows that are subject to discount effect, they perceive stocks with short duration (value

1Abel (1999), Da (2009), and others study theoretical aspects. Bansal, Dittmar, and Lundblad (2005),
Santos and Veronesi (2006), Yang (2007), Cohen, Polk, and Vuolteenaho (2009), Campbell, Polk, and
Vuolteenaho (2010), and many others study empirical aspects of cash flow risks in the cross section of stock
returns. Notably several papers have tried to link cash flow risk and cash flow duration to cross-sectional
return variation. For instance, Campbell and Vuolteenaho (2004), Bansal, Dittmar, and Lundblad (2005),
Kiku (2007), Hansen, Heaton, and Li (2008), Zhang (2005), Lettau and Wachter (2007), Da (2009), Santos
and Veronesi (2010), and Choi, Johnson, Kim, and Nam (2013) develop structural models that directly
associate cash flow risk or cash flow duration with book-to-market ratios and expected stock returns to this
end.
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stocks) as riskier, because those assets interact with front-loaded cash flows; hence, value

stocks have higher expected returns. Alternatively, under the circumstance that growth

stocks have higher expected returns due to strong discount effect, Santos and Veronesi (2010)

counterfactually magnify the exposure to aggregate cash flow risk especially for value stocks:

since cash flow risk effect dominates discount effect in the cross section, it can undo the

growth premium.

To motivate our study, Table I displays the snapshots of cash flow risk reflected in the

decile portfolios sorted by the book-to-market ratio. The first row shows the overall sizes

of cash flow risk, proxied by the variance of dividend growth in each portfolio, the second

row refers to the covariances between individual dividend growth and the aggregate dividend

growth, and the third row reports sample variance of the residuals of individual dividend

growth netting out the effect from the aggregate dividend growth. The last row reports

analysts’ earnings forecast dispersion of the decile portfolio firms using the I/B/E/S data

set.

[Insert Table I]

Table I states that the most of cash flow fluctuations come from the idiosyncratic com-

ponent, and the systematic risk exposures appear to be too small to produce the data-

consistent value premium. Plus, value stocks have much higher idiosyncratic risk of cash

flow than growth stocks, and data tell that the dispersion in analyst forecasts on earnings

for the value firms are markedly higher. Previous studies find that value firms are subject to

higher distress risk and less room to grow. We suspect that the firm-specific cash flow risks

can be related to distress risks and limited growth options, which can increase the perceived

uncertainty about firms’ future earnings and disagreement among market participants.

In this vein, we incorporate investors’ different beliefs into individual cash flow dynamics

with the following features. First, we model both aggregate and individual cash flow pro-

cesses consistently. For the aggregate cash flow process, we use an exogenous model that is

impacted by aggregate risk only. However, an individual firm’s cash flow process is subject

to idiosyncratic risk in addition to aggregate risk. The dynamics of the cash flow processes

(including idiosyncratic risk exposure) implies that our model is constructed such that in

the aggregate, idiosyncratic cash flow risks cancel out via quantities.
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Second, we introduce investors’ heterogeneous beliefs into cash flow processes. The key

assumption is that investors have different opinions on the long-run mean of the cash flow

share process with respect to firm- or asset-specific risk.2 This differs from the most of

the heterogeneous beliefs literature where investors update their perceptions of the drift

of underlying processes through aggregate risk. Since the market offers a sufficient num-

ber of assets to trade on these belief differences, idiosyncratic cash flow risk is priced in

equilibrium through belief differences. As a result, individual expected stock returns are

positively affected by idiosyncratic cash flow risk through belief differences, which is one of

our main results.3 The higher the belief difference, the stronger the effect of idiosyncratic

cash flow risk on equilibrium stock returns. Individual equilibrium quantities are affected

by the model’s state variables that capture cash flows, investor preferences, and belief dif-

ferences. Cross-sectional return variations result from different exposures to these variables.

Thus, the theory connects firm characteristics and related investor behaviors to the cross-

section of stock returns. Quantitative study of our model reveals that the cross-sectional

return variation is largely attributed to the pricing of idiosyncratic cash flow risk in equilib-

rium. When belief differences are modeled in this way, we show that sorting assets based on

price-to-fundamental ratios endogenously picks up stocks with higher (idiosyncratic) cash

flow risk and higher degrees of belief differences in the cross section leading to the value

premium. Simulation experiments further support this claim in that our model produces a

growth premium if idiosyncratic cash flow risk is not priced when belief difference is turned

off, illustrating the importance of the belief difference channel.

The pricing of idiosyncratic cash flow risk through belief differences also helps explain the

downward sloping equity term structure, shown by Binsbergen, Brandt, and Koijen (2012)

and others. To investigate the shape of equity term structure in our model, we compute

the cash flow duration using both a direct accounting method following Dechow, Sloan, and

2This assumption is similar to Basak (2000) where investors have different beliefs about an extraneous
process unrelated to economic fundamentals. Similarly, Ehling, Gallmeyer, Heyerdahl-Larsen, and Illeditsch
(2017) study how inflation disagreement can impact real quantities and prices.

3Babenko, Boguth, and Tserlukevich (2016) show that in an option-theoretic setting, idiosyncratic cash
flow risk negatively affects equilibrium stock returns. High idiosyncratic cash flow shocks positively affect a
firm’s profit, which in turn increases the firm size. When the firm size increases, the price of risk, measured
by the CAPM beta, decreases so that the expected excess return decreases. On the other hand, Cochrane,
Longstaff, and Santa-Clara (2008), Martin (2013), Choi, Johnson, Kim, and Nam (2013), and Choi and Kim
(2014) show that in an equilibrium setting, larger idiosyncratic cash flows can increase the market price of
risk because of under-diversification.
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Soliman (2004) and an indirect method using the price elasticity with respect to the cash

flow. We find two distinctive features. First, regardless of the measures, value (growth)

stocks have the shorter (longer) cash flow duration in our model. Second, assets with the

shorter (longer) cash flow duration have the higher (lower) expected returns since they have

higher (lower) idiosyncratic cash flow risk and larger (smaller) belief dispersion, featuring a

downward sloping equity term structure. Therefore, our economic mechanism by which the

value premium arises generates a downward sloping equity term structure as well.

The paper is organized as follows. Section 2 introduces our model. Section 3 provides the

economics of cash flow characteristics as well as the reason for high (low) belief difference

for value (growth) firms. Section 4 derives equilibrium and discusses rich implications of the

pricing of idiosyncratic cash flow risk via investors’ different beliefs. Section 5 shows and

discusses equity term structure. We provide proofs in appendix. Online appendix provides

data descriptions, and other supporting materials.

II. The Model

This section spells out the model, with preferences of investors, characteristics of cash

flows, and beliefs.

A. Investor Preference

The model assumes that investors hold a constant relative risk aversion utility function

with an external habit. Risk aversion is identical across investors for simplicity. Investor k’s

utility function is

u(ck(t)) =
1

1− γ

(
ck(t)

X(t)

)1−γ

, k = 1, 2. (II.1)

where X(t) represents a ratio habit as in Abel (1989). The habit process X follows the form

of Constantinides (1990), Detemple and Zapatero (1991), and Santos and Veronesi (2010):

Xt ≡ δ

∫ t

0

e−δ(t−τ)Dτdτ, (II.2)
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where Dt is the aggregate cash flow. In particular, we use Santos and Veronesi (2010) by

defining the mean-reverting process, Ht ≡ (Dt/Xt)
(1−γ) with dynamics

dHt = h1(H̄ −Ht)dt+ h2HtdBA(t), (II.3)

where h1 > 0, h2 > 0.

B. Endowment

The aggregate cash flow is given by

dDt

Dt

= µDdt+ σD,AdBA(t), (II.4)

where dBA(t) represents aggregate Brownian risk. For simplicity, we assume that there are

two sectors or trees, called “stocks” in our setting that are claims to distinct cash flows. For

the tree process, we follow Menzly, Santos, and Veronesi (2004) by taking the cash flow share

process as exogenous to describe the relative movement of individual cash flow processes in

the economy.

Assumption 1. The share, st, is defined as the individual cash flow (≡ Ds(t)) divided by

the aggregate cash flow (≡ D(t)). The process st follows

dst = φs(s̄− st)dt+ stσ(st)dB
′
t, φs > 0, (II.5)

with

σ(st) ≡ (σs,A(t), σs,I(t)),

σs,j ≡ vs,j − stvs,j − (1− st)v(1−s),j, j = A, I

dBt ≡ (dBA(t), dBI(t)),

φs > 0,

(II.6)

where φs is the rate of mean reversion, s̄ is the long run mean of the share of the asset under

consideration, BA(t) and BI(t) represent the aggregate Brownian risk and the idiosyncratic

Brownian risk respectively, and vs,j and v(1−s),j are the diffusion coefficients of individual

5



assets with share st and share (1− st).

Assumption 1 implies that a single asset cannot dominate the entire market in the long

run as shown in Menzly, Santos, and Veronesi (2004). This stationarity enables us to analyze

the cross-section of stock returns in the long run. This specification is a simple version of

Menzly, Santos, and Veronesi (2004) and Santos and Veronesi (2010), as we only consider

two stocks, driven by two risk exposures, i.e., aggregate risk and idiosyncratic risk to define

an individual cash flow process. Details of the individual cash flow share process are given in

the appendix. Given st, the remaining process (1− st) is naturally defined as it should make

up the total market - market’s cash flow share is 1 - together with st. Thus, the process

(1− st) is rather a redundant share process. In other words, when we introduce assets in the

market, we only need to consider the market and an asset with the share st as risky assets

since the asset with (1− st) is naturally defined. We use this observation in the later section

II.D and II.E.

C. Belief Difference

This subsection introduces heterogeneous beliefs associated with cash flow share pro-

cesses. The importance of modeling investors’ heterogeneous beliefs is emphasized early by

Lintner (1965), Miller (1977), and Harrison and Kreps (1978). Later work studied the im-

pact of economic agents’ different beliefs about underlying fundamental economic processes

on equilibrium quantities.4 We assume that investors disagree about the fundamental, i.e.,

the long-run mean of the cash flow share (s̄), which can be viewed as a measure of growth

potentials. The following assumption formalizes.

Assumption 2. Investors receive the same information about the underlying cash flow pro-

cesses including both aggregate and individual cash flow processes, but agree to disagree about

the long run mean of individual cash flow share processes, s̄(k), through idiosyncratic shocks.

This induces investor-specific idiosyncratic risk shocks, B
(k)
I . We write investors’ perceived

4Detemple and Murthy (1994) study the effect of belief differences in a production economy. For exchange
economies, key contributions include Zapatero (1998), Basak (2000), Basak (2005), Jouini and Napp (2007),
Gallmeyer and Hollifield (2008), David (2008), Dumas, Kurshev, and Uppal (2009), Weinbaum (2009) and
Ehling, Gallmeyer, Heyerdahl-Larsen, and Illeditsch (2017).
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share process as follows:

dst
st

= φs

(
s̄(k)

st
− 1

)
dt+ σs,A(t)dBA(t) + σs,I(t)dB

(k)
I (t), (II.7)

where k = 1, 2 refers to the individual investors. Then, the innovation process BI(t) is given

as

dB
(k)
I (t) ≡ η

(k)
t dt+ dBI(t), where η

(k)
t ≡

φs(s̄− s̄(k))

σs,I(t)st
.5 (II.8)

Note that η
(k)
t measures the difference between the true long run mean of the share and k-th

investor’s perceived long run mean of the share.

A theoretical foundation for the “agree-to-disagree” assumption appears in Varian (1985),

Harris and Raviv (1993), Morris (1994), and Morris (1996). Assumption 2 differs from the

existing studies in that investors hold different beliefs on the long-run mean of the cash

flow only through idiosyncratic risk, and they agree to the impact of aggregate risk on

individual cash flows. Specifically, we assume that investors have disagreement in interpreting

firm-specific information rather than aggregate information because of their differences in

education, cultural background, expertise, cognitive capabilities, and etc. This assumption

can be viewed as a special form of rational inattention theory of Sims (2003) which asserts

that investors’ information processing capacity is a scarce resource.6 In particular, a theory

of rational inattention suggests that economic agents process the most important information

first, and if they still have remaining information processing capacity, only then they deal

with other information that has (probably) less importance. If investors process aggregate or

systematic information first, then the assessment of firm-specific information tends to differ

due to the scarcity of capacity to process information. Thus, our model shares the spirit of

rational inattention.

Although individual cash flow processes are subject to both aggregate and idiosyncratic

risks, the aggregate cash flow process has exposure only to aggregate risk. Thus, equation

(II.4) implies that in the aggregate, idiosyncratic risks are diversified away such that both

individual and aggregate cash flows are modeled consistently.

5This result can be easily derived from the optimal filtering theory. For additional details, one can refer
to Liptser and Shiryaev (2001).

6Hong, Stein, and Yu (2007) and Hong and Stein (2007) provide in-depth discussions about this. For
other applications of rational inattention, see Sims (2006) and Xiong and Peng (2006).
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According to the definition of the share process st, an individual cash flow process is

defined as the product of the share process and the aggregate dividend. By applying Ito’s

lemma to the product of st and Dt, we can write the perceived individual cash flow process

as:
dDs(t)

Ds(t)
= µ

(k)
Ds

(t)dt+ σDs,A(t)dBA(t) + σDs,I(t)dB
(k)
I (t) k = 1, 2, (II.9)

where

µ
(k)
Ds

(t) ≡ µD + φs

(
s̄(k)

st
− 1

)
+ ΞCF

s − stΞCF
s − (1− st)ΞCF

(1−s),

σDs,A(t) ≡ σD,A + σs,A(t),

σDs,I(t) ≡ σs,I(t),

(II.10)

where ΞCF
j ≡ vj,AσD,A, with j = s, (1− s). ΞCF

s is the unconditional covariance between the

share process and the aggregate cash flow process. We define ΞCF
s as a fundamental cash flow

risk parameter following Menzly, Santos, and Veronesi (2004). ΞCF
s plays an important role

in our quantitative study, because it allows us to estimate individual cash flow parameters,

vs,A and vs,I , and clarifies the magnitude of systematic cash flow risk in the cross section.7

Equation (II.10) shows that the individual perception denoted by a superscript (k) affects

the cash flow of asset s.

D. The Market

The economy deals with two risky assets and one riskless asset. Without loss of generality,

we consider the market portfolio and an asset with the share process st for the risky assets.

As mentioned earlier, an asset with the share (1−st) is redundant as it makes up the market

with an asset with the share st. An asset with the share st is referenced as an asset s, while

M denotes the market portfolio. The price process of the market portfolio is expressed as

dPM,t +Dt

PM,t

= µPM (t)dt+ σPM ,A(t)dBA(t). (II.11)

7We explain the identification of individual cash flow risk parameters such as vs,A, vs,I , v(1−s),A and
v(1−s),I in the appendix.
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Accordingly, the perceived price of asset s, denoted as Ps is given by

dPs,t +Ds,t

Ps,t
= µ

(k)
Ps

(t)dt+ σPs,A(t)dBA(t) + σPs,I(t)dB
(k)
I (t) for k = 1, 2, (II.12)

where

µ
(k)
Ps

(t) ≡ µPs(t)−
σPs,I(t)φs(s̄− s̄

(k))

σs,I(t)s(t)
, (II.13)

and, rt refers to the riskless rate of return.

E. Equilibrium

Turning to the consumption-portfolio problem of an individual investor, investor k’s

wealth W (k)(t) evolves as

dW
(k)
t =W

(k)
t

[
rt − c̃k,t + π

(k)
M (t)(µP (t)− rt) + π(k)

s (t)(µ
(k)
Ps

(t)− rt)
]
dt

+W
(k)
t

[
π

(k)
M (t)σP,A(t) + π(k)

s (t)σPs,A(t)
]
dBA(t)

+W
(k)
t

[
π(k)
s (t)σPs,I(t)

]
dB

(k)
I (t),

(II.14)

where c̃k,t is the consumption fraction of the k-th investor, ck,t/W
(k)
t . The quantities π

(k)
M

and π
(k)
s are the k-th investor’s risky investment fractions of wealth in the market portfolio

and the asset that corresponds to the share process, st. The riskless investment is defined as

bk(t) ≡ 1−π(k)
M (t)−π(k)

s (t). Following Dybvig and Huang (1988), we impose a non-negativity

condition on the wealth process to rule out arbitrage strategies. Investor-specific state price

densities are specified as follows:

dξ
(k)
t = −ξ(k)

t

[
rtdt+ θA(t)dBA(t) + θ

(k)
I (t)dB

(k)
I (t)

]
for k = 1, 2, (II.15)

where θA is the market price of aggregate risk and θ
(k)
I s is the perceived market price of

idiosyncratic risk for investor k.
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By the no-arbitrage condition, the market prices of risks are:

θA(t) ≡ µP (t)− rt
σP,A

,

θ
(k)
I (t) ≡

[
−
σPs,A
σPs,I

θA(t) +
1

σPs,I

(
µPs − r

)
− η(k)

t

]
.

(II.16)

Thus, the following link exists between the two idiosyncratic market prices of risks:

θ
(1)
I (t)− θ(2)

I (t) = η
(2)
t − η

(1)
t ≡ η̄t. (II.17)

From now on, we assume the second investor is always more optimistic than the first one

such that s̄(2) is bigger than s̄(1), which leads to our next assumption.

Assumption 3. Belief difference exists in the economy. That is,

η̄t ≡ η
(2)
t − η

(1)
t =

φs(s̄
(1) − s̄(2))

σs,I(t)st
< 0.

Assumption 3 simply states that agent 1 (2) is the pessimist (optimist), and the term,

η̄ represents the degree of normalized investor disagreement. Note that by definition, η̄ is

always negative, if there exists belief difference.

Investors are assumed to be infinitely lived and the market is complete in our economy.

Thus, we can formulate an individual optimization problem using martingale methods as

follows:

max
ck

E(k)

[∫ ∞
0

uk(ck(t))dt

]
subject to

E(k)

[∫ ∞
0

ξ(k)(t)ck(t)dt

]
≤ W (k)(0) ≡ wkP (0),

(II.18)

where P (t) is the total wealth held by both investors at time t since it is the value of the

market portfolio. Also note that W (1)(t) + W (2)(t) is the total wealth in the economy such

that it equals P (t). The quantity wk is the initial fraction of wealth held by investor k of

the market portfolio. From the maximization problem in (II.18), the optimality condition
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for investor k’s consumption is given by:

ck(t) = Ik

(
ξ(k)(t)

λk

)
=

(
1

Xt

) 1−γ
γ
[
ξ(k)(t)

λk

]− 1
γ

, (II.19)

where 1/λk is the Lagrange multiplier for investor k’s optimal consumption-portfolio choice

problem and Ik(·) is the inverse of investor k’s utility function. From the static budget

constraint of investor k’s problem, we have:

λk =

E(k)
[∫∞

0

{
ξ(k)(t)Xt

} γ−1
γ dt

]
wkPM(0)


−γ

. (II.20)

Then, an equilibrium in this economy is defined as follows:

Definition 1. Given preferences, endowments, and the belief structure, an equilibrium in this

economy is a collection of allocations

(
∗
ck,

∗
πM

(k)
,
∗
πs

(k)
,
∗
bk

)
k=1,2

and a supporting price system(
r, µP , µ

(k)
Ps
, σP , σPs

)
such that 1)

(
∗
ck,

∗
πM

(k)
,
∗
πs

(k)
,
∗
bk

)
optimally solves investor k’s consumption-

portfolio choice problem given his/her perceived price processes, 2) security prices are con-

sistent across investors, and 3) all markets clear for t ∈ [0, T ]:

2∑
k=1

∗
ck(t) = D(t),

2∑
k=1

∗
πM

(k)
(t) = 0,

2∑
k=1

∗
πs

(k)
(t) = 0. (II.21)

III. Cash Flow Risks and Belief Difference

Quantitative analyses of the model require the estimates of the parameters describing

cash flow dynamics and the difference in beliefs. This section reports parameter estimates in

equations (II.5) and (II.8) to discuss cash flow dynamics. In so doing, we focus on the cash

flow share ratio. Internet appendix describes the details of data and the estimation method.

The key parameters in cash flow dynamics are estimated by the maximum likelihood

method, and other statistics such as the average share ratio, (Avg(s̄/st)), and the coefficient
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of variation, CV (st) (the ratio of the standard deviation of the share to its mean) are directly

measured, following their definitions. Tables II and III display the estimates of various cash

flow characteristics including risk parameters and disagreement. In Table II, Panel A shows

the estimation result without I/B/E/S data, and Panel B shows the result with I/B/E/S

data to show the degree of belief difference in the cross section.

[Insert Table II]

Table II indicates that growth firms have a higher long-run mean of the share, s̄, than

value firms. This is plausible since the long-run mean of the share represents a firm’s long-run

growth, measuring how well a firm is expected to perform in terms of total payout. Thus,

coherent with the labels of value and growth firms, a growth firm may have a higher long-run

mean of the cash flow share than a value firm. How about the conditional expected growth

in cash flow share or Et(dst/st)? From the equation (II.5), Et(dst/st) = φs(s̄/st−1)dt holds.

Thus, both the share ratio (s̄/st) and the mean reversion (φs) contribute to the expected

growth of payout. Table II reports that the estimate of the share ratio, s̄/st, is higher in

value firms than growth firms. To check the robustness of this observation, we measure

several different estimates of the share ratio in value deciles: the average of the share ratio

over time, the quantile values of the share ratio, and the average of the share ratio in each

quantile group. Table III shows that the share ratios of value stocks are still higher than

those of growth stocks in all cases.

[Insert Table III]

If s̄/st is interpreted only as the cash flow growth (as in the case of time series), then the

result appears to be counterintuitive in that the value stocks are associated with a longer

distance between s̄ and st, suggesting a higher share growth.8 However, the share ratio also

reflects a firm’s relative performance measure in terms of the total payout. A bigger value of

share ratio can result from a lower value of the current share (st), which is a source of risk.

Because it is well known that value firms tend to be distressed and risky (e.g., Fama and

8This is consistent with a recent empirical finding when the share ratio is used as the expected cash flow
growth. Chen (2017) indicates that the value portfolio has higher cash flow growth rate than the growth
portfolio in many cases. Lakonishok, Shleifer, and Vishny (2013) also provides a similar implication.
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French (1992) and Zhang (2005)), value firms’ current earnings can be much lower than their

long-run means than those of growth firms, leading to the higher share ratios. Although our

finding that value (growth) stocks have high (low) share ratios runs counter to conventional

wisdom, it is robust and yields an important implication for the risk-return trade off in the

cross section, going forward.

Second, the mean reversion coefficient, φs accounts for the different expected growth in

the cash flow share as well. Table II shows that the mean-reversion speed, φs, is particularly

low for value stocks in the cross section. This means that value firms’ cash flows slowly

revert to their mean levels compared to others. Slow mean reversion suggests that value

firms’ cash flows are subject to large cash flow fluctuations in the long run, leading to high

cash flow volatility. CV (st) can proxy for the total variability in cash flows. Table II shows

that the coefficient of variation is higher on value firms, implying that value firms have larger

exposure to cash flow fluctuations. Interestingly, the monotonicity of total cash flow volatility

is mostly in line with the monotonicity of idiosyncratic cash flow volatility (vs,I).
9 Since our

model prices idiosyncratic cash flow risk in equilibrium, total cash flow volatility reflects a

source of cash flow risk for pricing assets. To the contrary, conventional asset pricing models

allow only systematic cash flow risk to be priced. Thus, when the idiosyncratic cash flow

risk is priced in equilibrium, the usual (systematic) cash flow beta consisting of (vs,A/σD,A)

cannot be the sole driver in producing cross-sectional return variation, and the idiosyncratic

risk component matters as well.

Now we turn our attention to belief dispersion in the cross section. We construct be-

lief difference measure following Diether, Malloy, and Scherbina (2005) such that investor’s

difference in beliefs is defined as the ratio of the standard deviation of analysts’ earnings

forecasts to the mean of analysts’ earnings forecasts, SD(Earnings Forecasts)
Avg(Earnings Forecasts)

. This measure can

be approximated by EFmax−EFmin

Avg(EF)
, where EF ≡ Earnings Forecasts where EFmax and EFmin

are investors’ largest and smallest expected mean cash flows. To explain the measure, we

take an example of firms with growth options in play.

Investors might have more diverse opinions on the cash flow of firms whose growth options

are the main assets, because of the uncertain nature of the growth options. In this case,

the distance between EFmax and EFmin or closely related, the standard deviation of earnings

9Aggregate cash flow risk parameter, (vs,A), does not vary much for the most part in the cross section
except two most value-like assets.
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forecasts can be large. However, there is a size effect in that this distance is likely to be longer

for bigger firms since earnings tend to be larger for bigger firms. Therefore, the distance

measure alone cannot properly represent investors’ differences in beliefs due to the firm size

effect. To mitigate the size effect, we normalize the distance with the average value of the

share, denoted as Avg(EF).

The data show that growth firms are usually much bigger than value firms in size (market

capitalization). Thus, when applying the normalized distance measure to firms in the cross

section, we tend to observe longer distances, i.e., large values of EFmax − EFmin for bigger

firms or growth firms; hence a bigger SD(earnings forecasts) for growth firms than for value

firms. But at the same time, Avg(EF) of growth firms is likely be higher than that of value

firms.10 Indeed, this tendency is captured by the data; growth firms’ cash flow share is

much larger than that of value firms, i.e., s̄growth >> s̄value (see Table II). This is consistent

with the conventional wisdom that growth firms have higher long-run growth potentials. In

such a case, the measure, EFmax−EFmin

Avg(EF)
can be small when the denominator is relatively large

compared to the numerator. On the other hand, growth options are usually small for value

firms. In such a case, analysts’ opinions will mildly fluctuate around those firms’ s̄ such that

the distance EFmax−EFmin can be short. However, value firms tend to have a low Avg(EF)

due to the lack of growth potential. Then, the measure EFmax−EFmin

Avg(EF)
can be large when the

numerator is relatively larger compared to the denominator.

In sum, investors tend to have more (less) diverse opinions about average cash flows

about growth (value) firms due to the nature of growth options. However, this effect is

subject to the firm size effect. When the dispersion is normalized by average cash flow,

value (growth) stocks have much higher (lower) degree of belief difference because they have

smaller (larger) growth potentials. Indeed, this result is consistent with Diether, Malloy, and

Scherbina (2005).11

Normalized belief difference measure is compatible with our theory in that it is similar

to is (s̄optimist − s̄pessimist)/st when the numerator is proxied by EFmax − EFmin and the

denominator is proxied by Avg(EF).12 If we decompose the ratio into
(s̄optimist−s̄pessimist)

s̄
s̄
st

,

10Once growth firms start to pay out, they tend to pay lot more than value firms.
11See Table IV in Diether, Malloy, and Scherbina (2005): the measure of belief difference is increasing

from low book-to-market group to high book-to-market group.
12The denominator, the average of earnings forecasts, can easily be approximated by the current share.

This is the same reason that the current stock return proxies the expected stock return from the previous
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the empirical proxy captures the first part and it shows that the belief difference is closely

related to the cash flow share ratio. It is beyond the scope of the paper to endogenize the

link between the degree of belief dispersion and asset characteristics though, our empirical

finding suggests that assets with higher idiosyncratic cash flow fluctuations have higher belief

dispersion. If the size of belief difference for each asset is dictated by the amount of risk and

uncertainty, this empirical link seems plausible in that value stocks have higher cash flow

risks, controlling for firm size, and the wedge between optimists and pessimists are likely to

be larger for the value stocks.

IV. Equilibrium Results

This section derives and discusses equilibrium results. We find two stochastic discount

factors ξ(1)(t) and ξ(2)(t) that satisfy the following goods market clearing condition.

∗
c1(ξ(1)(t)/λ1, t) +

∗
c2(ξ(2)(t)/λ2, t) = D(t). (IV.1)

For the computational purpose, we define the stochastic weighting process λt as follows:

λt ≡
λ1ξ

(2)
t

λ2ξ
(1)
t

, (IV.2)

where λ0 = λ1
λ2

, since ξ(k)(0) = 1 for k = 1, 2. As discussed in Basak (2000), λt provides

information about the differences in investors’ opportunity sets given heterogeneous beliefs.

By applying Itô’s lemma to λt, we obtain the diffusion process of λ(t) as

dλt
λt

= η̄tdB
(2)
I (t). (IV.3)

Thus, λt process is fully described by investors’ disagreements, η̄t ≡
[
η

(2)
t − η

(1)
t

]
, and the

second (optimistic) investor’s perceived idiosyncratic Brownian risk B
(2)
I (t). For consistency,

we continue to use the second investor’s Brownian risk afterwards, but one can always rewrite

period since the earnings forecasts are made before the current share is observed.
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the problem from the pessimist’s point of view without loss of generality.

With the definition of the λt, we characterize the stochastic discount factors as follows.

Proposition 1.

ξ
(2)
t

λ2

= D−γt

(
1

Xt

)1−γ
[

1 +

(
1

λt

)−(1/γ)
]γ
, and

ξ
(1)
t

λ1

=
ξ

(2)
t

λ2

1

λt
. (IV.4)

Without belief difference, the λt process becomes 1.

Proof: See Appendix.

A. Equilibrium Prices and Returns

Because ξ(1) and ξ(2) are linked via λt process, the Radon-Nikodym derivative between

the two investors’ perceived probability measures, it suffices to compute the price of an asset

with the share, st, using the second investor’s state price density. The following proposition

shows the equilibrium price-dividend ratio of an asset s.

Proposition 2. Approximate equilibrium stock price with the share process st is given by

Ps(t)

Ds(t)
≈
[
βs,0 + βs,1

(
H̄

Ht

)
+ βs,2

(
s̄(2)

st

)
+ βs,3

(
s̄(2)

st

H̄

Ht

)]
, (IV.5)

where coefficients βs,k’s are the functions of parameters determining cash flow or firm char-

acteristics:

βs,k ≡ fk(vs,I , vs,A, η̄t, γ, h1, h2, φs, s̄
(2)), (IV.6)

for k = 0, 1, 2, 3 and η̄t is the time series average of belief difference measure for a stock with

the share, st, and

βs,0 = − 1

α1 + α2vs,I + h2vs,A − h1 − φs
,

βs,1 =
h1

(α1 + α2vs,I + h2vs,A − h1 − φs)× (α1 + α2vs,I − φs)
,

βs,2 =
φs

(α1 + α2vs,I + h2vs,A − h1 − φs)(α1 − h1)
,
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with α1 = (1 − γ)η̄t
2
/(2γ2) and α2 = η̄t/γ. βs,3 is in an appendix due to its length and a

small quantitative magnitude. The quantities s̄/st and H̄/Ht are referred to the share ratio

and the habit ratio, respectively.

Proof: See Appendix.

According to equation (IV.5), two variables mainly determine the equilibrium price-

dividend ratio of a stock with the share st: the share ratio (s̄(2)/st) and the habit ratio

(H̄/Ht) from the standpoint of the second (optimistic) investor. This is an extended version

of Gordon growth formula in that the price-dividend ratio depends on discount rate variable,

H̄/Ht, cash flow variable, s̄(2)/st, and the interaction variable of the two that governs the

so-called convexity. The price-dividend ratio has both time-series and cross-sectional impli-

cations in equilibrium. Time-series variations in H and s affect equilibrium price-dividend

ratio, and nontrivial cross-sectional effects can arise, as the main variables and the beta coef-

ficients differ across assets, depending on cash flow characteristics and especially the degree

of disagreements.

We first note that all the βs,k coefficients are positive under the reasonable conditions such

as the existence of belief difference (η̄ < 0), mean reversion of the share process (φs > 0), and

relative risk aversion parameter being greater than 1 (γ > 1). Thus, all the variables in the

equation affect the equilibrium price-dividend ratio positively. For instance, the habit ratio

(H̄/Ht) pro-cyclically affects the price-dividend ratio along the business cycle; equilibrium

price-dividend ratio increases in a good economy and vice versa.13 Similarly, as the cash

flow share ratio (s̄/st) increases, the equilibrium price-dividend ratio increases as well. An

increase in the share ratio implies an increase in the expected dividend growth (see equation

(II.10)). Higher expected dividend growth translates into a higher value of the equilibrium

price-dividend ratio, due to βs,2 being positive.14 In addition, though it is quantitatively

small, an increase in the expected cash flow growth rate has a positive effect on the price-

dividend ratio through the interaction with the habit ratio (positive βs,3). The left panels of

13Put differently, when the economy is in a slump, the habit variable Ht is high, and vice versa.
14Equation (IV.5) depicts this mechanism. An increase in the share ratio, s̄(2)/st, is equivalent to the

decrease in the share, st, as the long-run mean s̄(2) is fixed. Note that equilibrium price-dividend ratio can
be seen as Ps(t)/Ds(t) = Ps(t)/stDt = (Ps(t)/s(t))(1/Dt). In the model, Dt is given exogenously. Thus,
the decrease in st increases the price-dividend ratio, Ps(t)/Ds(t). A positive time-series relation between the
share ratio and price-dividend ratio has also been shown in Menzly, Santos, and Veronesi (2004) and Santos
and Veronesi (2010).

17



Figure 2 delineate the simulated time-series property of price-dividend ratio with respect to

the share ratio of our calibrated model for the value and growth stocks.

The last row of the left column in figure 2 draws the same contents on the same graph

for comparison. Now, there exists a significant disconnect between the value and the growth

stocks, which suggests that the cross-sectional link is negative if the times-series averages

(circles) of the variables of interest are computed within each of the value or growth stocks.

[Insert Figures 2 and 3]

The beta coefficients can account for the above pattern, as they contain different information

across assets depending on investors’ belief differences. Coefficients are nonlinear functions

of the habit parameters (h1 and h2), the long-run mean of the cash flow share, s̄, and the

average value of belief difference, η̄t. Figure 3 extends figure 2 for the value decile portfolios

to show that our model indeed simulates a negative cross sectional relation between the

share ratio and the price-dividend ratio. This result states that the time series property of a

positive link between the share ratio and the price-dividend ratio for each value deciles does

not monotonically translate into the cross section because of nonlinearity. This nonlinearity

results mainly from the idiosyncratic cash flow risk, augmented with heterogeneous beliefs.

Recall that the coefficient on the share ratio (βs,2) governs cash flow dynamics and in-

vestors’ belief differences for each asset s as seen in equation (IV.6). From the formula of βs,2

in the proposition, α1 and α2 are functions of belief difference, η̄; they are both negative but

increase in absolute values when belief difference increases. When belief difference increases,

the denominator of βs,2 increases as the product of α1 +α2vs,I with α1−h1 is positive, which

lowers βs,2.15 With the same logic, the increase of idiosyncratic cash flow risk parameter,

vs,I , leads to a higher value of denominator: hence, lowers the value of βs,2. In short, the

higher the idiosyncratic cash flow risk and belief differences, the lower the value of βs,2. In

both the data and the simulation, assets with higher share ratios tend to have higher cash

flow risk parameters (both vs,A and vs,I) and more diverse investors’ opinions (See Table II

and Internet Appendix). Thus, the lower values of βs,2 correspond to higher values of the

share ratios in the cross section and vice versa.

[Insert Figure 4]

15h1 is positive. See internet appendix for the parameter calibration of aggregate processes.
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Figure 4 shows the cross-sectional relations among the share ratio, βs,2, and the price-

dividend ratio across the growth-value deciles, based on equation (IV.5), in particular, we

focus on Ps(t)
Ds(t)

∝ βs,2

(
s̄(2)

st

)
(i.e., the last row of Figure 4). This is a key theoretical result

of our model equilibrium and it contrasts with existing studies such as Menzly, Santos, and

Veronesi (2004), Santos and Veronesi (2006), and Lettau and Wachter (2007). Within each

of the value deciles, as the share ratio increases, the price-dividend ratio increases given βs,2.

However, as we shift assets across value deciles, the value of the multiplier coefficient (βs,2)

also varies due to the degree of belief difference and the size of idiosyncratic cash flow risks.

It turns out that this cross-sectional variation dominates the time-series channel, according

to the data. With this in mind, we now compute the (approximate) expected excess return

of an asset with share st.

Proposition 3. Equilibrium return process for a stock with the share process, st is given by

dRs ≈ µ
(2)
Rs
dt+ σRs,AdBA + σRs,IdB

(2)
I , (IV.7)

where µ
(2)
Rs

is the approximate expected excess return, i.e., E
(2)
t [dRs,t], and it is given by:

E
(2)
t [dRs,t] ≈

[
Ds(t)

Ps(t)

] [
µA,Is,t + µIs,t

]
, (IV.8)

where

µA,Is,t ≡ βs,0
(
σD,A + vs,A

) (
σD,A − h2

)
+ βs,1

(
σD,A + vs,A − h2

) (
σD,A − h2

) [ H̄
Ht

]
+ βs,2σD,A

(
σD,A − h2

) [ s̄(2)

st

]
+ βs,3

(
σD,A − h2

)2
[
s̄(2)

st

H̄

Ht

]
,

µIs,t ≡ −
1

2
vs,I η̄t

(
βs,0 + βs,1

H̄

Ht

)
.

(IV.9)

Proof: See Appendix.

Proposition 3 shows a decomposition of the equilibrium expected excess return into two

parts (equation IV.9). The first, µA,Is,t , is the expected excess return that is affected by

both aggregate and idiosyncratic cash flow risks, and the second, µIs,t is affected only by
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idiosyncratic cash flow risk via investors’ belief differences. We note that the whole term,

µIs,t, is positive mainly because η̄t is negative, which we will discuss shortly below in the next

subsection. It implies that idiosyncratic cash flow risk increases the expected excess return

via investors’ differences in beliefs. The right column of Figure 2 shows that our calibrated

model generates a negative time series relation between the share ratio and expected excess

returns within each portfolio. As the share ratio and price-dividend ratio are positively

related, this implies that the usual time series return predictability holds as to the share

ratio: low (high) dividend yield induced by high (low) share ratio leads to low (high) expected

excess return. However, as the right-bottom of figure 2 and more thoroughly the bottom

panel of figure 3 show, this relation is flipped in the cross section such that assets with high

average (low) share ratios generate high (low) expected excess returns. That is, within-group

and across-group relations are markedly different. Simulated equilibrium cross section indeed

matches the data as shown in Figure 5.

[Insert Figure 5]

According to the model, high (low) share ratios are associated with very low (high) βs,2’s;

hence, assets with high (low) share ratios have low (high) price-dividend ratios. Then,

equations (IV.8) and (IV.9) imply that assets with high (low) share ratios have high expected

excess returns since they have not only high (low) dividend yields in the cross section but

also higher belief difference together with idiosyncratic cash flow risk (e.g., µIs,t).

B. Cash Flow Risk and the Value Premium

In this subsection, we decompose the expected excess return into two parts - discount rate

risk component and cash flow risk component - following the recent trend in the literature.16

To do that, we first compute the discount rate risk premium and define the cash flow risk

premium as the difference between expected excess return and discount rate risk premium.

In our model, aggregate discount rate risk is induced by the habit process, Ht.
17 For instance,

16See Campbell and Vuolteenaho (2004), Campbell, Polk, and Vuolteenaho (2010), Lettau and Wachter
(2007), Santos and Veronesi (2010), as well as many others for the study of the importance of discount rate
risk component and cash flow risk component respectively in explaining the cross sectional return variation.

17In Campbell and Cochrane (1999) and Santos and Veronesi (2010), the surplus-consumption ratio,
St ≡ (Ct −Xt)C

−1
t induces the aggregate discount rate risk. In our model, the habit process, Ht, plays a

similar role.
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Ht, from its definition, closely follows the business cycle as H−1
t moves pro-cyclically with the

business cycle. Following Santos and Veronesi (2010), we define discount rate risk premium

as the price elasticity of H−1
t .

∂Ps(t)/Ps(t)

∂H−1
t /H−1

t

=

[
βs,1

(
H̄

Ht

)
+ βs,3

(
s̄(2)

st

H̄

Ht

)](
Ds(t)

Ps(t)

)
(IV.10)

Thus, in equation (IV.8), the discount rate risk premium is defined as

µDRs,t ≡
(
σD,A − h2

)2
[
βs,1

(
H̄

Ht

)
+ βs,3

(
s̄(2)

st

H̄

Ht

)](
Ds(t)

Ps(t)

)
. (IV.11)

The resultant cash flow risk premium is then defined as

µCFs,t ≡ E
(2)
t [dRs,t]− µDRs,t . (IV.12)

The following proposition summarizes the above.

Proposition 4. Approximate equilibrium expected excess return of a stock with the share,

st, is decomposed into discount rate risk premium and cash flow risk premium:

E(2) [dRs,t] = µDRs,t + µCFs,t . (IV.13)

Simulation of the model with return decomposition as well as other cross sectional mo-

ments such as Sharpe ratio are presented below in Table IV and Figure 6.

[Insert Table IV and Figure 6]

Assets are sorted by price-dividend ratios; assets with high (low) price-dividend ratios are

categorized as growth (value) stocks. We note that, as the data show in the previous section

III, value-like (growth-like) stocks have high (low) share ratios (see upper right corner of

Figure 6 and average log price-dividend ratio and average share ratio in the table). Main

simulations results are 1) expected excess returns are increasing from growth to value firms,

2) while cash flow risk premium is higher on value firms, discount rate risk premium is higher

on growth firms, 3) idiosyncratic cash flow risk premium is distinctively higher on value firms,

4) Sharpe ratio increses from growth to value firms, and 5) total cash flow volatility measured

21



by the coefficients of variation of the cash flow shares, CV (st), is increasing from growth to

value firms. Thus, our model produces key cross sectional moments, as shown in Table V

below.

[Insert Table V]

Return decomposition with equations (IV.11) and (IV.12) is useful in presenting the cross

sectional pattern in our model. While cash flow risk premium increases toward value stocks,

discount rate risk premium increases toward growth stocks. Growth stocks’ expected excess

returns distinctively come from discount rate risk premium, which is consistent with assets’

nature: growth stocks’ cash flows are subject to high discount effect because of their long

duration. On the other hand, value stock’s expected excess return is mostly governed by cash

flow risk premium. Moreover, cash flow risk premium dominates discount rate risk premium

in the cross section such that the value premium arises. Then, a natural question arises:

what really is responsible for large cash flow risk premium. As was briefly described in 3)

above, idiosyncratic cash flow risk premium is one that quantitatively reigns the whole cash

flow risk premium. We look at the role of the pure idiosyncratic cash flow risk premium,

µIs,t ≡ −
1

2
vs,I η̄t

(
βs,0 + βs,1

H̄

Ht

)
.

It is a function of idiosyncratic cash flow risk parameter, belief difference, and the habit ratio

along with two coefficients. As was mentioned before, µIs,t is positive as −vs,I η̄t is positive;

idiosyncratic cash flow risk positively affects expected return of an asset in our model. Table

IV above shows cross sectional variation of pure idiosyncratic cash flow risk premium. The

premium is negligible for the first 6 decile portfolios that are close to growth stocks. However,

it matters for the remaining 4 portfolios and affects most for the value stocks. The reason

is that pure idiosyncratic cash flow risk premium is largely determined by the interaction

between idiosyncratic cash flow risk parameter, vs,I , and the average belief difference, η̄t:

growth-like (value-like) stocks have very low (high) values of idiosyncratic cash flow risk as

well as small (large) values of belief difference. Besides, as Table IV shows, the whole cash

flow risk premium is largely determined by pure idiosyncratic cash flow risk premium, which

further strengthens the importance of idiosyncratic cash flow risk with belief difference.

Now we realize that the value premium in our model is generated by the cash flow risk
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premium. Furthermore, we note that the same logic that explains higher expected returns

on assets with with higher share ratios in the cross section also explains the value premium.

Similar to the data, value stocks have higher share ratios, bigger idiosyncratic cash flow risks,

and larger belief differences in our model. Therefore, βs,2|low share ratio >> βs,2|high share ratio

directly translates into βs,2|growth >> βs,2|value such that high (low) values of the share ratio

is suppressed (magnified) by small (large) values of βs,2. Thus, a positive cross-sectional

relation between the share ratio and the expected excess return directly explains the value

premium.

C. Conditional Value Premium

The pricing of idiosyncratic cash flow risk has an additional implication for the value

premium. Idiosyncratic cash flow risk is priced only through different beliefs: the higher

the belief difference, the larger the effect of idiosyncratic cash flow risk. Therefore the value

effect is supposed to be more prevalent for assets with larger degree of belief differences. To

check this empirical implication, we double sort assets into 9 groups conditionally: assets

are first sorted into three groups based on the magnitude of belief difference, and then in

each group, assets are further sorted into three groups based on book-to-market ratio. We

compute the value weighted average return in each group.

[Insert Table VI]

Panel B of Table VI clearly shows that the value effect is stronger in the group of assets

with higher belief difference. In particular, a significant value effect emerges in the group

of large belief difference. On the other hand, in the group of low degree of belief difference,

the value effect rarely exists. This result is in line with Yu (2011) in that the value effect is

more pronounced for assets with high belief disagreement.

D. Belief Difference and Growth Premium Puzzle

In this subsection, we investigate the role of belief difference in-depth, by which we better

understand how our model differs from similar asset pricing models. Previous studies such

as Santos and Veronesi (2010) and Lettau and Wachter (2007) show that when cash flow

risk is not considered in equilibrium, discount rate risk prevails in the cross section such that
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the growth premium arises. Further, they show that introducing systematic cash flow risk

in equilibrium is not enough to generate the value premium.

If we disentangle systematic cash flow risk from our model, we can better understand

how idiosyncratic cash flow risk contributes to our model equilibrium, which in turn high-

lights the role of belief difference. To do that, we need to turn off individual systematic

cash flow risk in the model. This can be achieved by setting vs,A to zero since the sys-

tematic cash flow risk - the covariance between the share process and aggregate cash flow

process, Cov (dst/st, dDt/Dt) = σs,AσD,A - is approximated by ΞCF
s ≡ vs,AσD,A. Below is the

simulation results of the model when vs,A = 0.

[Insert Figure 7]

Unlike Santos and Veronesi (2010) where the growth premium arises when cash flow

risk is turned off, we still have the value premium.18 What makes this difference? From

the previous section, we know that the most of cross sectional stock return variation comes

from the variation of cash flow risk premium as shown in Table IV and Figure 6. Hence,

for our model to generate a different cross section with the change in systematic cash flow

risk, the whole cash flow risk premium must be significantly influenced by the change in

vs,A. To check this, we numerically compute the size of both systematic and idiosyncratic

cash flow risk in our model. Following the convention, systematic cash flow risk is measured

by unconditional covariance between individual cash flow process and aggregate cash flow

process, i.e., Cov
(
dDs(t)
Ds(t)

, dDt
Dt

)
. This is approximated by

Cov

(
dDs(t)

Ds(t)
,
dDt

Dt

)
= σ2

DA + σs,AσD,A

= σ2
DA +

[
vs,A − stvs,A − (1− st)v(1−s),A

]
σD,A(

= σ2
DA + ΞCF

s − stΞCF
s − (1− st)ΞCF

(1−s)
)

≈ σ2
DA + vs,AσDA,

(IV.14)

when evaluated at st = s̄.19 On the other hand, since idiosyncratic cash flow risk (represented

18Turning off cash flow risk in Santos and Veronesi (2010) is equivalent to ΞCF
s = 0 in our model. In

Santos and Veronesi (2010) and Menzly, Santos, and Veronesi (2004), individual systematic cash flow risk is
measured by θiCF that is covariance between an individual cash flow share process and aggregate cash flow
process. θiCF corresponds to ΞCF

s in our model.
19This approximation comes from the identification conditions for the share process. Details can be found
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by the parameter, vs,I) is priced only through investors’ belief differences. Thus, −vs,I η̄s is

an appropriate measure of idiosyncratic cash flow risk. Table VII shows the quantitative

magnitude of the both cash flow risks in the cross section.20

[Insert Table VII]

While aggregate cash flow risk does not fluctuate much in the cross section, idiosyncratic

cash flow risk significantly fluctuates. Furthermore, idiosyncratic cash flow risk quantita-

tively dominates aggregate cash flow risk in the cross section; hence, the fluctuation of total

cash flow risk is largely determined by the fluctuation of idiosyncratic cash flow risk. As

a result, an experiment with vs,A = 0 yields the result that is almost identical to the orig-

inal simulation. In sum, belief difference plays an important role in our model by pricing

idiosyncratic cash flow risk which is crucial for determining the cross section.

We can also assess the importance of belief difference more directly by turning off belief

difference in our model (by setting η̄s to zero).

[Insert Figure 8]

Figure 8 shows the cross section generated by the reduced form model with respect to the

cash flow share ratio. Unlike the original model, the reduced form model yields so-called the

growth premium: stocks with higher share ratios have lower expected excess returns. This

should be expected as the reduced form model is a version of Menzly, Santos, and Veronesi

(2004) or Santos and Veronesi (2010) where growth stocks have higher price-dividend ratios

due to higher cash flow growth rates, but also have higher expected returns due to large effect

of discount shocks. One thing to note in our reduced form model is that value stocks still

have higher share ratios as opposed to Menzly, Santos, and Veronesi (2004) and Santos and

Veronesi (2010) since the cash flow parameters used in the experimental simulation at the

bottom of figure are the same as those in the original one. However, now idiosyncratic cash

flow risk parameter does not affect equilibrium since there is no pricing channel, i.e., belief

difference. Thus, discount shock prevails in the cross section; hence, the growth premium

arises. In short, without belief difference channel, typical asset pricing models similar to

ours cannot generate desired equilibrium cross section.

in the Appendix.
20Since η̄s is negative, we put a negative sign on vs,I η̄s to make it positive.
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Our discussions so far highlight the difference between our study and existing ones such

as Menzly, Santos, and Veronesi (2004), Santos and Veronesi (2010), and Lettau and Wachter

(2007). In those studies, assets with high expected dividend growth (= high share ratio)

have high expected returns despite high price-dividend ratio due to strong discount effect,

leading to a growth premium. Our model differs from these studies in that it generates a

usual-time series return predictability at the fund level; low (high) share ratios leads to high

(low) dividend yield, hence high (low) expected returns. Although this time series return

predictability holds within each group of portfolios, the pattern reverses in the cross section

such that assets with high (low) average share ratios have high (low) expected returns. Our

analysis suggests that this arises because investors fear high total cash flow risk for assets

with high share ratios, which are unlikely to become assets with high growth in cash flows.

Market requires a higher premium to bear the risk, reflecting the pessimistic beliefs.

E. Cash Flow Risks, Beliefs, and Idiosyncratic Return Volatility

Ang, Hodrick, Xing, and Zhang (2006) show that idiosyncratic return volatility is neg-

atively priced in the cross section. Our model implies that idiosyncratic cash flow risk

increases idiosyncratic return volatility and the associated expected returns via a belief dif-

ference channel.21 This appears contradictory to the findings of Ang, Hodrick, Xing, and

Zhang (2006).

[Insert Table VIII]

Bali and Cakici (2008) report that the idiosyncratic volatility puzzle is sensitive to sub-

samples and sampling period. Boyer, Mitton, and Vorkink (2010) and Bali, Cakici, and

Whitelaw (2011) show that the preferences for positive skewness or lotteries can explain the

empirical pattern. In addition, Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016) show

that there exist a common factor for the idiosyncratic return volatility which is negatively

priced, and Kang and Kim (2016) report that the residual component of the idiosyncratic

return volatility is positively and significantly priced in the cross section.22 Because our

model mainly concerns idiosyncratic cash flow risks and the related cross section of value to

21See the appendix for the return process. Diffusion coefficient on the idiosyncratic Brownian motion
shows that it is increasing with the cash flow risk as well as belief difference.

22Alternatively, Johnson (2004) uses a real option model to state that equity is a call option on the
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growth stocks, we compute the idiosyncratic return volatility of the growth-value portfolios

reported in Table VIII. Surprisingly, the result states that the value stocks have higher

idiosyncratic return volatility, meaning that the value stocks will have higher idiosyncratic

risks and belief dispersion enhances the size of the volatility.

V. The Term Structure of Equity Returns

Beginning with Binsbergen, Brandt, and Koijen (2012), recent studies find that equity

term structure is downward sloping: assets with shorter (longer) cash flow durations have

higher (lower) average returns. It is also shown that existing asset pricing models such

as external habit formation (Campbell and Cochrane (1999)) and long-run risk (Bansal

and Yaron (2004)), generate counterfactual upward-sloping equity term structures.23 These

findings impose a critical challenge on existing asset pricing models particularly for the cross-

section.24 A stylized fact – growth (value) stocks have longer (shorter) cash flow durations

– implies that downward (upward) sloping equity term structure is equivalent to the value

(growth) premium. Thus, equilibrium results in our model suggests a downward-sloping

equity term structure. We investigate this using two measures of cash flow durations.

For the first measure, we follow Dechow, Sloan, and Soliman (2004) to define an accounting-

based measure of cash flow duration as follows.

Durs,t ≡
∑T

t=1 t× CFs,t/(1 + r)t

Ps,t
+

(
T +

1 + r

r

)
×

(
Ps,t −

∑T
t=1 CFs,t/(1 + r)t

)
Ps,t

, (V.1)

underlying assets with corporate debt, and higher lagged volatility implies a lower future return due to the
leverage effect. However, Ang, Hodrick, Xing, and Zhang (2009) empirically show that this channel cannot
generate the negative effect via the idiosyncratic return volatility.

23On the other hand, a model with a rare disaster such as Gabaix (2012) is shown to generate a flat equity
term structure.

24Most recent asset pricing models have been successful in generating aggregate equity premium in the
time series. However, the challenge by Binsbergen, Brandt, and Koijen (2012) applies to the cross-sectional
return variation. Recently, there have been some attempts to resolve this issue. One notable success can
be found in Belo, Collin-Dufresne, and Goldstein (2015) that incorporates stationary leverage ratios into
dividend dynamics. Also, Hasler and Marfè (2016) generates a downward sloping equity term structure
under a rare disaster followed by recovery. Most recent literature includes Gormsen (2021) and Goncalves
(2021). For the survey of the literature on equity term structure and related discussions, see Binsbergen and
Koijen (2017).
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where s indicates share st, CFs,t is the cash flow of an asset with the share st, and r is

the common discount rate. Though one can use the simulated aggregate expected (excess)

return for r, we use rs,t that is the expected excess return for an asset with the share st

for more realistic specification.25 This definition of the cash flow duration comes from the

concept of Macaulay duration in the fixed income market.

For the second measure, we define the price elasticity with respect to the cash flow as an

indirect measure of cash flow duration:

iDurs,t ≡
∂Ps,t/Ps,t

∂CFs,t/CFs,t
. (V.2)

We use this measure based on observation that the bond price with longer cash flows have

higher price sensitivity with respect to the change in cash flows. We compute two cash flow

duration measures for the assets sorted on price-dividend ratio from the model simulation.

Although we do not report to conserve space, consistent with Dechow, Sloan, and Soliman

(2004) and the stylized fact, both measures of cash flow durations are monotonically increas-

ing from assets with low price-dividend ratios to assets with high price-dividend ratios (or

from assets with high share ratios to assets with low share ratios).

Figure 9 shows the relationship between expected excess return and the cash flow dura-

tion. Specifically, cash flow durations are recorded on the horizontal axis following the order

of price-dividend ratio that is simulated from the model. Indirect durations are proportional

to price-dividend ratios, and the horizontal axis represents value decile.

[Insert Figure 9]

The upper panel of Figure 9 shows expected excess return against the direct cash flow

duration measure. For a direct measure of cash flow duration, we use T = 29 years as we

cover 1983 to 2011 in the data.26 Bottom part of Figure 9 shows expected excess return

against indirect cash flow duration. Both figures clearly show downward sloping equity term

structures, consistent with data.

25Weber (2018) uses the same procedure.
26For discount rate, as mentioned before, we use expected excess return for each asset in the cross section.

Though we do not report all the duration results, we observe that varying discount rates (to aggregate
expected excess return) and T does not change the reported result.
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Our empirical result shows that assets with low (high) price-dividend ratios have more

(less) diverse investors’ opinions and larger (smaller) idiosyncratic cash flow risks. In addi-

tion, the model simulation matches assets with low (high) price-dividend ratios with short

(long) cash flow durations. The economic mechanism that explains the value premium pro-

duces equity term structure that is consistent with data. Finally, we find that our study

can satisfy conditions suggested by the latest study about what a desirable asset pricing

model should be. Lochstoer and Tetlock (2020) empirically find and argue that an asset

pricing model that is consistent with the data should have following properties; 1) cash flow

risks have little relation to aggregate market movement, 2) firms’ anomaly returns should

be closely related to firms’ characteristics, and 3) cash flow risk drives firm risk or errors

in investors’ expectations. In our model, cross sectional return variation (especially along

the value decile) is mainly driven by cash flow risk, not by aggregate discount risk.27 Plus

cash flow risk is governed by idiosyncratic part of cash flows such as firms’ characteristics;

firms’ growth potential (i.e., s̄), mean-reversion speed (i.e., φs), and idiosyncratic cash flow

risk (i.e., vs,I). Further, heterogeneous beliefs about firms’ individual cash flows create and

amplify the effect of idiosyncratic cash flow risk. Our model largely satisfies the above

suggestions.

VI. Conclusions

We introduce investor disagreement regarding individual cash flows in an equilibrium

model. Investors interpret the long-run mean of individual cash flows differently through id-

iosyncratic risk. Therefore, idiosyncratic cash flow risk gets priced in equilibrium, contrary

to existing asset pricing models. Further, this simple modification can potentially address

many issues with the cross sectional anomalies without affecting aggregate time series impli-

cations of asset pricing models. Indeed, our model generates data-consistent cross-sectional

moments, i.e., price-dividend ratios, expected returns, and the Sharpe ratios. Moreover, our

27This is because investors’ belief difference prices idiosyncratic cash flow risk that captures the major
portion of the whole cash flow risk. In particular, investors’ belief difference shows up in the stochastic
discount factor as a second pricing component and it has a zero correlation with shocks to aggregate cash
flows. Thus, it is equivalent to shocks in the stochastic discount factor in a reduced form model of Lettau
and Wachter (2007); our study provides microfoundations to their set up of their stochastic discount factor.
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model also produces a comparable size of the value premium observed in the data and a

downward sloping equity term structure.
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Table I An Overview of Cash Flow Risks and Belief Differences – This table displays total cash
flow risk, aggregate (systematic) cash flow risk, and idiosyncratic cash flow risk. We investigate cash flows
of decile portfolios sorted by book-to-market ratios from 1983 to 2011 with CRSP-COMPUSTAT merged
data set. Cash flow is defined by the sum of dividend and share repurchase for each decile portfolio: Ds for
s = 1, · · · , 10. Aggregate cash flow is the sum of all cash flows of all 10 portfolios such that D =

∑10
i=1Ds.

A systematic cash flow risk is measured by Cov
(

dDs

Ds
, dDD

)
, and a total cash flow risk is simply measured by

the variance of dDs/Ds. A simple idiosyncratic cash flow risk is measured by the variance of estimated error
terms from the regression, (dDs,t/Ds,t) = β0 + β1(dD/D)t + εs,t, where t indicates time. For the measure of
investors’ belief differences (BD), we compute the coefficient of variation of analysts’ earnings forecasts, i.e.,
the standard deviation of earnings forecasts divided by absolute mean of earnings forecasts, from the I/B/E/S
data set.

Cash Flow Risk

Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

V ar
(

dDs

Ds

)
0.0472 0.0880 0.0776 0.0468 0.0921 0.0618 0.3529 0.3396 1.6807 1.4288

Cov
(

dDs

Ds
, dDD

)
0.0152 0.0211 0.0174 0.0113 0.0171 0.0079 0.0121 0.0124 0.0425 0.0347

∑
t ε̂

2
s,t/(N − 2) 0.0383 0.0708 0.0660 0.0420 0.0810 0.0596 0.3482 0.3346 1.6152 1.3860

BD 0.045 0.053 0.081 0.085 0.102 0.126 0.174 0.160 0.273 0.419
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Table II Characteristics of Decile Portfolios – This table shows basic statistics of characteristics
of decile portfolios sorted by book-to-market ratios from 1983 to 2011 for CRSP-COMPUSTAT merged data
set. For the measure of investors’ belief differences, we compute coefficient of variation of analysts’ earnings
forecasts, i.e., standard deviation of earnings forecasts divided by absolute mean of earnings forecasts, from
the I/B/E/S data set. vs,A is pinned down by the unconditional covariance between the share process and the
aggregate cash flow process, i.e., ΞCF = vs,AσD,A. The parameter vs,I can be computed from the identification
(normalization) condition imposed on the share process. Details of the estimation can be found in Appendix
A. Mean-reverting coefficients, φs, are estimated by generalized least squares method. Coefficient of variation
of the cash flow share, st, is defined as the ratio of the standard deviation of st to the mean of the share st,
and indicated by CV (st). s̄ is the time-series average of the share st.

Cash Flow Characteristics

Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

vs,A -0.059 -0.032 -0.052 -0.089 -0.061 -0.107 -0.078 -0.076 0.055 0.044

vs,I 0.046 0.033 0.023 0.017 0.005 0.016 0.278 0.263 1.473 1.232

φs 0.104 0.126 0.312 0.142 0.146 0.159 0.187 0.267 0.185 0.075

s̄ 0.131 0.108 0.080 0.077 0.078 0.064 0.067 0.059 0.051 0.036

Avg( s̄
st

) 1.249 1.214 1.140 1.209 1.224 1.208 1.315 1.290 1.444 2.140

CV (st) 0.415 0.40 0.31 0.39 0.431 0.40 0.614 0.499 0.713 1.08

BD (∝ −η̄) 0.045 0.053 0.081 0.085 0.102 0.126 0.174 0.160 0.273 0.419
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Table III The Share Ratios of Decile Portfolios – For each of 10 portfolios sorted by book-to-market
ratios, we report quantile values of the share ratios of the portfolio, average values of the share ratios in each
quantile group of the portfolio, and finally the percentage of the share ratios of the portfolio that are less than
1 from 1983 to 2011 in CRSP-COMPUSTAT(CCM) merged data set.

CRSP-COMPUSTAT, 1983 to 2011

Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

Quantile value 0.821 0.829 0.867 0.867 0.798 0.819 0.900 0.814 0.791 0.817
1.037 1.016 1.011 1.056 1.079 1.074 1.129 1.075 1.304 1.183
1.476 1.442 1.228 1.326 1.450 1.373 1.760 1.594 1.794 2.779

11.107 10.886 8.654 11.020 6.640 6.434 3.912 4.684 5.800 12.115

Average in Quantile 0.660 0.696 0.743 0.694 0.639 0.658 0.614 0.624 0.551 0.566
0.922 0.909 0.942 0.961 0.960 0.961 1.007 0.952 1.084 0.989
1.232 1.218 1.109 1.170 1.250 1.192 1.399 1.279 1.54 1.832
2.184 2.032 1.765 2.012 2.048 2.023 2.239 2.306 2.601 5.172

% of share ratio < 1 45.4 49.1 46.8 42.2 40.8 40.2 36.8 42.0 32.5 37.4
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Table V Summary Statistics of the Data – Panel A summarizes basic statistics for the market
portfolio from 1983 to 2011 on a monthly basis. Mean excess return of the market, Re

M , is the average of

excess returns (Ê(R − rf )) on the market portfolio, and rf is the risk-free rate. Panel B and C summarize
key cross sectional moments for decile portfolios sorted on book-to-market ratio from CRSP-COMPUSTAT
merged data set (CCM) and CRSP-COMPUSTAT-I/B/E/S merged data set (CCIM) respectively. Returns
and volatilities are expressed in percentage.

Panel A: Summary statistics on the market portfolio

Re
M σRe

M
Sharpe ratio rf σrf

0.57% 4.57 0.126 0.036% 0.22

Panel B: Statistics on decile portfolio CCM

Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

Ê(R− rf ) 0.89% 0.99% 1.04% 0.99% 0.96% 1.10% 1.07% 1.06% 1.07% 1.41%

Mean B/M 0.15 0.309 0.415 0.514 0.614 0.72 0.84 0.99 1.22 2.43

Mean ln(P/D) 5.07 4.81 4.75 4.61 4.53 4.52 4.43 4.42 4.49 4.52

Sharpe Ratio 0.103 0.13 0.139 0.127 0.121 0.162 0.14 0.146 0.123 0.152

Panel C: Statistics on decile portfolio CCIM

Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

Ê(R) 0.953% 1.00% 1.02% 0.97% 0.91% 1.08% 1.1% 1.01% 1.04% 1.53%

Mean B/M 0.167 0.307 0.416 0.513 0.615 0.721 0.841 0.986 1.218 2.08

Mean ln(P/D) 5.80 5.67 5.50 5.37 5.32 5.29 5.09 5.35 5.19 5.63

Sharpe Ratio 0.1139 0.1271 0.1307 0.1193 0.1075 0.1431 0.1356 0.1228 0.1126 0.1477
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Table VI The Value Effect and Belief Difference – Panel A summarizes cross sectional return
differences in the value decile in CRSP-COMPUSTAT-I/B/E/S (CCIM) merged data set from 1983 to 2011
on a monthly basis and the corresponding estimates of the average belief differences (BD), and the book-to-
market ratios (B/M). Panel B summarizes the value effect in the same data set over the same time period.
In panel B, assets are first sorted into three groups based on the magnitude of belief differences from 1983 to
2011. And in each group of belief difference, assets are sorted into three groups based on book-to-market ratio.
Then, the value premium in each group is computed as the difference between the average value-weighted
return of high B/M group and that of low B/M group.

Panel A: Value deciles portfolios in CCIM
Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

Ê(R) (%) 0.95 1.00 1.02 0.97 0.91 1.08 1.10 1.01 1.04 1.53

Average B/M 0.17 0.31 0.42 0.51 0.62 0.72 0.84 0.99 1.22 2.08

BD (∝ −η̄) 0.05 0.05 0.08 0.09 0.10 0.13 0.17 0.16 0.27 0.42

Panel B: Value Premium and Belief Difference in CCIM

Low BD Mid BD High BD

Value Premium 0.225% 0.227% 0.762%**

t-value 1.04 1.258 2.39

Table VII Cash Flow Risks – This table shows models’ aggregate cash flow risk and idiosyncratic
cash flow risk in the cross section. Aggregate cash flow risk (Agg. CF Risk) in the cross section is measured
by unconditional covariance between individual cash flow process and aggregate cash flow process following
Menzly, Santos, and Veronesi (2004). Unconditional covariance, that is obtained by evaluating the conditional

covariance, is approximated as Covt

(
dDs(t)
Ds(t) ,

dDt

Dt

)
= σ2

DA + ΞCF
s − stΞCF

s − (1− st)ΞCF
(1−s) ≈ σ

2
D,A + vs,AσD,A

at st = s̄. Thus, aggregate cash flow risk in the cross-section is approximately represented by σ2
D,A +vs,AσD,A.

Idiosyncratic cash flow risk (Idio. CF Risk) parameter, vs,I , is priced only through investors’ belief differences
such that −vs,I η̄s measures the magnitude of priced idiosyncratic cash flow risk in the model.

Cash-Flow Risks in the Cross-Section
Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

Agg. CF Risk 0.0142 0.0184 0.0513 0.0097 0.0139 0.0069 0.0114 0.0116 0.0316 0.0299

Idio. CF Risk 0.0022 0.0018 0.0015 0.0012 0.0000 0.0018 0.0344 0.0350 0.2087 0.2384
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Table VIII Idiosyncratic Return Volatility and Future Returns in the Growth to Value Port-
folios – This table shows the empirical relations between idiosyncratic return volatility and future returns
in the ten portfolios of growth to value deciles. To compute the idiosyncratic return volatility, we use CAPM
for IV OLCAPM and a two-factor model consisting of the market factor (Mkt) and the size factor (SMB) for
IV OLMkt+SMB . The period covers the period of 1983 and 2011 on a monthly basis. Extending the period to
September 2021 rarely change the result quantitatively.

Idiosyncratic Return Volatility and One-month-ahead Returns
Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

Ê(R− rf ) 0.89% 0.99% 1.04% 0.99% 0.96% 1.10% 1.07% 1.06% 1.07% 1.41%

BD (∝ −η̄) 0.05 0.05 0.08 0.09 0.10 0.13 0.17 0.16 0.27 0.42

IV OLCAPM 3.83% 3.92% 4.25% 4.25% 3.88% 4.12% 4.21% 4.33% 4.52% 5.22%

IV OLMkt+SMB 3.84% 4.22% 4.53% 4.43% 4.03% 4.30% 4.45% 4.77% 4.58% 5.29%
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Figure 1. The Value Premium in the Data – January, 1983 to December, 2011. The data is from CRSP-
COMPUSTAT merged data set. Stocks are sorted on both book-to-market ratios and price-dividend ratios
whose breakpoints are given in Kenneth French’s Data Library.
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Figure 2. Simulated Time-Series Relations among Price-Dividend Ratio, Share Ratios, and
Expected Returns for the Value and Growth Stocks – This Figure shows the time-series relationship
between the share ratio, price-dividend ratio, and returns from the simulation of the model. For brevity, we
show cases only with value and growth stocks in the value decile. The left column shows the simulated time-
series relationship between price-dividend ratios and the share ratios for value portfolio and growth portfolio.
The last row draw both graphs on the same axis. The right column shows the simulated time-series relationship
between the share ratios and returns for value and growth stocks. The last row displays both value and growth
portfolios on the same graph for comparison. Circles indicate time-series averages of the value and growth
portfolios, respectively, and the dashed lines connect the circles to illustrate cross-sectional relations. The
smaller (bigger) circle refers to the growth (value) portfolio.
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Figure 3. Simulated Cross Sectional Relation between Price-Dividend Ratios (Expected
Excess Returns) and the Share Ratios for Value and Growth Stocks – Simulated scatter plots
between the share ratios and price-dividend ratios as well as average returns in the value decile are drawn.
Upper Figure shows the cross sectional relationship between the share ratio and price-dividend ratio in the
value decile. Bottom Figure shows the cross sectional relationship between the share ratio and average returns
in the value decile.
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Figure 4. Economic Mechanisms – This figure shows the economic mechanisms of the model in
generating the cross sectional variations of the price-dividend ratios based on fundamental properties of firms.
Dots describe data and the estimated parameters of the decile portfolios sorted by the price-dividend ratio.
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Figure 5. Empirical Cross-Sectional Relation between Price-Dividend Ratios (Average Re-
turns) and the Share Ratios for Value and Growth Stocks (Data) – Emprical scatter plots between
the share ratios and price-dividend ratios as well as average returns in the value decile are drawn. Upper Figure
shows the cross sectional relationship between the share ratios and price-dividend ratios in the value decile.
Bottom Figure shows the cross sectional relationship between the share ratios and average returns in the value
decile.
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Figure 6. Simulation Results in the Cross Section – The model is simulated with (γ, δ) = (3.7, 1.9)
and (h1, h2) = (0.0107, 0.089). All the equilibrium quantities for each portfolio in the cross section are drawn
against corresponding price-dividend ratio. In particular, all the x-axes are log price-dividend ratios in the
cross section. As we use parameters that are estimated from the actual cash flow data, underlying fundamentals
such as the share ratio and the coefficient of variation of the cash flow share are consistent with the data. In
the simulation, 1. the value premium arises, 2. cash flow risk premium shows the value premium, 3. discount
rate risk premium shows the growth premium, 4. cash flow risk premium quantitatively dominates discount
rate risk premium in the cross section, and 5. Sharpe ratios are also consistent with the data.
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Figure 7. Simulated Cross Sectional Return Variation – The model is simulated with the same
parameters that are used in the original model, but with aggregate cash flow risk being turned off: vs,A, is
set to zero. We also carried some experiments by setting vs,A near zero. Those experiments do not make any
differences; hence we omit the results.
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Figure 8. Comparison between the Model with and without Belief Difference – Both models
are simulated with the same parameters. Thus, (γ, δ) = (3.7, 1.9) and (h1, h2) = (0.0106, 0.095) are used. For
the second model, we set the belief difference to zero. The cash flow share ratios are the same for both models,
but resulting equilibrium quantities are different.
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Figure 9. Equity Term Structure – The model is simulated using the same parameters that are used
in the original model. Thus, (γ, δ) = (3.7, 1.9) and (h1, h2) = (0.0106, 0.095) are used. Upper Figure shows
the equity term structure based on accounting measure of the cash flow duration such as Dechow, Sloan, and
Soliman (2004). Since we use T = 29 for the duration year, the computed cash flow duration is monthly
measure. Bottom Figure shows the equity term structure based on the indirect cash flow duration, i.e., price
elasticity with respect to cash flow multiplied by 100 for the purpose of visual clarity. Both Figures clearly
show downward sloping equity term structures along the cash flow durations.
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Appendix A. Basics of the Share Process

We model individual cash flow share process following Menzly, Santos, and Veronesi (2004), but in a simpler way. Specifically,

we impose a simple structure on diffusion coefficients such that we treat only one idiosyncratic risk while keeping the flexibility

of modeling cash flow processes. The mean-reverting share process is given by (II.5) such that

dst = φs(s̄− st)dt+ stσ(st)dB
′
t, (A1)

where

σ(st) ≡ (σs,A(t), σs,I(t)),

σs,j ≡ vs,j − stvs,j − (1− st)v(1−s),j , j = A, I

dBt ≡ (dBA(t), dBI(t)),

φs > 0.

(A2)

Menzly, Santos, and Veronesi (2004) show that technical regularity conditions such as st ≥ 0 and
∑
st = 1 are satisfied in their

specification. The same regularity conditions hold in our specification as the following conditions are met:

s̄ < 1 and (1− s) < 1,

φs > 0, (1− s) · φ(1−s) and φ(1−s) > 0, s̄ · φs.
(A3)

Note that σm,n for m = s, (1 − s) and n = A, I are parametrically indeterminate. Hence, adding a constant vector to vs or

v(1−s) to the share process does not change the specification of the share process. This observation enables us to normalize vs

and v(1−s) such that we obtain an identification condition as follows.

s̄vs + (1− s̄)v(1−s) = 0, (A4)

where vi is the row vector of vi,A and vi,I for i = s, (1− s).28

Given the share process, an individual cash flow Ds(t) is defined as the fraction of aggregate cash flow, i.e., Ds(t) ≡ stDt.

Applying Itô’s lemma to stDt yields the diffusion process of an individual cash flow Ds(t):

dDs(t)

Ds(t)
= µDs

(t)dt+ σDs,A
(t)dBA(t) + σDs,I

(t)dBI(t), (A5)

where

µDs
(t) ≡ µD + φs

(
s̄

st
− 1

)
+ ΞCFs − stΞCFs − (1− st)ΞCF(1−s),

σDs,A
(t) ≡ σD,A + σs,A(t),

σDs,I
(t) ≡ σs,I(t),

(A6)

and ΞCFs ≡ σD,Avs,A and ΞCF
(1−s) ≡ σD,Av(1−s),A. The covariance between the share process and aggregate dividend (consump-

tion) growth is given by

Covt

(
dst

st
,
dDt

Dt

)
= ΞCFs −

[
ΞCFs st + ΞCF(1−s)(1− st)

]
. (A7)

By computing the unconditional covariance from the data, we obtain

E

[
Covt

(
dst

st
,
dDt

Dt

)]
= vs,A · σD,A ≡ ΞCFs , (A8)

thanks to the identification condition of the share process, (A4). Thus we can pin down vs,A by computing unconditional

covariance between the share process and aggregate cash flow process in the data.

28More details can be found in Menzly, Santos, and Veronesi (2004).
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Note that the conditional variance of individual cash flow process is given by

V art

(
dDs(t)

Ds(t)

)
=
[
σD,A + σs,A(t)

]2
+
[
σs,I(t)

]2
. (A9)

Total variability of individual cash flow can be estimated by unconditional variance. We estimate it by evaluating conditional

variance (A9) at st = s̄ together with the identification condition (A4). Thus, we obtain

(
σD,A + vs,A

)2
+
(
vs,I

)2
. (A10)

By calculating unconditional variance of individual cash flow process in the data, one can recover vs,I since vs,A is already pinned

down previously.

Finally by using (A4), we have

v(1−s),j = −
s̄vs,j

1− s̄
, j = A, I, (A11)

for both aggregate and idiosyncratic terms, which completes the estimation of fundamental cash flow risk parameters of individual

cash flow process.

Appendix B. Proofs
Derivation of λt process. By applying Itô’s lemma to λt process, we obtain

dλ(t)

λ(t)
=
[
−rt + µ

ξ(1)
−1

(t)
− θ2A(t)− θ(1)I (t)θ

(2)
I (t)

]
dt+ θ

(1)
I (t)dB

(1)
I (t)− θ(2)I (t)dB

(2)
I (t), (B1)

where

µ
ξ(1)

−1 (t) ≡ rt + θ2A(t) + θ
(1)
I

2
(t). (B2)

By rearranging diffusion terms using the relation between two idiosyncratic Brownian motions, we have η̄tdB
(2)
I (t)− η̄tθ(1)I (t)dt.

The drift term in (B1) and −η̄tθ(1)I (t)dt are summed up to zero since η̄t = η
(2)
t − η(1)t = θ

(1)
I (t)− θ(2)I (t). Therefore,

dλt

λt
= η̄tdB

(2)
I (t). (B3)

Derivation of market prices of risks. Since the financial market is dynamically complete, we can use price processes of the

market portfolio and the asset with the share process, st, for determining the market prices of risks as follows.

(
θA

θ
(k)
I

)
=

(
σPM ,A 0

σPs,A σPs,I

)−1(
µPM

− r
µ
(k)
Ps
− r

)(
dBA

dB
(k)
I

)

=
1

σPM ,AσPs,I

(
σPs,I

(
µP − r

)
−σPs,A

(
µP − r

)
+ σPM ,A

(
µ
(k)
Ps
− r
))

=


µPM

−r
σ
P,A

−
σPs,A

σ
Ps,I

1
σ
P,A

(
µPM

− r
)

+ 1
σ
Ps,I

(
µ
(k)
Ps
− r
)


=


µPM

−r
σ
PM,A

−
σPs,A

σ
Ps,I

θA + 1
σ
Ps,I

(
µPs
− r
)
− η(k)

 .

(B4)

Proof of Proposition 1. To solve for equilibrium, we construct a representative investor’s utility function following Huang (1987)

and Cuoco and He (1994). This method has been applied in many equilibrium studies such as Basak and Cuoco (1998), Basak
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(2000), Detemple and Serrat (2003), Basak and Gallmeyer (2003), and Gallmeyer and Hollifield (2008). λt process is a stochastic

weight in the representative investor’s periodic utility function for computing equilibrium as follows.

U(C, λ) = max
c1+c2≤D

λt

λ1

(c1/X)1−γ

1− γ
+

1

λ2

(c2/X)1−γ

1− γ
, (B5)

where C is the aggregate consumption; therefore, C ≡ D.

Using the stochastic weight process, we can write the consumption goods clearing condition as

∗
c1(ξ(2)(t)/[λ2λ(t)], t) +

∗
c2(ξ(2)(t)/λ2, t) = D(t). (B6)

By solving equation (B6), we obtain the required result.

Proof of Proposition 2. Note that equilibrium stock price can be represented by either one of state price densities across

investors thanks to the Radon-Nikodym derivative, i.e., λt process. Equilibrium price of an asset with the share process st is

represented as follows.

Ps(t) = E
(2)
t

[∫ ∞
t

ξ
(2)
τ

ξ
(2)
t

sτDtdτ

]

=
1(

1 + λ
1/γ
t

)γ (
1
Xt

)1−γ
D−γt

E
(2)
t

[∫ ∞
t

(
1 + λ

1/γ
τ

)γ ( 1

Xτ

)1−γ
D−γτ sτDτdτ

]

=
stDt

st
(

1 + λ
1/γ
t

)γ (
Dt
Xt

)1−γ E(2)
t

[∫ ∞
t

sτ
(

1 + λ
1/γ
τ

)γ (Dτ
Xτ

)1−γ
dτ

]

=
stDt

qt
E

(2)
t

[∫ ∞
t

qτdτ

]
=
Ds(t)

qt
E

(2)
t

[∫ ∞
t

qτdτ

]
,

(B7)

where

qt ≡ stztHt,

zt ≡
(

1 + λ
1/γ
t

)γ
,

Ht ≡
(
Dt

Xt

)1−γ
.

(B8)

In Campbell and Cochrane (1999) and Santos and Veronesi (2010), the consumption surplus ratio, Sγt , plays as shocks to

aggregate discount rate as a part of stochastic discount factor. Similarly, in our model, Ht plays such a role as it governs aggregate

risk. It represents aggregate shock to stochastic discount factor as well as an indicator of economic conditions. When the habit

ratio, H̄/Ht, is high, the economy goes well and vice versa. By applying Ito’s lemma to the process Ht ≡ (Dt/Xt)1−γ , we get:

d

(
Dt

Xt

)1−γ
= (1− γ)

(
Dt

Xt

)1−γ
{[

µD − λ
(
Dt

Xt
− 1

)
−

1

2
γσ2
DA

]
dt+ σDAdBA

}
. (B9)

Following Campbell and Cochrane (1999), Menzly, Santos, and Veronesi (2004), and Santos and Veronesi (2010), we assume a

simpler process of Ht as following:29

dHt = h1(H̄ −Ht)dt+ h2HtdBA(t). (B10)

Note that the diffusion process of λ
1/γ
t is given by

dλ
1/γ
t

λ
1/γ
t

= α1(t)dt+ α2(t)dB
(2)
I , (B11)

29The assumption on the process Ht is very similar to the one in Santos and Veronesi (2010).
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where

α1(t) ≡
1

2

1

γ

(
1

γ
− 1

)
η̄2t , α2(t) ≡

1

γ
η̄t. (B12)

Using this, we obtain the diffusion process of zt ≡
(

1 + λ
1/γ
t

)γ
as follows.

dzt

zt
=

[
1

2
γ(γ − 1)

(
xt

1 + xt

)2

α1(t) + γ

(
xt

1 + xt

)
α2
2(t)

]
dt+ γ

(
xt

1 + xt

)
α2(t)dB

(2)
I , (B13)

where xt ≡ λ
1/γ
t . For mathematical tractability, we approximate this process by simplifying xt/(1 + xt). Belief differences, ηt,

determines the process of Radon-Nikodym derivative λt. In our quantitative study, we use 0.02 to 0.2 of ηt for firms in value

decile, whose values are adopted from the data. Simulation shows that xt/(1 + xt) is very similar to 0.5. By plugging α1(t) and

α2(t) into the equation above and using the approximation that xt/(1 + xt) ≈ 1/2 (see Figure below), we have an approximate

process of zt as follows.
dzt

zt
≈ α̃1(t)dt+ α̃2(t)dB

(2)
I , (B14)

where

α̃1(t) ≡ −
1

8

(
1−

1

γ

)
η̄2t ,

α̃2(t) ≡
1

2
η̄t.

(B15)
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Accordingly, we use this approximate zt process for the rest of the proof. In order to get the diffusion process of qt, we first

compute the diffusion process of ztHt as

d(ztHt)

ztHt
= µzHdt+ h2dBA + α̃2dB

(2)
I , (B16)

where µzH ≡ α̃1 + h1
[
H̄/Ht − 1

]
. Based on this process, we have the diffusion process of qt as follows.

dqt

qt
= µq(t)dt+

(
σs,A(t) + h2

)
dBA +

(
α̃2(t) + σs,I(t)

)
dB

(2)
I , (B17)
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where

µq(t) ≡ α̃1(t) + h1

(
H̄

Ht
− 1

)
+ φs

(
s̄(2)

st
− 1

)
+ h2σs,A(t) + α̃2(t)σs,I(t).

The drift of dqt, i.e., qtµq(t), is expressed by qt, stzt and ztHt as follows.

qtµq(t) ≡
(
α̃1(t) + α̃2(t)σs,I(t) + h2σs,A(t)− h1 − φs

)
[qt] + h1H̄ [stzt] + φss̄

(2) [ztHt] . (B18)

Note that:

d(stzt) =
{(
α̃1(t)− φs + α̃2(t)σs,I(t)

)
[stzt] + φss̄

(2) [zt]
}
dt+ [· · · ]dBA + [· · · ]dB(2)

I ,

d(ztHt) =
{

(α̃1(t)− h1) [ztHt] + h1H̄ [zt]
}
dt+ [· · · ]dBA + [· · · ]dB(2)

I .
(B19)

Thus, we have a key observation that zt, qt, stzt, and ztHt exists in the drift of dqt. Thus, we take a vector process yt ≡
[zt, qt, stzt, ztHt]′ for computing equilibrium price-dividend ratio. yt follows a diffusion process as follows.

dyt = Y1ytdt+ Σ(yt)dB
′(2), (B20)

where Σ(yt) is the appropriate matrix of diffusion coefficients, Y1 ≡ [yij ]4×4 is the matrix of drift coefficients:


α̃1(t) 0 0 0

0 α̃1(t) + α̃2(t)σs,I(t) + h2σsA(t)− h1 − φs h1H̄ φss̄(2)

φss̄(2) 0 α̃1(t) + α̃2(t)σs,I(t)− φs 0

h1H̄ 0 0 α̃1(t)− h1

 . (B21)

To avoid notational abuse, we denote Y1 as:


y11 0 0 0

0 y22 y23 y24

y24 0 y33 0

y23 0 0 y44

 , (B22)

where y11, y22, y33, and y44 are time-varying functions of η̄t, st, σs,A(t) and σs,I(t). For the feasibility of the computation on

the right hand side of the equation (B7), we approximate all time-varying terms of yij ’s with constants. Approximation with

constant is crucial for obtaining approximate analytical solutions for the given Euler equation.

η̄t is the time-varying component in variables that are related to belief difference such as α̃1,t and α̃2,t. η̄t can be approximated

by the time-series average of η̄t, i.e., η̄t. Thus, α̃1,t and α̃2,t are approximated with η̄t, and are expressed by α1 and α2.

In order to approximate other yij ’s (especially y22 and y33), we follow Menzly, Santos, and Veronesi (2004) such that we

utilize the normalization condition of the share process that can be found in Appendix A. Normalization conditions for parameters

in the share process, i.e., the equation (A4), are given as follows.

s̄vs,A + (1− s̄)v(1−s),A = 0,

s̄vs,I + (1− s̄)v(1−s),I = 0.
(B23)

Associated with the condition (B23), σs,A and σs,I are approximated by vs,A and vs,I when they are evaluated at the long-run

mean of the share, st = s̄. Thus we have

y22 ≈ α1 + h2vs,A + α2vs,I − h1 − φs,

y33 ≈ α1 + vs,I + α2 − φs.
(B24)

With this way, all the elements in the matrix Y1 are approximated by constant values. Once approximation is done, then
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approximated expected value of E
(2)
t [qτ ] can be computed as follows.

E
(2)
t [qτ ] ≈ E(2)

t [q̃τ ] = E
(2)
t [q̃t+ι] = e2E

(2)
t [ỹt+ι]

= e2Ψ(ι)ỹt,
(B25)

where e2 ≡ (0, 1, 0, 0),

Ψ(ι) = U exp (Λ · ι)U−1, (B26)

Λ is the diagonal matrix with its elements being eigenvalues of Ỹ1 and U is the corresponding eigenvector matrix of Ỹ1 ≡ [ỹij ], and

finally˜indicates that the variable is approximated. For mathematical tractability, we assume that all eigenvalues are negative.30

Thus U is given by:

U =


u11 0 0 0

u21 1 u23 u24

u31 0 1 0

1 0 0 1

 , (B27)

where

u11 =
ỹ11 − ỹ44

ỹ23
,

u21 =
ỹ24(2ỹ11 − ỹ33 − ỹ44)

(ỹ11 − ỹ22)(ỹ11 − ỹ33)
,

u31 =
ỹ31(ỹ11 − ỹ44)

ỹ23(ỹ11 − ỹ33)
,

u23 =
ỹ23

ỹ33 − ỹ22
,

u24 =
ỹ24

ỹ44 − ỹ22
.

(B28)

The inverse matrix U−1 ≡ V = [vij ] is given by:


v11 0 0 0

v21 1 v23 v24

v31 0 1 0

v41 0 0 1

 , (B29)

where

v11 = 1/u11,

v21 =
−u21 + u24 + u23u31

u11
,

v23 = −u23,

v24 = −u24,

v31 =
−u31
u11

,

v34 = −u34,

v41 = −1/u11.

(B30)

Using these quantities, we can compute Ψ(ι). Hence we get E
(2)
t [q̃τ ] = E

(2)
t [q̃t+ι] as follows.

Et [q̃t+ι] = e2Ψ(ι)ỹt = Ψ1(ι)zt + Ψ2(ι)q̃t + Ψ3(ι)stzt + Ψ4(ι)ztHt, (B31)

30We follow Menzly, Santos, and Veronesi (2004) for this. Our simulation study shows that all diagonal
elements are indeed negative.
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where

Ψ1(ι) = v11u21e
ỹ11ι + v21e

ỹ22ι + v31u23e
ỹ33ι + v41u24e

ỹ44ι,

Ψ2(ι) = eỹ22ι,

Ψ3(ι) = v23e
ỹ22ι + u23e

ỹ33ι,

Ψ4(ι) = v24e
ỹ22ι + u24e

ỹ44ι.

(B32)

Therefore

E
(2)
t

[∫ ∞
0

qt+ιdι

]
≈
∫ ∞
0

E
(2)
t [q̃t+ι] dι

=

∫ ∞
0

e2Ψ(ι)ỹtdι

=

4∑
k=1

[∫ ∞
0

Ψk(ι)dι

]
ỹk(t),

(B33)

where ỹk(t) is the k-th row vector ỹt.
∫∞
0 Ψk(ι)’s are given by:

∫ ∞
0

Ψ1(ι)dι =

[
−
v11u21

ỹ11
−
v21

ỹ22
−
v31u23

ỹ33
−
v41u24

ỹ44

]
,∫ ∞

0
Ψ2(ι)dι = −

1

ỹ22
,∫ ∞

0
Ψ3(ι)dι = −

v23

ỹ22
−
u23

ỹ33
,∫ ∞

0
Ψ4(ι)dι = −

v24

ỹ22
−
u24

ỹ44
.

(B34)

The integrations above were conducted under the continuing assumption that all the eigenvalues are negative. Thus, approximated

equilibrium stock price with the share process st is given by:

Ps(t) ≈
Ds(t)

q̃t

4∑
k=1

[∫ ∞
0

Ψk(ι)dι

]
ỹk(t)

= Ds(t)

4∑
k=1

[∫ ∞
0

Ψk(ι)dτ

] [
ỹk(t)

q̃t

]

= Ds(t)

{[∫ ∞
0

Ψ1(ι)dι

]
1

stHt
+

[∫ ∞
0

Ψ2(ι)dι

]
+

[∫ ∞
0

Ψ3(τ)dι

]
1

Ht
+

[∫ ∞
0

Ψ4(ι)dι

]
1

st

}
= Ds(t)

{[∫ ∞
0

Ψ2(ι)dι

]
+

[∫ ∞
0

Ψ1(ι)

s̄(2)
dι

]
s̄(2)

st
H−1
t +

[∫ ∞
0

Ψ3(ι)dι

]
H−1
t +

[∫ ∞
0

Ψ4(ι)

s̄(2)
dι

]
s̄(2)

st

}

= Ds(t)

[
βs,0 + βs,1

(
H̄

Ht

)
+ βs,2

(
s̄(2)

st

)
+ βs,3

(
s̄(2)

st

H̄

Ht

)]
,

(B35)

where βs,j ’s are

βs,0 ≡
∫ ∞
0

Ψ2(ι)dι, βs,1 ≡
∫ ∞
0

Ψ3(ι)

H
dι, βs,2 ≡

∫ ∞
0

Ψ4(ι)

s̄(2)
dι, βs,3 ≡

∫ ∞
0

Ψ1(ι)

s̄(2)H
dι. (B36)

Approximate equilibrium price-dividend ratio of the shared stock is, hence, given by

Ps(t)

Ds(t)
≈
[
βs,0 + βs,1

(
H̄

Ht

)
+ βs,2

(
s̄(2)

st

)
+ βs,3

(
s̄(2)

st

H̄

Ht

)]
. (B37)

Proof of Proposition 3. We find diffusion coefficients of
dPst
Pst

for investor 2. Applying Itô’s lemma to Ps(t) that was derived in
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the previous Proposition, we get diffusion coefficients of
dPst
Pst

as follows.

dBA :

(
Ds

Ps

)
βs,0

(
σD,A + vs,A

)
+

(
Ds

Ps

)
βs,1

(
σD,A + vs,A − h2

) H̄

Ht

+

(
Ds

Ps

)
βs,2σD,A

(
s̄(2)

st

)
+

(
Ds

Ps

)
βs,3

(
σD,A − h2

)( s̄(2)
st

H̄

Ht

)
,

dB
(2)
I :

(
Ds

Ps

)
vs,I

(
βs,0 + βs,1

H̄

Ht

)
.

Diffusion coefficients of a shared asset’s excess return - defined as Rs and dRs ≡
dPst+Ds(t)

Pst
− rtdt - is the same as diffusion

coefficients of
dPst
Pst

. Note that equilibrium expected excess return, Et [dRs], is given by the negative of the inner product of

diffusion coefficient vector of dRs and diffusion coefficient vector of the state price density ξ
(2)
t since equilibrium return is defined

by the covariance between the two quantities.31 Applying Itô’s lemma to ξ
(2)
t = (1 + λ

1/γ
t )γ(1/Xt)1−γD

−γ
t = ztHtD

−1
t using

approximate diffusion process of zt, yields

dξ
(2)
t /ξ

(2)
t ≈ µξ(2)dt+ (h2 − σD,A)dBA + α̃2(t)dB

(2)
I , (B38)

where µξ(2) = α1 + h1(H̄/Ht − 1) + σ2
D,A − µD − h2σD,A.32 Since expected excess return is determined by the negative of the

sum of multiplications of diffusion coefficients given in the equation (B38),

E
(2)
t [dRs,t] ≈

[
Ds(t)

Ps(t)

] [
µA,Is,t + µIs,t

]
, (B39)

where

µA,Is,t ≡ βs,0
(
σD,A + vs,A

)(
σD,A − h2

)
+ βs,1

(
σD,A + vs,A − h2

)(
σD,A − h2

) 1

Ht

+ βs,2σD,A

(
σD,A − h2

) s̄(2)
st

+ βs,3
(
σD,A − h2

)2 s̄(2)
st

H̄

Ht
,

µIs,t ≡ −vs,Iα2

(
βs,0 + βs,1

H̄

Ht

)
.

(B40)

As was shown above, the diffusion process of the return of an shared asset, Rs(t), is given by

dRs ≈ µ(2)Rs
dt+ σRs,A

dBA + σRs,I
dB

(2)
I , (B41)

where µ
(2)
Rs

is the expected excess return given above and both σRs,A
and σRs,I

are diffusion coefficients of dPs/Ps given above.

31For details, see Duffie (2001).
32Approximate diffusion process of zt can be obtained by applying the same method that we use for approx-

imating Y1, i.e., ỹ and q̃.
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