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Abstract

Risk parity (or equal risk contribution) has recently gained increasing attention as a portfolio allocation

method, but solving portfolio weights must resort to numerical methods as analytic solution is not

available. This study improves two existing iterative methods: the cyclical coordinate descent (CCD)

and Newton methods. We enhance the CCD method by formulating with the correlation matrix and

imposing an additional rescaling step. We also suggest an improved initial guess inspired from the CCD

method for the Newton method. Numerical experiments show that the improved CCD method performs

the best. It is several times faster than the original CCD method, saving 40% of iteration steps.
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1. Introduction

Optimal portfolio selection has been an important question in academia and financial industry alike.

While there are several traditional methods, such as mean-variance, minimum variance, and equally

weighted (1/N) portfolio, the risk parity (or equal risk contribution) model has recently gained popularity

in asset management industry. Under the risk parity model, the portfolio weights are selected in such

a way to equalize the contribution from each asset to the portfolio volatility become equal. Like 1/N

portfolio, risk parity aims diversification, overcoming the concentration or sensitivity issues found in

mean-variance or minimum variance portfolio. However, risk parity is the 1/N portfolio in terms of risk

allocation rather than capital allocation.

While it is unclear who invented the risk parity idea for the first time, Maillard et al. (2010) and Qian

(2011) are widely cited as one of the papers that introduce risk parity model. There has been growing

literature on various aspects of the risk parity allocation method. For example, see Chaves et al. (2011)

and Clarke et al. (2013) to see how risk parity compares to other asset allocation methods. Kim et al.

(2020) study the risk parity model where the covariance is estimated from the XGBoost algorithm. Kim

and Kim (2021) studies the risk parity under covariance estimation error. There are controversies over

the actual performance of the funds implementing the strategy. See Grind (2013), for example.
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Among the academic research topics around the risk parity model, this paper is primarily concerned

with the numerical methods to solve the risk parity portfolio weights. Given the return covariance, it

is challenging to solve the portfolio weight. As analytic solution is not available, one must resort to

numerical methods. There has been several methods available so far. Maillard et al. (2010) formulate

the risk parity problem as sequential quadratic programming (SQP) method. Chaves et al. (2012) uses

the Newton method to solve the multidimensional root. This methods use the multidimensional root

with the Newton method taking advantage of the analytical Jacobian matrix. While the original Newton

method cannot guarantee the weights to be positive, Spinu (2013) later resolve the issue by adjusting

the learning rate in the iteration steps. A competing method is the cyclical coordinate descent (CCD)

algorithm (Griveau-Billion et al., 2013). As the CCD method uses the quadratic iteration steps, it does

not rely on the Jacobian matrix. Bai et al. (2016) propose alternating linearization methods (ALMs) for

solving the risk parity weight in a generalized setting.

The performance of the two methods seem comparable according to the literature. The CCD method

Griveau-Billion et al. (2013) claim that the CCD method outperforms the Newton method when number

of asset is lager than 250. Bouzida (2014) reports that. while CCD method is faster than the Newton

method of Spinu (2013), the CCD method lacks the robustness for a pool of assets.

This study reviews and improves the two algorithms for solving the risk parity portfolio allocation:

the CCD and Newton methods. We improve the CCD method into a numerically efficient form and

the newton method by suggesting a new initial guess. Numerical experiment with randomly generated

covariance matrix shows that our improved CCD method outperforms other methods, including the

improved Newton method, for a wide range of portfolio sizes.

The remainder of this paper is organized as follows. Section 2 introduces the risk parity portfolio

and its properties. Section 3 presents the improved root-finding method, and Section 4 demonstrates the

computational gain of the new methods with numerical experiments. Finally, Section 5 concludes.

2. Risk parity portfolio

2.1. Notations and conventions

We define several notations and operations regarding vectors and matrices to be used for the rest of the

paper.

� For vector x (in boldface), the i-th element is denoted by xi or (x)j .

� For matrix A (in boldface), the (i, j) element is denoted by Aij or (A)ij .

� Vectors are assume to be column vectors unless otherwise specified.

� 1N is the N × 1 column vector filled with 1’s. IN is the N ×N identity matrix.
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� The operations, ∗ and /, between vectors x and y are defined to be the element-wise multiplication

and division, respectively:

x ∗ y = (x1y1, · · · , xNyN )T and y/x = (y1/x1, · · · , yN/xN )T

� The operation ∗ between a (column) vector x and a matrix A is defined as

x ∗A = A ∗ x =


x1A11 · · · x1A1N

...
. . .

...

xNAN1 · · · xNANN


2.2. Condition for risk parity portfolio

Let σ and C be the standard deviation vector and covariance matrix, respectively, of the return of N

assets in a unit time period. The covariance C is symmetric and positive semi-definite, and its diagonal

elements are related to σ via Cii = σ2
i . The portfolio of the N assets, invested with weight w, has the

return volatility:

V (w) =
√
wTCw.

From Euler’s homogeneous function theorem, the volatility V (w) can be decomposed into the sum of

the contribution from each asset,

V (w) =
∑
i

vi(w) where vi(w) = wi
∂V (w)

∂wi
=
wi(Cw)i
V (w)

.

Let bi such that
∑

i bi = 1 and bi > 0 be the relative contribution to the portfolio volatility from the

i-th asset. Then, we aim to find the weight w that satisfies

vi(w) = V (w) bi for all i.

The risk parity portfolio is the special case of the problem above where the risk contributions are equally

divided among the assets,

bi = 1/N for all i.

Although we deal with the risk parity case exclusively, we will use bi not to lose the generality. Therefore,

the risk parity portfolio weight must satisfy the condition:

wi(Cw)i = V 2(w) bi = (wTCw) bi subject to wi ≥ 0. (1)

Here, we impose wi ≥ 0 because we are concerned with the long-only portfolio. For the risk parity with

unconstrained portfolio, we refer to Bai et al. (2016).
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The solution is not unique because of the homogeneous property of the condition; if w is a solution,

µw for µ > 0 is also a solution. The degree of freedom can be fixed by imposing
∑

i wi = 1. The

normalized weight w̄ is obtained by

w̄ =
w

λ
for λ =

∑
i

wi.

2.3. Risk parity condition with correlation matrix

The condition for risk parity portfolio can equivalently be stated in terms of the correlation matrix (Spinu,

2013). Let R be the correlation matrix whose element is computed from the covariance matrix C:

Rij =
Cij

σiσj
=

Cij√
CiiCjj

(Rii = 1) . (2)

Then, the risk parity condition with the correlation matrix is given by

wi(Rw)i = (wTRw) bi subject to wi ≥ 0. (3)

If w is the solution to the correlation condition, Eq. (3), w/σ is the solution to the covariance condition,

Eq. (1).

Moreover, Spinu (2013) pins down the degree of freedom in w by taking advantage of the fact that

wTRw is a scalar although the value is unknown yet. Without loss of generality, we set

wTRw = 1, (4)

and simply solve

wi(Rw)i = bi subject to wi ≥ 0. (5)

Once we find the unique root w of Eq. (5), the normalized portfolio weight w̄ can be obtained by

w̄i =
wi

λσi
for λ =

∑
i

wi

σi
.

Note that Eq. (4) is consistent with Eq. (5) because it can be obtained by summing up Eq. (5) for all i,

wTRw =
∑
i

wi(Rw)i =
∑
i

bi = 1. (6)

We will use both Eqs. (4) and (5) in Section 3.1 to improve the original CCD method.

2.4. A special case solution and initial guess for iterative methods

The general solution to the risk parity portfolio is not available analytically. An analytic solution,

however, exists for a special condition on the correlation matrix. When the correlation matrix has the
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same row sums, ∑
j Rij = r for all i and some constant r,

the constant vector, w = 1N , satisfies Eq. (3) with bi = 1/N . Note that the special condition is typically

satisfied when R has the same off-diagonal elements, Rjk = ρ for j 6= k and some ρ. Therefore, w = 1N

is the solution for the allocation among two assets. In terms of the simple condition, Eq. (5), wi = 1/
√
nr

is the corresponding solution for the special case. The actual portfolio weights satisfying the original

condition, Eq. (1), are given by the weights inversely proportional to the standard deviation,

w̄i =
1/σi∑
k 1/σk

. (7)

Even though R does not satisfy the row sum condition, the special case solution serves as a first-order

approximation. Chaves et al. (2012) and Griveau-Billion et al. (2013) uses Eq. (7) as the initial guess for

the iterative methods. The Newton method of Spinu (2013), based on Eq. (5), uses an improved version

for the initial guess. Based on wi = 1/
√
nr, Spinu (2013, Theorem 3.4) generalizes the initial guess to

wi = 1/
√∑

j,k Rjk for all i. (8)

Note that
∑

j,k Rjk = 1T
N R1N > 0 if R is positive definite.

3. Methods for solving risk parity

In this section, we review the CCD and Newton methods, and improve them. As stated in Section 1,

there exist other methods, such as, the SQP algorithm (Maillard et al., 2010) and ALM (Bai et al.,

2016). Although such methods may be able to handle the risk parity under more generalized setting, it

is reported that they are slower than the CCD and Newton methods in handling the standard long-only

risk parity model. Therefore, we focus on the two methods.

3.1. The improved CCD method

The original CCD method (Griveau-Billion et al., 2013) aims to solve

wi(Cw)i =
√
wTCw bi = V (w) bi for all i. (9)

Here, note that this condition is yet different from Eq. (1) as V 2(w) in Eq. (1) is replaced with V (w).

Although the intention is not explicitly stated in the reference, the purpose seems to fix the degree of

freedom in the solution. The equation has two root: w = 0 and the other one with w > 0. Because

of the homogeneous property, the nonzero root w is also a proper risk parity weight. In fact, the same

holds for any nonzero scalar in the place of V 2(w), in the same way we obtain Eq. (5).
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The equation for the i-th component can be written as a quadratic form of wi,

Ciiw
2
i +

(∑
j 6=i Cijwj

)
wi − V (w) bi = 0,

and we use the root formula as an iteration step for wi (Griveau-Billion et al., 2013, Eq. (4))

wi ←
√
a2i + CiiV (w) bi − ai

Cii
for ai =

1

2

∑
j 6=i

Cijwj =
(Cw)i − Ciiwi

2
. (10)

Here, we select the positive one among the two roots of the quadratic equation to ensure that wi ≥ 0

(and to avoid the trivial root w = 0). In CCD method, one iteration is composed of cyclically updating

wi for i = 1, · · · , N . Therefore, updating wi makes use of wj for 1 ≤ j < i which are previously updated

in the same iteration step. Because of this, the CCD method is known to be more effective than the

batch coordinate descent. Griveau-Billion et al. (2013) starts the iterations with the initial guess Eq. (7).

We improve the original CCD method in two ways. First, we formulate the CCD with the correlation

condition, Eq. (5), instead. The equation for the i-th component of Eq. (5) can be written as a simpler

quadratic form of wi,

w2
i +

(∑
j 6=iRijwj

)
wi − bi = 0.

The corresponding iteration step is simplified to

wi ←
√
a2i + bi − ai for ai =

1

2

∑
j 6=i

Rijwj =
(Rw)i − wi

2
. (11)

This new iteration brings two advantages because V (w) disappears in the new CCD method. One obvious

advantage is to save the computation time for V (w). Because V (w) requires O(N2) operations and it

has to be updated when wi is updated, the calculation can be time-consuming. The other advantage is

not obvious, but more important. In the original CCD, the new wi depends on the old value through

V (w) on the right-hand side of Eq. (10). The updated wi is not the true root of Eq. (10). In the new

CCD method, however, the new wi is the exact root of Eq. (11) because old wi does not appear on the

right-hand side. Therefore, we expect that the convergence will be faster in the improved CCD iteration.

Second, we rescale w by

w ← w√
wTRw

. (12)

at the end of each iteration to ensure Eq. (4). This rescaling step is expected to make the convergence

faster by adjusting w on average. The new CCD method will use the generalized initial guess, Eq. (8),

borrowed from Spinu (2013). In fact, it can be understood as the result of the rescaling from the equal

weight w = 1N .

Finally we summarize the improved CCD algorithm in Algorithm 1.
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Algorithm 1 The improved CCD algorithm

Input: covariance matrix C and error tolerance ε
Calculate R and σ
Initialize w ← 1N/

√∑
ij Rij

while maxi |wi(Rw)i − bi| > ε do
for i← 1, · · · , N do

wi ←
√
a2i + bi − ai for ai =

1

2

∑
j 6=iRijwj

w ← w/
√
wTRw

return (w/σ)/(
∑

i wi/σi)

3.2. Newton method with an improved initial guess

Chaves et al. (2012) and Spinu (2013) use the multidimensional Newton method to find the risk parity

portfolio. From Eq. (5), they set the objective function:

F (w) = Rw − b

w
or Fi(w) =

∑
j

Rijwj −
bi
wi
.

Then, the root of F (w) = 0 is the risk parity weight. The Jacobian of F (w) is readily available as

∇F (w) = R+ IN ∗
b

w2
or

∂Fi(w)

∂wj
= Rij + δij

bi
w2

i

,

where δij is the Kronecker delta. Therefore, the iteration under the Newton method is given by

w ← w + ∆w for ∆w = − [∇F (w)]
−1
F (w) (13)

Unlike the CCD method, however, the Newton method iteration cannot guarantee that the converged

weights are positive. Spinu (2013) overcomes the problem with the dampened Newton method,

w ← w + η∆w

where η ≤ 1 is determined as a function of w and ∆w. While we do not discuss exact procedure, basic

idea is to use η < 1 in early stage when w is away from the solution to ensure wi > 0, and to use η = 1

later when w is close enough to the solution for faster convergence. Spinu (2013) use Eq. (8) for the

initial guess of the Newton method.

Our enhancement on the Newton method is on the initial guess. By using an initial guess closer to

the solution, we aim to use η = 1 all through the iteration yet without converging to negative weight. If

this can be achieved, one can use generic Newton method routines available in many numerical analysis

packages, which is highly optimized for the system.

We improve the original initial guess, Eq. (8), by updating it through the one-step CCD iteration,

Eq. (11). Instead of slow cyclical update, however, we use the batch update where the old wi values are
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used on the right-hand side:

wi =
√
a2i + bi − ai for ai =

∑
j 6=iRij

2
√∑

j,k Rjk

.

This new initial guess is more efficiently compured in the vetorized form,

w =
√
a ∗ a+ b − a for a =

(R1N − 1N )

2
√

1T
NR1N

. (14)

Numerical experiments in next Section demonstrates that our new initial guess is effective so that the

method converges to a positive weight for almost all randomly generated test cases.

4. Numerical experiment

We test the numerical performance of the improved algorithms.1 We implemented the following three

algorithms for comparison.

� The original CCD method, Eq (10)

� The improved CCD method, Algorithm 1

� The Newton method, Eq (13), with the improved initial guess, Eq (14)

We implemented all methods in Python. For the Newton method, we use the generic root solver,

scipy.optimize.root function2 in Python SciPy package. For all methods, we consistently use the

error tolerance ε = 10−6.

In the test, we solve the risk parity portfolio for the correlation matrices randomly generated with

scipy.stats.random correlation class3 in Python SciPy package. The routine takes the nonnegative

eigenvalues as inputs. Then, it uses the algorithm of Davies and Higham (2000) to generate the correlation

matrix. We use two methods of generating the eigenvalues to test both positive definite and positive

semi-definite correlation matrix:

� Test 1: all eigenvalues sampled from independent uniform random variables between 0 and 1.

� Test 2: 80% of eigenvalues sampled from independent uniform random variables between 0 and 1,

and 20% set to zeros.

1The test are performed in Python on a computer running the Windows 10 operating system with an Intel Core i5–6500
(3.2 GHz) CPU.

2See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html. We use method=‘hybr’

(default) option.

3See https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.random_correlation.html.
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While other literature (Griveau-Billion et al., 2013; Bai et al., 2016) typically test only the positive

definite cases, we think the positive semi-definite case is also important because it is often encountered

in practice when the covariance is estimated from time series. When the covariance between N assets is

estimated from from M time periods with M < N , the estimated covariance matrix has rank at most

M nonzero eigenvalues.

Figure 1 shows the computation time and number of iterations for Test 1. Several observations are

in order. First, our improved CCD method performs the best in terms of both CPU time and iterations.

Although the Newton method is marginally faster than the improved CCD method for N ≤ 150, the

required computation time is not long anyway for those N .

Second, our improved CCD method is three to four times faster than the original CCD, saving about

6.5 iterations on average. Although not reported in the figure, we also run the improved CCD method

without the rescaling step, Eq. (12), to measure the gain from the rescaling step. It turns out that the

rescaling step saves about 1.5 iterations on average.

Third, the Netwon method successfully converges to positive weights in all case cases. It confirms that

the damped Newton method is not necessary with the improved initial guess, Eq. (14). Nevertheless,

the Newton method is inferior to the improved CCD method. The log-log plot clearly shows that

the computation time scales as O(N3) in the newton method, but scales as O(N) for both the CCD

methods. The O(N3) scale of the Newton method seems to be related to the computation for the

Jacobian inversion, [∇F (w)]
−1

. In the optimized multidimensional Newton method, the inversion is not

computed in every iteration. In our test, inversion is typically computed only once, i.e., at the initial

condition. Nevertheless, the Jacobian inversion makes the Newton method slow for large N .

Figure 2 shows the results for Test 2. While the relative performance between the three methods are

similar, the overall computation become slower than Test 1, requiring more iterations. This indicates

difficulty of solving the risk parity portfolio against the positive semi-definite covariance matrices. More-

over, the Newton method shows instability. The method fails in convergence for 2 cases, and converges

to negative weights for 13 cases. Conversely, the CCD methods stably converged to positive weights for

cases.

From the numerical tests, we believe that our improved CCD method is the fast and stable method

for solving the risk parity weights.

5. Conclusion

Along the growing popularity of the risk parity model, several numerical methods has been proposed

to solve the portfolio allocation. We present improvements on two existing methods based on iteration:

the cyclical coordinate descent (CCD) and Newton methods. Numerical experiment shows that the

improved CCD method performs the best in terms of speed and stability.
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Figure 1: The computation time in linear(top) and log-log scales (middle), and the number of iterations (bottom) for
randomly generated positive definite correlation matrices (Test 1). The values are averages over 200 tests for each N .
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Figure 2: The computation time in linear (top) and log-log scales (middle), and the number of iterations (bottom) for
randomly generated positive semi-definite correlation matrices (Test 2). The values are averages over 200 tests for each
N .

0 100 200 300 400 500 600
Number of assets (N)

0

100

200

300

400

500

600

700

CP
U 

tim
e 

(m
 se

c)
Improved CCD
Original CCD
Newton

102

Number of assets (N)

10 1

100

101

102

103

CP
U 

tim
e 

(m
 se

c)

Improved CCD
y = 0.2 N
Original CCD
y = 0.6 N
Newton
y = 3.3e-6 N3

0 100 200 300 400 500 600
Number of assets (N)

20

30

40

50

60

Nu
m

be
r o

f i
te

ra
tio

ns

Improved CCD
Orignal CCD
Newton

11



Acknowledgements

This research was supported by the 2021 Korea Derivatives Association & FnGuide research grant.

References

Bai, X., Scheinberg, K., Tutuncu, R., 2016. Least-squares approach to risk parity in portfolio selection.
Quantitative Finance 16, 357–376. doi:10.1080/14697688.2015.1031815.

Bouzida, F., 2014. Robust Risk Budgeting Algorithms in R. SSRN Scholarly Paper ID 3453218. Social
Science Research Network. Rochester, NY. doi:10.2139/ssrn.3453218.

Chaves, D., Hsu, J., Li, F., Shakernia, O., 2011. Risk Parity Portfolio vs. Other Asset Allocation Heuristic
Portfolios. The Journal of Investing 20, 108–118. doi:10.3905/joi.2011.20.1.108.

Chaves, D., Hsu, J., Li, F., Shakernia, O., 2012. Efficient Algorithms for Computing Risk Parity Portfolio
Weights. The Journal of Investing 21, 150–163. doi:10.3905/joi.2012.21.3.150.

Clarke, R., de Silva, H., Thorley, S., 2013. Risk Parity, Maximum Diversification,and Minimum Variance:
An Analytic Perspective. The Journal of Portfolio Management 39, 39–53. doi:10.3905/jpm.2013.
39.3.039.

Davies, P.I., Higham, N.J., 2000. Numerically Stable Generation of Correlation Matrices and Their
Factors. BIT Numerical Mathematics 40, 640–651. doi:10.1023/A:1022384216930.

Grind, Carolyn Cui and Kirsten, M.C., 2013. Fashionable ’Risk Parity’ Funds Hit Hard. Wall Street
Journal .

Griveau-Billion, T., Richard, J.C., Roncalli, T., 2013. A Fast Algorithm for Computing High-dimensional
Risk Parity Portfolios. arXiv:1311.4057 [q-fin] arXiv:1311.4057.

Kim, H., Kim, S., 2021. Reduction of estimation error impact in the risk parity strategies. Quantitative
Finance 21, 1351–1364. doi:10.1080/14697688.2021.1881599.

Kim, Y., Choi, H., Kim, S., 2020. A Study on Risk Parity Asset Allocation Model with XGBoos. Journal
of Intelligence and Information Systems 26, 135–149. doi:10.13088/jiis.2020.26.1.135.
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