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Abstract

In this study, we investigate an optimal consumption and investment problem of an economic agent who

faces a welfare constraint; the agent does not accept her expected utility (continuation value) falls below a

certain fixed level regardless of the time and state. This optimization problem involves an infinite number

of constraints. Using a duality approach, we transform infinitely many constraints into a single constraint

and define the dual problem, which becomes a two-dimensional singular control problem. The dual problem

provides its associated Hamilton-Jacobi-Bellman (HJB) equation with a gradient constraint. Under a general

class of utility functions, we obtain an explicit solution to the HJB equation and provide optimal strategies

by establishing a duality theorem. As an example, we consider hyperbolic absolute risk aversion (HARA)

utility, which may incorporate a government subsidy or a basic support, and provide the solution and its

implications.

Keywords : consumption and investment, welfare constraints, general utility, singular control problem,

duality approach, dynamic constraints



1 Introduction

This study investigates the optimal consumption and investment problems of an economic agent with a

general utility function in the presence of welfare constraints. Under welfare constraints, it is assumed that

an agent’s expected utility (continuation value) should always be greater than or equal to a certain minimum

welfare level. An economic agent can determine the minimum welfare level based on various rationales. One

example is the reservation utility of an economic agent in a limited commitment framework, as in Choi et al.

(2021). In Choi et al. (2021) with limited commitment, the economic agent may default and not repay the

debt, and consequently, the agent is not able to participate in the financial market and is allowed to consume

a fixed proportion of income afterwards as a default penalty. In this case, the economic agent repays the

debt only when repayment is incentive-compatible, and the corresponding reservation utility is the lifetime

utility the economic agent would have by choosing immediate default and consuming a fixed proportion of

his/her labor income without participating in the financial market.1

Recently, Campbell and Martin (2022) studied the optimal consumption and investment problem with

constant relative risk aversion (CRRA) utility under the sustainability constraint that expected utility, which

is a function of current wealth and thus a random variable, should not be expected to decrease over time. More

precisely, the drift of the expected utility process should be nonnegative under the sustainability constraint.

By contrast, we impose a constraint on the level of expected utility, not its dynamics, and consider a more

general class of utility functions that include hyperbolic absolute risk aversion (HARA) class utility functions.

To investigate our optimization problem, we employ the duality approach developed by Karatzas et al.

(1987) and Cox and Huang (1989). As the welfare constraint should be satisfied regardless of the time

and state of the world, our optimization problem faces an infinite number of constraints. To overcome this

difficulty, we transformed infinitely many constraints for the primal problem into one constraint for the dual

problem, as in He and Pagés (1993). Because the dual problem involves the choice of a non-decreasing

shadow price process, which is the cumulative Lagrange multiplier process arising from dynamic welfare

constraints, the dual problem can be formulated as a two-dimensional singular control problem, and we can

obtain an associated Hamilton-Jacobi-Bellman (HJB) equation with a gradient constraint. For a general class

of utility functions, we derive an explicit solution to the HJB equation and provide a verification theorem

that guarantees that the solution to the HJB equation is indeed the solution to the dual-value function.

Previous studies that incorporated similar singular control problems established the verification theorem by

utilizing the standard argument in the literature that puts some growth conditions on the dual conjugate

function of the utility function. However, without imposing a growth condition on the dual conjugate function

of the utility function, it is difficult to apply standard arguments to our verification theorem. To resolve

this difficulty, based on many technical and non-standard arguments, we directly show the identification

between the dual value function and the solution to the HJB equation using Fubini’s theorem and expressing

the solution to the HJB equation as an integral of optimal stopping problems. This is a main technical

contribution of this study. Finally, we prove the duality theorem and obtain the explicit solutions to the

optimal consumption and investment strategies.

Based on the explicit solutions for the general class of utility functions, we can show that there exists

1More details will be provided in Remark 3 in Section 2.
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a minimum wealth level endogenously determined by the welfare constraint. In other words, an economic

agent’s wealth process under welfare constraints should always be greater than or equal to a certain en-

dogenous minimum wealth level. In contrast to the model with the borrowing constraint, the endogenous

minimum wealth level in our model can have a positive value depending on the minimum welfare level

imposed by the welfare constraint. As expected, as the minimum welfare level increases, the endogenous

minimum wealth level increases. On the other hand, the optimal consumption and investment (provided the

risky asset provides positive excess return) for a given wealth level decrease as the minimum welfare level

increases, which is an intuitive result. We can also show that the optimal investment becomes zero when

the agent’s wealth reaches the endogenous minimum wealth level, to avoid the risk of violating the welfare

constraint.

For example, we consider a HARA class utility function that may incorporate a government subsidy or

basic support that cannot be stored, and should be consumed immediately. It is obvious that it becomes

easier to meet the welfare constraint as basic support increases, which implies that the solutions may have

different properties depending on the relationship between the minimum welfare level and basic support.

This is confirmed and discussed in Section 6.

Our study is closely related to Choi et al. (2021), who investigate the optimal consumption and investment

problem of a household with limited commitment to debt repayment, since the agent’s limited commitment

in Choi et al. (2021) can be regarded as time varying welfare constraints. Our study is also related to

the literature on optimal consumption and portfolio problems with non-negative wealth constraints (see He

and Pagés (1993), El Karoui and Jeanblanc-Picqué (1998)) in that the welfare constraints in our problem

generate minimum wealth constraints. However, the wealth constraints generated by welfare constraints are

determined endogenously according to the minimum welfare level. Although the mathematical structure of

the two problems seems to be similar, our dual problem is formulated into a two-dimensional singular control,

whereas the dual problem in He and Pagés (1993) and El Karoui and Jeanblanc-Picqué (1998) is formulated

as a one-dimensional singular control. Moreover, He and Pagés (1993), El Karoui and Jeanblanc-Picqué

(1998) and Choi et al. (2021) provide explicit solutions only for the case of the CRRA utility function. As

our dual problem involves the choice of a non-decreasing shadow price process, the mathematical structure

is similar to the incremental irreversible investment problems studied by Pindyck (1988), Dixit and Pindyck

(1994) and Riedel and Su (2011). There have been many studies on the continuous-time portfolio selection

problem with the feature of a singular control (see Davis and Norman (1990), He and Pagés (1993), Dybvig

(1995), El Karoui and Jeanblanc-Picqué (1998), Deng et al. (2022), and references therein). We add to the

literature by investigating the welfare constraint on the agent’s consumption and investment problem using

the general utility function.

We introduce our model and primal optimization in Section 2, and the corresponding dual problem and

its associated HJB equation are derived in Section 3. Section 4 derives a solution to the HJB equation

and provides a verification theorem. The duality theorem and optimal strategies are presented in Section 5.

Section 6 provides an example of the HARA class utility function that can incorporate basic support and

discusses the implications of the solution. Finally, Section 7 concludes the paper. All proofs are provided in

the Appendix.
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2 Model

We consider a simple, standard continuous-time financial market.

Preference: The agent’s objective is to maximize the following expected utility from intertemporal con-

sumption ct:

U ≡ E
[∫ ∞

0

e−βtu(ct)dt

]
, (1)

where β > 0 denotes the subjective discount rate.

The agent’s expected utility (continuation value) at time t ≥ 0 is given by

Wa
t ≡ Et

[∫ ∞
t

e−β(s−t)u(cs)ds

]
, (2)

where Et [·] = E [· | Ft] denotes the conditional expectation at time t on the filtration Ft.
We assume that the agent wants to maintain the expected utility (continuation value) above a certain

level P . In other words, the agent’s consumption process {ct}∞t=0 satisfies the following welfare constraints:

for all t ≥ 0

Wa
t ≥ P. (3)

Financial Market: The financial market consists of two assets: a risk-free asset and a risky asset (or a

market index). We assume that the risk-free rater > 0 is constant. The price St of the risky asset evolves as

follows:

dSt/St = µdt+ σdBt,

where µ, σ are constants, µ > r, and Bt is a Brownian motion on a standard probability space (Ω,F ,P)

endowed with an augmented filtration {Ft}t≥0 generated by the Brownian motion Bt.

The Budget Constraint and Admissible Strategies: We assume that the agent receives the labor wage

at the constant rate ε > 0. The agent’s wealth process (Xc,π
t )∞t=0 corresponding to strategy (c, π) evolves

according to the following dynamics:

dXc,π
t = [rXc,π

t + πt(µ− r)− ct + ε]dt+ σπtdBt, Xc,π
0 = x > − ε

r
, (4)

where ct ≥ 0 and πt are the consumption rate and the dollar amount invested in the risky asset, respectively,

at time t.

Throughout this paper, (c, π) belongs to the admissible class A(x) if they are Ft-progressively measurable

processes that satisfy the following conditions:

(a) ct and πt satisfy ∫ t

0

csds <∞, a.s. and

∫ t

0

π2
sds <∞, a.s., ∀ t ≥ 0, (5)

(b) (ct)
∞
t=0 satisfies the dynamic welfare constraints in (3),

(c) The wealth (Xc,π
t )∞t=0 corresponding to (ct, πt)

∞
t=0 in (4) satisfies

Xc,π
t > − ε

r
a.s. ∀ t ≥ 0.
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Utility Functions: We make the following assumptions on the felicity function to guarantee the existence

of a solution to the agent’s optimization problem:

Assumption 1. Felicity function u : [0,∞) → R is strictly increasing, strictly concave and continuously

differentiable, and limc→+∞ u′(c) = 0.

The strictly decreasing and continuous function u′ : (0,∞)
onto−→ (0, u′(0)) has strictly decreasing continu-

ous inverse I : (0, u′(0))
onto−→ (0,∞). We extend I by setting I(y) = 0 for y ≥ u′(0). Then, we have

u′(I(y)) =

y, 0 < y < u′(0),

u′(0), y ≥ u′(0),

and I(u′(c)) = c when 0 < c <∞. We note that limy→∞ I(y) = 0.

Remark 1. The conditions in Assumption 1 are commonly employed in the consumption-investment choice

problem. The increasing property and strict concavity of the utility function in Assumption 1 imply that the

agent has monotone preference and exhibits risk aversion. The last limiting condition is the Inada condition,

which states that the marginal utility of consumption approaches zero if one consumes larger amounts of

consumption goods. This assumption is standard in the literature (see Merton (1969, 1971)).

Assumption 2. For any y > 0, ∫ y

0

ξ−n2I(ξ)dξ <∞.

where n1 > 0 and n2 < 0 are the two roots of the quadratic equation:

q(n) :=
θ2

2
n2 +

(
β − r − θ2

2

)
n− β = 0. (6)

Remark 2. Assumption 2 is a necessary and sufficient condition for the existence of optimal policies for

standard consumption-investment choice problem, that is, the agent’s problem without the welfare constraints

(see Chapter 3.9 in Karatzas and Shreve (1998)). Quantity I(y) is the consumption corresponding to marginal

utility y. Hence, the assumption implies that the improper integral near-zero consumption weighted by the

positive power −n2 of the marginal utility is finite. Accordingly, it implies that consumption does not explode

too quickly as marginal utility becomes very small.

For the welfare constraint in (3), we make the following assumptions.

Assumption 3. P satisfies the following condition.

lim
c→0+

u(c) < βP < lim
c→∞

u(c).

Remark 3. As described in the Introduction, one example of the minimum welfare level P is the reservation

utility of an agent with limited commitment. Suppose that the agent can choose to default and not repay

the debt, and the consequential default penalty is that the agent is not allowed to participate in the financial

market and is only able to consume a fixed proportion δI of income afterwards. In this case we have

P =

∫ ∞
0

e−βtu(δIε)dt.
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We now describe the optimization problem for the agent.

Problem 1 (Primal Problem).

Given x > − ε
r , we consider the following optimization problem:

V (x) = sup
(c,π)∈A(x)

E
[∫ ∞

0

e−βtu(ct)dt

]
. (7)

Because Problem 1 involves the choice of consumption and portfolio as well as dynamic constraints, our

strategy for solving the problem consists of the following steps:

(1) By using the duality approach, we derive the budget constraint in static form for Problem 1. To

transform the infinitely many constraints in (3) into one constraint, we employ the method proposed

by He and Pagés (1993) with a modification to fit our purpose. To do this, we introduce a non-

decreasing process, which can be thought of as the integral of infinitesimal Lagrange multipliers for the

constraint (3). Then, we can set the Lagrangian for Problem 1.

(2) By maximizing the Lagrangian over consumption, we derive the candidates of optimal consumption.

Putting this in the Lagrangian, we define the dual value function, which takes the form of a two-

dimensional singular control problem.

(3) Applying the dynamic programming principle to the dual problem, we derive its associated Hamilton-

Jacobi-Bellman(HJB) equation with a gradient constraint. We provide an explicit-form solution to the

HJB equation and verification that it is the equivalent to the dual value function.

(4) Finally, we prove the duality theorem and provide the optimal strategies in the explicit-forms.

3 A Dual Optimization Problem

First, we transform the agent’s dynamic wealth process in (4) into a static-form constraint using the lin-

earization method developed by Cox and Huang (1989) and Karatzas et al. (1987). Let us define

θ ≡ µ− r
σ

, Ht ≡ e−(r+ θ2

2 )t−θBt , Hts ≡
Hs
Ht

for 0 ≤ t ≤ s,

where Ht is the stochastic discount factor or state price density. The agent’s wealth process can then be

transformed into the following static budget constraint:

E
[∫ ∞

0

Ht(ct − ε)dt
]
≤ x. (8)

Proposition 4.1 in Knudsen et al. (1998) is useful for investigating the optimization problem. Thus, we

briefly introduce a proposition based on our notation. For an arbitrary measurable function φ(y) defined on

R+, let us define operator Γ as

Γφ(y) = E
[∫ ∞

0

e−βtφ(Yyt )dt

]
, (9)

where Yyt ≡ yeβtHt. Note that

dYyt
Yyt

= (β − r)dt− θdBt with Yy0 = y. (10)

The following proposition provides some properties of the operator Γ:
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Proposition 1 (Proposition 4.1 in Knudsen et al. (1998)). Let φ(y) be an arbitrary measurable function

defined on R+. Then, the following conditions are equivalent:

(i) for every y > 0

Γ|φ|(y) <∞,

(ii) for every y > 0 ∫ y

0

ξ−n2−1|φ(ξ)|dξ +

∫ ∞
y

ξ−n1−1|φ(ξ)|dξ <∞.

Under condition (i) or (ii), the following statements are true:

(a) lim infy↓0 y
−n2 |φ(y)| = lim infy↑∞ y−n1 |φ(y)| = 0,

(b) Γφ has the following form:

Γφ(y) =
2

θ2(n1 − n2)

[
yn2

∫ y

0

ξ−n2−1φ(ξ)dξ + yn1

∫ ∞
y

ξ−n1−1φ(ξ)dξ

]
,

(c) Γφ(y) is twice differentiable and satisfies

θ2

2
y2Γ′′φ(y) + (β − r)yΓ′φ(y)− βΓφ(y) + φ(y) = 0,

(d) there exists a positive constant C such that

|Γ′φ(y)| ≤ C(yn1−1 + yn2−1) for all y > 0,

(e) limt→∞ e−βtE [|Γφ(Yyt )|] = 0.

We now derive a dual problem arising from Problem 1. For this purpose, we first provide an informal

heuristic derivation of the Lagrangian for the dual problem. The key is to write a part of the Lagrangian

corresponding to the infinitely many constraints (2). By utilizing the method developed by He and Pagés

(1993), we transform the constraint (2) into the following condition:

E
[∫ ∞

0

ηt (Wt − P ) dt

]
= E

[∫ ∞
0

ηt

(∫ ∞
t

e−β(s−t)u(cs)ds

)
dt− P

∫ ∞
0

ηtdt

]
≥ 0, (11)

where ηt ≥ 0 denotes the Lagrangian multiplier of constraint (2) at each time t ≥ 0.

We now write the Lagrangian L for Problem 1 with constraints (2) and (8) as follows:

L ≡E
[∫ ∞

0

e−βtu(ct)dt

]
+ y

(
x− E

[∫ ∞
0

Ht(ct − ε)dt
])

+ E
[∫ ∞

0

eβtηt

(∫ ∞
t

e−βsu(cs)ds

)
dt

− P

∫ ∞
0

ηtdt

]
, (12)

where y > 0 denotes the Lagrangian multiplier for the static budget constraint (8). By ignoring the technical

conditions to derive the dual problem, we deduce the following.

L =E
[∫ ∞

0

e−βtu(ct)dt

]
+ y

(
x− E

[∫ ∞
0

Ht(ct − ε)dt
])

+ E
[∫ ∞

0

eβtηt

(∫ ∞
t

e−βsu(cs)ds

)
dt− P

∫ ∞
0

ηtdt

]
=E

[∫ ∞
0

e−βtu(ct)dt

]
+ y

(
x− E

[∫ ∞
0

Ht(ct − ε)dt
])

+ E
[∫ ∞

0

(∫ t

0

eβsηsds

)
e−βtu(ct)dt− P

∫ ∞
0

ηtdt

]
(13)

=E
[∫ ∞

0

e−βt
((

1 +

∫ t

0

eβsηsds

)
u(ct)− Yyt ct + Yyt ε

)
dt− P

∫ ∞
0

e−βteβtηtdt

]
,
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where Yyt = yeβtHt and we use integration by parts in the second equality.

We define process Z by

Zt =

∫ t

0

eβsηsds for t ≥ 0. (14)

Note that the process Z is non-decreasing in t ≥ 0 with dZt = eβtηtdt. Then, we have

L = E
[∫ ∞

0

e−βt ((1 + Zt)u(ct)− Yyt ct + Yyt ε) dt− P
∫ ∞

0

e−βtdZt
]
. (15)

Since the dual conjugate function ũ of u is defined as

ũ(y) = sup
c≥0

(u(c)− yc) = u(I(y))− yI(y) with I(y) = (u′)−1(y), (16)

we deduce that the candidate for the optimal consumption ĉ(Yyt ) for y > 0 is given by

ĉ(Yyt ) := I

(
Yyt

1 + Zt

)
for t ≥ 0. (17)

Optimizing over ct in (15) yields

L(y,Z) := E
[∫ ∞

0

e−βt
(

(1 + Zt)ũ
(
Yyt

1 + Zt

)
+ Yyt ε

)
dt− P

∫ ∞
0

e−βtdZt
]

+ yx. (18)

Motivated by the discussion above, we formally state the dual problem as follows.

Problem 2 (Dual Problem).

J(y) = inf
Z∈Π(0)

E
[∫ ∞

0

e−βt
(

(1 + Zt)ũ
(
Yyt

1 + Zt

)
+ Yyt ε

)
dt− P

∫ ∞
0

e−βtdZt
]
, (19)

where Π(z) is the set of all positive non-decreasing, right-continuous processes Z with left-limits, and Z0− =

z ≥ 0 such that

E

[∫ ∞
0

e−βt
∫ Zt

z

∣∣∣∣u(I ( Yyt1 + ν

))∣∣∣∣ dνdt
]
<∞, (20)

E
[∫ ∞

0

e−βtdZt
]
<∞. (21)

We call J(y) and the process Z the dual value function and shadow price, respectively.

Remark 4. One might think that integral condition (20) is somewhat unusual. However, the key idea for

the verification of the dual problem is to apply Fubini’s theorem. As can be seen in the proof of Theorem 1,

the integral condition allows us to utilize Fubini’s theorem.

Lemma 1. Let z ≥ 0 be given. For any (Zt)∞t=0 ∈ Π(z), the integrability condition (20) implies that:

E
[∫ ∞

0

e−βt(1 + Zt)
∣∣∣∣ũ( Yyt

1 + Zt

)∣∣∣∣ dt] <∞. (22)

Thus, the integrability conditions (20) and (21) guarantee that the dual value function J(y) is finite.

Proof. See Appendix A.

8



The next proposition states that the Lagrangian L(y,Z) in (18) is greater than or equal to the value

function V (x) defined in Problem 1.

Proposition 2. For any y > 0 and Z ∈ Π(0), the following inequality holds.

E
[∫ ∞

0

e−βtu(ct)dt

]
≤ L(y,Z).

The equality holds if and only if, for all t ≥ 0

ct =I

(
Yyt

1 + Zt

)
, x = E

[∫ ∞
0

Ht(ct − ε)dt
]
,

0 =E
[∫ ∞

0

e−βt
(
Et
[∫ ∞

t

e−β(s−t)u(cs)ds

]
− P

)
dZt

]
.

Proof. See Appendix B.

From Proposition 2, we have

V (x) = sup
(c,π)∈A(x)

E
[∫ ∞

0

e−βtu(ct)dt

]
≤ inf
y>0

inf
Z∈Π(0)

L(y,Z) ≤ inf
y>0

(J(y) + yx) . (23)

Thus, we derive the following weak-duality:

V (x) ≤ inf
y>0

(J(y) + yx) . (24)

We demonstrate that the above weak-duality holds with equality in Theorem 2.

To apply the dynamic programming principle to the dual function in Problem 2, we consider the following

two-dimensional singular control problem of J(y, z) given by

J(y, z) = inf
Z∈Π(z)

E
[∫ ∞

0

e−βt
(

(1 + Zt)ũ
(
Yyt

1 + Zt

)
+ Yyt ε

)
dt− P

∫ ∞
0

e−βtdZt
]
. (25)

Note that

J(y) = J(y, 0). (26)

Remark 5. As mentioned in the Introduction, the structure of the singular control problem in (25) is similar

to that of the irreversible investment problem with the capacity expansion decision studied by Pindyck (1988),

Bertola (1998), Riedel and Su (2011) and references therein.

From the standard theory of singular control (see Harrison (1985) and Stokey (2009)), we consider the

following two-dimensional HJB equation with a gradient constraint arising from the problem (25):

min

{
LQ(y, z) + (1 + z)ũ

(
y

1 + z

)
+ yε, ∂zQ(y, z)− P

}
= 0, (27)

where the differential operator L is given by

L ≡ θ2

2
y2 d

2

dy2
+ (β − r)y d

dy
− β.
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Usually, many studies on singular control problems show the sufficient conditions2, under which the value

function J(y, z) of the control problem (25) identifies with a solution to Q(y, z) by imposing proper growth

condition on ũ(·). However, under Assumptions 1-2 without the growth condition on ũ, it is not easy to

show the sufficient conditions (28) and (29) in our optimization problem.

To overcome this difficulty, in the next section, we directly show the identification between J(y, z) and

Q(y, z) instead of imposing the growth condition on ũ to show the sufficient conditions. The main idea of

the proof is to utilize Fubini’s theorem and express Q(y, z) as the integral of the optimal stopping problems

(see Proposition 5 and the proof of Theorem 1). This is one of the technical contributions of this study.

4 Solution Analysis

Consider the following substitution:

Q(y, z) = (1 + z)M(ν) with ν =
y

1 + z
. (30)

It follows from (27) that:

min {LM(ν) + ũ (ν) + νε, M(ν)− νM′(ν)− P} = 0 for ν ∈ R+. (31)

To derive a solution to HJB (31), we consider the following free boundary problem (FBP) arising from HJB

(31): for ν ∈ R+ 
LM(ν) + ũ(ν) + νε = 0 for 0 < ν < ν̄,

M(ν)− νM′(ν) = P for ν ≥ ν̄,

(M− νM′)′(ν̄) = −ν̄M′′(ν̄) = 0 (smooth-pasting).

(32)

We will find a twice continuously differentiable solution to FBP (32).

Lemma 2. The following inequality holds for any ν > 0:∫ ν

0

ξ−n2−1|u(I(ξ))|dξ +

∫ ∞
ν

ξ−n1−1|u(I(ξ))|dξ <∞

and ∫ ν

0

ξ−n2−1|ũ(ξ)|dξ +

∫ ∞
ν

ξ−n1−1|ũ(ξ)|dξ <∞.

Proof. See Appendix C.

2The sufficient conditions are twice continuously differentiability of Q(y, z), martingale condition∫ t

0

e−βtYyt ∂yQ(Yyt ,Zt)dBt is Ft-martingale, (28)

and transversality condition

lim
t→∞

e−βtE [Q(Yyt ,Zt)] = 0 (29)

for any Z ∈ Π(z)
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In the region 0 < ν < ν̄, a solution to FBP (32) can be expressed as the sum of a general solution to the

homogeneous equation and a particular solution:

M(ν) = D1ν
n1 +D2ν

n2 +
2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1(ũ(ξ) + ξε)dξ + νn1

∫ ∞
ν

ξ−n1−1(ũ(ξ) + ξε)dξ

]
.

From Proposition 1 and Lemma 2, we deduce that

2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1(ũ(ξ) + ξε)dξ + νn1

∫ ∞
ν

ξ−n1−1(ũ(ξ) + ξε)dξ

]
=

2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1ũ(ξ)dξ + νn1

∫ ∞
ν

ξ−n1−1ũ(ξ)dξ

]
+
ε

r
ν

is well-defined. As Q(y, z) should satisfy the transversality condition limt→∞ E
[
e−βtQ(Yyt ,Zt)

]
= 0, we set

D2 = 0. Thus, we can rewrite M(ν) as

M(ν) = D1ν
n1 +

2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1ũ(ξ)dξ + νn1

∫ ∞
ν

ξ−n1−1ũ(ξ)dξ

]
+
ε

r
ν.

From Lemma 2 and Proposition 1 (a), we have

lim inf
y↓0

y−n2+1I(y) = 0.

It follows that

νM′(ν) = n1D1ν
n1 +

2

θ2(n1 − n2)

[
n2ν

n2

∫ ν

0

ξ−n2−1(ũ(ξ) + ξε)dξ + n1ν
n1

∫ ∞
ν

ξ−n1−1(ũ(ξ) + ξε)dξ

]
= n1D1ν

n1 +
2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1(−ξI(ξ) + ξε)dξ + νn1

∫ ∞
ν

ξ−n1−1(−ξI(ξ) + ξε)dξ

]
,

where we used integration by parts for the Riemann-Stieltjes integrals in the second equality. Because

ũ(ξ) = u(I(ξ))− ξI(ξ), we obtain that for 0 < ν ≤ ν̄

M− νM′(ν) =(1− n1)D1ν
n1 +

2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1(ũ(ξ) + ξI(ξ))dξ + νn1

∫ ∞
ν

ξ−n1−1(ũ(ξ) + ξI(ξ))dξ

]
(33)

=(1− n1)D1ν
n1 +

2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1u(I(ξ))dξ + νn1

∫ ∞
ν

ξ−n1−1u(I(ξ))dξ

]
.

By the smooth-pasting condition (32), we have

D1 =
2

θ2(n1 − 1)(n1 − n2)

∫ ∞
ν̄

ξ−n1−1u(I(ξ))dξ − −n2P

(n1 − 1)(n1 − n2)
ν̄−n1

=
2

θ2(n1 − 1)(n1 − n2)

∫ ∞
ν̄

ξ−n1−1 (u(I(ξ))− βP ) dξ

and

0 =

∫ ν̄

0

ξ−n2−1u(I(ξ))dξ − θ2

2
n1ν̄

−n2P =

∫ ν̄

0

ξ−n2−1 (u(I(ξ))− βP ) dξ.

Lemma 3. There exists a unique free boundary ν̄ > 0 such that

Ψ(ν̄) :=

∫ ν̄

0

ξ−n2−1 (u(I(ξ))− βP ) dξ = 0.

Then,

u(I(ν̄))− βP < 0.
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Proof. See Appendix D.

Because M(ν)− νM′(ν)− P = 0 for all ν ≥ ν̄, it follows that:

M′′(ν) = 0 for ν ≥ ν̄.

This implies that M′(ν) is constant on the domain ν ≥ ν̄, that is,

M′(ν) = χ for ν ≥ ν̄.

for some constant χ. Under the assumption that M is C2, we can deduce that

LM(ν̄) + ũ(ν̄) + ν̄ε = 0.

Since M′′(ν̄) = 0 and M(ν̄)− ν̄M′(ν̄) = P , we have

χ =
1

rν̄
(ũ(ν̄)− βP + ν̄ε) .

This leads to

M(ν) = νM′(ν) + P = (ũ(ν̄)− βP + ν̄ε)
ν

rν̄
+ P for ν ≥ ν̄.

In summary, we obtain the following explicit-form of M(ν) satisfying FBP (32):

M(ν) =


D1ν

n1 +
2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1ũ(ξ)dξ + νn1

∫ ∞
ν

ξ−n1−1ũ(ξ)dξ

]
+
ε

r
ν for 0 < ν < ν̄,

(ũ(ν̄)− βP + ν̄ε)
ν

rν̄
+ P for ν ≥ ν̄,

(34)

where

D1 =
2

θ2(n1 − 1)(n1 − n2)

∫ ∞
ν̄

ξ−n1−1 (u(I(ξ))− βP ) dξ, (35)

0 =

∫ ν̄

0

ξ−n2−1 (u(I(ξ))− βP ) dξ. (36)

Proposition 3. M(ν) given in (34) is twice continuously differentiable, and satisfies the HJB equation (31).

Proof. See Appendix E.

Let us denote ẑ(y) as

ẑ(y) =
y

ν̄
− 1.

From substitution (30), we deduce that Q(y, z) is given by:

(i) for ẑ(y) ≤ z

Q(y, z) =(1 + z)

{
D1

(
y

1 + z

)n1

+
2

θ2(n1 − n2)

[(
y

1 + z

)n2
∫ y

1+z

0

ξ−n2−1ũ(ξ)dξ (37)

+

(
y

1 + z

)n1
∫ ∞

y
1+z

ξ−n1−1ũ(ξ)dξ

]
+
ε

r

(
y

1 + z

)}
,

(ii) for 0 ≤ z < ẑ(y)

Q(y, z) = (ũ(ν̄)− βP + ν̄ε)
y

rν̄
+ P (1 + z) = Q (y, ẑ(y)) + P (z − ẑ(y)). (38)

12



Corollary 1. Q(y, z) given in (37) and (38) is twice continuously differentiable, and satisfies HJB equation

(27).

For a given y > 0, we define a stopping time τ̂(y) as the first hitting time of Yyt to reach the boundary ν̄:

τ̂(y) = inf {t ≥ 0 | Yyt ≥ ν̄} . (39)

In the following proposition, we can characterize that τ̂(y) is the solution to a certain optimal stopping

problem, which is useful for the verification theorem for the dual value function:

Proposition 4. τ̂(y) is the solution to the following optimal stopping problem.

ϕ(y) ≡ inf
τ∈S

E
[
e−βτΓ(u◦I−βP )(Yyτ )

]
= inf
τ∈S

E
[∫ ∞

τ

e−βt (u(I(Yyt ))− βP ) dt

]
(40)

=E
[
e−βτ̂(y)Γ(u◦I−βP )(Yyτ̂(y))

]
, (41)

where S is the set of all F-stopping times, taking values in [0,∞].

Moreover, ϕ(y) is given in the following explicit-form.

ϕ(y) =


Γ(u◦I−βP ) (y) for y ≥ ν̄,

Γ(u◦I−βP )(ν̄)
(y
ν̄

)n1

for 0 < y < ν̄.

(42)

Proof. See Appendix F.

For a given y > 0 and z ≥ 0, let us consider the barrier strategy Ẑz(y) defined by

Ẑzt (y) := max

{
1 + z, sup

0≤s≤t

Yyt
ν̄

}
− 1 for t ≥ 0, (43)

with Ẑz0−(y) = z. Here, ν̄ denotes the free boundary given in Lemma 3.

Proposition 5. Let y > 0 and z ≥ 0 be given.

(a) (Ẑzt (y))∞t=0 ∈ Π(z).

(b) For given y > 0 and z ≥ 0, the following relationship holds:

Q(y, z) =E

[∫ ∞
0

e−βt

(
(1 + Ẑzt (y))ũ

(
Yyt

1 + Ẑzt (y)

)
+ Yyt ε

)
dt− P

∫ ∞
0

e−βtdẐzt (y)

]

=

∫ ∞
z

ϕ

(
y

1 + ν

)
dν + (1 + z)Γũ

(
y

1 + z

)
+
ε

r
y

where ϕ(y) is defined in Proposition 4.

Proof. See Appendix G.

Theorem 1.

(a) For given y > 0 and z ≥ 0, J(y, z) = Q(y, z).
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(b) The dual value function J(y) has the following explicit-form:

J(y) =


D1y

n1 +
2

θ2(n1 − n2)

[
yn2

∫ y

0

ξ−n2−1(ũ(ξ) + ξε)dξ + yn1

∫ ∞
y

ξ−n1−1(ũ(ξ) + ξε)dξ

]
for 0 < y < ν̄,

(ũ(ν̄)− βP + ν̄ε)
y

rν̄
+ P for y ≥ ν̄,

(44)

where D1 and ν̄ are given in (35).

Proof. See Appendix H.

Note that

Q(y, z) = (1 + z)M
(

y

1 + z

)
.

It follow that

Qz(y, z) =M
(

y

1 + z

)
− y

1 + z
M′

(
y

1 + z

)
.

Since J(y) = J(y, 0) = Q(y, 0) =M(y), we have

Jy(y, 0) = J ′(y) and Jz(y, 0) =M(y)− yM′(y) = J(y)− yJ ′(y). (45)

The following lemma provides the meaning of the relation in (45).

Lemma 4. For a given y > 0, the candidate for optimal consumption ĉ in (17) satisfies

E

[∫ ∞
0

Ht

(
ĉ

(
Yyt

1 + Ẑ0
t (y)

)
− ε

)
dt

]
= −J ′(y) (46)

and

E

[∫ ∞
0

e−βtu

(
ĉ

(
Yyt

1 + Ẑ0
t (y)

))
dt

]
= J(y)− yJ ′(y). (47)

Proof. See Appendix I.

Let us define W(y) as

W(y) := E

[∫ ∞
0

e−βtu

(
ĉ

(
Yyt

1 + Ẑ0
t (y)

))
dt

]
. (48)

From Proposition 5 (b), Theorem 1, and Lemma 4, we have

W(y) = Jz(y, 0) =− ϕ (y) + Γu◦I(y)

=− ϕ(y) + Γ(u◦I−βP )(y) + P,

where we used the fact that:

Γ(u◦I−βP )(y) = Γu◦I(y) + P.

Recall that in Proposition 4,

ϕ(y) = inf
τ∈S

E
[
e−βτΓ(u◦I−βP )(Yyτ )

]
≤ Γ(u◦I−βP )(y),
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where the equality holds if y ≥ ν̄. Overall, we deduce that

W(y) = −ϕ(y) + Γ(u◦I−βP )(y) + P ≥ P. (49)

By the Markov property and the definition of Ẑ0
t (y) in (43), we can easily derive that for any t ≥ 0

W(Yyt ) = Et

[∫ ∞
t

e−β(s−t)u

(
ĉ

(
Yys

1 + Ẑ0
s (y)

))
ds

]
≥ P, (50)

where the equality in the inequality above holds only when dẐ0
s (y) 6= 0. Thus, we can directly obtain the

following corollary.

Corollary 2. For a given y > 0, we have∫ t

0

e−βs (W(Yys )− P ) dẐ0
s (y) = 0 ∀ t ≥ 0. (51)

5 Duality Theorem and Optimal Strategies

Let us define x̄ as

x̄ := −J(ν̄) = −
(
ũ(ν̄)− βP

ν̄
+ ε

)
1

r
. (52)

Since ũ(y) = u(I(y))− yI(y) and u(I(ν̄))− βP < 0 (see Lemma 3), we deduce that:

x̄ = −
(
u(I(ν̄))− βP − ν̄I(ν̄)

ν̄
+ ε

)
1

r
> − ε

r
.

We now state our main theorem.

Theorem 2. Let x ≥ x̄ be given.

(a) The value function V (x) in Problem 1 and the dual value function J(y) in Problem 2 satisfy the following

duality relationship:

V (x) = inf
y>0

[J(y) + yx] . (53)

There exist a unique solution y∗ ∈ (0, ν̄] to the minimization problem (53) such that

x = −J ′(y∗). (54)

(b) The optimal consumption c∗t and portfolio π∗t at time t ≥ 0 are given by

c∗t = ĉ

(
Y∗t

1 + Z∗t

)
(55)

and

π∗t =
θ

σ

Y∗t
1 + Z∗t

J ′′
(
Y∗t

1 + Z∗t

)
, (56)

where

Y∗t := Yy
∗

t = y∗eβtHt and Z∗t = max

{
0, sup

0≤s≤t

Y∗t
ν̄
− 1

}
.
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(c) The agent’s wealth Xc∗,π∗

t corresponding to (c∗, π∗) at time t ≥ 0 is given by

X∗t = −J ′
(
Y∗t

1 + Z∗t

)
(57)

and satisfies

X∗t ≥ x̄ for all t ≥ 0. (58)

Proof. See Appendix J.

Remark 6. As shown in part (c) of Theorem 2, the agent’s wealth should always be greater than or equal

to x̄. If x̄ ≤ 0, then −x̄ can be interpreted as the endogenous credit limit (or borrowing limit) generated by

the welfare constraint. Note that, if we impose a credit limit (or borrowing limit) on the agent’s wealth as

Xt ≥ x̄, it is natural to assume that x̄ ≤ 0. In contrast, if we impose a welfare constraint as in our model, x̄

can also be positive, depending on the level of P .

From Theorem 1, we deduce that for y < ν̄

J ′(y) =n1D1y
n1−1 +

2

θ2(n1 − n2)

[
n2y

n2−1

∫ y

0

ξ−n2−1(ũ(ξ) + ξε)dξ + n1y
n1−1

∫ ∞
y

ξ−n1−1(ũ(ξ) + ξε)dξ

]
=n1D1y

n1−1 +
2

θ2(n1 − n2)

[
yn2−1

∫ y

0

ξ−n2−1(ε− I(ξ))dξ + yn1−1

∫ ∞
y

ξ−n1−1(ε− I(ξ))dξ

]
,

where we used integration by parts in the second equality and

lim inf
y↓0

y−n2 |ũ(y) + yε| = lim inf
y↑∞

y−n1 |ũ(y) + yε| = 0. (see Proposition 1).

Since
Y∗t

1 + Z∗t
≤ ν̄ for all t ≥ 0,

we can directly obtain the following corollary.

Corollary 3. For t ≥ 0, the agent’s wealth Xc∗,π∗

t corresponding to (c∗, π∗), and the optimal portfolio π∗t
have the following explicit-forms:

Xc∗,π∗

t = −n1D1(Υ∗t )
n1−1 +

2

θ2(n1 − n2)

[
(Υ∗t )

n2−1

∫ Υ∗
t

0

ξ−n2−1(I(ξ)− ε)dξ + (Υ∗t )
n1−1

∫ ∞
Υ∗
t

ξ−n1−1(I(ξ)− ε)dξ

]

and

π∗t =
θ

σ

{
n1(n1 − 1)D1(Υ∗t )

n1−1 − 2

θ2(n1 − n2)

[
(n2 − 1)(Υ∗t )

n2−1

∫ Υ∗
t

0

ξ−n2−1(I(ξ)− ε)dξ

+ (n1 − 1)(Υ∗t )
n1−1

∫ ∞
Υ∗
t

ξ−n1−1(I(ξ)− ε)dξ

]}
,

where

Υ∗t =
Y∗t

1 + Z∗t
.

In particular, Xc∗,π∗

t = x̄ and π∗t = 0 when Υ∗t reaches the boundary ν̄.

Proposition 6 (Comparative Statics). Let x ≥ x̄ be given.
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(a) The minimum level of wealth x̄ increases in P .

(b) The consumption c∗t decreases in P .

(c) The optimal portfolio π∗t decreases (resp. increases) in P if θ > 0 (resp. θ < 0).

Proof. See Appendix K.

6 Examples and Implications

In this section, we consider the following hyperbolic absolute risk aversion (HARA) class utility function:

u(c) =
(c+ a)1−γ

1− γ
(0 < γ 6= 1, a ≥ 0). (59)

It is obvious that the above HARA utility function satisfies Assumption 1, whereas the following condition

is required to satisfy Assumption 2:

K := −q(1− 1

γ
) > 0,

where q(·) is the quadratic function defined in (6). Here, K is the Merton constant and this condition is

equivalent to n2 < 1− 1
γ < n1.

In this example, a can be interpreted as government subsidy or basic support, as in Bae et al. (2020)

and Park et al. (2021), which cannot be stored and should be consumed immediately. If a > 0, c can be

interpreted as additional consumption by the agent on top of a. If a = 0, this example becomes constant

relative risk aversion (CRRA) utility with the coefficient of relative risk aversion 0 < γ 6= 1.3

We can easily check that I(y) and ũ(y) have different formulas depending on the relationship between y

and a−γ as follows:

I(y) =


y−

1
γ − a for 0 < y < a−γ ,

0 for y ≥ a−γ ,
and ũ(y) =


γ

1− γ
y1− 1

γ + ay for 0 < y < a−γ ,

1

1− γ
a1−γ for y ≥ a−γ .

(60)

Because J(y) has a different formula depending on the relationship between y and ν̄, this implies that the

solution will differ depending on the relationship between ν̄ and a−γ , which is equivalent to the relationship

between P and P̂ (a) := −n2

β(1−n2− 1
γ )

a1−γ

1−γ , an increasing function of a. In other words, depending on the

relationship between the minimum welfare P and basic support a, we obtain different solutions as follows:

• If P > P̂ (a), by substituting (60) into the solution in Theorem 1, we can obtain

ν̄ =

{
(1− n2 − 1

γ )β(1− γ)P

−n2

} γ
γ−1

< a−γ , (61)

and consequently,

J(y) =


− (1− γ)P ν̄−n1

(n1 − 1)(n1 − 1 + 1
γ )γ

yn1 +
γ

(1− γ)K
y1− 1

γ +
ε+ a

r
y for 0 < y < ν̄,(

γ

1− γ
ν̄1− 1

γ − βP
)
y

rν̄
+
ε+ a

r
y + P for y ≥ ν̄.

(62)

3We can also consider log utility such as u(c) = ln (c+ a) (a ≥ 0) that incorporates the basic support a. As it does not provide

new properties or implications, we focus on the example in (59) to avoid redundancy.
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Note that ν̄ for this case is irrelevant to a, and the role of basic support a in J(y) is simply an additional

income added to labor income ε. By substituting (60) into the solution in Theorem 2, we have

V (x) =


(1− γ)P ν̄−n1

(n1 − 1 + 1
γ )γ

y∗n1 +
1

(1− γ)K
y∗1−

1
γ for x > x̄,

P for x = x̄,

(63)

c∗ =


y∗−

1
γ − a for x > x̄,

ν̄−
1
γ − a for x = x̄,

(64)

π∗ =


θ

σγ

(
x+

ε+ a

r

)
− θ

σ

n1(1− γ)P ν̄−n1

(n1 − 1)γ
y∗n1−1 for x > x̄,

0 for x = x̄,

(65)

where y∗ ∈ (0, ν̄) is the unique solution to the following equation for given x > x̄:

x =
(1− γ)P ν̄−n1

(n1 − 1)(n1 − 1 + 1
γ )γ

n1y
∗n1−1 +

1

K
y∗−

1
γ − ε+ a

r
,

and

x̄ = −
(

γ

1− γ
ν̄1− 1

γ − βP
)

1

rν̄
− ε+ a

r
.

As we can see in the equation (65) and the right panel of Figure 1, the optimal investment becomes

zero at the minimum wealth level x̄, at which the welfare constrain is binding, to prevent the wealth

level from being less than the minimum wealth level x̄. Note that the agent may keep the additional

consumption c stay at 0 for a while in the presence of the basic support a > 0. However, when

P > P̂ (a), the minimum welfare P imposed by the welfare constraint is high enough relative to the

basic support a so that the minimum level of optimal additional consumption c∗ (attained when the

welfare constraint is binding at x = x̄) is positive (ν̄−
1
γ − a > 0) because ν̄ < a−γ when P > P̂ (a).

This can be observed in the left panel In Figure 1.

In contrast, when P ≤ P̂ (a), we have a quite different result as follows.4

• If P ≤ P̂ (a), we have a different formula for ν̄ that depends on the basic support a as follows:

ν̄ =

{
γ(1− n2 −

1

γ
)

(
βP − 1

1− γ
a1−γ

)
aγ(1−n2− 1

γ )

} 1
n2

≥ a−γ (66)

and we have

J(y) =



(
D1 −

2aγ(n1−1+ 1
γ )

θ2(n1 − n2)n1(n1 − 1)(n1 − 1 + 1
γ )γ

)
yn1 +

γ

(1− γ)K
y1− 1

γ +
ε+ a

r
y for 0 < y < a−γ ,

D1y
n1 +

2a−γ(1−n2− 1
γ )

θ2(n1 − n2)(−n2)(1− n2)(1− n2 − 1
γ )γ

yn2 +
1

(1− γ)β
a1−γ +

ε

r
y for a−γ ≤ y < ν̄,(

γ

1− γ
a1− 1

γ − βP
)
y

rν̄
+
ε

r
y + P for y ≥ ν̄,

(67)

4Note that we only have the case P > P̂ (a) when there is no basic support because P > P̂ (0+) := lima→0+ P̂ (a) regardless of

γ.
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Figure 1: Consumption and Investment when P > P̂ (a).

Baseline parameters: r = 0.03, β = 0.04, µ = 0.07, σ = 0.3, γ = 0.5, P = 55, ε = 1.

By setting a = 0.2, we have P̂ (a) = 41.2346 that is less than P .

where

D1 = − 2

θ2(n1 − n2)n1(n1 − 1)

(
βP − 1

1− γ
a1−γ

)
ν̄−n1 < 0. (68)

In contrast to the previous case with P > P̂ (a), we have three regions of y that gives different form of

J(y): (0, a−γ), [a−γ , ν̄), [ν̄,∞) when P ≤ P̂ (a). Let x̂ and x̄ be the values of primal variable x that

correspond to y = a−γ and y = ν̄, respectively, then we can verify that

x̂ = −D1n1a
−γ(n1−1) +

2a−γ(1−n2− 1
γ )

θ2(n1 − n2)(1− n2)(1− n2 − 1
γ )γ

aγ(1−n2) − ε

r
, (69)

x̄ = −
(

1

1− γ
a1−γ − βP

)
1

rν̄
− ε

r
. (70)
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Moreover, it follows from Theorem 2 that

V (x) =



(
D1 −

2aγ(n1−1+ 1
γ )

θ2(n1 − n2)n1(n1 − 1)(n1 − 1 + 1
γ )γ

)
(1− n1)yn1 +

1

(1− γ)K
y1− 1

γ for x > x̂,

D1(1− n1)yn1 +
2a−γ(1−n2− 1

γ )

θ2(n1 − n2)(−n2)(1− n2 − 1
γ )γ

yn2 +
1

(1− γ)β
a1−γ for x̄ < x ≤ x̂,

P for x = x̄,

(71)

c∗ =


y∗−

1
γ − a for x > x̂,

0 for x̄ < x ≤ x̂,

0 for x = x̄,

(72)

π∗ =



θ

σγ

(
x+

ε+ a

r

)
+
θ

σ

[
D1n1(n1 − 1 +

1

γ
)− 2aγ(n1−1+ 1

γ )

θ2(n1 − n2)(n1 − 1)γ

]
yn1−1 for x > x̂,

θ

σ

[
D1n1(n1 − 1)yn1−1 +

2a−γ(1−n2− 1
γ )

θ2(n1 − n2)(1− n2 − 1
γ )γ

yn2−1

]
for x̄ < x ≤ x̂,

0 for x = x̄,

(73)

where y∗ ∈ (0, ν̄) is the unique solution to the following equation for given x > x̄:

x =



(
−D1n1 +

2aγ(n1−1+ 1
γ )

θ2(n1 − n2)(n1 − 1)(n1 − 1 + 1
γ )γ

)
yn1−1 +

1

K
y−

1
γ − ε+ a

r
for x > x̂,

−D1n1y
n1−1 +

2a−γ(1−n2− 1
γ )

θ2(n1 − n2)(1− n2)(1− n2 − 1
γ )γ

yn2−1 − ε

r
for x̄ < x ≤ x̂.

(74)

Recall that c, the additional consumption on top of the basic support a can stay at 0 for a while if there

is a basic support a > 0. When P ≤ P̂ (a), the minimum welfare P required by the welfare constraint

P is not large enough. Therefore, when the wealth level x goes below x̂ but still above x̄ (x ∈ (x̄, x̂]), it

is optimal for the agent to keep the additional consumption c as zero, while the optimal investment is

not zero yet. As time goes, and the wealth level goes up above x̂, the agent will have positive additional

consumption again. On the other hand, if the wealth level drops and reaches x̄, then it is optimal to

make both the additional consumption c and the investment π be zero. This result can be observed in

Figure 2.

7 Concluding Remarks

We have studied the consumption and investment problem of an agent under the welfare constraints with a

general class of utility functions. The welfare constraint requires that the expected utility of the agent should

not be less than a fixed minimum welfare level, which is an optimization problem with an infinite number
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Figure 2: Consumption and Investment when P ≤ P̂ (a).

Baseline parameters: r = 0.03, β = 0.04, µ = 0.07, σ = 0.3, γ = 0.5, P = 55, ε = 1.

By setting a = 1, we have P̂ (a) = 92.2033 that is greater than P .

of constraints. We have derived the corresponding dual problem, which becomes a two-dimensional singular

control problem, and its associated HJB equation with a gradient constraint. The explicit solutions for the

general utility functions are obtained, and the optimal consumption and investment strategies are provided.

The welfare constraint endogenously generates a minimum wealth level at which the optimal investment

becomes zero to satisfy the welfare constraint without violating it. Moreover, we show that the minimum

wealth level increases, while the optimal consumption and investment decrease as the minimum welfare level

increases. These results consistently hold for the general class of utility functions.

Using a HARA class utility function, we introduce an example that includes a government subsidy or

basic support that can only be consumed as soon as the agent receives it and cannot be stored. In this case,

ct in our model can be interpreted as additional consumption in excess of basic support. Depending on the

relationship between the minimum welfare level and basic support, solutions have different properties. In

particular, when basic support is large enough relative to the minimum welfare level, there exists an range

of wealth levels in which the optimal additional consumption is zero, and this phenomenon does not appear

when basic support is not large enough.
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Appendix

A Proof of Lemma 1

Note that
d

dz

(
(1 + z)ũ

(
y

1 + z

))
= ũ

(
y

1 + z

)
+

y

1 + z
I

(
y

1 + z

)
= u

(
I

(
y

1 + z

))
.

It follows that

E
[∫ ∞

0

e−βt(1 + Zt)
∣∣∣∣ũ( Yyt

1 + Zt

)∣∣∣∣ dt | Z0− = z

]
=E

[∫ ∞
0

e−βt

∣∣∣∣∣
∫ Zt
z

u

(
I

(
Yyt

1 + ν

))
dν + (1 + z)ũ

(
Yyt

1 + z

)∣∣∣∣∣ dt
]

≤E

[∫ ∞
0

e−βt

∣∣∣∣∣
∫ Zt
z

u

(
I

(
Yyt

1 + ν

))
dν

∣∣∣∣∣ dt
]

+ E
[∫ ∞

0

e−βt
∣∣∣∣(1 + z)ũ

(
Yyt

1 + z

)∣∣∣∣ dt]

≤E

[∫ ∞
0

e−βt
∫ Zt
z

∣∣∣∣u(I ( Yyt1 + ν

))∣∣∣∣ dνdt
]

+ (1 + z)E
[∫ ∞

0

e−βt
∣∣∣∣ũ( Yyt1 + z

)∣∣∣∣ dt]

=E

[∫ ∞
0

e−βt
∫ Ẑt

z

∣∣∣u(I (Y y
1+ν

t

))∣∣∣ dνdt]+ (1 + z)E
[∫ ∞

0

e−βt
∣∣∣∣ũ(Y y

(1+z)

t

)∣∣∣∣ dt]

=E

[∫ ∞
0

e−βt
∫ Ẑt

z

∣∣∣u(I (Y y
1+ν

t

))∣∣∣ dνdt]+ (1 + z)Γ|ũ|(y)

<∞

Therefore, for any Z ∈ Π(0),

|J(y)| ≤ E
[∫ ∞

0

e−βt
(∣∣∣∣(1 + Zt)ũ

(
Yyt

1 + Zt

)∣∣∣∣+ Yyt ε
)
dt+ |P |

∫ ∞
0

e−βtdZt
]
<∞.
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B Proof of Proposition 2

For given y > 0, any admissible strategy (c, π) ∈ A(x), and shadow price process Z ∈ Π(0), we have

(1 + Zt)u(ct)− Yyt ct ≤ (1 + Zt)ũ
(
Yyt

1 + Zt

)
. (75)

This implies that

(1 + Zt)u(ct))
± ≤ (1 + Zt)|(u(ct))| ≤ Yyt ct + (1 + Zt)

∣∣∣∣ũ( Yyt
1 + Zt

)∣∣∣∣ ,
where (u(ct))

+ and (u(ct))
− are the positive and negative parts of u(ct), respectively.

It follows from Lemma 1 that

E
[∫ ∞

0

e−βt(1 + Zt)|u(ct)|dt
]
≤E

[∫ ∞
0

e−βtYyt ctdt
]

+ E
[∫ ∞

0

e−βt(1 + Zt)
∣∣∣∣ũ( Yyt

1 + Zt

)∣∣∣∣ dt]
≤yE

[∫ ∞
0

Htctdt
]

+ E
[∫ ∞

0

e−βt(1 + Zt)
∣∣∣∣ũ( Yyt

1 + Zt

)∣∣∣∣ dt]
<∞.

Hence,

E
[∫ ∞

0

e−βt|u(ct)|dt
]
< E

[∫ ∞
0

e−βt(1 + Zt)|u(ct)|dt
]
<∞ (76)

and

E
[∫ ∞

0

e−βt(1 + Zt)(u(ct))
±dt

]
<∞. (77)

Then, integration by parts yields that for a fixed T > 0,

E

[∫ T

0

e−βt(1 + Zt)(u(ct))
+dt

]
=− E

[(∫ T

t

e−βs(u(cs))
+ds

)
(1 + Zt)

] ∣∣∣∣T
t=0

+E

[∫ T

0

e−βtEt

[∫ T

t

e−β(s−t)(u(cs))
+ds

]
dZt

]

=E

[∫ T

0

e−βs(u(cs))
+ds

]
+ E

[∫ T

0

e−βtEt

[∫ T

t

e−β(s−t)(u(cs))
+ds

]
dZt

]
.

Letting T → +∞, the monotone convergence theorem implies that

E
[∫ ∞

0

e−βt(u(ct))
+dt

]
+E

[∫ ∞
0

e−βtEt
[∫ ∞

t

e−β(s−t)(u(cs))
+ds

]
dZt

]
= E

[∫ ∞
0

e−βt(1 + Zt)(u(ct))
+dt

]
<∞.

Thus,

E
[∫ ∞

0

e−βtEt
[∫ ∞

t

e−β(s−t)(u(cs))
+ds

]
dZt

]
<∞. (78)

Note that for any t ≥ 0

P ≤ Et
[∫ ∞

t

e−β(s−t)u(cs)ds

]
= Et

[∫ ∞
t

e−β(s−t)(u(cs))
+ds

]
− Et

[∫ ∞
t

e−β(s−t)(u(cs))
−ds

]
.
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It follows from (78) that

E
[∫ ∞

0

e−βtEt
[∫ ∞

t

e−β(s−t)(u(cs))
−ds

]
dZt

]
+ E

[∫ ∞
0

e−βtPdZt
]

≤E
[∫ ∞

0

e−βtEt
[∫ ∞

t

e−β(s−t)(u(cs))
+ds

]
dZt

]
<∞.

Since E
[∫∞

0
e−βtPdZt

]
<∞, we have

E
[∫ ∞

0

e−βtEt
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t

e−β(s−t)(u(cs))
−ds

]
dZt

]
<∞. (79)

From (78) and (79),

E
[∫ ∞

0

e−βtEt
[∫ ∞

t

e−β(s−t)|u(cs)|ds
]
dZt

]
<∞. (80)

Thus, we deduce that for a fixed T > 0

E

[∫ T

0

(1 + Zt)u(ct)dt

]
=− E

[
(1 + Zt)

∫ T

t

e−βsu(cs)ds

] ∣∣∣∣T
t=0

+ E

[∫ T

0

e−βtEt

[∫ T

t

e−β(s−t)u(cs)ds

]
dZt

]

=E
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0

e−βtu(ct)dt

]
+ E

[∫ T

0

e−βtEt

[∫ T

t

e−β(s−t)u(cs)ds

]
dZt

]
.

From (76) and (80), the dominated convergence theorem implies that

E
[∫ ∞

0

(1 + Zt)u(ct)dt

]
= E

[∫ ∞
0

e−βtu(ct)dt

]
+ E

[∫ ∞
0

e−βtEt
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t

e−β(s−t)u(cs)ds

]
dZt

]
. (81)

Thus, we derive that

E
[∫ ∞

0

e−βtu(ct)dt

]
≤E
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0

e−βtu(ct)dt

]
+ y
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The equalities in the above inequalities hold if and only if for all t ≥ 0

ct =I
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C Proof of Lemma 2

Note that for any ν > 0

u(I(ν))− νI(ν) = ũ(ν) and ũ′(ν) = −I(ν),

and thus

u(I(ξ)) = u(I(ν))− νI(ν) + ξI(ξ) +

∫ ν

ξ

I(ζ)dζ.

It follows that ∫ ν

0

ξ−n2−1|u(I(ξ))|dξ +

∫ ∞
ν

ξ−n1−1|u(I(ξ))|dξ

≤ − 1

n2
ν−n2 |u(I(ν))− νI(ν)|+

∫ ν

0

ξ−n2I(ξ)dξ +

∫ ν

0

∫ ν

ξ

ξ−n2−1I(ζ)dζdξ

+
1

n1
ν−n1 |u(I(ν))− νI(ν)|+

∫ ∞
ν

ξ−n1I(ξ)dξ +

∫ ∞
ν

∫ ξ

ν

ξ−n1−1I(ζ)dζdξ

= − 1

n2
ν−n2 |u(I(ν))− νI(ν)|+ 1

n1
ν−n1 |u(I(ν))− νI(ν)|

+

(
1 +

1

n1

)∫ ∞
ν

ξ−n1I(ξ)dξ +

(
1− 1

n2

)∫ ν

0

ξ−n2I(ξ)dξ <∞.

(82)

where we have used Fubini’s theorem in last equality. From Assumptions 1 and 2, it is easy to check that∫ ν

0

ξ−n2I(ξ)dξ +

∫ ∞
ν

ξ−n1I(ξ)dξ <∞.

Therefore, it follows from |ũ(ξ)| ≤ |u(I(ξ))|+ I(ξ) that∫ ν

0

ξ−n2−1|ũ(ξ)|dξ +

∫ ∞
ν

ξ−n1−1|ũ(ξ)|dξ <∞.

D Proof of Lemma 3

Lemma 2 implies that Ψ(ν) is well-defined for any ν > 0. By Assumption 3, there exists a unique ν̂ > 0 such

that

u(I(ν̂))− βP = 0,

u(I(ν))− βP > 0, for ν < ν̂,

u(I(ν))− βP < 0, for ν > ν̂.

Then, it is easy to confirm that Ψ(ν) increases in ν ∈ (0, ν̂) and decreases in (ν̂,∞). Moreover, we have that

Ψ(ν) > 0 for ν ∈ (0, ν̂].

For sufficiently large M > 0, there exists a constant δ > 0 such that

u(I(ν))− βP < −δ for ν ≥M.

Since ∫ ∞
M

ξ−n2−1 (u(I(ξ))− βP ) dξ ≤ −δ
∫ ∞
M

ξ−n2−1dξ = −δ
[
−ξ
−n2

n2

]∞
ξ=M

= −∞,
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we have

lim
ν→+∞

∫ ν

0

ξ−n2−1 (u(I(ξ))− βP ) dξ

=

∫ M

0

ξ−n2−1 (u(I(ξ))− βP ) dξ + lim
ν→+∞

∫ ν

M

ξ−n2−1 (u(I(ξ))− βP ) dξ = −∞.

Therefore, we can conclude that there exist a unique ν̄ > ν̂ such that Ψ(ν̄) = 0. Clearly, u(I(ν̄))− βP < 0.

E Proof of Proposition 3

By the construction of M(ν) in (34), we can easily show that M(ν) is twice continuously differentiable.

SinceM(ν) = (ũ(ν̄)− βP + ν̄ε)
ν

rν̄
+P for ν ≥ ν̄, it is clear thatM(ν)− νM′(ν) = P for ν ≥ ν̄. Moreover,

for ν ≥ ν̄,

LM(ν) + ũ(ν) + νε =− (ũ(ν̄)− βP + ν̄ε)
ν

ν̄
− βP + ũ(ν) + εν

=− (ũ(ν̄)− βP )
ν

ν̄
− βP + ũ(ν).

Let us temporarily denote l(ν) as

l(ν) := − (ũ(ν̄)− βP )
ν

ν̄
− βP + ũ(ν).

Then, we deduce that

l′(ν) = − (ũ(ν̄)− βP )
1

ν̄
− I(ν) = −(u(I(ν̄))− βP )

1

ν̄
+ (I(ν̄)− I(ν)) > 0 for ν ≥ ν̄,

where we have used the fact that u(I(ν̄))− βP < 0 (Lemma 3). That is, l(ν) is increasing in ν ≥ ν̄ and thus

LM(ν) + ũ(ν) + νε = l(ν) ≥ l(ν̄) = 0 for ν ≥ ν̄.

Since M(ν) in (34) is the solution of the FBP (32), it is clear that

LM(ν) + ũ(ν) + εν = 0 for 0 < ν < ν̄.

For 0 < ν < ν̄, it follows from (33), (34), and (35) that

M(ν)− νM′(ν)

=(1− n1)D1ν
n1 +

2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1u(I(ξ))dξ + νn1

∫ ∞
ν

ξ−n1−1u(I(ξ))dξ

]
=− 2

θ2(n1 − n2)

∫ ∞
ν̄

ξ−n1−1u(I(ξ))dξ +
2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1u(I(ξ))dξ + νn1

∫ ∞
ν

ξ−n1−1u(I(ξ))dξ

]
(83)

=
2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1u(I(ξ))dξ + νn1

∫ ν̄

ν

ξ−n1−1u(I(ξ))dξ

]
.

Note that

P =
2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1βPdξ + νn1

∫ ν̄

ν

ξ−n1−1βPdξ

]
. (84)
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From (83) and (84), we have that for 0 < ν < ν̄.

M(ν)− νM′(ν)− P

=
2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1 (u(I(ξ))− βP ) dξ + νn1

∫ ν̄

ν

ξ−n1−1 (u(I(ξ))− βP ) dξ

]
. (85)

Let us temporarily denote g(ν) as

g(ν) :=
1

(n1 − n2)

[
n2

∫ ν

0

ξ−n2−1 (u(I(ξ))− βP ) dξ + n1ν
n1−n2

∫ ν̄

ν

ξ−n1−1 (u(I(ξ))− βP ) dξ

]
=
θ2

2
ν−n2(M(ν)− νM′(ν)− P )′. (86)

Then, we have

g′(ν) =− ν−n2−1(u(I(ν))− βP ) + n1ν
n1−n2

∫ ν̄

ν

ξ−n1−1(u(I(ξ))− βP )dξ

=− ν̄−n2−1(u(I(ν̄))− βP ) + νn1−n2

∫ ν̄

ν

ξ−n1d(u(I(ξ))− βP ), (87)

where the above equality follows from integration by parts. From (87), g′(ν) is strictly increasing function

in ν ∈ (0, ν̄).

By Lemma 3,

g′(ν̄) = −ν̄−n2−1(u(I(ν̄))− βP ) > 0.

On the other hand, it follows from u(I(ν̂))− βP = 0 that

g′(ν̂) = n1ν̂
n1−n2

∫ ν̄

ν̂

ξ−n1−1(u(I(ξ))− βP )dξ < 0.

Thus, there exists a unique ν1 ∈ (ν̂, ν̄) such that g′(ν1) = 0. Moreover,

g′(ν)


< 0 if 0 < ν < ν1,

= 0 if ν = ν1,

> 0 if ν > ν1.

(88)

This implies that g(ν) is strictly decreasing in ν ∈ (0, ν1) and strictly increasing in ν ∈ (ν1, ν̄).

It is clear that

g(ν̄) =
n2

(n1 − n2)

∫ ν̄

0

ξ−n2−1 (u(I(ξ))− βP ) dξ = 0.

Since

lim
ν→0+

∫ ν̄

ν

ξ−n1−1 (u(I(ξ))− βP ) dξ = +∞,

it follows from L’Hôspitals rule that

g(0+) = lim
ν→0+

n1

(n1 − n2)

(
νn1−n2

∫ ν̄

ν

ξ−n1−1 (u(I(ξ))− βP ) dξ

)
=

n1

(n1 − n2)
lim
ν→0+

ν−n1−1 (u(I(ν))− βP )

(n1 − n2)νn2−n1−1

=
n1

(n1 − n2)2
lim
ν→0+

νn1−n2ν−n1 (u(I(ν))− βP ) = 0,
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where we used the fact that

lim
ν→0+

ν−n1 (u(I(ν))− βP ) = 0 (see (a) in Proposition 1 and Lemma 2).

Hence, we deduce that

g(ν) < 0 for ν ∈ (0, ν̄) (89)

or

(M(ν)− νM′(ν)− P )′ < 0 for ν ∈ (0, ν̄). (90)

Since M(ν̄)− ν̄M′(ν̄)− P = 0, we conclude that

M(ν)− νM′(ν)− P > 0 for ν ∈ (0, ν̄).

In conclusion, M(z) satisfies the following HJB equation with mixed boundary condition:

min {LM(ν) + ũ (ν) + νε, M(ν)− νM′(ν)− P} = 0 for ν ∈ R+.

F Proof of Proposition 4

We will prove this proposition in the following steps.

Step 1: ϕ(y) given in (42) is continuously differentiable in y > 0 and satisfies the following HJB equation:

min
{
Lϕ(y), Γ(u◦I−βP )(y)− ϕ(y)

}
= 0. (91)

Moreover, the two regions (the continuation region CR and the stopping region SR) defined as

CR := {y > 0 | Γ(u◦I−βP )(y) > ϕ(y)} and SR := {y > 0 | Γ(u◦I−βP )(y) = ϕ(y)}

can be rewritten as

CR = {y > 0 | 0 < y < ν̄} and SR = {y > 0 | y ≥ ν̄}.

Proof of Step 1:

Since

0 =

∫ ν̄

0

ξ−n2−1 (u(I(ξ))− βP ) dξ,

we deduce that

Γ(u◦I−βP )(ν̄) =
2

θ2(n1 − n2)

[
ν̄n2

∫ ν̄

0

ξ−n2−1(u(I(ξ))− βP )dξ + ν̄n1

∫ ∞
ν̄

ξ−n1−1(u(I(ξ))− βP )dξ

]
=

2

θ2(n1 − n2)
ν̄n1

∫ ∞
ν̄

ξ−n1−1(u(I(ξ))− βP )dξ.

Thus, it is easy to see that ϕ(y) and ϕ′(y) is continuous at y = ν̄. That is, ϕ(y) is continuously differentiable

in y > 0.
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Note that u(I(ν̄))− βP < 0 (see Lemma 3). By (c) in Proposition 1, we have

LΓ(u◦I−βP )(y) = − (u(I(y))− βP ) ≥ − (u(I(ν̄))− βP ) > 0.

On the other hand, it follow from the inequality in (85) that for 0 < y < ν̄

Γ(u◦I−βP )(y)− ϕ(y) =
2

θ2(n1 − n2)

[
yn2

∫ y

0

ξ−n2−1(u(I(ξ))− βP )dξ + yn1

∫ ν̄

y

ξ−n1−1(u(I(ξ))− βP )dξ

]
=M(y)− yM′(y)− P > 0.

Clearly, Lϕ(y) = 0 for 0 < y < ν̄. This completes the proof of Step 1.

Step 2: The following inequality holds:

inf
τ∈S

E
[
e−βτΓ(u◦I−βP )(Yyτ )

]
≥ ϕ(y).

Proof of Step 2: Even though ϕ(y) is C1 on (0,∞) and C2 on (0,∞)\{ν̄}, one can still apply Itô’s lemma

(see Exercise 6.24 in Karatzas and Shreve (1991)), and it follows that

d
(
e−βtϕ(Yyt )

)
=e−βt

(
(β − r)Yyt ϕ′(Y

y
t ) +

θ2

2
(Yyt )2ϕ′′(Yyt )− βϕ(Yyt )

)
dt− θYyt ϕ′(Y

y
t )dBt.

Then, for any τ ∈ S, we have

e−β(τ∧t)ϕ(Yyτ∧t)− ϕ(y) =

∫ τ∧t

0

e−βsLϕ(Yyt )ds+

∫ τ∧t

0

(−θ)Yyt ϕ′(Y
y
t )dBs. (92)

By Proposition 1 (d), there exists a constant C1 > 0 such that

|Γ′(u◦I−βP )(y)| ≤ C1

(
yn1−1 + yn2−1

)
.

It follows that

|ϕ′(y)| ≤ C2

(
yn1−1 + yn2−1

)
.

for some constant C2 > 0. Thus, we can easily show that for every constant T > 0, the process∫ T∧t

0

e−βs(−θ)Yyt ϕ′(Y
y
t )dBt

is a martingale (for detail, see Lemma 3.4 in Knudsen et al. (1998)).

By taking the expectation on both sides of the equation (92), we deduce that

ϕ(y) + E
[∫ τ∧t

0

e−βsLϕ(Yyt )ds

]
= E

[
e−β(τ∧t)ϕ(Yyτ∧t)

]
. (93)

Since ϕ(y) satisfies the HJB equation (91), it follows that

ϕ(y) ≤ E
[
e−β(τ∧t)Γ(u◦I−βP )(Yyτ∧t)

]
.

The dominated convergence theorem implies that

ϕ(y) ≤ lim
t→∞

E
[
e−β(τ∧t)Γ(u◦I−βP )(Yyτ∧t)

]
= E

[
e−βτΓ(u◦I−βP )(Yyτ )

]
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for any τ ∈ S. Thus, we have

inf
τ∈S

E
[
e−βτΓ(u◦I−βP )(Yyτ )

]
≥ ϕ(y).

Step 3: The stopping time τ̂(y) defined as

τ̂(y) = inf {t ≥ 0 | Yyt ≥ ν̄} .

is the solution to the optimal stopping problem in (40).

Proof of Step 3: Replacing τ by τ̂(y) in (93), it follows from the results in Step 1 that

ϕ(y) = E
[
e−β(τ̂(y)∧t)Γ(u◦I−βP )(Yyτ̂(y)∧t)

]
.

By the dominated convergence theorem, we have

ϕ(y) = E
[
e−βτ̂(y)Γ(u◦I−βP )(Yyτ̂(y))

]
.

Since τ̂(y) ∈ S,

inf
τ∈S

E
[
e−βτΓ(u◦I−βP )(Yyτ )

]
≥ ϕ(y) = E

[
e−βτ̂(y)Γ(u◦I−βP )(Yyτ̂(y))

]
≥ inf
τ∈S

E
[
e−βτΓ(u◦I−βP )(Yyτ )

]
.

This complete the proof.

G Proof of Proposition 5

To proceed the proof, we first show the following lemma:

Lemma 5. For any (Zt)∞t=0 ∈ Π(z),

lim
t→∞

e−βtE [Zt] = 0 and z + E
[∫ ∞

0

e−βtdZt
]

= βE
[∫ ∞

0

e−βtZtdt
]
. (94)

Proof. For given T > 0, integration by parts implies

E

[∫ T

0

e−βtdZt

]
=E

[
e−βTZT

]
− z + βE

[∫ T

0

e−βtZtdt

]
.

By the monotone convergence theorem, we have

z + E
[∫ ∞

0

e−βtdZt
]

= lim
T→∞

(
E
[
e−βTZT

]
+ βE

[∫ T

0

e−βtZtdt

])

= lim
T→∞

E
[
e−βTZT

]
+ βE

[∫ ∞
0

e−βtZtdt
]
<∞.

Thus, we have

lim
T→∞

E
[
e−βTZT

]
<∞ and E

[∫ ∞
0

e−βtZtdt
]
<∞.

If limT→∞ e−βTE[ZT ] > 0, then there exits positive constants Ĉ and T̂ such that

e−βtZt ≥ Ĉ for all T ≥ T̂ .
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It follows that

E
[∫ ∞

0

e−βtZtdt
]
≥
∫ ∞
T̂

Ĉdt =∞. (95)

This is contradiction to

E
[∫ ∞

0

e−βtZtdt
]
<∞.

Hence, we deduce that

lim
t→∞

e−βtE [Zt] = 0 and z + E
[∫ ∞

0

e−βtdZt
]

= βE
[∫ ∞

0

e−βtZtdt
]
.

(a): It is sufficient to show that

E
[∫ ∞

0

e−βtdẐzt (y)

]
<∞

and

E

[∫ ∞
0

e−βt

∣∣∣∣∣(1 + Ẑzt (y))ũ

(
Yyt

1 + Ẑzt (y)

)∣∣∣∣∣ dt
]
<∞.

For given T > 0, it follows from integration by parts that

E

[∫ T

0

e−βtdẐzt (y)

]
= E

[
e−βT (1 + ẐzT )

]
− (1 + z) + βE

[∫ T

0

e−βt(1 + Ẑzt (y))dt

]
.

Note that for any t ≥ 0

1 + Ẑzt (y) ≤ 1 + z + sup
0≤s≤t

Yyt
ν̄

= 1 + z +
1

ν̄
Yyt .

For given λ ∈ (0, n1), Lemma 1 in Merhi and Zervos (2007) implies that there exists ε1, ε2 > 0 such that

E
[
e−βt(Yyt )λ

]
≤ θ2λ2 + ε2

ε2
yλe−ε1t and E

[
sup
t≥0

e−βt(Yyt )λ
]
≤ θ2λ2 + ε2

ε2
+ yλ,

where Yyt = sup0≤s≤t Y
y
t with Yyt = yeβtHt.

Since 0 < 1 < n1, it follows that

E

[∫ T

0

e−βtdẐzt (y)

]
≤1

ν̄

(
E
[
e−βTYyT

]
+ β

∫ T

0

E
[
e−βtYyt

]
dt

)

≤β
ν̄

θ2 + ε2
ε1ε2

y

<∞.

For any measurable function φ defined on R+, recall that the operator Γ in (9) is given by

Γφ(y) = E
[∫ ∞

0

e−βtφ(Yyt )dt

]
.

Let us temporarily denote Φ(y, z) as

Φ(y, z) ≡ E

[∫ ∞
0

e−βt
∫ Ẑzt (y)

z

∣∣∣∣u(I ( Yyt1 + ν

))∣∣∣∣ dνdt
]

= E

[∫ ∞
0

e−βt
∫ Ẑzt (y)

z

∣∣∣u(I (Y y
1+ν

t

))∣∣∣ dνdt] .
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Then, Fubini-Tonelli theorem implies that

Φ(y, z) =E

[∫ ∞
0

e−βt
∫ Ẑzt (y)

z

∣∣∣u(I (Y y
1+ν

t

))∣∣∣ dνdt]

=

∫ ∞
z

E

[∫ ∞
τ̂( y

1+ν )

e−βt
∣∣∣u(I (Y y

1+ν

t

))∣∣∣ dt] dν. (96)

Let us denote Λ(y) by

Λ(y) ≡ E

[∫ ∞
τ̂(y)

e−βt |u (I (Yyt ))| dt

]
=E

[
e−βτ̂(y)Eτ̂(y)

[∫ ∞
τ̂(y)

e−β(t−τ̂(y)) |u (I (Yyt ))| dt

]]
=E

[
e−βτ̂(y)Γ|u◦I|(Yyτ̂(y))

]
.

Note that the strong Markov property implies that

Γ|u◦I|(Yyτ̂(y)) = Eτ̂(y)

[∫ ∞
τ̂(y)

e−β(t−τ̂(y)) |u (I (Yyt ))| dt

]
.

Moreover, Γ|u◦I|(y) is twice differentiable (see Proposition 1 (c)). For y ≥ ν̄, it is clear that

Λ(y) = E
[∫ ∞

0

e−βt |u (I (Yyt ))| dt
]

= Γ|u◦I|(y). (97)

For 0 < y < ν̄, the dynamic programming principle implies that Λ(y) satisfies the following ordinary

differential equation(ODE): LΛ(y) = 0, for 0 < y < ν̄,

Λ(ν̄) = Γ|u◦I|(ν̄).
(98)

Moreover, the following transversality condition holds:

lim
t→∞

e−βtE [Λ(Yyt )] = 0. (99)

By solving the ODE (98) with the condition (99), we can easily confirm that

Λ(y) = Γ|u◦I|(ν̄)
(y
ν̄

)n1

for 0 < y < ν̄. (100)

From (97) and (100), we have

Λ(y) =


Γ|u◦I|(y) for y ≥ ν̄,

Γ|u◦I|(ν̄)
(y
ν̄

)n1

for 0 < y < ν̄.

From (96), we obtain

Φ(y, z) =

∫ ∞
z

Λ

(
y

1 + ν

)
dν

=

∫ z∨ẑ(y)

z

Γ|u◦I|

(
y

1 + ν

)
dν +

∫ ∞
z∨ẑ(y)

Γ|u◦I|(ν̄)

(
y

(1 + ν)ν̄

)n1

dν (101)

=

∫ z∨ẑ(y)

z

Γ|u◦I|

(
y

1 + ν

)
dν +

1

n1 − 1
((z ∨ ẑ(y)) + 1)

1−n1 Γ|u◦I|(ν̄)
(y
ν̄

)n1

<∞.
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(b): The proof of this part is almost similar to that of (a) in this proposition.

Let us denote Q̂(y, z) by

Q̂(y, z) ≡ E

[∫ ∞
0

e−βt

(
(1 + Ẑzt (y))ũ

(
Yyt

1 + Ẑzt (y)

)
+ Yyt ε

)
dt− P

∫ ∞
0

e−βtdẐzt (y)

]
.

By Lemma 5, we have

Q̂(y, z) = E

[∫ ∞
0

e−βt

(
(1 + Ẑzt (y))ũ

(
Yyt

1 + Ẑzt (y)

)
+ Yyt ε

)
dt− P

∫ ∞
0

e−βtdẐzt (y)

]

= E

[∫ ∞
0

e−βt

(
(1 + Ẑzt (y))ũ

(
Yyt

1 + Ẑzt (y)

)
+ Yyt ε− βP Ẑzt (y)

)
dt

]
+ Pz (102)

= E

[∫ ∞
0

e−βt

(
(1 + Ẑzt (y))ũ

(
Yyt

1 + Ẑzt (y)

)
+ Yyt ε− βP (1 + Ẑzt (y))

)
dt

]
+ P (1 + z)

= E

[∫ ∞
0

e−βt

(
(1 + Ẑzt (y))ũ

(
Yyt

1 + Ẑzt (y)

)
− βP (1 + Ẑzt (y))

)
dt

]
+ E

[∫ ∞
0

e−βtYyt εdt
]

+ P (1 + z).

As similar to the proof of part (a), we have

E

[∫ ∞
0

e−βt

(
(1 + Ẑzt (y))ũ

(
Yyt

1 + Ẑzt (y)

)
− βP (1 + Ẑzt (y))

)
dt

]
(103)

=E

[∫ ∞
0

e−βt
∫ Ẑzt (y)

z

(
u

(
I

(
Yyt

1 + ν

))
− βP

)
dνdt

]
+ E

[∫ ∞
0

e−βt
(

(1 + z)ũ

(
Yyt

1 + z

)
− βP (1 + z)

)
dt

]
By Lemma 2 (a), for any y > 0,∫ ν

0

ξ−n2−1|ũ(ξ) + ξε|dξ +

∫ ∞
ν

ξ−n1−1|ũ(ξ) + ξε|dξ

≤
∫ ν

0

ξ−n2−1|ũ(ξ)|dξ +

∫ ∞
ν

ξ−n1−1|ũ(ξ)|dξ + ε

∫ ν

0

ξ−n2dξ + ε

∫ ∞
ν

ξ−n1dξ <∞.

By applying Proposition 1, we have

E
[∫ ∞

0

e−βt
(
ũ
(
Y

y
1+z

t

)
+ Y

y
1+z

t ε
)
dt

]
(104)

=
2

θ2(n1 − n2)

[(
y

1 + z

)n2
∫ y

1+z

0

ξ−n2−1(ũ(ξ) + ξε)dξ +

(
y

1 + z

)n1
∫ ∞

y
1+z

ξ−n1−1(ũ(ξ) + ξε)dξ

]

=Γũ

(
y

1 + z

)
+
ε

r

(
y

1 + z

)
.

It follows from (102), (103), and (104) that

Q̂(y, z) =E

[∫ ∞
0

e−βt
∫ Ẑzt (y)

z

(
u

(
I

(
Yyt

1 + ν

))
− βP

)
dνdt

]
+ (1 + z)E

[∫ ∞
0

e−βt
(
ũ
(
Y

y
1+z

t

)
+ Y

y
1+z

t ε
)
dt

]

=E

[∫ ∞
0

e−βt
∫ Ẑzt (y)

z

(
u
(
I
(
Y

y
1+ν

t

))
− βP

)
dνdt

]
+ (1 + z)

(
Γũ

(
y

1 + z

)
+
ε

r

(
y

1 + z

))
.
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Let us temporarily denote Φ̂(y, z) as

Φ̂(y, z) = E

[∫ ∞
0

e−βt
∫ Ẑzt (y)

z

(
u
(
I
(
Y

y
1+ν

t

))
− βP

)
dνdt

]
.

Since Ẑ ∈ Π(z), Fubini’s theorem implies that

Φ̂(y, z) =E

[∫ ∞
0

e−βt
∫ Ẑzt (y)

z

(
u
(
I
(
Y

y
1+ν

t

))
− βP

)
dνdt

]

=

∫ ∞
z

E

[∫ ∞
τ̂( y

1+ν )

e−βt
(
u
(
I
(
Y

y
1+ν

t

))
− βP

)
dt

]
dν (105)

=

∫ ∞
z

E

[
e−βτ̂( y

1+ν )Eτ̂( y
1+ν )

[∫ ∞
τ̂( y

1+ν )

e−β(t−τ̂( y
1+ν ))

(
u
(
I
(
Y

y
1+ν

t

))
− βP

)
dt

]]
dν,

where τ̂(y) = inf {t ≥ 0 | Yyt ≥ ν̄} . By Proposition 4,

ϕ(ν) = E

[
e−βτ̂(ν)Eτ̂(ν)

[∫ ∞
τ̂(ν)

e−β(t−τ̂(ν)) (u (I (Yνt ))− βP ) dt

]]
= E

[
e−βτ̂(ν)Γ(u◦I−βP )(Yντ̂(ν))

]
,

where

Γ(u◦I−βP )(y) = Et
[∫ ∞

t

e−β(s−t) (u (I (Yyt ))− βP ) ds

]
=

2

θ2(n1 − n2)

[
yn2

∫ y

0

ξ−n2−1(u(I(ξ))− βP )dξ + yn1

∫ ∞
y

ξ−n1−1(u(I(ξ))− βP )dξ

]
.

Moreover,

ϕ

(
y

1 + ν

)
=E

[
e−βτ̂( y

1+ν )Eτ̂( y
1+ν )

[∫ ∞
τ̂( y

1+ν )

e−β(t−τ̂( y
1+ν ))

(
u
(
I
(
Y

y
1+ν

t

))
− βP

)
dt

]]

=


Γ(u◦I−βP )

(
y

1 + ν

)
for

y

1 + ν
≥ ν̄,

Γ(u◦I−βP )(ν̄)

(
y

ν̄(1 + ν)

)n1

for 0 <
y

1 + ν
≤ ν̄.

(106)

Since

0 =

∫ ν̄

0

ξ−n2−1 (u(I(ξ))− βP ) dξ,

we deduce that

Γ(u◦I−βP )(ν̄) =
2

θ2(n1 − n2)

[
ν̄n2

∫ ν̄

0

ξ−n2−1(u(I(ξ))− βP )dξ + ν̄n1

∫ ∞
ν̄

ξ−n1−1(u(I(ξ))− βP )dξ

]
=

2

θ2(n1 − n2)
ν̄n1

∫ ∞
ν̄

ξ−n1−1(u(I(ξ))− βP )dξ (107)

=(n1 − 1)ν̄n1D1.

It follows from (102), (105), (106), and (107) that

Q̂(y, z) =

∫ ∞
z

ϕ

(
y

1 + ν

)
dν + (1 + z)Γũ

(
y

1 + z

)
+
ε

r
y.
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When ẑ(y) ≤ z,

Q̂(y, z) =

∫ ∞
z

ϕ

(
y

1 + ν

)
dν + (1 + z)Γũ

(
y

1 + z

)
+
ε

r
y

=

∫ ∞
z

Γ(u◦I−βP )(ν̄)

(
y

ν̄(1 + ν)

)n1

dν + (1 + z)Γũ

(
y

1 + z

)
+
ε

r
y

=D1y
n1(1 + z)1−n1 + (1 + z)Γũ

(
y

1 + z

)
+
ε

r
y (108)

=(1 + z)

{
D1

(
y

1 + z

)n1

+
2

θ2(n1 − n2)

[(
y

1 + z

)n2
∫ y

1+z

0

ξ−n2−1ũ(ξ)dξ

+

(
y

1 + z

)n1
∫ ∞

y
1+z

ξ−n1−1ũ(ξ)dξ

]
+
ε

r

(
y

1 + z

)}
.

When 0 ≤ z < ẑ(y),

Q̂(y, z) =

∫ ∞
z

ϕ

(
y

1 + ν

)
dν + (1 + z)Γũ

(
y

1 + z

)
+
ε

r
y (109)

=

∫ ẑ(y)

z

Γ(u◦I−βP )

(
y

1 + ν

)
dν +

∫ ∞
ẑ(y)

Γ(u◦I−βP )(ν̄)

(
y

ν̄(1 + ν)

)n1

dν + (1 + z)Γũ

(
y

1 + z

)
+
ε

r
y.

Note that

d

dz

(
(1 + z)Γũ

(
y

1 + z

))
= Γũ

(
y

1 + z

)
− y

1 + z
Γ′ũ

(
y

1 + z

)
= Γu◦I

(
y

1 + z

)
= Γ(u◦I−βP )

(
y

1 + z

)
+ P,

where we have used the fact that

Γ′ũ (ν) =
2

θ2(n1 − n2)

[
n2ν

n2−1

∫ ν

0

ξ−n2−1ũ(ξ)dξ + νn1−1

∫ ∞
ν

ξ−n1−1ũ(ξ)dξ

]
=− 2

θ2(n1 − n2)

[
νn2−1

∫ ν

0

ξ−n2I(ξ)dξ + νn1−1

∫ ∞
ν

ξ−n1I(ξ)dξ

]
and

Γ(u◦I−βP )(ν) =
2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1 (u(I(ξ))− βP ) dξ + νn1

∫ ∞
ν

ξ−n1−1 (u(I(ξ))− βP ) dξ

]
=

2

θ2(n1 − n2)

[
νn2

∫ ν

0

ξ−n2−1u(I(ξ))dξ + νn1

∫ ∞
ν

ξ−n1−1u(I(ξ))dξ

]
− P

=Γu◦I(ν)− P.

This implies that∫ ẑ(y)

z

Γ(u◦I−βP )

(
y

1 + ν

)
dν = (1 + ẑ(y))Γũ

(
y

1 + ẑ(y)

)
− (1 + z)Γũ

(
y

1 + z

)
+ P (z − ẑ(y)). (110)
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It follows from (109) and (110) that

Q̂(y, z) =

∫ ∞
ẑ(y)

Γ(u◦I−βP )(ν̄)

(
y

ν̄(1 + ν)

)n1

dν + (1 + ẑ(y))Γũ

(
y

1 + ẑ(y)

)
+
ε

r
y + P (z − ẑ(y)) (111)

=Q̂(y, ẑ(y)) + P (z − ẑ(y)) for 0 ≤ z < ẑ(y).

By comparing Q(y, z) in (37), (38) with Q̂(y, z) in (108), (111), we conclude that

Q(y, z) = Q̂(y, z).

H Proof of Theorem 1

(a): For any Zt ∈ Π(z), it follows from Lemma 5, (102) and (103) that

E
[∫ ∞

0

e−βt
(

(1 + Zt)ũ
(
Yyt

1 + Zt

)
+ Yyt ε

)
dt− P

∫ ∞
0

e−βtdZt
]

=E

[∫ ∞
0

e−βt
∫ Zt
z

(
u

(
I

(
Yyt

1 + ν

))
− βP

)
dνdt

]
+ E

[∫ ∞
0

e−βt
(

(1 + z)ũ

(
Yyt

1 + z

)
+ εYyt

)
dt

]

=E

[∫ ∞
0

e−βt
∫ Zt
z

(
u

(
I

(
Yyt

1 + ν

))
− βP

)
dνdt

]
+ (1 + z)Γũ

(
y

1 + z

)
+
ε

r
. (112)

Since

E

[∫ ∞
0

e−βt
∫ Zt

z

∣∣∣∣u(I ( Yyt1 + ν

))∣∣∣∣ dνdt
]
<∞ and E

[∫ ∞
0

e−βtdZt
]
<∞,

we can easily deduce that

E

[∫ ∞
0

e−βt
∫ Zt
z

∣∣∣∣(u(I ( Yyt1 + ν

))
− βP

)∣∣∣∣ dνdt
]
<∞.

Fubini’s theorem implies that

E

[∫ ∞
0

e−βt
∫ Zt
z

(
u

(
I

(
Yyt

1 + ν

))
− βP

)
dνdt

]

=E

[∫ ∞
0

e−βt
∫ Zt
z

(
u
(
I
(
Y

y
1+ν

t

))
− βP

)
dνdt

]
(113)

=

∫ ∞
z

E

[∫ ∞
κ(ν)

e−βt
(
u
(
I
(
Y

y
1+ν

t

))
− βP

)
dt

]
dν,

where the stopping time κ(ν) for ν ≥ z is defined as

κ(ν) = inf{t ≥ 0 | Zt ≥ ν}. (114)

Moreover, by Proposition 4, we deduce that for any ν ≥ z

E

[∫ ∞
κ(ν)

e−βt
(
u
(
I
(
Y

y
1+ν

t

))
− βP

)
dt

]
≥ inf
τ∈S

[∫ ∞
τ

e−βt
(
u
(
I
(
Y

y
1+ν

t

))
− βP

)
dt

]
(115)

=ϕ

(
y

1 + ν

)
.
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It follows from (112), (113), (115), and Proposition 5 that for any Zt ∈ Π(z),

E
[∫ ∞

0

e−βt
(

(1 + Zt)ũ
(
Yyt

1 + Zt

)
+ Yyt ε

)
dt− P

∫ ∞
0

e−βtdZt
]

=

∫ ∞
z

E

[∫ ∞
κ(ν)

e−βt
(
u
(
I
(
Y

y
1+ν

t

))
− βP

)
dt

]
dν + (1 + z)Γũ

(
y

1 + z

)
+
ε

r
(116)

≥
∫ ∞
z

ϕ

(
y

1 + ν

)
dν + (1 + z)Γũ

(
y

1 + z

)
+
ε

r

=Q(y, z).

Since

Q(y, z) ≤ inf
Zt∈Π(z)

E
[∫ ∞

0

e−βt
(

(1 + Zt)ũ
(
Yyt

1 + Zt

)
+ Yyt ε

)
dt− P

∫ ∞
0

e−βtdZt
]

(117)

≤Q(y, z),

we conclude that

J(y, z) = inf
Zt∈Π(z)

E
[∫ ∞

0

e−βt
(

(1 + Zt)ũ
(
Yyt

1 + Zt

)
+ Yyt ε

)
dt− P

∫ ∞
0

e−βtdZt
]

= Q(y, z).

(b): Since J(y) = J(y, 0) = Q(y, z), it is clear that

J(y) =Q(y, 0)

=


D1y

n1 +
2

θ2(n1 − n2)

[
yn2

∫ y

0

ξ−n2−1(ũ(ξ) + ξε)dξ + yn1

∫ ∞
y

ξ−n1−1(ũ(ξ) + ξε)dξ

]
for 0 < y < ν̄

(ũ(ν̄)− βP + ν̄ε)
y

rν̄
+ P for y ≥ ν̄ for y ≥ ν̄.

I Proof of Lemma 4

For sufficiently small δ > 0, it follows from Theorem 1 (a) that

J(y ± δ, 0) = inf
Z∈Π(0)

E

[∫ ∞
0

e−βt

(
(1 + Zt)ũ

(
Yy±δt

1 + Zt

)
+ Yy±δt ε

)
dt− P

∫ ∞
0

e−βtdZt

]

≤E

[∫ ∞
0

e−βt

(
(1 + Ẑ0

t (y))ũ

(
Yy±δt

1 + Ẑ0
t (y)

)
+ Yy±δt ε

)
dt− P

∫ ∞
0

e−βtdẐ0
t (y)

]
.

It follows that

J(y ± δ, 0)− J(y, 0) ≤ E

[∫ ∞
0

e−βt

(
(1 + Ẑ0

t )ũ

(
Yy±δt

1 + Ẑ0
t

)
− (1 + Ẑ0

t )ũ

(
Yyt

1 + Ẑ0
t

)
± δeβtHtε

)
dt

]
.

By the dominated convergence theorem, we have

J ′(y) = lim
δ→0+

J(y + δ, 0)− J(y, 0)

δ
≤ E

[∫ ∞
0

Ht

(
−ĉ

(
Yyt

1 + Ẑ0
t (y)

)
+ ε

)
dt

]
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and

J ′(y) = lim
δ→0+

J(y, 0)− J(y − δ, 0)

−δ
≥ E

[∫ ∞
0

Ht

(
−ĉ

(
Yyt

1 + Ẑ0
t (y)

)
+ ε

)
dt

]
.

Hence,

E

[∫ ∞
0

Ht

(
ĉ

(
Yyt

1 + Ẑ0
t (y)

)
− ε

)
dt

]
= −J ′(y).

Assume that z > 0 and recall that for given y > 0

Ẑzt (y) = max

{
z, sup

0≤s≤t

Yyt
ν̄

}
− 1.

For sufficiently small δ > 0, let us denote Ẑz,±δt (y) by

Ẑz,±δt (y) = Ẑzt (y)± δ. (118)

As similar to the proof of Proposition 5 (a), we can easily deduce that

Ẑz,±δt (y) ∈ Π(z ± δ).

Since (1 + z)ũ(y/(1 + z)) is convex in z ≥ 0 for given y > 0, we deduce that for any ρ ∈ (0, δ)

(1 + Ẑz,−δt (y))ũ
(

Yyt
1+Ẑz,−δt (y)

)
− (1 + Ẑzt (y))ũ

(
Yyt

1+Ẑzt (y)

)
−δ

≤
(1 + Ẑz,±ρt )ũ

(
Yyt

1+Ẑz,±ρt (y)

)
− (1 + Ẑzt (y))ũ

(
Yyt

1+Ẑzt (y)

)
±ρ

(119)

≤
(1 + Ẑz,+δt (y))ũ

(
Yyt

1+Ẑz,+δt (y)

)
− (1 + Ẑzt (y))ũ

(
Yyt

1+Ẑzt (y)

)
δ

. (120)

By Theorem 1 (a),

J(y, z ± ρ) = inf
Z∈Π(z±ρ)

E
[∫ ∞

0

e−βt
(

(1 + Zt)ũ
(
Yyt

1 + Zt

)
+ Yyt ε

)
dt− P

∫ ∞
0

e−βtdZt
]

≤E

[∫ ∞
0

e−βt

(
(1 + Ẑz,±δt )ũ

(
Yyt

1 + Ẑz,±δt

)
+ Yyt ε

)
dt− P

∫ ∞
0

e−βtdẐz,±δt

]
.

It follows that

J(y, z + ρ)− J(y, z)

ρ
≤ E

∫ ∞
0

e−βt
(1 + Ẑz,+ρt (y))ũ

(
Yyt

1+Ẑz,+ρt (y)

)
− (1 + Ẑzt (y))ũ

(
Yyt

1+Ẑz,+ρt (y)

)
+ρ

dt


and

J(y, z − ρ)− J(y, z)

−ρ
≥ E

∫ ∞
0

e−βt
(1 + Ẑz,−ρt (y))ũ

(
Yyt

1+Ẑz,−ρt (y)

)
− (1 + Ẑz,−ρt (y))ũ

(
Yyt

1+Ẑz,−ρt (y)

)
−ρ

dt

 .
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Note that Ẑz,±δt (y) ∈ Π(z ± δ) implies

E

[∫ ∞
0

e−βt(1 + Ẑz,±δt (y))

∣∣∣∣∣ũ
(

Yyt
1 + Ẑz,±δt (y)

)∣∣∣∣∣ dt
]
<∞ (see Lemma 1).

From (119), the dominated convergence theorem yields

∂zJ(y, z) = E

[∫ ∞
0

e−βtu

(
ĉ

(
Yyt

1 + Ẑzt (y)

))
dt

]
.

The monotone convergence theorem implies that

J(y) = J(y, 0) = lim
z→0+

E

[∫ ∞
0

e−βtu

(
ĉ

(
Yyt

1 + Ẑzt (y)

))
dt

]
= E

[∫ ∞
0

e−βtu

(
ĉ

(
Yyt

1 + Ẑ0
t (y)

))
dt

]
.

J Proof of Theorem 2

From the relations in (45), we deduce that for y ∈ (0, ν̄)

(M(y)− yM′(y)− P )′ = (J(y)− yJ ′(y)− P )′ = −yJ ′′(y). (121)

It follows from (90) in Proposition 3 that

− yJ ′′(y) = (M(y)− yM′(y)− P )′ = (J(y)− yJ ′(y)− P )′ < 0 for y ∈ (0, ν̄). (122)

That is, J(y) is strictly convex in y ∈ (0, ν̄).

Since J ′(y) =M′(y), it is clear that

lim
y→ν̄

J ′(y) = J ′(ν̄) =M′(ν̄) = −x̄. (123)

By Theorem 1, the explicit-form of J(y) for y ∈ (0, ν̄) is given by

J(y) = D1y
n1 +

2

θ2(n1 − n2)

[
yn2

∫ y

0

ξ−n2−1(ũ(ξ) + ξε)dξ + yn1

∫ ∞
y

ξ−n1−1(ũ(ξ) + ξε)dξ

]
. (124)

Thus,

J ′(y) =n1D1y
n1−1 +

2

θ2(n1 − n2)

[
n2y

n2−1

∫ y

0

ξ−n2−1(ũ(ξ) + ξε)dξ + n1y
n1−1

∫ ∞
y

ξ−n1−1(ũ(ξ) + ξε)dξ

]
=n1D1y

n1−1 +
2

θ2(n1 − n2)

[
yn2−1

∫ y

0

ξ−n2(ε− I(ξ))dξ + yn1−1

∫ ∞
y

ξ−n1(ε− I(ξ))dξ

]
,

where we used integration by parts in the second equality. Since∫ y

0

ξ−n2I(ξ)dξ +

∫ ∞
y

ξ−n1I(ξ)dξ <∞ for y > 0,

it follows from Proposition 1 that

E
[∫ ∞

0

e−βtYyt (ε− I(Yyt ))dt

]
=

2

θ2(n1 − n2)

[
yn2

∫ y

0

ξ−n2(ε− I(ξ))dξ + yn1

∫ ∞
y

ξ−n1(ε− I(ξ))dξ

]
.
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Hence,

E
[∫ ∞

0

Ht(ε− I(Yyt ))dt

]
=

1

y
E
[∫ ∞

0

e−βtYyt (ε− I(Yyt ))dt

]
=

2

θ2(n1 − n2)

[
yn2−1

∫ y

0

ξ−n2(ε− I(ξ))dξ + yn1−1

∫ ∞
y

ξ−n1(ε− I(ξ))dξ

]
.

By the monotone convergence theorem,

lim
y→0+

E
[∫ ∞

0

HtI(Yyt )dt

]
= +∞.

Therefore,

lim
y→0+

{
2

θ2(n1 − n2)

[
yn2−1

∫ y

0

ξ−n2(ε− I(ξ))dξ + yn1−1

∫ ∞
y

ξ−n1(ε− I(ξ))dξ

]}
= −∞.

and thus

lim
y→0+

J ′(y) = −∞. (125)

By the limits (123) and (125), the strict convexity of J(y) implies that for given x ≥ x̄ there exist a

unique y∗ ∈ (0, ν̄) such that

x = −J ′(y∗).

Let us denote c∗, Y∗t , and Z∗t as

c∗t = ĉ

(
Yy

∗

t

1 + Ẑ0
t (y∗)

)
, Y∗t = Yy

∗

t , and Z∗t = Z0
t (y∗),

respectively. By Proposition 2 and Lemma 4, we deduce that

V (x) = sup
(c,π)∈A(x)

E
[∫ ∞

0

e−βtu(ct)dt

]
≤ inf
y>0

(
inf
Z∈Π(0)

L(y,Z)

)
= inf
y>0

(J(y) + yx)

≤J(y∗)− y∗J(y∗)

=E
[∫ ∞

0

e−βtu (c∗t ) dt

]
≤ sup

(c,π)∈A(x)

E
[∫ ∞

0

e−βtu(ct)dt

]
= V (x).

Therefore,

V (x) = inf
y>0

(J(y) + yx) = J(y∗) + y∗x (126)

and thus (c∗, π∗) is optimal.

It follows from Lemma 4 that

x = −J ′(y∗) = E
[∫ ∞

0

Ht (c∗t − ε) dt
]
. (127)

By slightly modifying Theorem 9.4 in Chapter 3.9 of Karatzas and Shreve (1998), we easily show that there

exists a portfolio π∗ such that (c∗, π∗) ∈ A(x). Moreover, the wealth Xc∗,π∗

t corresponding to (c∗, π∗) is

Xc∗,π∗

t = Et
[∫ ∞

t

Hs
Ht

(c∗t − ε) dt
]
. (128)
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and

dXc∗,π∗

t = [rXc∗,π∗

t + (µ− r)π∗t − c∗t + ε]dt+ σπ∗t dBt. (129)

The strong Markov property implies that

Xc∗,π∗

t = −J ′
(
Y∗t

1 + Z∗t

)
. (130)

By the generalized Itô’s lemma (see Harrison (1985), Stokey (2009)), we have

dXc∗,π∗

t =d

(
−J ′

(
Y∗t

1 + Z∗t

))
(131)

=− J ′′
(
Y∗t

1 + Z∗t

)
dY∗t −

1

2
J ′′′
(
Y∗t

1 + Z∗t

)
(dY∗t )2 +

Y∗t
(1 + Z∗t )2

J ′′
(
Y∗t

1 + Z∗t

)
dZ∗t .

Note that for 0 < y ≤ ν̄, J(y) satisfy

θ2

2
y2J ′′(y) + (β − r)yJ ′(y)− βJ(y) + ũ(y) + yε = 0. (132)

By differentiating the above equation with respect to y, we have

θ2

2
y2J ′′′(y) + (β − r + θ2)yJ ′′(y)− rJ(y) + ε− I(y) = 0 for 0 < y ≤ ν̄. (133)

Moreover,

dZ∗t = 0 for Y∗t /(1 + Z∗t ) < ν̄ (134)

and

dZ∗t > 0 for Y∗t /(1 + Z∗t ) = ν̄. (135)

Since J ′′(ν̄) = 0, we have

J ′′
(
Y∗t

1 + Z∗t

)
dZ∗t = 0 for all t ≥ 0. (136)

Thus, it follows from (131), (133), and (136) that

dXc∗,π∗

t =

[
−rJ ′

(
Y∗t

1 + Z∗t

)
+ θ2Y∗t J ′′

(
Y∗t

1 + Z∗t

)
− I

(
Y∗t

1 + Z∗t

)
+ ε

]
dt+ θY∗t J ′′

(
Y∗t

1 + Z∗t

)
dBt[

rXc∗,π∗

t + θ2Y∗t J ′′
(
Y∗t

1 + Z∗t

)
− c∗t + ε

]
dt+ θY∗t J ′′

(
Y∗t

1 + Z∗t

)
dBt. (137)

By comparing the wealth process Xc∗,π∗

t in (129) and (137), we have

π∗t =
θ

σ
Y∗t J ′′

(
Y∗t

1 + Z∗t

)
. (138)

K Proof of Proposition 6

(a): From Lemma 3,

0 =

∫ ν̄

0

ξ−n2−1 (u(I(ξ))− βP ) dξ =

∫ ν̄

0

ξ−n2−1u(I(ξ))dξ + βP
ν̄−n2

n2
.
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By differentiating the above equation with respect to P , we have

0 = ν̄−n2−1u(I(ν̄))
dν̄

dP
− βP ν̄−n2−1 dν̄

dP
+ β

ν̄−n2

n2
= ν̄−n2−1 (u(I(ν̄))− βP )

dν̄

dP
+ β

ν̄−n2

n2
.

It follows that
dν̄

dP
= −β ν̄

−n2

n2

1

ν̄−n2−1 (u(I(ν̄))− βP )
< 0,

where we have used the fact that u(I(ν̄))− βP < 0. Since

x̄ = −
(
ũ(ν̄)− βP

ν̄
+ ε

)
1

r
,

we deduce that

dx̄

dP
=
β

rν̄
−
(
−I(ν̄)ν̄ − ũ(ν̄) + βP

rν̄2

)
dν̄

dP

=
β

rν̄
+

(
u(I(ν̄))− βP

rν̄2

)
dν̄

dP
> 0.

(b): Since
dν̄

dP
< 0,

dD1

dP
=− ν̄−n1−1 (u(I(ν̄))− βP )

dν̄

dP
− β ν̄

−n1

n1
< 0.

Since x = −J ′(y∗), we have

0 = −J ′′(y∗)dy
∗

dP
− n1(y∗)n1−1 dD1

dP
.

It follows from J ′′(y∗) > 0 and dD1/dP < 0 that

dy∗

dP
> 0.

This leads that

dc∗t
dP

< 0.

(c): Since π∗t = 0 when x = x̄, we focus on the case x > x̄. For given x > x̄, by using the relationship

x = −J ′(y∗), we can derive

π∗t =
θ

σ
y∗J ′′(y∗) =

θ

σ
[y∗J ′′(y∗) + x+ J ′(y∗)]

=
θ

σ

[
x+

ε

r
+D1n

2
1y
∗n1−1 +

2

θ2(n1 − n2)

{
n2

2y
∗n2−1

∫ y∗

0

dξ + n2
1y
∗n1−1

∫ ∞
y∗

dξ

}]
− 2

θ2

ũ(y∗)

y∗
.

Taking into account that D1 depends on P , and differentiating both sides with respect to P , we have

dπ∗t
dP

=
θ

σ

[
dD1

dP
n2

1y
∗n1−1 + (y∗J ′′′(y∗) + 2J ′′(y∗)

dy∗

dP

]
=
θ

σ

−y∗J ′′′(y∗) + (n1 − 2)J ′′(y∗)

J ′′(y∗)
n1y
∗n1−1 dD1

dP

43



because
dy∗

dP
= −n1y

∗n1−1

J ′′(y∗)

dD1

dP
.

We can show that

−y∗J ′′′(y∗) + (n1 − 2)J ′′(y∗) = − 2

θ2

∫ y∗

0

ξ1−n2DI(ξ)dξ > 0

because the weak derivative DI(ξ) > 0 almost everywhere, and we also know that J ′′(y∗) > 0 and dD1/dP <

0. Thus, it follows that
dπ∗
t

dP and θ always have opposite signs, which completes the proof.
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