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1 Introduction

Market parameters are stochastically changing, and one of the easiest ways to model changing market

parameters is to employ a regime switching model reflecting the whole market environment. Many

researchers have found interesting results on the frequently changing market liquidity. For example,

Jones (2002) shows that when the bid-ask spread is used to measure liquidity, there could be a cycle,

and Næs Randi and Arne (2011) find a strong relation between stock market liquidity and business

cycle. They also show that investors’ portfolio compositions change with the business cycle and that

investor participation is related to market liquidity.

The long-lasting goal of studying liquidity is to understand about liquidity premium in asset pricing.

To explain the effect of market illiquidity on asset’s risk premium, investor’s portfolio selection models

with transaction costs have been widely employed. By exploiting such models, people can explain

how liquidity premium arises in asset pricing. First, transaction costs directly lead to investor’s

wealth reduction. When an investor sets up the initial position she wants and/or whenever she

adjusts her latest position, she has to pay transaction costs that cause a decrease in wealth. This

leads to the commensurate liquidity premium of illiquid assets in market equilibrium. Second, the

optimal investment strategy in the presence of transaction costs inevitably leads to no-trading region

in which neither sale nor purchase of the illiquid asset is optimal. The existence of such no-trading

region implies that the investor is not able to reach the optimal risk exposure, defined as the optimal

investment proportion invested in the illiquid asset, in the liquid market. This suboptimality leads

to the investor’s utility loss compared to her optimal utility in the absence of transaction costs,

necessitating a commensurate liquidity premium.

The portfolio selection problem in the presence of transaction costs has a long history. Con-

stantinides (1986) introduces a portfolio selection model of an individual with transaction costs to

calculate the liquidity premium with the reasonably-chosen market parameters. He finds that the ra-

tio of liquidity premium over transaction costs (LPTC) is much smaller than the empirical premium.1

While Dumas and Luciano (1991) finds an optimal transaction strategy for an investor who wants

to maximize her long-term growth utility, they assume that the possible combination of portfolios is

constant. Koo (1992) and Liu and Loewenstein (2002) derive optimal investment strategies for general

models but they do not analyze liquidity premia. Academics have developed numerous advanced mod-

els to fill the gap between theoretical and empirical studies. For instance, Jang et al. (2007) employ

1Some empirical papers argue that liquidity premia due to transaction costs is insufficient to explain the
considerable high ratio of LPTC. See, e.g., Amihud and Mendelson (1986).
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a regime-switching market parameters to implement a stochastic investment opportunity that forces

investors to trade substantial amounts more frequently. Their model generates a larger wealth reduc-

tion because the investor is forced to trade in a large amount anytime the regime changes, and that

subsequently incurs a high transaction cost. Lynch and Tan (2011) show that return predictability

can be a major factor in the liquidity premium. They set the stock return depending on the external

factors and assume the presence of stochastic liquidity and labor to find out the reason for a high

liquidity premium. Dai et al. (2016) suggest that the market closure can affect the liquidity premium

resulting in suboptimal risk exposure. They say that the volatility of the market closure greatly differs

from the on-going market, and this difference may cause a high LPTC ratio. Moreover, Chen et al.

(2020) show that the incomplete information can cause a high LPTC ratio. This study further extends

Jang et al. (2007), and they provide a solid empirical observation at the high level of the LPTC ratio.

However, most of them do not consider the stochastic changes in transaction costs and dividends in

the financial market.

Jang et al. (2007) show that the LPTC ratio in the bear regime is much higher than that in the

bull regime assuming constant transaction costs. The assumption of change in transaction costs might

give a different result. For instance, the presence of a much higher transaction cost for a bear regime

can give us a less LPTC ratio because its denominator is apparently large, which is the opposite of

the result of Jang et al. (2007). At the same time, the consideration of dividend changes in modeling

illiquidity could be interesting because dividends paid in cash or cash equivalents can enhance liquidity

of illiquid assets. Therefore, simultaneous consideration of the changes in transaction costs and cash

dividends is likely to give new results that cannot be revealed in the existing liquidity studies.

Lower transaction cost can be thought of as higher liquidity, which is the characteristic of a bull

regime. However, research on the regime switching of dividends is scarce, despite a slightly different

trend of dividend yield during recessions as shown in Figure 2(a) and Figure 2(b).2 During both Global

Financial Crisis of 2008 and early coronavirus disease of 2019 in U.S., the average dividend yield was

higher than that of the previous month’s. For example, the S&P500 dividend yield in December 2007

was 1.36% whereas it was 1.96% in January 2008.The pattern in the average dividend yield of KOSPI

was similar to that of S&P500. During Global Financial Crisis in Korea, the average dividend yield

increased. However, in the period from April 2014 to March 2015, the average dividend yield in Korea

decreased compared to the yield in March 2014. This means that the dividend yield was counter-

cyclical (lower in bull and higher in bear) during the period. Since the regime switching of dividend

2The monthly OECD based recession indicators for US and Korea are from Federal Reserve Economic Data
(FRED), monthly dividend yield data for US is from Robert Shiller’s online data, and monthly dividend yield
data for Korea is from Korean Statistical Information Service (KOSIS).
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is different depending on a time period and a country, an investor needs to change her investment

strategy regarding the regime switching.

We represent the stochastic changes by employing two-state regime-switching transaction cost

and dividend parameters in our model. Specifically, to describe the sole effect of the existence of

regime switching on liquidity premium, we first identify the two components of the risk premia; one

stemming from liquidity risk in the absence of regime switching and the other stemming from regime-

switching risk, which is defined as an additional liquidity premium in the presence the regime changes

in transaction costs and dividends. Consequently, we show that the premium of the second component

at Merton’s line (Merton’s optimal investment strategy3), the optimal portfolio position for the case

in the absence of transaction costs, is likely to be higher when transaction costs are pro-cyclical and

dividends are counter-cyclical.

In our model with reasonably calibrated parameters, we show that when transaction costs are

counter-cyclical, the risk premium is higher in the bear regime. However, we also show that when

transaction costs are pro-cyclical, the risk premium is higher at a smaller value of the illiquid asset-

to-wealth ratio and lower at its larger value in the bull regime. This could be because of an investor’s

precautionary behavior against illiquidity. Moreover, we find that the investor’s aversion to the risk

due to the change in transaction costs can be high. In particular, when transaction costs are high

in the bear regime and low in the bull regime (or equivalently, counter-cyclical), liquidity premium

increases. This is because when transaction costs are counter-cyclical, the investor’s no-trading region

in the bear regime expands and the investor’s utility score significantly drops. The expected staying

time at the bull regime is insufficient to fully exploit the gain from the narrow no-trading region in the

presence of the counter-cyclical transaction cost. Therefore, the overall investor’s utility score declines,

and the investor requires more liquidity premium.

When it comes to dividends, we show that the existence of pro-cyclical dividends paid in liquid

asset (e.g. cash) can raise the LPTC ratio. To specify this effect, we calculate and compare the LPTC

ratios with different dividend volatilities in each regime. As the volatility of pro-cyclical dividend

increases, its role as a liquidity provider weakens, leading to a higher LPTC ratio. We can observe

that the counter-cyclical dividends can lower the LPTC ratio, whereas the pro-cyclical dividends can

raise it.

We also report some interesting results with the illiquidity measures, such as expected holding

time and expected transaction cost, as well as LPTC ratio. The expected transaction cost represents

the expectation of the discounted sum of transaction costs paid over the entire investment horizon.

3It is derived by solving our problem without considering transaction costs.
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Similarly, the expected holding time is the time it takes the investor’s position to exit the no-trading

region. We find that the counter-cyclical transaction costs can raise the expected transaction costs,

which leads to a high liquidity premium. However, the results obtained from the expected holding

time are a bit mixed. For instance, in a parameter set with sufficient level of transaction cost mean,

the expected holding time is the highest when the transaction costs are pro-cyclical.4

Technically, we introduce a modified version of the numerical method stated in Dai and Zhong

(2008), a penalty method frequently used for continuous-time portfolio selection problems. We first

reduce the portfolio selection problem with two state variables into that with one state variable,

the stock-to-unliquidated-wealth ratio, and look for a proper form of linearized penalty term after

discretizing the Hamilton-Jacobi-Bellman (HJB) equation. We had to modify the existing penalty

method because the dynamics of the liquid asset holdings in our model can be seriously affected by

the dynamics of the cash dividends which are proportional to the illiquid stock holdings.

The rest of this paper is organized as follows. Section 2 describes the financial market and the

investor’s problem and defines liquidity measures that are used in the paper. Section 3 provides the

optimal investment strategies, the numerical result of liquidity premia, expected holding time, and

expected transaction cost.

2 The Model and Liquidity Measures

2.1 The Model

We assume an infinitely living investor who can access perfectly liquid risk-free asset (call it “cash”)5

and an illiquid risky asset (call it “stock”). The liquid stock is assumed to give the holders cash

dividends. Thus, the investor’s cash inflow is either from the liquid and illiquid asset returns or cash

dividends. The investor should pay transaction costs whenever she trades the illiquid stock. Then,

the amount of the investor’s cash (x) and stock (y) holdings follow the dynamics:

dxt =
(
rxt + δεtyt − C(t)

)
dt−

(
1 + λεt

)
dLt +

(
1− µεt

)
dMt,

dyt = αεtytdt+ σεtytdBt + dLt − dMt,

4However for the low level of transaction cost mean (=0.1%), the expected holding time is highest when
transaction costs are the same for both regimes. This could be because the expected holding time is not
directly connected with rising illiquidity. In other words, the expected holding time can be an ambiguous
metric to measure illiquidity compared to the expected transaction cost.

5Here, we assume the “cash” is also an asset which can give us a return. In reality, we can consider the
“cash” is a risk-free and (almost perfectly) liquid asset such as money market funds.
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where Bt is a standard Brownian motion, r is the risk-free rate (or equivalently, the rate of the liquid

asset return), δ is the dividend yield, λ (µ) is the purchase (sale, resp.) transaction cost, and dLt (dMt)

is the amount of liquidity stock bought (sold, respectively) by the investor during an infinitesimal time

interval [t, t+ dt). We also assume that α is the liquid stock return, σ is its volatility, and C(t) is the

investor’s consumption rate.

The two-state regime-switching process, εt ∈ {B, b}, represents the time-t state where the financial

market stays, and we assume regime B stands for a bull regime and regime b stands for a bear regime.

Regime i (i ∈ {B, b}) switches into the regime j (j ∈ {B, b} and j 6= i) at the first jump time of

the Poisson process with an intensity ηi.
6 Thus, in our model, the investor can have a stochastically

changing investment opportunity because the market parameters can change across the two regimes.

The investor wants to maximize her utility obtained from the intermediate consumption, which

implies that the value function V of the investor at time t should be defined as

V (xt, yt) := max
(Ct,Lt,Mt)

Et
[ ∫ ∞

t

e−βt
1

1− γ
C1−γ
t dt

]
, (1)

where Et[·] means the time t-conditional expectation, β is the investor’s subjective discount rate, and γ

is her relative risk aversion. For the convenience sake, we let the value function in regime i be V i. The

value function has the homogeneity of V i(kxt, kyt) = k1−γV i(xt, yt) for arbitrary positive constant k,

and thus, we can define

ψi(zt) := (xt + yt)
γ−1

V i(1− zt, zt), and W i(zt) :=
log
(
(1− γ)ψi(zt)

)
1− γ

,

for the stock-to-unliquidated wealth (STUW) ratio, zt :=
yt

xt + yt
.

Using the standard asset allocation theory, the modified value function W i and the optimal in-

vestment strategy can be obtained by solving the Hamilton–Jacobi–Bellman (HJB) equation in the

following theorem.

Theorem 2.1. The modified value function W i(z) (i ∈ {B, b}) satisfies the following HJB equation:

max
(Ct,Lt,Mt)

{L2W
i(z), L2W

i(z), M2W
i(z)} = 0, (2)

6The regime-switching process is an alternating renewal process with two states. See, Ross (1982) for
the details. By the definition, the two Poisson processes that make up the alternating renewal process are
independent with each other.
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where

L2W
i(z) := (1 + λiz)W

i
z(z)− λi, and M2W

i(z) := −(1− µiz)W i
z(z)− µi,

and

L2W
i(z) := −

( β

1− γ
+

1

2
σ2
i z

2γ − (r(1− z) + δiz)− αiz
)

+
(
− σ2

i z
2γ(1− z)− z(r(1− z) + δiz) + αiz(1− z)

)
W i
z(z)

+
1

2
σ2
i z

2(1− z)2
(
(1− γ)(W i

z(z))
2 +W i

zz(z)
)

+
( 1

1− γ
− 1
)
e−

1−γ
γ W i(z)(1− zW i

z(z)) +
1

1− γ
ηi
(
e(1−γ)(W

j(z)−W i(z)) − 1)
)
,

for j 6= i (j ∈ {B, b}). Here, W i
z(z) :=

∂W i

∂z
(z) and W i

zz(z) :=
∂2W i

∂z2
(z).

Proof. See A.1.

The investor’s optimal consumption and portfolio choice problem is converted into a problem to

find a solution of partial differential equation with three forms. These forms can build up three regions

associated with the optimal investment strategies: the buy region where L2W
i(z) = 0 holds, the sell

region where M2W
i(z) = 0 holds, and no-trading region where L2W

i(z) = 0 holds. As seen in Jang

et al. (2007), if the investor’s initial position lies on the buy or sell regions for the both regimes, the

optimal investor immediately adjusts her portfolio so that her position lies on the no-trading region.

This type of strategy is called bang–bang. Notice that the optimal investor’s strategy can be in a

no-trading region for each regime at the beginning, but it can change with alterations in the market

regime. At the time when the market regime change occurs, the optimal investor immediately changes

her current position in regime i to be the position on the no-trading region for regime j.7

To make the problem feasible, Davis and Norman (1990) have made standard assumptions in their

study, and we take the assumption:

Assumption

β > max
i∈{B,b}

{ γ

1− γ

(
r(1− γ) +

(αi − r)2

σ2
i

)}
.

7These three partial differential equations are solved through the penalty method. More descriptive expla-
nations are included in Appendix A.2.
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Furthermore, we assume αi > r (i ∈ {B, b}), which implies the risk premium of the stock to be always

positive.8

2.2 Liquidity Premium and Liquidity Measures

Before defining liquidity measures, we first explore the STUW ratio process, zt. As a matter of fact,

we can get the evolution equation of the ratio in an explicit form: for i ∈ {B, b},

dzt = αi(zt)dt− σiz(1− z)dBt,

where

αi(z) = z
(
− r(1− z)− δiz + αi(1− z) + σ2

i z(1− z) +
(
(1− γ)ψ(z)− zψz(z)

)− 1
γ
)
.

Now we calculate the steady-state distribution of zt. For the following theorem, we assume that the

no-trading region can be separated for simplicity,9
¯
zi to be the lower bound of the no-trading region

in regime i, and z̄i to be its upper bound. Notice that the investor’s stock purchases occur at
¯
zi and

her stock sales occur at z̄i. (See Figure 1)

Theorem 2.2. Suppose
¯
zb < z̄b <

¯
zB < z̄B. Then, the steady-state density functions, φi(z) for zt in

regime i ∈ {B, b} are the solutions of

1

2
σ2
Bz

2
B(1−zB)2φ

′′

B(z)−
(
αB(zB)−2σ2

BzB(2z2B−3zB+1
)
φ
′

B(z)−
(
ηB−σ2

B(6z2B−6zB+1)+α
′

B(zB)
)
φB(z) = 0,

subject to

1

2
σ2
B z̄

2
B(1− z̄B)2φ

′

B(z̄B)−
(
αB(z̄B)− σ2

B z̄B(2z̄2B − 3z̄B + 1
)
φB(z̄B) = 0,

1

2
σ2
B¯
z2B(1−

¯
zB)2φ

′

B(
¯
zB)−

(
α
B

(
¯
zB)− σ2

B¯
zB(2

¯
z2B − 3

¯
zB + 1

)
φB(

¯
zB) +

ηBηb
ηB + ηb

= 0,

8The assumption is obvious if we can take the assumption that the majority of the stock market participants
are risk averse. However, this constraint can be lifted if the investor does not make a consumption. See, e.g.,
Chen et al. (2020).

9On the premise that the return of the bull regime is much higher than that of the bear regime, we can
assume that the sell boundary of the bear regime resides at a lower point than the buy boundary of the bull
regime. We assert that the other cases also have similar results and we leave their proofs to the reader. See
Jang et al. (2007) for the details.
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and

1

2
σ2
bz

2
b (1−zb)2φ

′′

b (z)−
(
αb(zb)−2σ2

bzb(2z
2
b −3zb+1

)
φ
′

b(z)−
(
ηb−σ2

b (6z2b −6zb+1)+α
′

b(zb)
)
φb(z) = 0,

subject to

1

2
σ2
b z̄

2
b (1− z̄b)2φ

′

b(z̄b)−
(
αb(z̄b)− σ2

b z̄b(2z̄
2
b − 3z̄b + 1

)
φb(z̄b)−

ηBηb
ηB + ηb

= 0,

1

2
σ2
b¯
z2b (1−

¯
zb)

2φ
′

b(¯
zb)−

(
αb(

¯
zb)− σ2

b¯
zb(2

¯
z2b − 3

¯
zb + 1

)
φb(

¯
zb) = 0.

Proof: Follow the steps in Jang et al. (2007).

2.2.1 Expected LPTC Ratio

We first move to the definition of liquidity premium. In general, it is defined as the magnitude of the

stock return that investors are willing to give up to get rid of transaction costs. Specifically, we define

the liquidity premium at a STUW ratio z as follows.

Definition 2.1. The liquidity premium ∆i(z) at z in regime i ∈ {B, b} is defined by

WNTC,i(z;αi −∆i(z)) = W i(z;αi),

where W i(z;αi) is the value function W i(z) where the expected rate of return of the liquid stock for

regime i is αi, and WNTC,i(z; ζi) is the value function W i(z) where the transaction costs are zero all

the time and the expected rate of return of the liquid stock for regime i is ζi.

Notice that when transaction costs are small (large) the corresponding liquidity premium is small

(large, resp). To factor out this scale effect, the LPTC ratio is introduced10 as
∆i(z)

λi
. Many researchers

have chosen the STUW ratio z to be the ratio on the Merton’s line which is an optimal investment

strategy drawn on (x, y)−plane where there exists no transaction costs in the financial market.

Moreover, following Jang et al. (2007), we define the expected LPTC ratio over the no-trading

region. Using the average LPTC ratio to observe liquidity premium in the regime switching model

10This type of liquidity metric has been introduced several papers, e.g., Constantinides (1986) and Jang
et al. (2007)
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seems more reasonable because the Merton’s line may go outside the no-trading region.11

Definition 2.2. Suppose the purchase transaction cost and sale transaction cost are the same, i.e.,

λi = µi for i ∈ {B, b}. The expected LPTC ratio in regime i is defined as

Ei
[∆i

λi

]
:=

∫
z∈NTi

∆i(z)

λi
φi(z)dz (3)

where NTi stands for the no-trading region in regime i and φi(z) is the steady-state density function at

a STUW ratio z, which is defined in Theorem 2.2. Moreover, the expected LPTC ratio for all regimes

is defined as

∆̄ := EB
[∆B

λB

] ηB
ηB + ηb

+ Eb
[∆b

λb

] ηb
ηB + ηb

.12 (4)

2.2.2 Expected Transaction Cost

Under the assumption of the separate no-trading regions across regimes, we can calculate the expected

transaction cost for the whole investment horizon which is defined as the sum of discounted transaction

costs over the whole infinite investment period.

Definition 2.3. The expected transaction cost Ci(x, y) at (x, y) for regime i ∈ {B, b} is defined as

Ci(x, y) = E0

[ ∫ τi

0

e−βt(λidL
∗
t + µidM

∗
t ) + e−βτiCj(xτi , yτi)

]
, for j 6= i.

Here, τi is the first regime jump time where the initial regime is i, and L∗t (M∗t ) is the optimal

cumulative purchase (sale, resp.) amount, that is, Lt (Mt, resp.) in optimum.

Theorem 2.3. The expected transaction costs can have a reduced form of

Ci(x, y) =: (x+ y)gi(
y

x+ y
),

11For example, Figure 4 in Jang et al. (2007) reports that the Merton’s line lies on the buy region. This
means that the Merton’s line cannot be on the no-trading region under some parameter sets.

12Notice that the multifliers ηi
ηB+ηb

for i ∈ {B.b} are the steady-state distribution of εt = i.
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where for
¯
zi < z < z̄i, gi(z) solves

1

2
σ2
i z

2 (1− z)2 g′′i (z) +
(
z (1− z) (αi − r)− δiz2 + ze−

(1−γ)W (z)
γ (1− zWz(z))

− 1
γ
)
g′i(z)

+
(
αiz + r (1− z) + δiz − e−

(1−γ)W (z)
γ (1− zWz(z))

− 1
γ − β − ηi

)
gi(z) + ηjgj(z) = 0,

with the boundary conditions of

− λigi(
¯
zi) + (1 + λi

¯
zi)g

′
i(¯
zi) + λi = 0,

− µigi(z̄i) + (−1 + µiz̄i)g
′
i(z̄i) + µi = 0.

For the cases where z > z̄b and z <
¯
zB, gi(z) can be derived as

gb(z) =
1

−1 + µbz̄b

(
(−1 + µbz) gb(z̄b) + µb (z̄b − z)

)
, for z > z̄b,

gB(z) =
1

1 + λB
¯
zB

(
(1 + λBz) gB(

¯
zB) + λB (

¯
zB − z)

)
, for z <

¯
zB .

Proof: See Appendix A.3.

Abusing the definition, we call gi(z) the expected transaction cost at a STUW ratio z for regime i.

2.2.3 Expected Holding Time

The expected holding time defined in this paper is the expected time of the next sale.

Theorem 2.4. Suppose the current regime is i ∈ {B, b} and
¯
zb < z̄b <

¯
zB < z̄B. We define the next

sale time as

τS := inf{t ≥ 0 : zt = z̄B or zt = z̄b}.

Let the expected holding time for regime i be

Ti(z) := E0[τS |z0 = z, ε0 = i],

11



where z0 (ε0) represents the initial value of zt (εt, resp.). Then, TB(z) and Tb(z) are the solutions of

1

2
σ2
Bz

2(1− z)2T
′′

B(z) + αB(z)T
′

B(z)− ηBTB(z) + 1 = 0,

1

2
σ2
bz

2(1− z)2T
′′

b (z) + αb(z)T
′

b(z)− ηb(TB(z̄B)− Tb(z)) + 1 = 0,

(5)

subject to

Ti(z̄i) = 0 and T
′

i (¯
zi) = 0.

Proof: See Appendix A.4.

3 Optimal Investment Strategies and Liquidity Premium

In this section, we investigate the effects of regime-switching transaction costs and dividends on the

optimal investment strategy and liquidity premia. We have introduced the three liquidity measures:

the expected LPTC ratio, the expected transaction cost, and the expected holding time. However, we

cannot get their analytic formula. We developed a numerical method based on the penalty method in

Dai and Zhong (2010) to solve our problem.13

For numerical analyses, the baseline parameter values are set as follows: risk-free rate r = 0.051,

the stock volatilities σB = 0.1306, σb = 0.2438, the stock return αB = αb = 0.1394, the regime-

switching intensities ηB = 0.2353, ηb = 1.739114 and the discount rate β = 0.051. We set the mean

dividend yield as 4.38%.15 We subtract 4% from the stock return to compensate for the effect of the

cash dividend yield partially. Therefore, the stock return in our model is αB = αb = 0.0994. We set

the stock’s return to be the same for both the bull and bear regimes. Moreover, the investor’s risk

aversion is 7.16

In a separate experiment, we compare the premium of a regime switching model with transaction

costs and the premium of a single-regime model with transaction costs. Table 1 shows the premium of

the former model at Merton’s line, i.e., the STUW ratio z = µ−r+δ(ε(t)))
γσ2 . We only examine the case

when the mean of transaction costs is 0.5%. Compared with the values in Table 1, the single-regime

13See Appendix A.2 for details.
14We use the U.S. equity market parameters that are estimated by Ang and Bekaert (2002).
15We first extract the S&P500 dividend yield from January 1, 1950 to December 31, 2020 using the data

from Quandl. Then, utilizing the recession indicator data from FRED, we calculate the dividend yield for both
bull and bear regimes. The mean value is computed by using the regime-switching intensities.

16The distribution of relative risk aversion in Kaplow (2005) shows that the relative risk aversion varies from
near 0 to 10.
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model has a lower premium with the value of 0.0018. This can be interpreted as the premium of the

former model consisting of two components: regime-switching risk premium and liquidity premium.

In other words, the difference between premia in the two models stems from the regime-switching risk.

3.1 Optimal Investment Strategies

The role of regime switching on transaction costs and dividends in optimal investment strategy is

discussed in this section. The portfolio selection problem with transaction costs also provides three

distinct regions of investment strategy: buy, sell, and no-trading regions. However, depending on

the regime-switching transaction costs and dividends, the position of the three regions can drastically

change over time. This can amplify the effect of the regime switching on the liquidity premium.

3.1.1 The Effects of Regime-switching Transaction Costs

Figure 3 shows a graphical representation of the optimal investment strategy where the regions be-

tween the two solid, dashed, and dash-dotted lines represent the no-trading region for the cases with

counter-cyclical, mean-constant, and pro-cyclical transaction costs, respectively. If transaction costs

are counter-cyclical, the no-trading region of the bear regime is the widest. This result is intuitive

because the investor will widen the no-trading region to avoid a large wealth reduction. The optimal

investment strategy outside the no-trading region is to immediately shift the position to the boundary

of the no-trading region. If the no-trading region in the bear regime is narrow, the optimal investor

should rebalance her position to hold more stock to reach the boundary of the no-trading region. This

rebalancing induces a higher transaction cost, which is why the investor has a large no-trading region

in the bear regime when the transaction cost is counter-cyclical.

3.1.2 The Effects of Regime-switching Dividends

The pro-cyclical dividend may encourage the investor to become more involved in the stock market,

because the pro-cyclical dividend is similar to increased stock return under reasonably calibrated

parameters. As a matter of fact, under such parameter condition, the bull regime seems substantially

longer than the bear regime. Figures 4(a) and 4(c) show that when dividends are pro-cyclical, the

difference between bull and bear stock holdings is higher, which is obvious since a lower dividend in

the bear regime lowers liquidity.

To describe the effect of dividends more precisely, we also analyze the effect of dividend volatility

on the LPTC ratio in Figure 5. The standard deviation between bull and bear dividends is referred
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to as dividend volatility. When the dividend is lower in bull regime and higher in bear regime (or

equivantly, counter-cyclical), the LPTC ratio decreases as the volatility increases. However, when

the dividend is higher in bull and lower in bear (or equivalently, pro-cyclical), the dividend volatility

increases, which leads to increasing LPTC ratio. For the counter-cyclical dividend case, the LPTC

ratio decreases as dividend volatility increases. When the volatility is greater, the dividend in the bear

regime is higher than that of the bull regime, leading to higher liquidity in bear regime. Therefore, the

overall LPTC ratio is lowered. For the case of pro-cyclical dividend case, the LPTC ratio increases as

the dividend volatility increases. A higher dividend in bull regime and a comparatively lower dividend

in bear regime worsen the liquidity. In other words, the effect of the cash dividend as a liquidity

provider diminishes for the case of pro-cyclical dividends.

3.2 Liquidity Premium

3.2.1 Liquidity Premium

Figure 6 shows liquidity premia over different STUW ratios. The counter-cyclical transaction costs

show a substantial increase in liquidity premia as shown by the dashed lines of Figure 6. This result

is puzzling because it can be assumed that the decrease in the liquidity premium in the bull regime,

which lasts for around 80% of the investment horizon, would lower the overall liquidity premium.

However, the result is possible if the loss in the utility score from the suboptimal risk exposure in

the bear regime is large enough to dominate the gain in the utility score from the lower illiquidity in

the bull regime. It shows that the liquidity premium can be mainly induced by the asset with high

transaction costs, and this can be explained with an adoption of regime switching.

On the other hand, the expected LPTC ratio is the highest when transaction costs are counter-

cyclical, whereas pro-cyclical or mean-constant cases show no substantial differences. As the mean

value of transaction costs decreases, this effect becomes more visible. This could be because when

transaction costs are counter-cyclical, the overall investor’s utility score drops since the investor’s

no-trading region in the bear regime widens.

The expected LPTC ratio can also be increased by the regime-switching dividends. When the

dividends are pro-cyclical, the investor receives a smaller amount of cash in the bear regime. Recalling

that the dividend is paid in cash, the smaller amount of dividend payout in the bear regime lowers

the provided liquidity, pushing the liquidity premium higher.

Consistent with the result of liquidity premia, the expected transaction costs are the largest when

the transaction costs are counter-cyclical. In contrast, pro-cyclical transaction costs show the longest
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expected holding time. This different implication can be because the widened no-trading region of the

long-lasting bull regime is the main reason in increasing the expected holding time.

3.2.2 The Expected Transaction Cost

Figure 7 shows the expected transaction cost as a function of the STUW ratio in each regime. In all

cases of regime switching, the expected transaction costs in the no-trading region are U-shaped for both

regimes. This can be interpreted as when the position is distant from the boundary of the no-trading

region, the optimal investor is less likely to move her portfolio outside the no-trading region. As soon

as the stock position goes outside the no-trading region, the optimal investor immediately rebalances

her position to remain within the no-trading region, incurring a transaction cost. Therefore, as the

stock position is closer to the boundaries of the no-trading region, the expected transaction cost will

surge.

A similar logic can be applied to the tilted U-shape of the expected transaction cost graphs. For

example, in the bull regime, the right part of the U-shape graph is significantly higher than the left.

However in the bear regime, the left part is higher than the right. This is due to regime switching.

Under our assumption, there is always a chance that the regime will switch to the bear regime in the

bull regime. When the STUW ratio is high and the regime changes to the bear regime, the investor

should pay more transaction cost to reach the no-trading region in the bear regime compared to the

case in which the STUW ratio is low. Therefore, in the bull regime, the right part of the U-shape

graph with a higher STUW ratio has a higher level of the expected transaction cost. Similarly, in the

bear regime, there is always a possibility that the regime switches to the bull regime, making the left

part of the U-shape graph to have a higher level of the expected transaction cost.

3.2.3 The Expected Holding Time

Figure 8 shows the expected holding time as a function of the STUW ratio in each regime. In all cases of

regime-switching transaction costs, the expected holding time decreases as the STUW ratio increases.

When the STUW ratio is high, the expected staying time drops. This could also be interpreted as a

higher probability of touching boundaries of a no-trading region, and it makes the optimal investor to

rebalance her portfolio more frequently, leading to a shorter holding time.

When the dividends are pro-cyclical, the results of the expected holding time are a bit mixed.

The decrease in expected holding time is affected by the low transition probability to the bear regime.

A decline in the expected holding time is particularly sharp in the bull regime and it can induce a
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decrease in the total expected holding time.

4 Conclusion

In this paper, we investigate the effect of time-varying transaction costs and dividends. To figure out

the effect of regime switching, we identify two components of the risk premium: liquidity risk and

regime-switching risk. We find that when transaction costs are pro-cyclical and dividends are counter-

cyclical, the regime-switching risk premium at Merton’s line is higher. Moreover, we show that the

expected LPTC ratio is the highest when transaction costs are counter-cyclical and dividends are pro-

cyclical. This result stems from the sharp drop of the investor’s utility score due to an expansion of

the investor’s no-trading region in the bear regime. However, the result of the expected holding time

is unexpected. For example, when transaction cost mean is sufficiently high, pro-cyclical transaction

costs and pro-cyclical dividends make higher expected holding time. To further describe the effect of

regime-switching dividends on liquidity premium, we analyze how different dividend volatilies in each

regime changes the expected LPTC ratios. We find out that the counter-cyclical dividends can lower

the ratio, and the result is opposite when dividends are pro-cyclical. These analyses could be done by

our numerical contribution utilizing the concept of penalty method. Through this method, we could

solve the HJB equation with boundaries (constraints).

Future studies could investigate the association between transaction cost and dividend. Our paper

examines the case when their correlation is either 1 or −1. Consideration of the correlation could be

done by setting two different stochastic processes for transaction cost and dividend instead of regime

switching. This would provide more detailed analysis on co-effect of them on liquidity premium. We

deal with two types of assets: liquid risk-free asset and illiquid risky asset; however, there are stocks

that are easily traded due to the fact that there is a large volume of stock shares traded frequently.

Therefore, future research could be conducted in more realistic settings by adopting an additional

liquid asset to a model.
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A Proofs

A.1 Proof of Theorem 2.1

Using the definition of equation (1), we can easily derive the following HJB equation:

max{L0V
i(x, y), L0V

i(x, y), M0V
i(x, y)} = 0, (6)

where L0V
i(x, y) and M0V

i(x, y) are defined as

L0V
i(x, y) := −(1 + λi)V

i
x(x, y) + V iy (x, y), and M0V

i(x, y) := (1− µi)V ix(x, y)− V iy (x, y).

Also, L0 is given by

L0V
i(x, y) =

1

2
σ2
i y

2V iyy(x, y) + (rix+ δiy)V ix(x, y) + αiyV
i
y (x, y)− βV i(x, y)

+
( 1

1− γ
− 1
)

(V ix(x, y))
1−γ
−γ + ηj(V

j(x, y)− V i(x, y)),

where i ∈ {B, b} indicates the current regime and j indicates the other regime.

Using a change of variable, we reduce the dimension of our problem by one. For the variable

z =
y

x+ y
, we have

L1ψ
i(z) = (1 + λiz)ψz(z)− λiγψ(z), and M1ψ

i(z) = −(1− µiz)ψz(z)− µiγψ(z).

and

L1ψ
i(z) =

(1

2
σ2
i z

2γ(γ − 1) + (r(1− z) + δiz)(1− γ) + αiz(1− γ)− β
)
ψi(z)

+
(
− σ2

i z
2γ(1− z)− z(r(1− z) + δiz) + αiz(1− z)

)
ψiz(z) +

1

2
σ2
i z

2(1− z)2ψizz(z)

+
( 1

1− γ
− 1
)
{(1− γ)ψi(z)− zψiz(z)}

1−γ
−γ + ηi(ψ

j(z)− ψi(z)).

Taking an additional transformation, we can say that our problem is converted into the problem of

max{L2W
i(z), L2W

i(z), M2W
i(z)} = 0,

with

L2W
i(z) = (1 + λiz)W

i
z(z)− λi, and M2W

i(z) = −(1− µiz)W i
z(z)− µi,
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and

L2W
i(z) = −

( β

1− γ
+

1

2
σ2
i z

2γ − (ri(1− z) + δiz)− αiz
)

+
(
− σ2

i z
2γ(1− z)− z(ri(1− z) + δiz) + αiz(1− z)

)
Wz(z)

+
1

2
σ2
i z

2(1− z)2((1− γ)(W i
z(z))

2 +W i
zz(z))

+ (
1

1− γ
− 1)e−

1−γ
γ W i(z)(1− zW i

z(z)) +
1

1− γ
ηi(e

(1−γ)(W j(z)−W i(z)) − 1)).

For the mathematical details, see Dai and Zhong (2010).

A.2 Numerical Methods

When we adopt the penalty method to our problem, we can modify our HJB (2) in Theorem 2.1 into

the equation below:

L2W
i(z) + P (L2W

i(z))+) + P (M2W
i(z))+) = 0,

where P equals to the penalty coefficient which is a large number. However, there are several nonlinear

terms in the equation, such as the second order derivative, the consumption term, the regime-switching

term, and the penalty terms. We linearize all these terms by using second-order central method for

the second order derivative, Taylor expansion for the exponential terms, and linearized penalty terms

that are stated in Forsyth and Vetzal (2002). Specifically, the penalty terms and the exponential terms

are expressed as:

P (L2W
i(z))+ =


Large if L2W

i(z)) > 0,

0 otherwise,

P (M2W
i(z))+ =


Large if M2W

i(z)) > 0,

0 otherwise,

1

1− γ
ηi(e

(1−γ)(W j(z)−W i(z)) − 1) ∼ ηi(W j(z)−W i(z)).

Moreover, a first order derivative is discretized as:

cWz ∼
Wn+1(z)−Wn(z)

∆z
max{c, 0}+

Wn(z)−Wn−1(z)

∆z
min{c, 0},

where c is a coefficient multiplied to the first order derivative of a spatial variable (or equivalently,

the wealth variable z) and n is a n-th wealth value of a wealth grid. We then use the matrix form of

finite difference method and iteratively calculate it to find out the value vector under a predetermined
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convergence tolerance.

A.3 Proof of Theorem 2.3

This is easily verified through the relationship between Ci and gi. Following Jang et al. (2007), we

can get the following equation for Ci:

∂Ci
∂x

(x, y) (rx+ δiy − Ci(x, y)) +
∂Ci
∂x

(x, y) (− (1 + λi) dL
∗
t + (1− µi) dM∗t )

+
∂Ci
∂y

(x, y) (αiy + dL∗t − dM∗t ) +
1

2
σ2
i y

2 ∂
2Ci
∂y2

(x, y)− βCi(x, y) + λdL∗t + µidD
∗
t

=
1

2
σ2
i z

2 (1− z)2 g′′i (z) +
(
z (1− z) (αi − r)− δiz2 + ze−

(1−γ)W (z)
γ (1− zWz(z))

− 1
γ
)
g′i(z)

+
(
αiz + r (1− z) + δiz − e−

(1−γ)W (z)
γ (1− zWz(z))

− 1
γ − β − ηi

)
gi(z) + ηjgj(z)

= 0,

where the first equality is driven by dividing (x+ y) on the first equation.

A.4 Proof of Theorem 2.4

When the regime shifts from regime B to regime b, it is optimal to sell the stock immediately, leading

to

TB(z) = E0[τS |z0 = z]

= E0[τBS ∧ τB |z0 = z]

= E0

[ ∫ τBS

0

e−ηBtdt|z0 = z
]
,

(7)

where τBS is the next sale time during regime B.

On the other hand, when the regime shifts from regime b to regime B, we should consider whether

(1) the sale time is earlier or (2) the regime jump time is earlier. For the case of (2), we should consider

the case where the investor sells the stock in regime B. Therefore, we get

Tb(z) = E0[τS |z0 = z]

= E0[τ bS ∧ τb|z0 = z] + TB(z̄B)E0[1{τb<τbS}|z0 = z]

= E0

[ ∫ τbS

0

(1 + λbTB(z̄B))e−ηbtdt|z0 = z
]
.

(8)

where τ bS is the next sale time during regime b. Using the Feynman-Kac theorem, Equation (7) and

(8) can be derived from the equations in (5) of the theorem above.
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Premium at
Merton Line

Transaction Costs
(Median Mean 0.5%)

Counter Mean Pro

Dividend
Counter 0.0039 0.0039 0.0042

Mean 0.0018 0.0018 0.0019
Pro 0.0015 0.0015 0.0016

Table 1: Premium of a Regime-switching Model with Transaction Costs. Premium of the regime-
switching model with transaction costs is calculated at Merton’s line (z = µ−r+δ(ε(t)))

γσ2 ). The column shows
values according to dividends with different cyclicalities and the row shows values with cyclicalities in transac-
tion costs. For the dividend pair (bull and bear), the higher one is set to be 4.5% and the mean be 4.38%. For
a transaction costs pair, lower transaction cost is set to be 0.25% and higher transaction cost is calculated to
match the mean. Parameters: risk-free rate r = 0.051, the stock volatilities σB = 0.1306, σb = 0.2438, and the
discount rate β = 0.051, stock return αB = αb = 0.0994, regime switching intensities ηB = 0.2353, ηb = 1.7391,
risk aversion γ = 7
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Expected
LPTC Ratio

Transaction Costs
High Mean (1%) Median Mean (0.5%) Low Mean (0.1%)

Counter Mean Pro Counter Mean Pro Counter Mean Pro

Dividend

Counter 1.2305 0.3302 0.2570 1.5073 0.3485 0.2682 1.6946 0.3559 0.2688

Mean 1.2440 0.3326 0.2587 1.5197 0.3507 0.2699 1.7048 0.3580 0.2702

Pro 1.3442 0.3500 0.2714 1.6045 0.3670 0.2816 1.7802 0.3718 0.2799

(a) Expected LPTC Ratio

Expected
Transaction Costs

Transaction Costs
High Mean (1%) Median Mean (0.5%) Low Mean (0.1%)

Counter Mean Pro Counter Mean Pro Counter Mean Pro

Dividend

Counter 0.0032 0.0025 0.0020 0.0026 0.0014 0.0011 0.0006 0.0003 0.0002

Mean 0.0033 0.0025 0.0020 0.0026 0.0014 0.0011 0.0007 0.0003 0.0002

Pro 0.0037 0.0026 0.0022 0.0028 0.0014 0.0012 0.0007 0.0003 0.0003

(b) Expected Transaction Costs

Expected
Holding Time

Transaction Costs
High Mean (1%) Median Mean (0.5%) Low Mean (0.1%)

Counter Mean Pro Counter Mean Pro Counter Mean Pro

Dividend

Counter 0.4794 0.7929 0.8324 0.3106 0.4638 0.4776 0.1603 0.1825 0.1782

Mean 0.4856 0.8034 0.8426 0.3155 0.4648 0.4846 0.1602 0.1860 0.1807

Pro 0.4919 0.8301 1.0063 0.3181 0.4797 0.4949 0.1559 0.1831 0.1779

(c) Expected Holding Time

Table 2: Robustness Test with Additional Measures. Robustness test of the expected LPTC ratio,
transaction costs, and holding time with various transaction costs and dividends. The column shows values
according to dividend with different cyclicalities and the row shows values with different mean-levels and
cyclicalities in transaction costs. For the dividend, the high level is set to be 4.5% and the mean be 4.38%.
Three cases of transaction costs are shown in the table: 0.1%, 0.5%, and 1%. For each case, lower transaction
costs are set to be 0.05%, 0.25%, and 0.5% and higher transaction costs are calculated to match the mean.
Parameters: risk-free rate r = 0.051, the stock volatilities σB = 0.1306, σb = 0.2438, and the discount rate
β = 0.051, stock return αB = αb = 0.0994, regime switching intensities ηB = 0.2353, ηb = 1.7391, risk aversion
γ = 7
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Figure 1: No-trading Regions. x is an amount invested in a liquid asset, y is an amount invested in an
illiquid asset, stock sale occurs at z̄i, and stock purchase occurs at

¯
zi. Dashed lines indicate boundaries of

trading regions. The red line is a Merton’s line (z = y
x+y

= µ−r+δ(ε(t)))
γσ2 ).
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(a) Dividend Yields of S&P500

(b) Dividend Yields of KOSPI

Figure 2: Dividend Yields of S&P500 and KOSPI. Dividend yield is plotted in an orange line with
vertical gray lines indicating recessions.
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Figure 3: Optimal Investment Strategies with Changing Transaction Costs. Optimal investment
strategies of the bull and bear regimes with the counter-cyclical (solid line), mean-constant (dashed line),
and pro-cyclical (dash-dotted line) transaction costs. x-axis represents the investor’s cash holdings and y-axis
represents the investor’s stock holdings. A triangular region between two lines is the no-transaction region.
The left region of the triangle is the sell-region and the right is the buy-region. Mean transaction costs are
set to be 1.0% and the dividends are constant (4.38%). The lower transaction cost is 0.5% and the higher one
is calculated with transition probability to match the mean (1.0%). Parameters: risk-free rate r = 0.051, the
stock volatilities σB = 0.1306, σb = 0.2438, and the discount rate β = 0.051, stock return αB = αb = 0.0994,
regime switching intensities ηB = 0.2353, ηb = 1.7391, risk aversion γ = 7
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(a) Counter-cyclical dividend

(b) Mean-Constant dividend

(c) Pro-cyclical dividend

Figure 4: Optimal Investment Strategies with Changing Dividends. Optimal investment strategies
of the bull and bear regimes with the counter-cyclical, mean-constant, and pro-cyclical dividends. x-axis
represents the investor’s cash holdings and y-axis represents the investor’s stock holdings. A triangular region
between two lines is the no-transaction region. The left region of the triangle is the sell-region and the right
is the buy-region. Red means the bull regime and blue means the bear regime. Mean transaction costs are
set to be 0.5% and the dividends are constant (4.38%). The pro-cyclical dividend yield is 4.5% and 3.5% for
bull and bear regime, respectively. Mean dividend yield is calculated by taking average of two dividends with
corresponding Markov switching probability (4.38%), and for counter-cyclical case, bear regime’s yield is 4.5%.
Parameters: risk-free rate r = 0.051, the stock volatilities σB = 0.1306, σb = 0.2438, and the discount rate
β = 0.051, stock return αB = αb = 0.0994, regime switching intensities ηB = 0.2353, ηb = 1.7391, risk aversion
γ = 7
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(a) Counter-cyclical Dividend

(b) Pro-cyclical Dividend

Figure 5: LPTC Ratios Over Different Dividend Volatilities. LPTC ratios over different volatilities
of regime-switching dividends are plotted. x-axis represents the dividend volatility and y-axis represents the
LPTC ratio. Transaction costs for both graphs are same with the mean value of 0.5%. The mean value
of dividends in all cases is constant (4.38%). Parameters: risk-free rate r = 0.051, the stock volatilities
σB = 0.1306, σb = 0.2438, and the discount rate β = 0.051, stock return αB = αb = 0.0994, regime switching
intensities ηB = 0.2353, ηb = 1.7391, risk aversion γ = 7
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Figure 6: Liquidity Premia. Liquidity premia of counter-cyclical, mean-constant, and pro-cyclical transac-
tion costs. Dashed, dash-dotted, and solid lines represent the cases of counter-cyclical, pro-cyclical and mean
transaction costs, respectively. x-axis represents investor’s stock-to-wealth ratios. The mean transaction cost is
1.0%. The lower transaction cost is 0.5% and the higher one is calculated with transition probability to match
the mean (1.0%). Parameters: risk-free rate r = 0.051, the stock volatilities σB = 0.1306, σb = 0.2438, and the
discount rate β = 0.051, stock return αB = αb = 0.0994, regime switching intensities ηB = 0.2353, ηb = 1.7391,
risk aversion γ = 7
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(a) Counter-cyclical Transaction Costs with 1% Mean

(b) Mean-Constant Transaction Costs with 1% Mean

(c) Pro-cyclical Transaction Costs with 1% Mean

Figure 7: Expected Transaction Costs. The expected transaction costs with different values of regime-
switching transaction costs. The red means bull and the blue means bear regime. x-axis represents the
investor’s stock ratio and y-axis represents the investor’s expected transaction cost. Mean transaction costs
are set to be 1.0%. The dividend yield is constant (4.38%). The lower transaction cost is half of the mean
and the higher one is calculated with transition probability to match the mean. Parameters: risk-free rate
r = 0.051, the stock volatilities σB = 0.1306, σb = 0.2438, and the discount rate β = 0.051, stock return
αB = αb = 0.0994, regime switching intensities ηB = 0.2353, ηb = 1.7391, risk aversion γ = 7
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(a) Counter-cyclical Transaction Costs with 1% Mean

(b) Mean-Constant Transaction Costs with 1% Mean

(c) Pro-cyclical Transaction Costs with 1% Mean

Figure 8: Expected Holding Time. The expected holding time with different values of regime-switching
transaction costs. The red means bull and the blue means bear regime. x-axis represents the investor’s stock
ratio and y-axis represents the investor’s expected transaction costs. Mean transaction costs are set to be
1.0%. The dividend yield is constant (4.38%). The lower transaction cost is half of the mean and the higher
one is calculated with transition probability to match the mean. Parameters: risk-free rate r = 0.051, the
stock volatilities σB = 0.1306, σb = 0.2438, and the discount rate β = 0.051, stock return αB = αb = 0.0994,
regime switching intensities ηB = 0.2353, ηb = 1.7391, risk aversion γ = 7
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