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Abstract

Expected extremeness of movements in aggregate volatility, measured by kurtosis

of aggregate volatility (KOV), varies significantly through time. The KOV measure is

constructed using daily snapshots of VIX option prices and, therefore, conditional and

forward-looking. KOV exposure is a significant cross-sectional determinant of stock

returns. KOV risk premium is negative and robust to controlling for exposures to

alternative measures of economic uncertainty and stock characteristics.
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1 Introduction

This study investigates whether exposure to expected extremeness of movements in aggregate

volatility is a cross-sectional determinant of stock returns. I measure the expected

extremeness by kurtosis of the probability distribution of aggregate volatility. Throughout

the manuscript, I refer to the volatility, skewness, and kurtosis of aggregate volatility as

VOV (volatility-of-volatility), SOV (skewness-of-volatility), and KOV (kurtosis-of-volatility),

respectively. Time variation of these moments characterizes the conditional nature of the

distribution of aggregate volatility. A number of recent studies demonstrate that the

distribution of aggregate volatility contains useful information about the underlying economic

conditions and also has pricing implications.1 Because KOV and SOV capture the tail

properties of the distribution of aggregate volatility, they are appropriate to examine the

pricing effect that arises from investors’ attitudes towards extreme volatility movements.

This is the first attempt, I am aware of, to investigate whether aggregate volatility tail

events affect the stock returns.

The moments of aggregate volatility are extracted from VIX option prices. Specifically, I

use the model-free methodology of Bakshi et al. (2003) to calculate the risk-neutral volatility,

skewness, and kurtosis of VIX.2 Because the moments are estimated using daily snapshots of

VIX option prices, the resulting estimates are conditional and forward-looking. This method

also resolves the so-called peso problem that emerges when using data on realized VIX. The

peso problem arises when a rare but significant movement in aggregate volatility could have

happend but did not happen in the sample. I overcome this problem by estimating the ex

ante moments of VIX without using data on realized VIX.

I first perform univariate portfolio sorts to investigate the association between the KOV

exposure and the expected return. By sorting all U.S. common stocks from 2008 through

1See, for example, Bollerslev et al. (2009), Bali and Zhou (2016), Agarwal et al. (2017), Hollstein and
Prokopczuk (2018), Cheng (2019), Huang et al. (2019), and Kostopoulos et al. (2021).

2Although the spot VIX is not necessarily equal to the expected discounted VIX, the method developed
by Bakshi et al. (2003) can still be applied using the VIX futures price instead of the spot VIX.
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2020 into quintile portfolios according to the sensitivities of their returns to KOV innovations,

I find that stocks with higher sensitivities to KOV innovations earn lower average returns.

There is a significant difference of −0.40% per month in terms of raw returns and −0.38%

per month in terms of Fama and French (2018) six-factor alpha between the top KOV beta

quintile portfolio and the bottom KOV beta quintile portfolio.

I then investigate whether the negative association between KOV beta and the expected

stock return can be explained by risk variables that are plausibly similar to KOV risk. I

perform a bivariate portfolio analysis and Fama and MacBeth (1973) regressions to control for

CAPM beta, VIX beta, VIX of VIX (VVIX) beta, variance risk premium beta, and several

stock characteristics such as size, book-to-market, momentum, and liquidity. The results

show that the pricing effect of KOV beta is robust to controlling for these measures. I find

that estimates of the price of KOV risk are consistently negative and statistically significant

across various econometric specifications and imply an annual premium of approximately

−5.53% to −8.46%.

The KOV factor used in the empirical analyses is more sensitive to the “tailedness” of the

distribution of aggregate volatility than the existing measures of uncertainty about aggregate

volatility. It thus enables investigating whether investors are willing to pay to hedge against

fluctuations in the tailedness of the distribution of aggregate volatility, or, fluctuations in

the expected extremeness of volatility movements. The negative KOV premium implies that

the hedge against these fluctuations is valuable to the investors and the marginal value of

wealth is higher in states with higher expected extremeness of volatility movements.

I also investigate the pricing effect of SOV beta and do not find evidence of a significant

association between SOV beta and future stock returns. While SOV measures the expected

“signed” extremeness of volatility movements, KOV measures the expected “unsigned”

extremeness. The results presented in this paper are therefore consistent with the previously

documented puzzling findings on the pricing kernel projection onto aggregate volatility. Song

and Xiu (2016) show that the projection of the pricing kernel onto the VIX displays a U-

3



shaped pattern, which suggests that both high VIX state claims and low VIX state claims

are relatively expensive. Their results indicate that investors have higher marginal value of

wealth in both high and low volatility states; that is, both high and low volatility states are

unfavorable to investors. The results presented in this paper thus complement the existing

evidence by showing that the extreme volatility movements, regardless of the directions of

the movements, are unfavorable to investors.

The investigation of whether the higher-order risks of aggregate volatility have the pricing

effect is motivated by the existing literature on aggregate stock market anomalies and

properties. Part of this literature tries to explain the stylized empirical facts about the

stock market using representative agent models, building on the seminal contribution by

Bansal and Yaron (2004). Studies in this strand of literature typically model dynamics of

aggregate consumption and dividend growth in a way that captures certain characteristics

observed in the data and recover the pricing kernel that is consistent with the dynamics

(Bansal and Yaron, 2004; Drechsler and Yaron, 2011; Bansal et al., 2012). Notably, Bollerslev

et al. (2009) allow richer volatility dynamics by including time-varying aggregate volatility-of-

volatility and show that the projection of the pricing kernel onto the volatility-of-volatility in

consumption growth should be non-constant to generate the volatility dynamics.3 In other

words, they argue that the pricing kernel that is consistent with time-varying aggregate

volatility-of-volatility depends on aggregate volatility-of-volatility.

Although models of this kind are originally developed to explain the characteristics of

the aggregate stock market, their implications for the cross section of expected stock returns

have also received attention recently. Bali and Zhou (2016) test the pricing implications

of Bollerslev et al. (2009) using equity portfolios and find that portfolios that are highly

correlated with the variance risk premium earn higher returns on average. Hollstein and

Prokopczuk (2018) explore the same implications with an alternative expression of the

3Omitting some technical details, this means that the projection of a random variable m, the pricing
kernel, onto the space of random variables that are measurable with respect to the the σ-algebra F generated
by a random variable q, aggregate volatility-of-volatility, is a random variable that is not F-a.s. constant.
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pricing kernel and find that sensitivity to aggregate volatility-of-volatility carries a negative

premium. Because the higher moments of aggregate volatility are also significantly time-

varying, I conjecture that the pricing kernel depends on the higher moments of aggregate

volatility and exposures to innovations in these moments can explain part of the cross-

sectional variation in expected stock returns.

This study contributes to a rapidly growing literature on the role of uncertainty about

aggregate volatility in asset pricing. Agarwal et al. (2017) show the importance of VOV risk

in explaining hedge fund returns. Huang et al. (2019) demonstrate that the price of VOV

risk is negative building on the work of Bakshi and Kapadia (2003) that finds a negative

volatility risk premium. Kostopoulos et al. (2021) show that an increase in VOV is associated

with an increase in investors’ risk aversion and trading activity. By constructing a factor

that is more sensitive to the tailedness of the distribution of aggregate volatility than the

measures used in the previous studies, I show that investors are willing to pay to hedge

against fluctuations in the expected extremeness of volatility movements.

This study also adds to the existing literature on pricing factors extracted from futures

and option prices (Ang et al., 2006; Chang et al., 2013; Cremers et al., 2015; Bali and Zhou,

2016; Hollstein and Prokopczuk, 2018; Lu and Murray, 2019). Futures and option prices

contain information about investors’ perceptions towards future investment opportunitiy set.

Because theories of intertemporal asset pricing suggest that exposure to change in future

investment opportunity set is priced, their implications should be tested using forward-

looking factors. The results presented in the paper show that tails of the distribution of

aggregate volatility restored from out-of-the-money calls and puts contain more information

about the underlying economic condition than acknowledged by prior research.

This study is also related to studies that investigate the relevance of higher-order risks

for asset pricing (Kraus and Litzenberger, 1976; Friend and Westerfield, 1980; Sears and

Wei, 1985; Lim, 1989; Harvey and Siddique, 2000; Dittmar, 2002). However, because the

higher-order CAPMs are static models, risks in time-varying forward-looking moments are
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not priced in these models. Notable exceptions include Chabi-Yo (2012) and Chang et al.

(2013), who explore the importance of forward-looking higher-order moments of the market

return theoretically and empirically, respectively. I add to the literature by showing that

KOV, which captures the tail property of aggregate volatility, also plays an important role

in explaining the expected stock returns.

2 The Analytical Framework

The empirical model that I use to obtain sensitivities to innovations in the moments of the

market return and aggregate volatility is as follows:

Ri,d −Rf,d = β0 + βMKT
i (MKTd −Rf,d)

+ β∆V OL
i ∆V OLd + β∆SKEW

i ∆SKEWd + β∆KURT
i ∆KURTd

+ β∆V OV
i ∆V OVd + β∆SOV

i ∆SOVd + β∆KOV
i ∆KOVd + εi,d, (1)

where Ri,d, MKTd, and Rf,d are the returns of stock i, market portfolio, and risk-free asset

over the five-trading day period of day d − 4 through d. V OL, SKEW , KURT , V OV ,

SOV , and KOV over the same period, where V OL, SKEW and KURT are the volatility,

skewness, and kurtosis of the market return and V OV , SOV , and KOV are the volatility,

skewness, and kurtosis of aggregate volatility. ∆V OLd = V OLd − Ed−5 [V OLd] and the

five-day innovations for other moments are defined similarly. Section 3.3 describes how the

innovations in the moments are measured. I use the five-day returns and innovations to

reduce the influence of measurement noises due to the bid-ask spread and nonsynchronous

trading in the stock and option markets.4

To minimize estimation error, I apply a Bayes shrinkage method to adjust the beta

estimates following Fama and French (1997) and Lu and Murray (2019). The following

4Several previous studies use similar methods to address such concerns. See, for example, Hou and
Moskowitz (2005), Frazzini and Pedersen (2014), and Lu and Murray (2019).
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description is for the adjustment of β∆KOV estimates and I apply the same adjustment

process to estimates of β∆V OL, β∆SKEW , β∆KURT , β∆V OV , and β∆SOV . For each stock i and

month m, I estimate the model (1) and let β∆KOV
OLS,i,m be the estimated coefficient on ∆KOVd

and
(
σ∆KOV

OLS,i,m

)2 be the estimated variance of the OLS estimate β∆KOV
OLS,i,m. Then, for each

month m, I take the prior mean, β∆KOV
Prior,m, to be the average β∆KOV

OLS across all stock-month

observations between June 2008 and month m, inclusive; that is,

β∆KOV
Prior,m =

∑
t≤m

∑
j∈St

β∆KOV
OLS,j,t

nm

, (2)

where St is the set of stocks with valid values of β∆KOV
OLS,j,t for months t between June 2008 and

month m, inclusive, and nm ≡
∑

t≤m |St|.5 I also take the prior variance,
(
σ∆KOV

Prior,m

)2, to be

the sample variance of β∆KOV
OLS,i,m over the same period; that is,

(
σ∆KOV

Prior,m

)2
=

∑
t≤m

∑
j∈St

(
β∆KOV

OLS,j,t − β∆KOV
Prior,m

)2
nm − 1

. (3)

The Bayes-adjusted estimate β∆KOV
i,m is the inverse variance-weighted average of the OLS

estimate and the prior mean; that is,

β∆KOV
i,m =

(
σ∆KOV

OLS,i,m

)−2(
σ∆KOV

OLS,i,m

)−2
+
(
σ∆KOV

Prior,m

)−2β
∆KOV
OLS,i,m

+

(
σ∆KOV

Prior,m

)−2(
σ∆KOV

OLS,i,m

)−2
+
(
σ∆KOV

Prior,m

)−2β
∆KOV
Prior,m. (4)

Intuitively, the Bayes-adjusted estimate is the weighted average of the most recent estimate

and the prior mean, where more (less) weight is given to the recent estimate if the estimate

is accompanied by a smaller (larger) standard error. I use the Bayes-adjusted estimates

throught the empirical analyses.

5Because the time series of the moments start from January 2007 and the computation of the innovations
requires at least a six-month length of the past time series, the first beta estimates are calculated at the end
of June 2008.
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The first set of empirical results is based on univariate sorts. I sort the available stocks

based on the Bayes-adjusted estimate of β∆KOV into quintile portfolios and examine the

cross-sectional variation of returns on the portfolios. I then proceed by performing bivariate

sorts. To control for CAPM beta and other plausibly similar risk characteristics, I first sort

the available stocks based on each of the control variables into quintile portfolios and then

sort them again within each control variable qunitile based on the Bayes-adjusted estimate

of β∆KOV . Because the stocks in the same control variable quintile have similar values of

the control variable, the cross-sectional variation across the β∆KOV quintile portfolios within

each control variable quintile is unlikely to be explained by the control variable.

The last set of results is based on cross-sectional regressions of individual stock returns

on β∆KOV and other cross-sectional determinants of stock returns. I use coefficient estimates

obtained from time series regressions to examine the prices of the risks λ from the cross-

sectional relation:

E [Ri]−Rf = λ0 + λ∆KOV
i β∆KOV

i + γ
′

iΛ, (5)

where γi is a vector of cross-sectional determinants of expected stock return.

Although existing theories provide little guidance regarding the signs of the premiums

of KOV and SOV risks, the intertemporal capital asset pricing model (ICAPM), following

Merton (1973), allows forming a prior for the sign of the risk premiums. Risks of the factors

are priced if investors are willing to pay to hedge against changes in future investment

opportunity set due to changes in the factors. The prices of risks, therefore, depend on

whether increases in the factors reflect enhancements or deteriorations in the investors’

investment opportunity set. For example, if high value of a given factor today is related

to an unfavorable investment opportunity set tomorrow, then an asset whose return is

positively related to the innovation in the factor provides a hedge against a deterioration in

the investment opportunity set. When investors are risk averse, expected return for such

asset is low, that is, the price of risk of the factor is negative, because the hedge provided by

this asset is valuable to investors. In the opposite scenario in which high value of the factor
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today is related to a favorable investment opportunity set tomorrow, the price of risk of the

factor is positive.

The logic behind the ICAPM, combined with the recent empirical findings, hints at the

sign of the prices of KOV and SOV risks. Song and Xiu (2016) show that the projection of

the pricing kernel onto the VIX displays a U-shaped pattern, which suggests that both high

VIX state claims and low VIX state claims are relatively expensive. Because their results

indicate that investors have higher marginal value of wealth in both high and low volatility

states, one would expect that increases in KOV reflect deteriorations in the investment

opportunity set and the sign of the price of KOV risk is negative. On the other hand,

determining whether increases in SOV are associated with enhancements or deteriorations

in the investment opportunity set is less clear.

3 Data Description and Factor Construction

3.1 What Do Higher Moments of Aggregate Volatility Measure?

Kurtosis is the expectation of the standardized values raised to the fourth power. The

standardized value raised to the fourth power can be thought of the extremeness of an

outcome, because raising a number that is larger than 1 in magnitude to the fourth power

results in a positive number that is much larger in magnitude whereas raising a number

that is smaller than 1 in magnitude to the fourth power makes it closer to zero. Therefore,

KOV is an appropriate measure of the expected extremeness of movements in aggregate

volatility. Similarly, SOV can be seen as a measure of the expected “signed” extremeness of

movements in aggregate volatility in the sense that a high (low) value of SOV indicates that

the extremeness of increases in aggregate volatility is expected to be much larger (smaller)

than the extremeness of decreases in aggregate volatility.
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3.2 Estimating Higher Moments of Aggregate Volatility

I use the model-free methodology proposed by Bakshi et al. (2003) to estimate the moments

of the market return and aggregate volatility from prices of S&P 500 Index options and VIX

options. I use options with time-to-maturity of one month to calculate the implied moments

over a 30-day horizon. Thus, a high value of KOV today indicates that the innovation

in the spot VIX over the next 30 calendar days is expected to be highly extreme. The

details of the methodology and implementation are provided in the Appendix. Because

V OV (V OL) has a correlation of 0.95 (0.99) with CBOE VVIX (VIX) Index, I use V V IX

(V IX) for V OV (V OL) throughout the empirical analyses for maximum comparability with

the results documented by previous studies (Ang et al., 2006; Chang et al., 2013; Hollstein

and Prokopczuk, 2018).

VIX option data are obtained from OptionMetrics Ivy DB and start in 2006. However, I

use the 15-year period from 2007 through 2020 because daily trading volumes of out-of-the-

money options were low in 2006. Because estimation of higher moments puts more weight

on prices of out-of-the-money options, I exclude the data from 2006.

The daily estimates of V V IX, SOV , and KOV are shown in Figure 1. All three time

series vary significantly through time. Contrary to the implied skewness of the market

return, which is always negative, the sign of the implied skewness of volatility frequently

changes. The implied kurtosis of volatility is larger than three for most of the days with a

few exceptions.

3.3 Measuring Innovations in Moments of VIX

Follwing previous studies (e.g., Chang et al., 2013), I fit an appropriate ARMA model to the

time series for V IX, SKEW , KURT , V V IX, SOV , and KOV to measure the innovations

in the moments. The ARMA models are fitted at the end of month m using only past

moments and the parameter estimates are used to calculate the forecasts and residuals of

the moments in momth m + 1. I require at least a six-month length of past time series
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for the estimation. Figure 2 shows the autocorrelation function (ACF) plots of the original

time series, the daily first differences, and the daily ARMA(1,1) residuals of KOV . ACF

plots for the other five moments are also available upon request. The plots show that the

ARMA(1,1) model is needed to remove the autocorrelation of KOV . The same is also true

for SKEW , KURT , and SOV , whereas taking first differences is enough to remove the

autocorrelation for V IX and V V IX as documented by previous studies. I thus use the sum

of five daily first differences over the five-day period as the innovation in V IX and V V IX.

When the ARMA(1,1) models are fitted to the entire time series of SKEW , KURT , SOV ,

and KURT , the estimates of the AR(1) parameters for all six moments are very close to

1, with values of 0.95 to 0.99 (untabulated), suggesting that one can fit an MA model to

the first differences of the moments. I fit the MA(1) model to each time series of daily first

differences of SKEW , KURT , SOV , and KOV :

Xd −Xd−1 = εd + θXεd−1, (6)

where X represents one of the four moments. It immediately follows that

Ed−5 [Xd −Xd−5] = Ed−5

[
d∑

t=d−4

(Xt −Xt−1)

]
= Ed−5

[
d∑

t=d−4

εt + θXεt−1

]
= θXεd−5. (7)

Therefore, I subtract the day-(d − 5) residual multiplied by the MA parameter estimate

from the sum of five daily first differences for day d− 4 through d to calculate the five-day

innovation in SKEW , KURT , SOV , and KOV over the five-day period of day d−4 through

d; that is,

∆Xd =
d∑

t=d−4

(Xt −Xt−1)− θXεd−5. (8)

When the MA(1) model is fitted using the entire time series of daily first differences, the

estimates of θX are −0.235, −0.096, −0.354, and −0.271 for SKEW , KURT , SOV , and

KOV , respectively.
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To check for robustness, I repeat the univariate portfolio analysis using the sum of five

daily first differences as the the innovation over the five-day period. Using first differences

has an advantage that it does not necessitate a six-month estimation period. The results of

the robustness test are similar to the original results and presented in Section 4.4.

3.4 Data on Stock Returns and Characteristics

I obtain stock market information from Center for Research in Securities Prices (CRSP)

daily and monthly stock files and financial information from Compustat. The sample used

in the empirical tests includes all U.S. common stocks in the CRSP database. The market

return, risk-free rate, and the factor mimicking portfolio returns are obtained from Kenneth

French’s data library6 and Kewei Hou, Chen Xue, and Lu Zhang’s website.7

4 Results

4.1 Univariate Portfolio Sorts

To examine the association between β∆KOV and expected stock return, I start by performing

univariate portfolio sorts. At the end of month m, I form quintile portfolios by sorting stocks

based on β∆KOV , where β∆KOV quintile five portfolio comprises stocks with the highest

values of β∆KOV and β∆KOV quintile one portfolio comprises stocks with the lowest values

of β∆KOV . Stocks are weighted equally within each of the β∆KOV quintile portfolios. Table

1 presents the average month-(m+ 1) excess returns of the β∆KOV quintile portfolios and a

zero-investment portfolio (β∆KOV 5 − 1) that is long the β∆KOV quintile five portfolio and

short the β∆KOV quintile one portfolio. The results show that the average excess return

is monotonically decreasing in β∆KOV . The β∆KOV quintile one portfolio and the β∆KOV

quintile five portfolio earn an average excess return of 1.33% per month and 0.93% per month,

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
7http://global-q.org/factors.html.
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respectively. The β∆KOV 5−1 portfolio earns an average return of −0.40% per month, which

is economically and statistically significant with a Newey-West t-statistic of −2.13.

To further investigate whether the monotonically decreasing pattern in the excess return

of the β∆KOV -sorted portfolios is derived from premiums attached to exposures to other risk

factors, I calculate and report the alphas of the quintile portfolios relative to the CAPM,

Fama and French (1993) (FF3), Fama and French (1993) and Carhart (1997) (FFC), Fama

and French (2015) (FF5), Fama and French (2018) (FF6), Hou et al. (2015) (q4), and Hou

et al. (2021) (q5) factor models. The results indicate that the relation between β∆KOV

and the expected return is not perfectly explained by exposures to previously identified risk

factors because the alphas are also monotonically decreasing in β∆KOV . The β∆KOV 5 − 1

portfolio generates monthly alphas of −0.39% to −0.45% with Newey-West t-statistics of

−2.01 to −2.35, which are negative and statistically significant.

As emphasized by Ang et al. (2006, page 271), “finding large spreads in the post-formation

loadings is a very stringent requirement” in tests of a factor risk-based explanation of a cross-

sectional variation in the expected return. The results presented above show the relation

between the post-formation returns and the pre-formation β∆KOV . Thus, I also test whether

the spread in the post-formation returns is accompanied by the spread in the post-formation

KOV beta. The post-formation sensitivities to ∆KOV are obtained by regressing the post-

formation five-day excess returns of each portfolio on the contemporaneous ∆KOV and

other factors, as in equation (1).

The results presented in Table 1 show that the post-formation sensitivity of β∆KOV 5−1

portfolio returns to ∆KOV is 1.36 with a t-statistic of 6.36. By construction, the pre-

formation values of β∆KOV increase from −1.34 for the β∆KOV quintile one portfolio to 1.37

for β∆KOV quintile five portfolio. Although the KOV factor loading is an imperfect measure

of the true forward-looking KOV factor loading, sorting on the pre-formation exposure

generates economically and statistically significant spread in the post-formation exposure

to ∆KOV .
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4.2 Bivariate Portfolio Sorts

In this subsection, I proceed to investigate the possibility that the association between β∆KOV

and the expected stock return can be explained by risk variables that are plausibly similar

to KOV risk. Table 2 reports the sensitivities of returns on the β∆KOV quintile portfolios

to each of the plausibly similar risk variables. I describe each risk variable as I discuss the

corresponding results.

To control for the effect of the other risk variables, I perform bivariate portfolio sorts to

create portfolios that are similarly exposed to a control variable with a significant β∆KOV

spread. At the end of month m, I form quintile portfolios by sorting stocks based on the

control variable. Within each control variable quintile, I form quintile portfolios by sorting

stocks based on β∆KOV . Stocks are weighted equally within each of the resulting 25 portfolios.

Five portfolios with the same rank of β∆KOV are weighted equally again and the resulting five

portfolios are referred to as the bivariate β∆KOV quintile portfolios. Because the bivariate

β∆KOV quintile portfolios have similar values of the control variable, any return pattern across

the bivariate β∆KOV quintile portfolios is unlikely to be driven by the control variable. Table

3 reports the average month-(m+1) excess returns of the bivariate β∆KOV quintile portfolios

and a zero-investment portfolio (β∆KOV 5− 1) that is long the bivariate β∆KOV quintile five

portfolio and short the bivariate β∆KOV quintile one portfolio. Each column is labeled by

the name of the control variable used to construct the bivariate portfolios.

The first risk variable controlled for is CAPM beta (βCAPM). βCAPM is the estimated

coefficient on the excess market return from a twelve-month rolling window regression of

daily excess stock returns on the contemporaneous excess market returns. Table 2 shows a

negative association between β∆KOV and βCAPM . Because the CAPM predicts that CAPM

beta is positively priced, there is a possibility that CAPM beta explain the negative relation

between β∆KOV and average stock returns. However, the column of Table 3 labeled “βCAPM ”

shows that the bivariate β∆KOV 5− 1 portfolio that is neutral to βCAPM still earns a highly

significant negative return of −0.46% per month with a t-statistic of −2.16. Therefore, the
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negative association between β∆KOV and the expected return cannot be explained by the

exposure to the market risk. Meanwhile, Frazzini and Pedersen (2014) show that CAPM

beta is negatively associated with alphas due to leverage constraints. In constrast to the

pattern in average stock returns, the pattern in alphas presented in Table 1 is unlikely to

be explained by exposures to the market risk. Table 3 indeed exhibits similar monotonically

decreasing patterns in alphas relative to several asset pricing models. The bivariate β∆KOV

5− 1 portfolio that is neutral to βCAPM earns highly significant negative alphas of −0.45%

to −0.50% per month with t-statistics between −2.25 and −2.51.

Although KOV is a measure of “variability” of aggregate volatility that is more sensitive

to the tailedness, there is a possibility that the pricing effect of KOV is subsumed by effects

of alternative measures of economic uncertainty and uncertainty about aggregate volatility.

Thus, I investigate whether exposures to factors that capture the variability of aggregate

return and volatility. Ang et al. (2006) find a negative relation between average stock returns

and VIX beta (β∆V IX). β∆V IX is the estimated coefficient on the V IX change from a one-

month rolling window regression of daily excess stock returns on the contemporaneous excess

market returns and V IX changes. Table 2 shows a negative association between β∆KOV and

β∆V IX , though the association is statistically significant only at the 10% level. Because

previous studies document a negative relation between the expected stock return and the

exposure to the volatility risk, I expect to observe similar monotonically decreasing patterns

in average returns and alphas across bivariate β∆KOV quintile portfolios that are neutral to

β∆V IX . As expected, the column of Table 3 labeled “β∆V IX” shows that the bivariate β∆KOV

5− 1 portfolio that is neutral to β∆V IX earns a highly significant negative return of −0.47%

with a t-statistic of −2.25 and highly significant negative alphas of −0.47% to −0.56% per

month with t-statistics between −2.44 and −3.23.

I then examine two measures that can capture the variability of aggregate volatility. Prior

research shows that exposures aggregate volatility-of-volatility (V V IX) and the variance

risk premium (V RP ) affect the expected stock return (Bali and Zhou, 2016; Hollstein and
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Prokopczuk, 2018). Because change in the risk-neutral moments of volatility can also lead

to change in the V RP , there is a possibility that the observed pattern in returns and alphas

of univariate β∆KOV quintile portfolios are derived from exposures to V V IX and V RP .

β∆V V IX is defined as the estimated coefficient on the V V IX change from a twelve-month

rolling window regression of daily excess stock returns on the contemporaneous excess market

returns, V IX changes, and V V IX changes. Furthermore, β∆V RP is defined as the estimated

coefficient on the V RP change from a twelve-month rolling window regression of daily excess

stock returns on the contemporaneous excess market returns and V RP changes. As presented

in Table 2, I do not observe a significant association between β∆KOV and β∆V V IX , as well as

between β∆KOV and β∆V RP . Therefore, I expect similar monotonically decreasing patterns

in average returns and alphas across bivariate β∆KOV quintiles that are neutral to β∆V V IX

and β∆V RP . The column of Table 3 labeled “β∆V V IX” shows that the bivariate β∆KOV 5− 1

portfolio that is neutral to β∆V V IX earns a highly significant negative return of −0.38% with

a t-statistic of −2.13 and highly significant negative alphas of −0.39% to −0.49% per month

with t-statistics between −2.25 and −2.46. The column labeled “β∆V RP ” also shows that the

bivariate β∆KOV 5− 1 portfolio that is neutral to β∆V RP earns a highly significant negative

return of −0.42% with a t-statistic of −2.33 and highly significant negative alphas of −0.42%

to −0.47% per month with t-statistics between −2.37 and −3.11.

4.3 Multivariate Analysis

Bivariate portfolio analysis enables controlling for the effect of one variable on the expected

stock return. To control for multiple variables simultaneously, I use a Fama and MacBeth

(1973) regression analysis. Each month m, I run the following cross-sectional regression:

ri,m+1 = λ0,m + λ∆KOV
m β∆KOV

i,m + γ
′

i,mΛm + εi,m, (9)
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where ri,m+1 is month-(m+ 1) excess return of stock i, β∆KOV
i,m is month-m value of β∆KOV

of stock i, and γi,m is a vector of month-m values of control variables for stock i. All

independent variables are winsorized at the 0.5% and 99.5% levels on a monthly basis. If the

effect of β∆KOV on the expected return is distinct from the effects of the control variables,

the coefficient estimates of β∆KOV should remain negative.

Table 4 presents the time series averages of the monthly cross-sectional regression

coefficient estimates. Column (1) reports the results of estimating model (9) with β∆KOV

as the only independent variable. The average coefficient estimate of β∆KOV is −0.17 with

a t-statistic of −2.73, which is negative and statistically significant at the 1% level. This

is consistent with the results from the univariate portfolio analysis and indicates a strong

negative relation between β∆KOV and the expected return. Next, I control for exposure to

the market risk by including βCAPM as the first control variable and report the results in

column (2). The average coefficient on β∆KOV is even greater in magnitude compared with

the univariate specification and statistically significant at the 1% level. Thus, the negative

cross-sectional relation between β∆KOV and future stock returns is not explained by exposure

to the market risk. Then, I proceed to include ME (log of the market capitalization), BM

(log of the ratio of the book value of equity to the market capitalization), MOM (11-month

stock return in months m− 11 through m− 1), Y , INV , and ILLIQ as control variables in

various forms to control for the effect of size, book-to-market ratio, momentum, profitability,

investment, and liquidity.8 The results presented in columns (3) through (7) show that the

average coefficient on β∆KOV remains negative and statistically significant at the 1% level

in each of the specifications with multiple control variables.

I continue by examining whether the results are affected by the inclusion of factor betas.

In addition to βCAPM , I include βSMB, βHML, βUMD, βRMW , and βCMA, the estimated

coefficients of SMB, HML, UMD, RMW , and CMA from a twelve-month rolling window

regression of daily excess stock returns on the contemporaneous returns of the six factors of

8The profitability measure Y and the investment measure INV are calculated following Fama and French
(2015). The illiquidity measure ILLIQ is calculated following Amihud (2002).
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Fama and French (2018). The results are reported in columns (1) through (6) of Table 5.

I find that the inclusion of factor betas does not perfectly subsume the effect of β∆KOV on

future returns. The results show that the coefficient estimate of β∆KOV is between −0.17

and −0.26 with t-statistics ranging from −2.73 and −3.41.

I further examine whether the results are affected by the inclusion of plausibly similar

risk variables considered in Section 4.2. In addition to stock characteristics or factor betas,

I include β∆V IX , β∆V V IX , and β∆V RP as the control variables. The results are reported

in columns (1) through (8) of Table 6. I find that the inclusion of the risk variables does

not perfectly subsume the effect of β∆KOV on future returns. The results reveal that the

coefficient estimate of β∆KOV is between −0.21 and −0.26 with t-statistics ranging from

−2.86 and −3.56.

To assess the economic significance of the results of Fama and MacBeth (1973) regressions,

I use information from univariate portfolio sorts. The difference in β∆KOV between the

β∆KOV quintile five and one portfolios is 1.37− (−1.34) = 2.71. Multiplying this difference

by the average coefficient estimates of β∆KOV in Tables 4, 5, and 6 yields estimated annual

premiums between −5.53% and −8.46%.

4.4 Robustness Checks

This section discusses the results from a battery of additional robustness checks. Each

panel of Table 7 reproduces the univariate portfolio analysis results by employing alternative

empirical setups.

The univariate portfolio analysis described in Section 4.1 is performed using an equal-

weighting scheme. Thus, there is a possibility that the results are driven by overweighting

relatively small stocks. To address this concern, I repeat the univariate portfolio analysis

using a value-weighting scheme; that is, stocks in eacn of the univariate quintile portfolios

are weighted according to their market capitalization. The value-weighted β∆KOV 5 − 1

portfolio generates FF6 alpha that is much smaller in magnitude compared to the equal-
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weighted β∆KOV 5− 1 portfolio; it amounts to −0.18% per month, which is not statistically

significant at the 10% level.

To investigate the influence of extremely large stocks on the results, I repeat the analysis

excluding the largest stocks. The results presented in Panel A of Table 7 show that, when the

top 1% largest stocks in the sample are excluded at the end of each month, the value-weighted

β∆KOV 5 − 1 portfolio generates FF6 alpha of −0.28% per month, which is statistically

significant at the 10% level. When the largest 5%, 10% and 20% of stocks are excluded, the

value-weighted β∆KOV 5−1 portfolio generates FF6 alpha of −0.33%, −0.35%, and −0.43%

with a t-statistic of −1.91, −2.07, and −2.16, respectively. I conclude that it is the extremely

large stocks for which the effect of β∆KOV is negligible; the significantly negative relation

between β∆KOV and future returns is robust for all other stocks.

I next examine the stability of the relation between β∆KOV and future returns when

alternative lengths of the beta estimation period are chosen. The results from choosing

alternative beta estimation period lengths are presented in Panel B of Table 7. When three-

month period is used to estimate β∆KOV , the β∆KOV 5− 1 portfolio generates FF6 alpha of

−0.34% per month, which is statistically significant only at the 10% level. However, when

six-month and nine-month periods are used, FF6 alphas amount to −0.41% and −0.49%

per month with t-statistics of −2.27 and −2.36, respectively. The results indicate that the

length of the pre-formation beta estimation window should be long enough to generate a

significant post-formation return spread.

I proceed to examine whether the results are affected by applying different data filterings.

Panel C of Table 7 reports the results from using alternative data filtering methods. When

only stocks listed in NYSE, Amex, and Nasdaq are included in the sample, the β∆KOV

5−1 portfolio generates FF6 alpha of −0.46% per month, which is negative and statistically

significant at the 5% level. The analysis is repeated again excluding micro-cap stocks, which I

define as stocks with a market capitalization below the 10th percentile. When the micro-cap

stocks are excluded, the β∆KOV 5− 1 portfolio generates FF6 alpha of −0.36% per month,
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which is statistically significant at the 10% level. The results reveal that the effect of β∆KOV

is slightly stronger in relatively small stocks.

Finally, I investigate whether the results are robust to using an alternative time series

model to estimate the innovations in the moments. I use the sum of five daily first differences

of the moments as the five-day innovations and repeat the univariate portfolio analysis. Panel

D of Table 7 reports the results of using an alternative time series model for the calculation

of the innovations. The β∆KOV 5 − 1 portfolio generates FF6 alpha of −0.44% per month,

which is still negative and statistically significant at the 5% level. The results reveal that

the choice of the time series model does not affect the results much.

4.5 Alternative Interpretations of the Results

Option implied moments used in the empirical tests are risk-neutral moments. Changes in

risk-neutral moments reflect both changes in the physical moment and changes in the pricing

kernel. If the KOV risk premium is a manifestation of the premium attached to risk in time-

varying physical kurtosis-of-volatility, then the results indicate that investors are willing to

pay to hedge against fluctuations in the “tailedness” of the physical probability distribution

of aggregate volatility, or, fluctuations in the expected extremeness of volatility movements.

The negative price of risk would also imply that the marginal value of wealth is higher in

states with higher likelihood of extreme volatility movements.

However, because the change in risk-neutral KOV also reflect the change in the pricing

kernel, the following alternative interpretation cannot be ruled out.9 The triangular relation

among physical probabilities, risk-neutral probabilities, and pricing kernel implies that a

more pronounced U-shape of the volatility projection of the pricing kernel is associated with

higher risk-neutral KOV. If the negative KOV risk premium can largely be attributed to

the premium attached to risk of time-varying U-shapedness of the pricing kernel, then the

results presented in this paper indicate that both high VIX state claims and low VIX state
9The fact that aggregate volatility is measured by VIX, which is also computed as the square root of the

“risk-neutral” expectated average variance of the logged market return, allows even more interpretations.
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claims are even more expensive when investors are in the bad state. A detailed analysis of

the KOV risk premium is an interesting question for future research.

5 Conclusion

This study shows that the exposure to expected extremeness of movements in aggregate

volatility, measured by KOV, is a cross-sectional determinant of stock returns. After a

careful examination of the possibility that the negative association between KOV exposure

and stock returns can be explained by other risk variables and stock characteristics, I find

a robust and significant negative KOV risk premium. The study makes contributions to

several strands of literature by demonstrating the importance of the higher-order aggregate

volatility risk in explaining stock returns.
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Figures and Tables

Figure 1: Daily Option-Implied Moments of VIX

Notes: This figure plots the daily option-implied volatility, skewness, and kurtosis of VIX. The moments are estimated using
daily VIX option prices data. The data come from OptionMetrics Ivy DB.
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Figure 2: Autocorrelation functions of KOV

Notes: This figure plots the autucorrelation functions of the original time series, the daily first differences, and the daily
ARMA(1,1) residuals of KOV . The colored areas around the horizontal axis indicate 95% confidence intervals.
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Table 1: β∆KOV -sorted portfolios returns

Value 1 2 3 4 5 5− 1

Excess Return 1.33 1.18 1.01 1.01 0.93 -0.40**
(2.02) (2.26) (2.19) (2.03) -1.73 (-2.13)

CAPM α 0.06 0.06 -0.03 -0.10 -0.34 -0.40**
(0.16) (0.31) (-0.17) (-0.58) (-1.37) (-2.01)

FF3 α 0.18 0.18 0.10 0.02 -0.21 -0.39**
(1.03) (1.19) (0.95) (0.23) (-1.63) (-2.26)

FFC α 0.18 0.17 0.09 0.02 -0.22 -0.40**
(1.21) (1.37) (0.95) (0.17) (-1.88) (-2.11)

FF5 α 0.28 0.25 0.15 0.10 -0.12 -0.40**
(1.35) (1.56) (1.37) (1.13) (-0.81) (-2.08)

FF6 α 0.25 0.22 0.13 0.09 -0.14 -0.38**
(1.18) (2.06) (1.54) (1.05) (-1.17) (-2.15)

q4 α 0.40 0.28 0.16 0.09 -0.05 -0.45**
(1.92) (2.32) (1.97) (1.09) (-0.46) (-2.25)

q5 α 0.50 0.35 0.23 0.15 0.08 -0.42**
(2.56) (3.65) (3.08) (2.23) (0.78) (-2.35)

Pre-formation β∆KOV -1.34 -0.45 0.01 0.47 1.37
Post-formation β∆KOV -0.67 -0.23 0.01 0.22 0.69 1.36***

(-6.20) (-5.32) (0.41) (5.14) (6.34) (6.36)

Notes: This table presents the average month-(m+ 1) excess returns and alphas of the β∆KOV quintile portfolios. At the end

of month m, quintile portfolios are formed by sorting stocks based on β∆KOV , where β∆KOV quintile five portfolio comprises

stocks with the highest values of β∆KOV and β∆KOV quintile one portfolio comprises stocks with the lowest values of β∆KOV .

Stocks are weighted equally within each of the β∆KOV quintile portfolios. The column labeled “5 − 1” presents the average

excess returns and alphas for a zero-investment portfolio (5 − 1) that is long the β∆KOV quintile five portfolio and short the

β∆KOV quintile one portfolio. Alphas (α) are obtained using the capital asset pricing model (CAPM), Fama and French

(1993) three-factor model (FF3), Fama and French (1993) and Carhart (1997) four-factor model (FFC), Fama and French

(2015) five-factor model (FF5), Fama and French (2018) six-factor model (FF6), Hou et al. (2015) q-factor model (q4), and

Hou et al. (2021) augmented q-factor model (q5). t-statistics adjusted following Newey and West (1987) using 12 lags are

reported in parentheses. The row labeled “Pre-formation β∆KOV ” shows the average of the values of pre-formation β∆KOV

for each of the portfolios. The row labeled “Post-formation β∆KOV ” reports the post-formation β∆KOV , calculated as the

estimated coefficient of ∆KOV innovations obtained from a regression of the post-formation five-day excess returns of each

portfolio on the contemporaneous ∆KOV and other factors, as in equation (1). t-statistics reported in parentheses for the

post-formation sensitivities are adjusted following Newey and West (1987) using 22 lags. ∗∗∗, ∗∗, and ∗ are used to indicate

statistical significance of the average excess return and alphas of the β∆KOV 5 − 1 portfolio at the 1%, 5%, and 10% levels,

respectively.
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Table 2: β∆KOV -sorted portfolios risk characteristics

Value 1 2 3 4 5 5− 1

Pre-formation βMKT 1.24 1.00 0.91 0.90 1.00 -0.24***
(25.51) (42.59) (57.24) (35.50) (18.78) (-2.71)

Pre-formation β∆V IX 0.07 0.01 -0.02 -0.03 -0.04 -0.11*
(2.60) (0.85) (-1.98) (-2.55) (-1.29) (-1.92)

Pre-formation β∆V V IX -0.01 -0.00 0.00 0.00 0.01 0.02
(-1.15) (-0.31) (0.79) (0.26) (1.17) (1.21)

Pre-formation β∆V RP -0.03 -0.02 0.00 0.03 0.03 0.05
(-1.34) (-0.98) (0.38) (1.19) (1.03) (1.43)

Notes: This table presents the risk characteristics of the β∆KOV quintile portfolios. At the end of month m, quintile portfolios

are formed by sorting stocks based on β∆KOV , where β∆KOV quintile five portfolio comprises stocks with the highest values

of β∆KOV and β∆KOV quintile one portfolio comprises stocks with the lowest values of β∆KOV . Stocks are weighted equally

within each of the β∆KOV quintile portfolios. The column labeled “5−1” presents the risk characteristics for a zero-investment

portfolio (5− 1) that is long the β∆KOV quintile five portfolio and short the β∆KOV quintile one portfolio. Each row presents

the average coefficient estimates on each risk variable obtained from rolling window regressions of pre-formation five-day excess

returns on the contemporaneous changes in the risk variable and other factors, as described in Section 4.2. t-statistics adjusted

following Newey and West (1987) using 12 lags are reported in parentheses. ∗∗∗, ∗∗, and ∗ are used to indicate statistical

significance of the average coefficient estimates of the β∆KOV 5− 1 portfolio at the 1%, 5%, and 10% levels, respectively.
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Table 3: Bivariate β∆KOV -sorted portfolios

Portfolio Value βCAPM β∆V IX β∆V V IX β∆V RP

β∆KOV 1 Excess return 1.30 1.34 1.29 1.33
(1.98) (2.05) (1.97) (1.94)

β∆KOV 2 Excess return 1.16 1.19 1.18 1.07
(2.17) (2.30) (2.21) (2.04)

β∆KOV 3 Excess return 1.10 1.01 1.04 1.03
(2.15) (2.10) (2.24) (2.04)

β∆KOV 4 Excess return 0.94 1.06 0.96 0.98
(1.71) (2.12) (1.99) (1.86)

β∆KOV 5 Excess return 0.84 0.87 0.91 0.91
(1.05) (1.49) (1.67) (1.15)

β∆KOV 5− 1 Excess return -0.46** -0.47** -0.38** -0.42**
(-2.16) (-2.25) (-2.13) (-2.33)

β∆KOV 5− 1 CAPM α -0.46** -0.49** -0.39** -0.44**
(-2.51) (-2.44) (-2.25) (-2.37)

β∆KOV 5− 1 FF3 α -0.47*** -0.49** -0.39** -0.43**
(-2.64) (-2.45) (-2.28) (-2.42)

β∆KOV 5− 1 FFC α -0.47** -0.49** -0.40** -0.42**
(-2.57) (-2.49) (-2.31) (-2.41)

β∆KOV 5− 1 FF5 α -0.45** -0.51** -0.42** -0.42**
(-2.56) (-2.52) (-2.33) (-2.39)

β∆KOV 5− 1 FF6 α 0.46** -0.50** -0.42** -0.43**
(-2.47) (-2.56) (-2.35) (-2.44)

β∆KOV 5− 1 q4 α -0.48** -0.53*** -0.47** -0.45***
(-2.35) (-2.98) (-2.41) (-3.03)

β∆KOV 5− 1 q5 α -0.50*** -0.56*** -0.49** -0.47***
(-2.65) (-3.23) (-2.46) (-3.11)

Notes: This table presents the average month-(m+1) excess returns and alphas of the bivariate β∆KOV quintile portfolios. The

control variables are βMKT , β∆V IX , β∆V V IX , and β∆V RP . At the end of month m, stocks are sorted into quintile portfolios

based on each of the control variables. Within eacn control variable quintile, stocks are sorted again into quintile portfolios

based on β∆KOV . Stocks are weighted equally within each of the resulting 25 portfolios. Five portfolios with the same rank of

β∆KOV are weighted equally again and the resulting five portfolios are referred to as the bivariate β∆KOV quintile portfolios.

The column labeled “5 − 1” presents the average excess returns and alphas for each zero-investment portfolio (5 − 1) that is

long the bivariate β∆KOV quintile five portfolio and short the bivariate β∆KOV quintile one portfolio. Alphas (α) are obtained

using the capital asset pricing model (CAPM), Fama and French (1993) three-factor model (FF3), Fama and French (1993) and

Carhart (1997) four-factor model (FFC), Fama and French (2015) five-factor model (FF5), Fama and French (2018) six-factor

model (FF6), Hou et al. (2015) q-factor model (q4), and Hou et al. (2021) augmented q-factor model (q5). t-statistics adjusted

following Newey and West (1987) using 12 lags are reported in parentheses. ∗∗∗, ∗∗, and ∗ are used to indicate statistical

significance of the average excess returns and alphas of the bivariate β∆KOV 5 − 1 portfolios at the 1%, 5%, and 10% levels,

respectively.
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Table 4: Price of KOV risk: characteristics controlled

Future excess returns

(1) (2) (3) (4) (5) (6) (7)

β∆KOV -0.17*** -0.20*** -0.23*** -0.24*** -0.24*** -0.23*** -0.19***
(-2.73) (-2.96) (-3.21) (-3.22) (-3.31) (-3.24) (-2.83)

βMKT -0.30 -0.40 -0.35 -0.34 -0.44 -0.44
(-0.63) (-0.67) (-0.69) (-0.65) (-0.72) (-0.76)

ME 0.05*** 0.05*** 0.04*** 0.05*** 0.06***
(3.58) (3.61) (3.26) (3.46) (3.51)

BM -0.04*** -0.03*** -0.03*** -0.03*** -0.03***
(-3.27) (-3.15) (-2.95) (-2.72) (-2.88)

MOM -0.06 -0.05 -0.05
(-1.31) (-1.44) (-1.56)

Y 1.15*** 1.02*** 1.12***
(4.13) (3.74) (3.86)

INV -0.55*** -0.47*** -0.51***
(-3.38) (-3.19) (-3.26)

ILLIQ 0.00
(4.11)

Intercept 0.51 0.87* 0.95** 1.12** 1.03** 1.08** 0.96**
(0.93) (1.81) (2.12) (2.23) (2.25) (2.31) (2.18)

Adj. R2 (percent) 0.6 3.3 5.7 6.8 6.7 7.1 7.4
No. of observations 3891 3891 3891 3891 3891 3891 3891

Notes: This table presents the time series averages of the cross-sectional regressions of month-(m + 1) excess stock returns

on month-m β∆KOV and firm characteristics. ME is the log of the market capitalization. BM is the log of the ratio of the

book value of equity to the market capitalization. MOM is the 11-month stock return in months m− 11 through m− 1. The

profitability measure Y and the investment measure INV are calculated following Fama and French (2015). The illiquidity

measure ILLIQ is calculated following Amihud (2002). t-statistics adjusted following Newey and West (1987) using 12 lags are

presented in parentheses. The average adjusted R-squared (Adj. R2) and the average number of observations are also reported.
∗∗∗, ∗∗, and ∗ are used to indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

31



Table 5: Price of KOV risk: betas controlled

Future excess returns

(1) (2) (3) (4) (5) (6)

β∆KOV -0.17*** -0.20*** -0.25*** -0.25*** -0.26*** -0.24***
(-2.73) (-2.96) (-3.36) (-3.41) (-3.31) (-3.13)

βMKT -0.30 -0.42 -0.35 -0.31 -0.41
(-0.63) (-0.69) (-0.71) (-0.66) (-0.70)

βSMB 0.13 0.09 0.08 0.11
(0.97) (1.12) (1.17) (1.05)

βHML -0.11 -0.17 -0.17 -0.17
(-1.31) (-1.26) (-1.21) (-1.33)

βUMD -0.65 -0.48
(-1.28) (-1.13)

βRMW 0.19** 0.18**
(2.34) (2.17)

βCMA -0.14 -0.13
(-1.39) (-1.27)

Intercept 0.51 0.87* 0.95** 1.12** 1.03** 1.08**
(0.93) (1.81) (2.12) (2.23) (2.25) (2.31)

Adj. R2 (percent) 0.6 3.3 4.9 5.5 5.5 5.8
No. of observations 3891 3891 3891 3891 3891 3891

Notes: This table presents the time series averages of the cross-sectional regressions of month-(m+ 1) excess stock returns on

month-m β∆KOV and factor betas. Included betas are βSMB , βHML, βUMD, βRMW , and βCMA, the estimated coefficients

of SMB, HML, UMD, RMW , and CMA obtained from a twelve-month rolling window regression of daily excess stock

returns on the contemporaneous returns of the six factors of Fama and French (2018). t-statistics adjusted following Newey and

West (1987) using 12 lags are presented in parentheses. The average adjusted R-squared (Adj. R2) and the average number

of observations are also reported. ∗∗∗, ∗∗, and ∗ are used to indicate statistical significance at the 1%, 5%, and 10% levels,

respectively.
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Table 6: Price of KOV risk: risk characteristics controlled

Future excess returns

(1) (2) (3) (4) (5) (6) (7) (8)

β∆KOV -0.22*** -0.23*** -0.24*** -0.26*** -0.25*** -0.26*** -0.21*** -0.23***
(-3.21) (-3.35) (-3.42) (-3.55) (-3.56) (-3.31) (-2.86) (-3.18)

β∆V IX -0.27* -0.31** -0.23 -0.25
(-1.74) (-2.18) (-1.41) (-1.49)

β∆V V IX -0.53** -0.49** -0.51** -0.48*
(-2.31) (-2.07) (-2.17) (-1.85)

β∆V RP 0.03** 0.04** 0.02* 0.03**
(2.23) (2.41) (1.86) (2.17)

Controls Char Beta Char Beta Char Beta Char Beta
Adj. R2 (percent) 7.4 5.8 7.5 6.0 7.5 5.9 7.9 7.4
Observations 3891 3891 3891 3891 3891 3891 3891 3891

Notes: This table presents the time series averages of the cross-sectional regressions of month-(m+ 1) excess stock returns on

month-m β∆KOV and risk variables that are plausibly similar to KOV risk. Included risk variables are β∆V IX , β∆V V IX , and

β∆V RP , the estimated coefficients of ∆V IX, ∆V V IX, and ∆V RP obtained from rolling window regressions of daily excess

stock returns on the contemporaneous changes in the risk variable and other factors, as described in Section 4.2. t-statistics

adjusted following Newey and West (1987) using 12 lags are presented in parentheses. The average adjusted R-squared (Adj.

R2) and the average number of observations are also reported. ∗∗∗, ∗∗, and ∗ are used to indicate statistical significance at the

1%, 5%, and 10% levels, respectively.
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Table 7: Robustness Checks

1 2 3 4 5 5− 1

Panel A. Value-Weighted Returns
All 0.07 0.00 -0.11 -0.03 -0.11 -0.18

(0.48) (0.03) (-1.83) (-0.77) (-0.86) (-1.32)
Excl. >=1% 0.01 0.04 -0.02 -0.08 -0.27 -0.28*

(0.09) (1.01) (-0.38) (-1.37) (-2.32) (-1.76)
Excl. >=5% 0.02 0.03 -0.03 -0.11 -0.31 -0.33*

(0.16) (0.47) (-0.58) (-1.83) (-2.87) (-1.91)
Excl. >=10% 0.02 0.05 -0.01 -0.13 -0.33 -0.35**

(0.12) (0.76) (-0.21) (-2.03) (-3.05) (-2.07)
Excl. >=20% 0.03 0.06 -0.03 -0.16 -0.41 -0.43**

(0.18) (0.87) (-0.47) (-2.13) (-3.78) (-2.16)
Panel B. Estimation Period
Three-month beta 0.05 0.09 0.02 -0.18 -0.29 -0.34*

(0.38) (1.04) (0.34) (-2.29) (-2.28) (-1.71)
Six-month beta 0.07 0.04 0.05 -0.11 -0.34 -0.41**

(0.49) (0.32) (0.53) (-2.27) (-3.41) (-2.27)
Nine-month beta 0.05 0.09 0.01 -0.17 -0.44 -0.49**

(0.38) (0.91) (0.25) (-2.38) (-4.37) (-2.36)
Panel C. Data Filtering
NYSE/Amex/Nasdaq 0.01 0.06 0.04 -0.13 -0.45 -0.46**

(0.14) (0.88) (0.52) (-2.31) (-4.42) (-2.18)
Excl. micro-cap 0.05 0.11 -0.04 -0.09 -0.32 -0.36*

(0.73) (1.13) (-0.51) (-1.85) (-2.81) (-1.86)
Panel D. Time Series Model
MA(1) to first differences 0.02 0.06 -0.08 -0.14 -0.42 -0.44**

(0.38) (1.05) (-1.13) (-2.16) (-3.97) (-2.26)

Notes: Each panel of this table reproduces the univariate portfolio analysis results by employing alternative empirical setups.

Fama and French (2018) six-factor alphas are reported for each of the portfolios formed by sorting stocks based on β∆KOV

and for the zero-investment portfolio (5 − 1). Panel A presents the results of using a value-weighting scheme. The results are

produced for the full sample (All) and for subsamples that exclude the 1%, 5%, 10%, and 20% largest stocks (as measured by

their market capitalization at the end of each month). Panel B presents the results from using rolling three-month, six-month,

and nine-month KOV beta estimation periods. Panel C presents the results from using a subsample that includes stocks listed

in NYSE, Amex, and Nasdaq only and a subsample that excludes stocks with a market capitalization below the 10th percentile.

Panel D presents the results of using an alternative time series model. I use the sum five daily first differences of the moments

as the innovation in the moments of the market return and aggregate volatility. ∗∗∗, ∗∗, and ∗ are used to indicate statistical

significance of the alphas of the β∆KOV 5− 1 portfolios at the 1%, 5%, and 10% levels, respectively.
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Appendix. Extracting Option-Implied Moments

In the following description, S(t) is either time-t S&P 500 index or timet price of VIX futures

that matures at time T multiplied by e−r(T−t) where r is the constant risk-free rate.

Let R(t, T ) = lnS(T )−lnS(t). When S is the VIX futures price, S(T ) is equal to the spot

VIX at time T . I use the method of Bakshi et al. (2003) to extract the following moments

from option prices:

V OL(t, T ) (or V OV (t, T )) =

{
EQ

t

[(
R(t, T )− EQ

t [R(t, T )]
)2
]}1/2

, (10)

SKEW (t, T ) (or SOV (t, T )) =

EQ
t

[(
R(t, T )− EQ

t [R(t, T )]
)3
]

{
EQ

t

[(
R(t, T )− EQ

t [R(t, T )]
)2
]}3/2

, (11)

KURT (t, T ) (or KOV (t, T )) =

EQ
t

[(
R(t, T )− EQ

t [R(t, T )]
)4
]

{
EQ

t

[(
R(t, T )− EQ

t [R(t, T )]
)2
]}2 , (12)

where EQ
t [·] is the expected value under the risk-neutral measure. Expanding the powers

inside the expectations, these moments are expressed as functions of

EQ
t [R(t, T )] , EQ

t

[
R2(t, T )

]
, EQ

t

[
R3(t, T )

]
, EQ

t

[
R4(t, T )

]
(13)

or

EQ
t

[
e−r(T−t)R(t, T )

]
, EQ

t

[
e−r(T−t)R2(t, T )

]
, EQ

t

[
e−r(T−t)R3(t, T )

]
, EQ

t

[
e−r(T−t)R4(t, T )

]
.

(14)

The quantities in equation (14) can be interpreted as prices of the contracts whose payoffs,
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H[S] (S = S(T ) for notational convenience), are

H[S] =



R(t, T ),

R2(t, T ),

R3(t, T ),

R4(t, T ).

(15)

Bakshi and Madan (2000) demonstrate that any twice continuously differentiable payoff

function, H[S], can be spanned by a portfolio of risk-free bonds, the underlying asset, and

out-of-the-money (OTM) calls and puts

H[S] = H[S] + (S − S)HS[S] +

∫ ∞

S

HSS[K](S −K)+ dK +

∫ S

0

HSS[K](K − S)+ dK. (16)

The prices of these contracts are

EQ
t

{
e−r(T−t)H[S]

}
= (H[S]− SHS[S])e

−r(T−t) +HS[S]S(t)

+

∫ ∞

S

HSS[K]C(t, T − t;K) dK +

∫ S

0

HSS[K]P (t, T − t;K) dK,

(17)

where C(t, τ ;K) and P (t, τ ;K) are prices of European call and put options with time to

maturity τ and strike price K. As a result, the prices of the contracts can be calculated

using the prices of a risk-free zero coupon bond, the S&P 500 index (or the discounted VIX

futures price), and a series of OTM calls and puts written on the index (or VIX). I use this

methodology to first calculate the quantities in equation (14) and then use these quantities

to calculate the option-implied moments in equations (10), (11), and (12). I choose S = U(t)

when I use equation (17) to calculate the quantities in equation (14).

I obtain the data on S&P 500 index options and VIX options from OptionMetrics Ivy DB.

I define the price of an option as the average of the bid and ask quotes. I filter out options
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with zeros bids and those with quotes that do not satisfy standard no-arbitrage conditions.

Finally, I eliminate in-the-money options because they are less liquid than out-of-the-money

and at-the-money options. Specifically, I eliminate call options with strike prices of less than

97% of the underlying asset price (K/S < 0.97) and put options with strike prices of more

than 103% of the underlying asset price (K/S > 1.03). I estimate only the moments for

days that have at least two OTM call prices and two OTM put prices available.

Because I do not have a continuum of strike prices, I estimate the call and put prices

for strike prices between adjacent strike prices using cubic splines. Specifically, for each

maturity, I interpolate implied volatilities using a cubic spline across moneyness levels (K/S)

to obtain a continuum of implied volatilities. For moneyness levels below or above the

available moneyness level in the market, I use the implied volatility of the lowest or highest

available strike price. I obtain a fine grid of one thousand implied volatilities for moneyness

levels between 0.01% and 300% and these implied volatilities are converted again into call and

put prices. Integrals in equation (17) are calculated using trapezoidal numerical integration.

Linear interpolation of the moments across maturities is used to calculate the moments at a

fixed 30-day horizon.
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